Advanced Lecture Course Lecture 4: Variations and open questions

2010 Program for Women and Mathematics

Table des matières

1	Modulo p reduction for crystalline representations	2
2	Generalization of (φ, Γ) -modules	3

There are natural open questions arising from what we have seen in the previous lectures:

- One can wonder what happens if \mathbb{Q}_p is replaced by some finite extension K/\mathbb{Q}_p , i.e. if we consider $G_K := \operatorname{Gal}(\overline{\mathbb{Q}_p}/K)$ -representations on the Galois side and $GL_2(K)$ -representations on what we have called the GL_n side in the first lecture;
- One can also ask what happens for n-dimensional representations with n arbitrary. Not much is known for $n \neq 2$: some partial results have been obtained by people like Herzig [H], Ollivier [O1] [O2], Ollivier-Sécherre [OS], Schraen [Sch], Vignéras [V].

These questions are very difficult: for example, one can naturally define (φ, Γ) -modules for any integer n and any finite extension K of \mathbb{Q}_p , but Colmez' functor only gives $B_2(\mathbb{Q}_p)$ -representations.

The aim of this talk is to present more naive open questions that arise on the Galois side. More precisely, we focus on the two following topics (inspired by a work in progress of Fontaine-Mézard):

- ullet the reduction modulo p of crystalline representations;
- a generalization of (φ, Γ) -modules.

^{*}Laboratoire de Mathématiques - Université de Versailles Saint-Quentin , 78 035 Versailles; Ariane.Mezard@math.uvsq.fr

[†]Laboratoire de Mathématiques - Université Paris-Sud XI , 91 405 Orsay; Ramla.Abdellatif@math.u-psud.fr

1 Modulo p reduction for crystalline representations

Let E be a finite extension of \mathbb{Q}_p (with $p \neq 2$) with ring of integers \mathcal{O}_E , maximal ideal \mathfrak{m}_E , uniformizer ϖ_E and residue field $k_E := \mathcal{O}_E/\mathfrak{m}_E$. For any integer $k \geq 2$ and any $a_p \in \mathfrak{m}_E$, we define a filtered φ -module $D_{k,a_p} := Ee_1 \oplus Ee_2$ with

Frobenius map given by $Mat(\varphi)=\begin{pmatrix}0&-1\\p^{k-1}&a_p\end{pmatrix}$ and filtration defined by

$$Fil^{i}D_{k,a_{p}} := \begin{cases} D_{k,a_{p}} & \text{if } i \leq 0 ;\\ Ee_{1} & \text{if } 1 \leq i \leq k-1 ;\\ \{0\} & \text{if } i \geq k . \end{cases}$$

By Colmez-Fontaine Theorem (Lecture 2), this filtered φ -module is attached to a crystalline representation $V_{k,a_p}:G_{\mathbb{Q}_p}\to GL_2(E)$ such that

$$D_{cris}(V_{k,a_n}^*) = D_{k,a_p} .$$

Considering Colmez-Fontaine Theorem, a first naive question could be the following one:

Question 1. Can we compute the admissible filtered (φ, N) -modules for all $n \geq 2$?

Some computations due to Dousmanis [D], Ghate [GM] and Imai [I] give a complete description of admissible filtered (φ, N) -modules for n = 2. For $n \ge 3$, this is still an open problem.

Now let T be a $G_{\mathbb{Q}_p}$ -stable lattice of V_{k,a_p} and \overline{V}_{k,a_p} be the semi-simplification of $T/\varpi_E T$. It is known that \overline{V}_{k,a_p} only depends on V_{k,a_p} (and not on the choice of T), so that we would like to describe \overline{V}_{k,a_p} in terms of k and a_p . We only have partial results when $k \geq 2p+1$ in the following cases:

- if $v_p(a_p) > \lfloor \frac{k-2}{p-1} \rfloor$ (very big), then $\overline{V}_{k,a_p} = \operatorname{ind}(\omega_2^{k-1})$;
- if $0 < v_p(a_p) < 1$ (very small), then \overline{V}_{k,a_p} can be described with a parameter $t \in \{1,\ldots,p-1\}$ congruent to k-1 modulo p-1. The description depends on whether p-1 divides k-3 or not.

For an explicit description of all the cases where \overline{V}_{k,a_p} is known, we refer to [Be1, Theorem 5.2.1].

We also have the following general result, due to Berger-Breuil [BeBr], that relates what is above to the Langlands correspondence:

Theorem 1. If V is an absolutely irreducible 2-dimensional E-linear representation of $G_{\mathbb{Q}_p}$, then the semi-simplification \overline{V} corresponds by the local modulo p Langlands correspondence to $\overline{\Pi}(V)$.

Conjecture 1 (Buzzard-Gee, [BGe]). If $p \neq 2$, if k is even and if \overline{V}_{k,a_p} is reducible, then $v_p(a_p)$ is an integer.

 \leadsto The strategy is then to find an algorithm able to compute \overline{V}_{k,a_p} for n large enough starting from the data $(k,a_p \mod \varpi_E^n)$. Two useful tools can be used to reach this goal as they give a way to build lattices and to make modulo p reductions:

- Wach modules [Be2];
- Breuil-Kisin modules [K].

2 Generalization of (φ, Γ) -modules

Let k be a perfect field of characteristic p > 0 and let $\sigma : x \mapsto x^p$ be its Frobenius map. Denote by W = W(k) the ring of Witt vectors with coefficients in k and by $K_0 := W[\frac{1}{p}]$ its fraction field. We can extend the Frobenius σ to W and then to K_0 .

Let K be a totally ramified extension of K_0 of finite degree e: we can then write $K = K_0(\pi_0)$. Fix some algebraic closure \overline{K} of K, denote by $\mathfrak{m}_{\overline{K}}$ its maximal ideal and by $q_0 \in W[X]$ the minimal polynomial of π_0 over K_0 : it's an Eisenstein polynomial satisfying $q_0(\pi_0) = 0$.

We set the following definition: a φ -data is a data $(\mathcal{F}, (\pi_n)_{n \in \mathbb{N}})$ with:

- $\mathcal{F} = \sum_{i>0} a_i X^i \in W[[X]]$ such that $\mathcal{F}(X) \equiv X^p$ [p];
- $(\pi_n)_{n\in\mathbb{N}}$ is a compatible system of elements of $\mathfrak{m}_{\overline{K}}$ such that:

$$\forall n \geq 1, \sum_{i>0} \sigma^{-n}(a_i) \pi_n^i = \pi_{n-1}.$$

Let $(\mathcal{F}, (\pi_n)_{n \in \mathbb{N}})$ be a φ -data. For any $n \geq 1$, set $K_n := K[\pi_n]$ and $K_\infty := \bigcup_{n \geq 1} K_n$. Also set $K_{cyc} := K(\mu_{p^\infty})$ and $L := K_\infty K_{cyc}$ the composite extension.

A naive question that naturally arises is the following:

Question 2. For which \mathcal{F} is the extension L/K a Galois extension?

We don't know so far if there are many such datas or not. We only know two examples of cases where it is actually Galois:

1st example: The cyclotomic tower:

Let $\pi_0 := \zeta_0 - 1$ with ζ_0 a primitive *p*-root of unity and $K := K_0(\zeta_0)$. Consider $\mathcal{F}(X) := (X+1)^p - 1$ and π_n given by $\zeta_n = 1 + \pi_n$ where ζ_n is a *p*-th root of ζ_{n-1} . Then $(\mathcal{F}, (\pi_n)_{n \in \mathbb{N}})$ is a φ -data and the fields K_n that it defines are precisely the fields of the cyclotomic tower of K.

2nd example: The Kummer extension:

It does correspond to the following φ -data: $\mathcal{F}(X) := X^p$ and $\pi_n^p = \pi_{n-1}$.

Now return to the general setting and consider a φ -data $(\mathcal{F}, (\pi_n)_{n \in \mathbb{N}})$: since $\mathcal{F}(X) \equiv X^p$ [p], we have $\pi_n^p \equiv \pi_{n-1}$ so that $(\pi_n)_{n \in \mathbb{N}}$ defines an element of

 $\tilde{\mathbf{E}}$, which is in fact in $\tilde{\mathbf{E}}^+$ as $val(\pi_0) \geq 0$ by definition. We can then consider $[\pi] = [(\pi_n)_{n \in \mathbb{N}}] \in \tilde{\mathbf{A}}^+ := W(\tilde{\mathbf{E}}^+)$, and we easily have the following result:

Lemma 1. There exists a unique continuous injective morphism of W-algebras $W[[u]] \to \tilde{\mathbf{A}}^+$ commuting with the Frobenius maps and such that u has image π through the composite map $W[[u]] \longrightarrow \tilde{\mathbf{A}}^+ \twoheadrightarrow \tilde{\mathbf{E}}^+$.

Lemma 1 then allows us to see W[[u]] as a subring of $\tilde{\mathbf{A}}^+$. Remember that we saw in Lecture 2 that there is a map $\theta: \tilde{\mathbf{A}}^+ \to \mathcal{O}_{\mathbb{C}_p}$ that extends to $\tilde{\mathbf{B}}^+ \to \mathbb{C}_p$. If we let $H := \operatorname{Gal}(\overline{K}/K_{\infty})$, we then can prove the following theorem:

Theorem 2. We have the following equivalences of categories:

```
 \{\mathbb{F}_p\text{-representations of }H\} \leftrightarrow \{\varphi\text{-modules over }\mathbf{E}_{\mathbb{Q}_p}\} \ ;   \{\text{free } \mathbb{Z}_p\text{-representations of }H\} \leftrightarrow \{\varphi\text{-modules over }\mathbf{A}_{\mathbb{Q}_p}\} \ ;   \{\mathbb{Q}_p\text{-representations of }H\} \leftrightarrow \{\text{\'etale }\varphi\text{-modules over }\mathbf{B}_{\mathbb{Q}_p}\} \ .
```

It could be interesting to compare these categories for different φ or different H. In the case of a Galois extension, we can also define a theory of (φ, Γ) -modules based on these constructions, but this is a whole new story...

Références

- [Be1] L. Berger, La correspondance de Langlands local p-adique pour $GL_2(\mathbb{Q}_p)$, Exposé 1017 du Séminaire Bourbaki (2010)
- [Be2] L. Berger, An algorithm for computing the reduction mod p of 2dimensional crystalline representations, preprint (2009)
- [BeBr] L. Berger, Ch. Breuil, Sur quelques représentations potentiellement cristallines de $GL_2(\mathbb{Q}_p)$, to appear in Astérisque (2008).
- [BB] L. Berger, Ch. Breuil, *Towards a Langlands correspondence*, Notes of a course given at Hangzhou C.M.S (2004).
- [BGe] K. Buzzard, T. Gee, Explicit reduction modulo p of certain two-dimensional crystalline representations, Int. Math. Res. Not. IMRN (2009), no 12, 2303–2317.
- [D] G. Dousmanis, Rank two filtered (φ, N) -modules with Galois descent data and coefficients (2009).
- [GM] E. Ghate, A. Mézard, Filtered φ -modules with coefficients, Trans. Amer. Math. Soc. 361 (2009), 2243–2261.
- [H] F. Herzig, The classification of irreducible admissible mod p representations of a p-adic GL_n , preprint (2010).
- [I] N. Imai, Filtered modules corresponding to potentially semi-stable representations (2009).
- [K] M. Kisin, Crystalline representations and F-crystals, Algebraic Geometry and Number Theory, Drinfeld 50th Birthday volume, 459–496.

- [O1] R. Ollivier, Critère d'irréductibilité pour les séries principales de GL(n, F) en caractéristique p, J. of Algebra 304 (2006), 39–72.
- [O2] R. Ollivier, Parabolic induction and Hecke modules in characteristic p for p-adic GL(n), to appear in ANT (2010).
- [OS] R. Ollivier, V. Sécherre, in preparation.
- [Sch] B. Schraen, Représentations localement analytiques de $GL_3(\mathbb{Q}_p)$, to appear in Ann. Sci. de l'ENS (2009).
- [V] M.-F. Vignéras, On a numerical Langlands correspondence modulo p with the pro-p-Iwahori Hecke ring, Mathematische Annalen 331 (2005), 523–556.