
IAS/PCMI Graduate Summer School 2023

The computational complexity of near-term quantum experiments
Lecturer: Bill Fefferman TA: Soumik Ghosh

1 Problem Set
Problem 1: Recall in the lecture I introduced two problems that I called “classical” and “quantum”
exact sum. The “classical” exact sum was the problem of, given as input an efficient classical circuit
computing a function f : {0, 1}n → {0, 1}, exactly compute

x∈{0,1}n f(x). The “quantum” exact

sum was the same problem with respect to the input function g : {0, 1}n → {±1}. Prove that these
problems are of the same difficulty – i.e., show that I can solve either problem if I have the ability
to solve only one of the problems.

Problem 2: Now consider the multiplicative approximation analogues of the definitions from Prob-
lem 1 – that is define the “classical” approximate sum to be the problem of, given as input an efficient
classical circuit computing a function f : {0, 1}n → {0, 1}, compute a multiplicative estimate α so
that

(1−)

x∈{0,1}n

f(x) ≤ α ≤ (1 +)

x∈{0,1}n

f(x)

in time poly(n, 1/). Similarly, the “quantum” approximate sum was the same multiplicative esti-
mation problem with respect to the input function g : {0, 1}n → {±1}. In lecture I claimed that
the “quantum” approximate sum problem is strictly harder than the “classical” approximate sum
problem. But consider the following claimed reduction: suppose I take an instance of the “quantum”
approximate sum problem specified by an input function g : {0, 1}n → {±1}. Then I can define two
efficiently computable functions g+ : {0, 1}n → {0, 1} and g− : {0, 1}n → {0, 1} so that

x∈{0,1}n

g(x) =

x∈{0,1}n

g+(x)−

x∈{0,1}n

g−(x)

I have written the “quantum” sum as the difference of two “classical” sums. Suppose I can solve the
“classical” approximate sum problem. Then I can use this ability twice to get good multiplicative
estimates to

x∈{0,1}n g+(x) and

x∈{0,1}n g−(x). Now I can subtract these estimates. What sort

of additive error can this approximate procedure incur? Does this prove that the “quantum” ap-
proximate sum is no harder than “classical” approximate sum?

Problem 3: In the lecture we proved that the Polynomial time hierarchy collapses if we have a
classical algorithm that samples exactly from the same output distribution as a quantum circuit,
that is a classical algorithm S so that for all quantum circuits C and outcomes y ∈ {0, 1}n:

Prr [S(C, r) = y] = |〈y|C|0n〉|2

But as we’ve discussed, there is a trivial quantum algorithm that samples from this distribution:
just run C on |0n〉 and measure all n qubits! Why doesn’t this quantum sampling algorithm also
collapse the Polynomial time hierarchy, by similar arguments involving Stockmeyer’s result?

Problem 4: Recall our hardness of exact quantum sampling result worked by showing that, given
a classical circuit computing a function g : {0, 1}n → {±1} there is a quantum algorithm that,
after measuring all n qubits in the standard basis, outputs a string y ∈ {0, 1}n with probability

1-1

py =

x(−1)〈x,y〉g(x)

22n . In particular, when y = 0n, p0n is proportional to (

x g(x))
2, which is an

instance of squared quantum sum. Is this hardness proof resilient to classical sampling algorithms
that, rather than sampling exactly from the same distribution, samples:

1. From any distribution X that assigns each string y a probability p̃y so that (1−)py ≤ p̃y ≤
(1 +)py where = 1

poly(n) .

2. From any distribution X that is 1
poly(n) -close in total variation distance to the outcome distri-

bution of the quantum algorithm.

Problem 5: In the proof of hardness of exact sampling we used the fact that computing a single
outcome probability of a worst-case quantum circuit (e.g., the probability that the 0n outcome is
observed, as discussed in Problem 4) is as hard as the approximate squared quantum sum problem,
which is P -hard. To show that this implies the hardness of classical sampling from this distribution,
we needed an argument involving Stockmeyer’s algorithm. Why don’t we instead do something much
simpler – suppose there exists a classical sampling algorithm. Let’s use this algorithm to repeatedly
sample from the quantum distribution a polynomial number of times, then look at the fraction of
outcomes equal to 0n and use this as an estimate for the output probability of the 0n outcome.
Does this work to prove hardness of exact sampling with a classical algorithm? How accurate of an
estimate does this procedure attain?

Problem 6: Recall we proved Lipton’s theorem stating that the problem of computing the Perma-
nent of a matrix (with entries over a sufficiently large finite field) is P-hard on average.

Recall that the determinant of a matrix is defined to be:

Det[X] =

σ∈Sn

sign(σ)

n

i=1

Xi,σ(i)

Where Sn is the symmetric group on n elements and sign(σ) is the function on permutations
defined to be +1 if the permutation can be obtained with an even number of exchanges of two entries
and otherwise is defined to be −1.

The Determinant, unlike the Permanent, is efficiently computable, so it shouldn’t be P-hard
on average. Is the Determinant as hard on average as it is in the worst-case? Which step in the
average-case hardness proof breaks for the Determinant?

Problem 7: Recall the setting of Lipton’s average-case hardness result: we have a “faulty” algo-
rithm that correctly computes the Permanent on average. Our goal is to use this faulty algorithm
to correctly compute the Permanent on a “worst-case” (i.e., arbitrary) matrix. Lipton’s argument
proceeds by a polynomial extrapolation argument. Why do we need such an argument – in partic-
ular, since the faulty algorithm succeeds with high probability, say probability 1 − 1

6n , why can’t
we simply repeat the faulty algorithm on our worst-case matrix and then take a majority vote to
compute the Permanent?

Problem 8: We are interested in classically verifying that a noisy quantum experiment samples
from a distribution pexp that is close in total variation distance to the ideal output distribution of
a fixed but random quantum circuit, pideal, since our complexity theoretic hardness results work
under this assumption. Recall we define total variation distance as:

TV D(pexp, pideal) =
1

2

x∈{0,1}n

|pexp(x)− pideal(x)|

On the other hand, modern quantum advantage experiments are verified using different closeness
measures such as the so-called “cross-entropy metric”, defined to be:

1-2

XEB(pexp, pideal) =

x∈{0,1}n

pexp(x) log(1/pideal(x))

We note that this is the “logarithmic” variant of the metric, which is different from the “linear”
variant defined in lecture. While in general XEB and TVD can be quite different, prove that if we
make the assumption that the Shannon entropy H(pexp) > H(pideal) then we have that scoring 1−
on XEB implies a non-trivial upper bound on TVD (here we assume that is a sufficiently small
constant and that a XEB score of 1 is the ideal score if no errors occured). Hint: use Pinsker’s

inequality i.e., that TV D(pexp, pideal) ≤

1
2 |pexp − pid|KL and the fact that the KL divergence

metric can be written in terms of cross-entropy.
Is the assumption that we score 1− as the system size increases on XEB reasonable for quantum

experiments that are not error-corrected?

Problem 9: Consider a distribution D over quantum circuits C with Haar random two-qubit gates
over a fixed architecture as defined in lecture. Calculate EC∼D

|〈0n|C|0n〉|2

= EC∼D [p0n(C)]. Ar-

gue that this quantity would remain the same even if we replaced the 0n outcome with any outcome
x ∈ {0, 1}n.

Problem 10: Recall the Heavy Output Generation (“HOG”) problem – given as input a random
circuit C output strings x1, x2, ..., xk so that at least 2/3 are “heavy” (i.e., we call a string xi heavy
if the output probability |〈xi|C|0n〉|2 is greater than median in the output distribution of C). Also
recall the Quantum Threshold Assumption or “QUATH”: No efficient classical algorithm takes as
input random C and decided if the output probability of 0n outcome is heavy with probability
1/2 + Ω(1/2n), where probability is over both and internal randomness of the classical algorithm.
Prove that QUATH implies that HOG is hard.

Problem 11: Recall the “XHOG” problem is the variant of HOG in which we are given as input a
random circuit C and are asked to output strings x1, x2, ..., xk so that Ei

|〈xi|C|0n〉|2

≥ b

2n where
b = 1 + for some > 0. Correspondingly we recall the “XQUATH” assumption: No efficient
classical algorithm takes as input a random circuit C and outputs an estimate p to the output
probability of the 0n outcome, p0n , so that:

22n

EC

p0n − 1

2n

2

− EC

(p0n − p)

2

= Ω(2−n)

Describe the strategy to prove that XQUATH implies that XHOG is hard (i.e., while the proof
itself is a bit technical, the big picture idea behind the reduction is straightforward and can be easily
described.)

Problem 12: Prove that the probability of each outcome string x ∈ {0, 1}n with respect to a
quantum circuit C = CdCd−1...C1 can be expressed as a path integral over Pauli paths:

px = |〈x|C|0n〉|2 =

s∈Pd+1
n

f(C, s, x)

Where the function f(C, s, x) is a product of d+ 1 Pauli transition amplitudes of the circuit C:

f(C, s, x) = Tr(|x〉〈x|sd)Tr(sdCdsd−1C
†
d)...T r(s1C1s0C

†
1)Tr(s0|0n〉〈0n|)

Problem 13: Let us use the same notation as the previous problem and assume the “orthogonality
of Pauli paths” (recall this is “Fact 2” in the lecture and means that EC [f(C, s, x)f(C, s′, x)] = 0 for

1-3

any two Pauli paths s ∕= s′ and for any x ∈ {0, 1}n). Use this to prove that EC [f(C, s, x)] = 0 for
any path s ∕= I⊗d+1

n where I is the identity operator.

1-4

