Exercises on Elliptic Curves

You do not need to do all of these, but at least try problem 1. You might want to work in groups.

- 1. Consider the elliptic curve $y^2 = x^3 + x + 3$ over the field $F = F_7$.
- (a) For which values of $x \in F_7$ is $x^3 + x + 3$ equal to a perfect square in F_7 ?
- (b) List $E(F_7)$. (There should be six points.)
- (c) Find the line through the two points (4,1) and (6,1). Find the third point of E which this line passes through. Find (4,1) + (6,1).
- (d) This question may be answered with the help of Magma. Show that E(F) is cyclic and find a generator.

Useful Magma commands:

```
F := GF(7);
E := EllipticCurve([F!1,3]);
P := E![F!4,1];
```

- (e) Find the Discrete Logarithm of (6,1) to the base (4,1). That is, find k such that (6,1) = k(4,1).
 - (f) Find a point on E(F) of order 3. Find a point of order 2.
- 2. This exercise explains how to attack the discrete log on a cyclic group of composite order.

Let G be a cyclic group of order N. Let P be a generator of G. Let Q be an unknown multiple of P, say Q = aP. The goal is to find $a \pmod{N}$.

- (a) Show if N = nm, then nP has order m, and nQ is a multiple of nP. Show that solving the discrete log problem for nP, nQ will give some useful information about a. What information does it give?
- (b) If N = pq, explain how to find a by doing one discrete log problem of size p and one of size q, and then using the Chinese Remainder Theorem.
- (c) The elliptic curve $E: y^2 = x^3 + x + 7$ over the field F_{29} has exactly 35 elements. On this curve, find a such that a * (8, 11) = (24, 14), by using the method of part (b).
 - (d) If $N = p^2$, explain how to find a by doing two discrete log problems of size p.
- (e) The curve $E: y^2 = x^3 + x + 24$ over F_{541} has 539 points. Solve the discrete log problem: (423,398) = a(111,58). (Break this down into three smaller discrete log problems.)
- 3. This exercise explains how to attack the discrete log problem on a group using the baby-step-giant-step attack:
- (a) Suppose a group G has prime order r. Let $m = \lceil \sqrt{r} \rceil$. Show that any $a \in \mathbb{Z}/r\mathbb{Z}$ can be written as $a_1m + a_2$, where $0 \le a_1, a_2 < m$.

- (b) If P generates G and Q is some multiple of P, show there exist integers a_1 and a_2 with $0 \le a_i < \sqrt{r}$ such that $a_1 * (mP) = Q a_2 P$. The baby-step-giant-step attack consists of listing all $a_1 * (mP)$ and all $Q a_2 P$ and looking for a match between the two lists.
- (c) Apply the baby-step-giant-step attack to find the log of Q = (285, 1043) with respect to the base point P = (1070, 200) on the elliptic curve $E : y^2 = x^3 + x + 33$ over the field $F = F_{1319}$. This curve has order 1373.

Hint: Here is code to create the list of all pairs $\langle Q - a_2 P, a_2 \rangle$, sorted on the x-coordinate of $Q - a_2 P$:

```
F := GF(1319);
E := EllipticCurve([F!1,33]);
P := E![F!1070,200];
Q := E![F!285,1043];
list1 := [Q];
for i in [2..38] do list1[i] := list1[i-1]-P; end for;
L1 := [ [list1[i,1], list1[i,2], i ] : i in [1..38] ];
Sort(~L1);
```

4. Let $E_1: y^2 = x^3 + 2$ over the field $F = F_7$. Let $E_2: y^2 = x^3 + 3x + 2$ over F.

Find the number of points in $E_1(F)$ and in $E_2(F)$. Try this by hand, or by using a Magma command. Is $E_1(F)$ a cyclic group? Is $E_2(F)$ a cyclic group?

Useful magma commands:

Order(E); // the number of rational points in E

Random(E); // creates a random point on E(F)

Is Identity(P); // tests whether the point P equals the identity element.