

Fun with Certificates part I

a Deep Dive into Cryptography and RSA for all ages

Brian Epstein

(he/him/his)

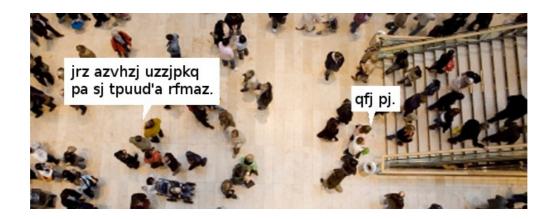
Institute for Advanced Study

Computer Manager, Network and Security

Information Security Officer

bepstein@ias.edu - @epepepep

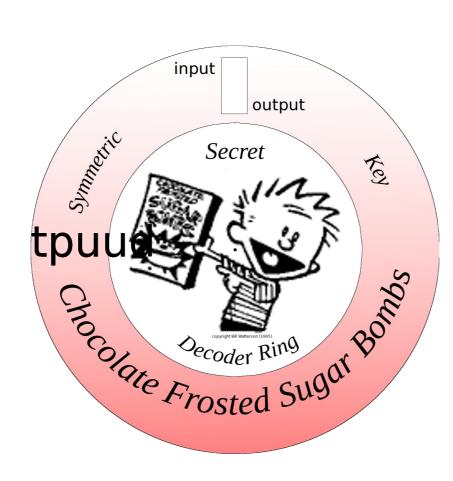
The Institute for Advanced Study


Topics

- Cryptography
 - History and Concepts
 - Symmetric and Asymmetric (RSA/ECC)
- Certificates
 - Trust
 - Key Size (bit-length)
- Lab and Demonstrations

Cryptography

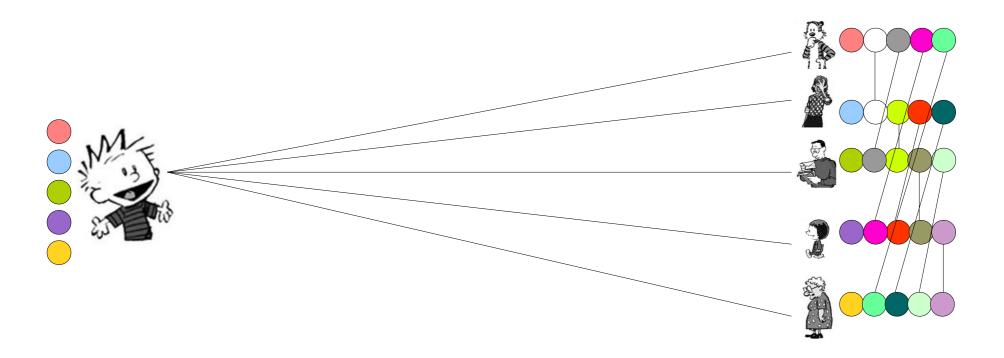
Goal: pass messages secretly between entities through an insecure medium



Symmetric Cryptography

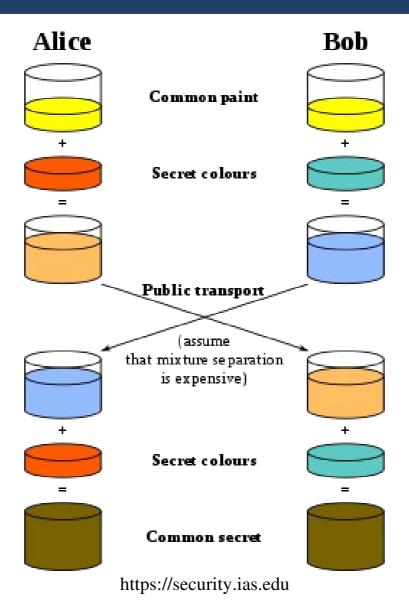
- Cereal box decoder ring/Cryptograms
- Decode secret message ("zsad").
- Translate each letter with decoder ring
- Secret message is ("easy").
- Reverse to encode.
- Fast.

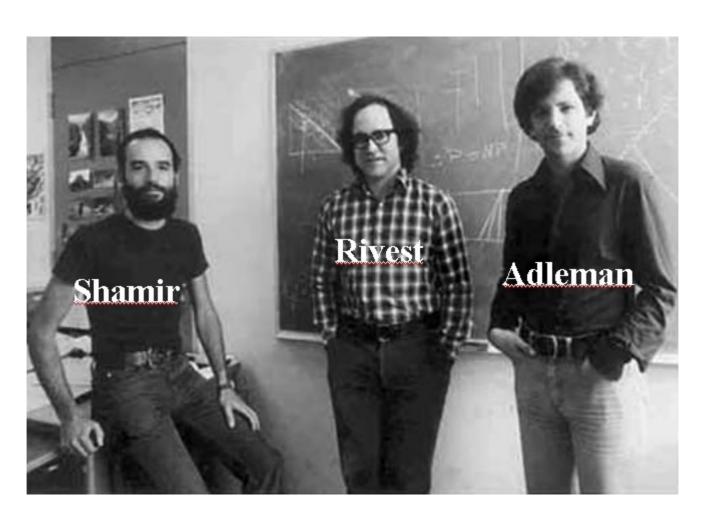
tpuud

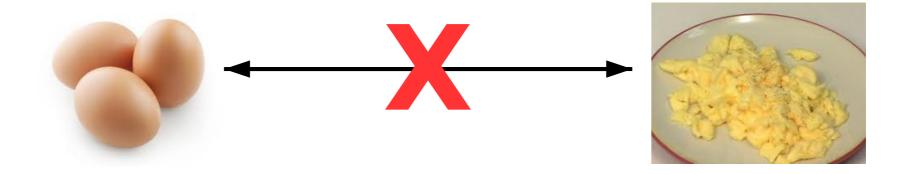


Jimmy

Symmetric Box Demo

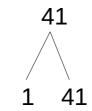

Symmetric Key Cryptography



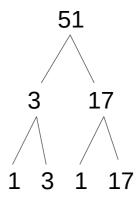


One way function

Asymmetric Keys


- Private key that you keep to yourself
- Public key that you give to everyone

Asymmetric Box Demo


Math

Prime Numbers

$$1 * 41 = 41$$

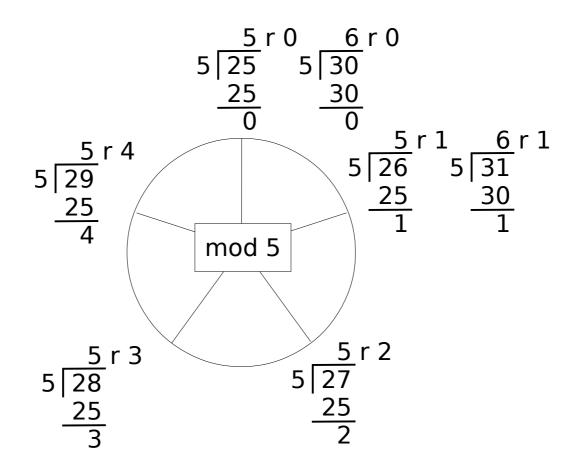
$$1*3*1*17 = 3*17 = 51$$

Exponents

$$2^{7} = 2*2*2*2*2*2$$

= 128

$$2^7 = 128$$



Modulus

$$\begin{array}{r}
2 \text{ r } 18 \ 128 \div 55 = 2 \text{ r } 18 \\
55 \overline{\smash{\big)}\ 128} & 128 \text{ mod } 55 = 18 \\
\underline{110} & 128 \equiv 18 \text{ (mod } 55)
\end{array}$$

Modulus

Modulus

- Think of modulus like a circle
- Examples
 - clock 59 minutes becomes 0 minutes: (mod 60)
 - date 365th day of the year becomes the 1st: (mod 365)
 - numbers ones column goes from 9 to 0 : (mod 10)
 - circular degrees 359° goes to 0°: (mod 360)

RSA Private Key Contents

- Two large Prime Numbers (p and q)
- Modulus (n = p*q)
- Private exponent (d)

Private Exponent

Private exponent (d) must solve

$$(d*e) \mod \varphi(n) = 1$$

```
File Edit View Terminal Tabs Help
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$ openssl r
sa -in regular.key -text -noout
Private-Key: (512 bit)
modulus:
    00:c4:a4:bb:01:fb:af:06:5b:ce:11:1e:af:39:3c:
    24:21:af:12:c8:c5:ec:ac:bc:03:98:01:c5:e0:dd:
   b3:27:20:8d:64:a9:39:0d:4d:7a:03:6a:8e:a1:e3:
   86:b9:d7:5d:60:7c:40:le:ea:51:3d:55:6e:f4:d1:
   76:63:92:81:b3
publicExponent: 65537 (0x10001)
privateExponent:
    00:c2:fb:f4:d2:ca:95:8a:60:8d:bc:3c:08:d3:5f:
   e7:13:df:5d:68:e7:98:fe:ce:8f:61:b2:a0:5b:90:
    79:8c:58:e5:e5:4e:a3:b3:f7:6f:f2:42:8f:cc:75:
    e4:07:6b:88:d0:9e:bc:5b:57:86:f3:59:ee:4e:15:
   98:ad:54:fe:cl
primel:
   00:e1:55:70:0d:8d:eb:f5:68:3d:4a:d3:bc:0d:07:
    9d:5c:c4:fd:02:7d:69:ea:f7:f8:d5:01:5e:01:75:
   16:98:4f
prime2:
    00:df:67:bb:7b:79:39:19:8a:9f:0f:1d:84:ea:b0:
   8e:d7:4e:49:34:22:f3:a4:78:9a:35:22:0c:07:26:
   d7:c3:5d
exponent1:
   6b:c7:85:00:46:b8:ed:39:fd:cf:33:b5:87:f9:f3:
   6f:f3:1d:1d:ba:c5:15:c9:a4:30:a6:25:c3:c6:b0:
    97:0b
exponent2:
    00:94:84:31:6e:f4:37:b1:73:26:2a:b6:45:16:80:
    29:75:98:e5:b1:73:4a:e5:9c:07:68:2b:2a:33:d6:
   ee:b9:41
coefficient:
    00:9b:04:15:53:4e:49:10:1d:f0:76:48:bc:11:b5:
    c9:d8:0a:6a:dc:49:41:84:48:d4:d4:5b:8f:51:a0:
   42:60:d6
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$
```

```
File Edit View Terminal Tabs Help
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$ openssl r
sa -in regular.key -text -noout
Private-Key: (512 bit)
modulus:
    00:c4:a4:bb:01:fb:af:06:5b:ce:11:1e:af:39:3c:
    24:21:af:12:c8:c5:ec:ac:bc:03:98:01:c5:e0:dd:
    b3:27:20:8d:64:a9:39:0d:4d:7a:03:6a:8e:a1:e3:
    86:b9:d7:5d:60:7c:40:le:ea:51:3d:55:6e:f4:d1:
    76:63:92:81:b3
publicExponent: 65537 (0x10001)
privateExponent:
    00:c2:fb:f4:d2:ca:95:8a:60:8d:bc:3c:08:d3:5f:
    e7:13:df:5d:68:e7:98:fe:ce:8f:61:b2:a0:5b:90:
    79:8c:58:e5:e5:4e:a3:b3:f7:6f:f2:42:8f:cc:75:
    e4:07:6b:88:d0:9e:bc:5b:57:86:f3:59:ee:4e:15:
    98:ad:54:fe:cl
primel:
    00:e1:55:70:0d:8d:eb:f5:68:3d:4a:d3:bc:0d:07:
    9d:5c:c4:fd:02:7d:69:ea:f7:f8:d5:01:5e:01:75:
    16:98:4f
prime2:
    00:df:67:bb:7b:79:39:19:8a:9f:0f:1d:84:ea:b0:
    8e:d7:4e:49:34:22:f3:a4:78:9a:35:22:0c:07:26:
    d7:c3:5d
exponent1:
    6b:c7:85:00:46:b8:ed:39:fd:cf:33:b5:87:f9:f3:
    6f:f3:1d:1d:ba:c5:15:c9:a4:30:a6:25:c3:c6:b0:
    97:0b
exponent2:
    00:94:84:31:6e:f4:37:b1:73:26:2a:b6:45:16:80:
    29:75:98:e5:b1:73:4a:e5:9c:07:68:2b:2a:33:d6:
    ee:b9:41
coefficient:
    00:9b:04:15:53:4e:49:10:1d:f0:76:48:bc:11:b5:
    c9:d8:0a:6a:dc:49:41:84:48:d4:d4:5b:8f:51:a0:
    42:60:d6
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$
```

```
File Edit View Terminal Tabs Help
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$ openssl r
sa -in regular.key -text -noout
Private-Key: (512 bit)
modulus:
    00:c4:a4:bb:01:fb:af:06:5b:ce:11:1e:af:39:3c:
    24:21:af:12:c8:c5:ec:ac:bc:03:98:01:c5:e0:dd:
    b3:27:20:8d:64:a9:39:0d:4d:7a:03:6a:8e:a1:e3:
    86:b9:d7:5d:60:7c:40:le:ea:51:3d:55:6e:f4:d1:
    76:63:92:81:b3
publicExponent: 65537 (0x10001)
privateExponent:
    00:c2:fb:f4:d2:ca:95:8a:60:8d:bc:3c:08:d3:5f:
    e7:13:df:5d:68:e7:98:fe:ce:8f:61:b2:a0:5b:90:
    79:8c:58:e5:e5:4e:a3:b3:f7:6f:f2:42:8f:cc:75:
    e4:07:6b:88:d0:9e:bc:5b:57:86:f3:59:ee:4e:15:
    98:ad:54:fe:cl
primel:
    00:e1:55:70:0d:8d:eb:f5:68:3d:4a:d3:bc:0d:07:
    9d:5c:c4:fd:02:7d:69:ea:f7:f8:d5:01:5e:01:75:
    16:98:4f
prime2:
    00:df:67:bb:7b:79:39:19:8a:9f:0f:1d:84:ea:b0:
    8e:d7:4e:49:34:22:f3:a4:78:9a:35:22:0c:07:26:
    d7:c3:5d
exponent1:
    6b:c7:85:00:46:b8:ed:39:fd:cf:33:b5:87:f9:f3:
    6f:f3:1d:1d:ba:c5:15:c9:a4:30:a6:25:c3:c6:b0:
    97:0b
exponent2:
    00:94:84:31:6e:f4:37:b1:73:26:2a:b6:45:16:80:
    29:75:98:e5:b1:73:4a:e5:9c:07:68:2b:2a:33:d6:
    ee:b9:41
coefficient:
    00:9b:04:15:53:4e:49:10:1d:f0:76:48:bc:11:b5:
    c9:d8:0a:6a:dc:49:41:84:48:d4:d4:5b:8f:51:a0:
    42:60:d6
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$
```

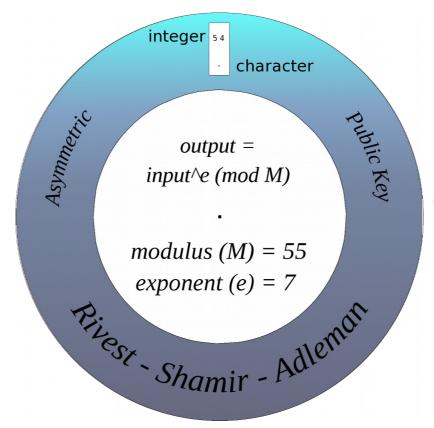
```
File Edit View Terminal Tabs Help
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$ openssl r
sa -in regular.key -text -noout
Private-Key: (512 bit)
modulus:
    00:c4:a4:bb:01:fb:af:06:5b:ce:11:1e:af:39:3c:
    24:21:af:12:c8:c5:ec:ac:bc:03:98:01:c5:e0:dd:
    b3:27:20:8d:64:a9:39:0d:4d:7a:03:6a:8e:a1:e3:
    86:b9:d7:5d:60:7c:40:le:ea:51:3d:55:6e:f4:d1:
    76:63:92:81:b3
publicExponent: 65537 (0x10001)
privateExponent:
    00:c2:fb:f4:d2:ca:95:8a:60:8d:bc:3c:08:d3:5f:
    e7:13:df:5d:68:e7:98:fe:ce:8f:61:b2:a0:5b:90:
    79:8c:58:e5:e5:4e:a3:b3:f7:6f:f2:42:8f:cc:75:
    e4:07:6b:88:d0:9e:bc:5b:57:86:f3:59:ee:4e:15:
    98:ad:54:fe:cl
primel:
    00:e1:55:70:0d:8d:eb:f5:68:3d:4a:d3:bc:0d:07:
    9d:5c:c4:fd:02:7d:69:ea:f7:f8:d5:01:5e:01:75:
    16:98:4f
prime2:
    00:df:67:bb:7b:79:39:19:8a:9f:0f:1d:84:ea:b0:
    8e:d7:4e:49:34:22:f3:a4:78:9a:35:22:0c:07:26:
    d7:c3:5d
exponent1:
    6b:c7:85:00:46:b8:ed:39:fd:cf:33:b5:87:f9:f3:
    6f:f3:1d:1d:ba:c5:15:c9:a4:30:a6:25:c3:c6:b0:
    97:0b
exponent2:
    00:94:84:31:6e:f4:37:b1:73:26:2a:b6:45:16:80:
    29:75:98:e5:b1:73:4a:e5:9c:07:68:2b:2a:33:d6:
    ee:b9:41
coefficient:
    00:9b:04:15:53:4e:49:10:1d:f0:76:48:bc:11:b5:
    c9:d8:0a:6a:dc:49:41:84:48:d4:d4:5b:8f:51:a0:
    42:60:d6
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$
```

```
File Edit View Terminal Tabs Help
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$ openssl r
sa -in regular.key -text -noout
Private-Key: (512 bit)
modulus:
    00:c4:a4:bb:01:fb:af:06:5b:ce:11:1e:af:39:3c:
    24:21:af:12:c8:c5:ec:ac:bc:03:98:01:c5:e0:dd:
    b3:27:20:8d:64:a9:39:0d:4d:7a:03:6a:8e:a1:e3:
    86:b9:d7:5d:60:7c:40:le:ea:51:3d:55:6e:f4:d1:
    76:63:92:81:b3
publicExponent: 65537 (0x10001)
privateExponent:
    00:c2:fb:f4:d2:ca:95:8a:60:8d:bc:3c:08:d3:5f:
    e7:13:df:5d:68:e7:98:fe:ce:8f:61:b2:a0:5b:90:
    79:8c:58:e5:e5:4e:a3:b3:f7:6f:f2:42:8f:cc:75:
    e4:07:6b:88:d0:9e:bc:5b:57:86:f3:59:ee:4e:15:
    98:ad:54:fe:cl
primel:
    00:e1:55:70:0d:8d:eb:f5:68:3d:4a:d3:bc:0d:07:
    9d:5c:c4:fd:02:7d:69:ea:f7:f8:d5:01:5e:01:75:
    16:98:4f
prime2:
    00:df:67:bb:7b:79:39:19:8a:9f:0f:1d:84:ea:b0:
    8e:d7:4e:49:34:22:f3:a4:78:9a:35:22:0c:07:26:
    d7:c3:5d
exponent1:
    6b:c7:85:00:46:b8:ed:39:fd:cf:33:b5:87:f9:f3:
    6f:f3:1d:1d:ba:c5:15:c9:a4:30:a6:25:c3:c6:b0:
    97:0b
exponent2:
    00:94:84:31:6e:f4:37:b1:73:26:2a:b6:45:16:80:
    29:75:98:e5:b1:73:4a:e5:9c:07:68:2b:2a:33:d6:
    ee:b9:41
coefficient:
    00:9b:04:15:53:4e:49:10:1d:f0:76:48:bc:11:b5:
    c9:d8:0a:6a:dc:49:41:84:48:d4:d4:5b:8f:51:a0:
    42:60:d6
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$
```


RSA Public Key Contents

- Modulus (n)
- Public exponent (e)


```
<u>File Edit View Terminal Tabs Help</u>
[2]eplap:~/doc/ias/security_talks/fun_with_certificates 20080529/demo$ openssl x
509 -in fb.ias.edu.crt -text -noout
Certificate:
   Data:
       Version: 3 (0x2)
       Serial Number: 536270 (0x82ece)
        Signature Algorithm: md5WithRSAEncryption
       Issuer: C=US, O=Equifax Secure Inc., CN=Equifax Secure Global eBusiness
CA-1
       Validity
           Not Before: Apr 9 20:45:24 2008 GMT
           Not After: Apr 10 20:45:24 2009 GMT
        Subject: C=US, O=fb.ias.edu, OU=GT63809955, OU=See www.rapidssl.com/reso
urces/cps (c)08, OU=Domain Control Validated - RapidSSL(R), CN=fb.ias.edu
       Subject Public Key Info:
           Public Key Algorithm: rsaEncryption
           RSA Public Key: (1024 bit)
                Modulus (1024 bit):
                    00:b7:01:d0:51:16:4a:85:e6:2a:2f:2a:86:60:3a:
                    7b:51:eb:a7:52:f5:f2:09:8c:46:ab:2d:bf:11:4e:
                    a6:7d:f5:f5:b3:50:0d:4e:a5:48:23:fe:50:95:92:
                    63:25:03:54:46:35:4d:d8:c7:a2:0e:14:53:0e:0e:
                    3e:1e:3e:9d:19:f9:16:39:2e:00:f8:5d:92:ec:76:
                    ba:cb:8e:b3:86:b4:f9:ed:bd:1e:32:7a:bc:c7:cd:
                    f0:fb:c3:75:d7:34:1f:cb:1c:3a:cc:04:c9:4f:57:
                    d7:26:ef:75:27:22:49:66:5a:57:ef:47:cb:39:73:
                    70:bf:31:42:1d:40:70:9a:93
                Exponent: 65537 (0x10001)
        X509v3 extensions:
           X509v3 Key Usage: critical
                Digital Signature, Non Repudiation, Key Encipherment, Data Encip
herment
           X509v3 Subject Key Identifier:
                2E:F0:33:FF:F0:DF:8D:88:A1:BD:A1:EA:B0:29:0B:81:E6:0D:25:0C
           X509v3 CRL Distribution Points:
               URI:http://crl.geotrust.com/crls/globalca1.crl
           X509v3 Authority Key Identifier:
                keyid:BE:A8:A0:74:72:50:6B:44:B7:C9:23:D8:FB:A8:FF:B3:57:6B:68:6
           X509v3 Extended Key Usage:
                TLS Web Server Authentication, TLS Web Client Authentication
           X509v3 Basic Constraints: critical
                CA: FALSE
    Signature Algorithm: md5WithRSAEncryption
       14:fa:0d:67:64:63:a4:58:47:f5:7f:73:1a:00:59:20:86:8a:
        f9:82:88:b5:6e:a2:82:6c:e3:8f:a0:bd:8b:f0:04:72:bb:49:
        7d:f6:4b:62:5a:1a:7e:7f:5b:43:d6:6e:27:f8:6d:50:2b:f7:
        ea:50:bd:94:f7:be:3f:3a:59:f6:a8:cd:66:f1:d7:9e:7d:43:
        6f:2c:a4:36:6a:eb:88:0f:4c:9b:ff:b6:cc:79:e4:ea:b2:9a:
        24:0f:93:75:5a:5e:42:a6:12:7e:2c:fa:20:25:46:fe:e3:bd:
       1b:e9:fa:52:5b:65:7b:a4:f1:e6:56:87:c1:34:5d:2a:49:e1:
[2]eplap:~/doc/ias/security talks/fun with certificates 20080529/demo$
```



Public Exponent

 Public exponent (e) must be relatively prime to p-1 for all primes p which divide the modulus

Jimmy

One way function for RSA

14 13 18 18 36

One way function for RSA 14 13 18 18 36

14 13 18 18 36

One way function for RSA

114413 18 18 36

13

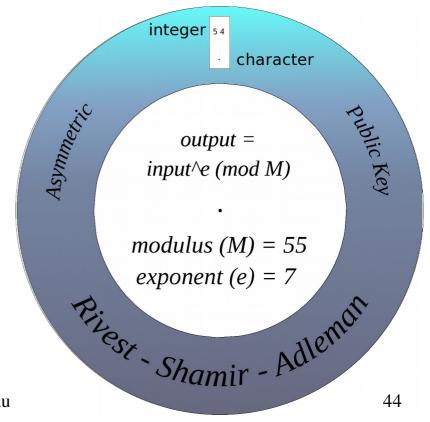
18

18

36

One way function for RSA

 $14^7 \mod 55 = 105413504 \mod 55 = 9 = "g"$


$$13^7 \mod 55 = 7 = \text{"e"}$$

$$18^7 \mod 55 = 17 = "1"$$

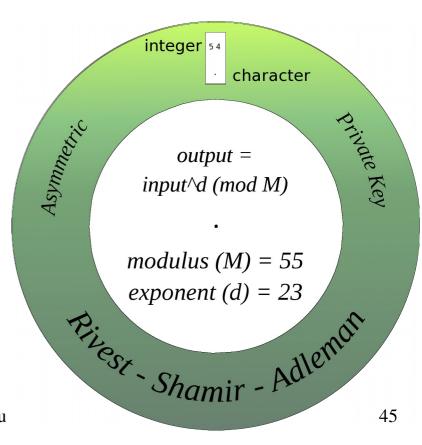
$$18^7 \mod 55 = 17 = "I"$$

$$36^7 \mod 55 = 31 = \text{"v"}$$

$$E(Jimmy) = gellv$$

One way function for RSA

$$9^{23} \mod 55 = 14 = "J"$$

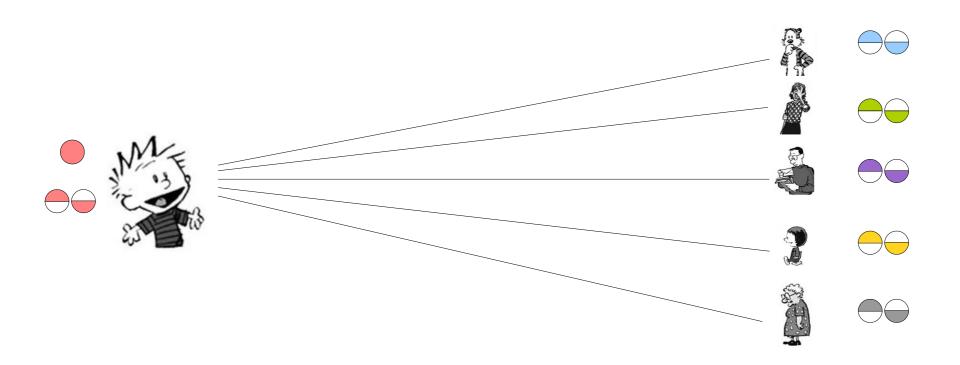

$$7^{23} \mod 55 = 13 = "i"$$

$$17^{23} \mod 55 = 18 = \text{"m"}$$

$$17^{23} \mod 55 = 18 = "m"$$

$$31^{23} \mod 55 = 36 = "y"$$

$$D(gellv) = Jimmy$$



Asymmetric Key Demo

Modulo Calculator https://tinyurl.com/rsacalc

Asymmetric Key Cryptography

