

2010 Program for Women and Mathematics

Table des matières

1	What you need to know / Prerequisites	2
2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 2 2
3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4 4
4	First steps in characteristic 0	5

We have seen in the previous lecture that Colmez-Fontaine equivalence of categories between crystalline representations and admissible filtered φ -modules gives an explicit classification of crystalline representations of $G_{\mathbb{Q}_p}$, and then an explicit p-adic local Langlands correspondence in dimension 2.

To take into account all the p-adic representations of $G_{\mathbb{Q}_p}$, we have to consider a new family of objects called (φ, Γ) -modules. We will only describe here the ideas involved in this theory and its main steps. For further details and proofs, we refer to [Be, Section 9], [BeBr, Section 3] and to M.-F. Vignéras lectures during the next week.

^{*}Laboratoire de Mathématiques - Université de Versailles Saint-Quentin , 78 035 Versailles; Ariane.Mezard@math.uvsq.fr

[†]Laboratoire de Mathématiques - Université Paris-Sud XI , 91 405 Orsay; Ramla.Abdellatif@math.u-psud.fr

1 What you need to know / Prerequisites

• The classification of 2-dimensional modulo p Galois representations

$$\rho: G_{\mathbb{Q}_p} \longrightarrow GL_2(\overline{\mathbb{F}}_p)$$

will be recalled in the next section and is constructed in Advanced Homework Session 1.

• We have the following result, which is proved in Advanced Homework Sessions 3 and 4:

Theorem 1. Assume that **E** is endowed with the discrete topology.

- 1. $H^1(H_{\mathbb{Q}_p}, GL_d(\mathbf{E})) = \{1\}$ for any integer $d \geq 1$.
- 2. $H^1(H_{\mathbb{Q}_p}, \mathbf{E}) = \{0\}.$

Basically, this theorem says that any free **E**-module of rank d endowed with a semi-linear action of $H_{\mathbb{Q}_p}$ is isomorphic to \mathbf{E}^d . We refer to Advanced Homework Session 3 for more details.

2 Modulo p representations of $G_{\mathbb{Q}_p}$

2.1 The 2-dimensional case

As we mentionned it in the previous section, we have a complete classification of absolutely irreducible representations of $G_{\mathbb{Q}_p}$ on finite fields (Advanced Homework Session 1):

Theorem 2. Let E be a finite extension of \mathbb{Q}_p with residue field k_E . Any 2-dimensional k_E -linear absolutely irreducible representation of $G_{\mathbb{Q}_p}$ is isomorphic to $\rho(r,\chi) = ind(\omega_2^{r+1}) \otimes \chi$ for some integer $0 \leq r \leq p-1$ and some character $\chi: G_{\mathbb{Q}_p} \to k_E^{\times}$.

Here we denote by $\omega_2: I_{\mathbb{Q}_p} \to \mathbb{F}_{p^2}^{\times}$ the character sending g to $\frac{g(p^{\frac{1}{p^2-1}})}{p^{\frac{1}{p^2-1}}}$ and

 $p^{\overline{p^2-1}}$ ind (ω_2^r) is defined as the unique semi-simple representation ρ of dimension 2 whose determinant is equal to ω_2^r and such that $\rho|_{I_{\mathbb{Q}_p}}=\omega_2^r\oplus\omega_2^{pr}$.

The problem is that this classification offers a too naive point of view to be generalized. To become less naive, we have to introduce a new category of objects called (φ, Γ) -modules.

2.2 (φ, Γ) -modules in characteristic p

First recall that $\tilde{\mathbf{E}}$ is (non-canonically) isomorphic to the algebraic closure of $\mathbf{E}_{\mathbb{Q}_p} := \mathbb{F}_p((\epsilon - 1))$. We denote by \mathbf{E} the separable closure of $\mathbf{E}_{\mathbb{Q}_p}$, which is not equal to its algebraic closure! The following result, which is a particular case of a powerful theorem due to Fontaine-Wintenberger [FW], will be proved in Advanced Homework Session 3:

Theorem 3. There exists a group isomorphism:

$$H_{\mathbb{O}_n} \simeq Gal(\mathbf{E}/\mathbf{E}_{\mathbb{O}_n})$$
.

Denote by $\Gamma = \Gamma_{\mathbb{Q}_p}$ the Galois group of $\mathbb{Q}_{p^{\infty}}/\mathbb{Q}_p$. A (φ, Γ) -module over $\mathbf{E}_{\mathbb{Q}_p}$ is a free $\mathbf{E}_{\mathbb{Q}_p}$ -module of finite rank d endowed with a semi-linear Frobenius map φ such that $\mathrm{Mat}(\varphi) \in GL_d(\mathbf{E}_{\mathbb{Q}_p})$ and a continuous semi-linear action of Γ that commutes with φ .

We do the two following remarks:

- 1. First note that the condition on $Mat(\varphi)$ does not depend on the basis in which the matrix of φ is considered.
- 2. If we choose a basis e of D, an element $\gamma \in \Gamma$ and set $P := Mat_e(\varphi)$ and $G := Mat_e(\gamma)$, then requiring that ϕ and γ commute as semi-linear operators is equivalent to require that $P\varphi(G) = G\gamma(P)$.

Assuming the fact that $\mathbf{E}^{H_{\mathbb{Q}_p}} = \mathbf{E}_{\mathbb{Q}_p}$ (Advanced Homework Session 3), we can prove the following result:

Proposition 1. Let W be an \mathbb{F}_p -representation of $G_{\mathbb{Q}_p}$ of dimension d. Then $D(W) := (\mathbf{E} \otimes_{\mathbb{F}_p} W)^{H_{\mathbb{Q}_p}}$ is a (φ, Γ) -module over $\mathbf{E}_{\mathbb{Q}_p}$ of dimension d such that

$$\mathbf{E} \otimes_{\mathbf{E}_{\mathbb{Q}_p}} D(W) \simeq E \otimes_{\mathbb{F}_p} W$$
.

In particular, we have

$$W = (\mathbf{E} \otimes_{\mathbf{E}_{\mathbb{Q}_p}} D(W))^{\varphi=1}$$
.

Démonstration. Let $W: G_{\mathbb{Q}_p} \to GL_d(\mathbb{F}_p)$ be such a representation. Its restriction to $H_{\mathbb{Q}_p}$ defines an element $[W \otimes_{\mathbb{F}_p} \mathbf{E}]$ of $H^1(H_{\mathbb{Q}_p}, GL_d(\mathbf{E}))$, which is trivial by the first point of Theorem 1. This means that $W \otimes_{\mathbb{F}_p} \mathbf{E}$ is isomorphic to \mathbf{E}^d as an $H_{\mathbb{Q}_p}$ -representation, so that $D(W) := (\mathbf{E} \otimes_{\mathbb{F}_p} W)^{H_{\mathbb{Q}_p}}$ is an $\mathbf{E}_{\mathbb{Q}_p}$ -vector space of dimension d which is stable under φ and Γ . Moreover, we have an isomorphism of $E_{\mathbb{Q}_p}$ -vector spaces (but not of (φ, Γ) -modules):

$$D(W) \simeq \mathbf{E}_{\mathbb{Q}_p}^d$$

so that $(\mathbf{E} \otimes_{\mathbf{E}_{\mathbb{Q}_p}} D(W))^{\varphi=1} = W$.

Proposition 2. Let D be a (φ, Γ) -module of rank d over $\mathbf{E}_{\mathbb{Q}_p}$. Then $W(D) := (\mathbf{E} \otimes_{\mathbf{E}_{\mathbb{Q}_p}} D)^{\varphi=1}$ is an \mathbb{F}_p -representation of $G_{\mathbb{Q}_p}$ of dimension d such that

$$\mathbf{E} \otimes_{\mathbb{F}_p} W(D) \simeq \mathbf{E} \otimes_{\mathbf{E}_{\mathbb{O}_n}} D$$
.

Démonstration. [Be, Proposition 9.1.5]

Corollaire 1. The map $[W \mapsto D(W)]$ defines an equivalence of categories:

 $\{\mathbb{F}_p\text{-linear representations of }G_{\mathbb{Q}_p}\}\leftrightarrow \{(\varphi,\Gamma)\text{-modules over }\mathbf{E}_{\mathbb{Q}_p}\}$.

Démonstration. [Be, Theorem 9.1.8]

To finish this section, note that if we forget about the action of Γ , we then get the following result:

Corollaire 2. There exists an equivalence of categories:

 $\{\mathbb{F}_p\text{-linear representations of }H_{\mathbb{Q}_p}\}\leftrightarrow \{\varphi\text{-modules over }\mathbf{E}_{\mathbb{Q}_p}\}$.

3 Application to a mod p Langlands correspondence for n = 2

We just saw how to go from Galois representations to (φ, Γ) -modules. We now introduce an operator ψ on these (φ, Γ) -modules in order to define (as Colmez did) a representation of the Borel subgroup $B_2(\mathbb{Q}_p) \subset GL_2(\mathbb{Q}_p)$.

3.1 The operator ψ

Recall that $\mathbf{E}_{\mathbb{Q}_p} := \mathbb{F}_p((\epsilon - 1))$ is a vector space over $\varphi(\mathbf{E}_{\mathbb{Q}_p}) = \mathbb{F}_p((\varphi(\epsilon - 1)))$ which admits $\{1, \epsilon, \ldots, \epsilon^{p-1}\}$ as a basis. Any $\alpha \in \mathbf{E}_{\mathbb{Q}_p}$ can therefore be uniquely written as

$$\alpha = \sum_{j=0}^{p-1} \epsilon^j \alpha_j$$

with $\alpha_j \in \varphi(\mathbf{E}_{\mathbb{Q}_p})$. We set $\psi(\alpha) := \alpha_0$.

Let now D be a (φ, Γ) -module over $\mathbf{E}_{\mathbb{Q}_p}$: then D admits a basis $(\varphi(e_1), \ldots, \varphi(e_d))$ made from elements of $\varphi(D)$, so that any $x \in D$ can be uniquely written

$$x = \sum_{j=1}^{d} x_j \varphi(e_j)$$

with $x_j \in \mathbf{E}_{\mathbb{Q}_p}$. We set $\psi(x) := \sum_{j=1}^d \psi(x_j) e_j$.

Lemma 1. The map $\psi: D \to D$ defined just above doesn't depend on the choice of the basis $(\varphi(e_1), \ldots, \varphi(e_d))$ and commutes to the action of Γ .

3.2 Main steps to a mod p Langlands correspondence

The construction of a $GL_2(\mathbb{Q}_p)$ -representation starting from a (φ, Γ) -module attached to a $G_{\mathbb{Q}_p}$ -representation, known as **Colmez' functor**, splits into three main steps:

1st step: Let D be a (φ, Γ) -module. There exists some ψ -stable lattice N in D, and we let $(\lim_{\leftarrow \psi} D)^b$ be the set of elements $x = (x_n)_{n \in \mathbb{N}} \in D^{\mathbb{N}}$ satisfying the two following conditions:

$$\left\{ \begin{array}{l} \forall \ n \in \mathbb{N}, \ \psi(x_{n+1}) = x_n \ ; \\ \exists \ k \in \mathbb{N} \mid \forall \ n \in \mathbb{N}, \ x_n \in \pi^{-k} N \ . \end{array} \right.$$

2nd step: We set $D^{\sharp} := \{x_0, \ x \in (\lim_{\leftarrow \psi} D)^b\}$. One can prove that D^{\sharp} is stable under ψ and Γ , and that $\psi : D^{\sharp} \to D^{\sharp}$ is surjective. We can also build $\lim_{\leftarrow \psi} D^{\sharp}$ starting from D^{\sharp} as we built $(\lim_{\leftarrow \psi} D)^b$ starting from D.

3rd step: Let $\chi: \mathbb{Q}^{\times} \to E^{\times}$ be a smooth character. We endow $\lim_{\leftarrow \psi} D^{\sharp}$ with an action of the Borel subgroup $B_2(\mathbb{Q}_p)$ as follows:

$$\begin{cases}
\left(\begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} x \right)_n = \chi^{-1}(t)x_n; \quad \left(\begin{pmatrix} 1 & 0 \\ 0 & p^j \end{pmatrix} x \right)_n = x_{n-j} = \psi^j(x_n) \\
\vdots \\
\left(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} x \right)_n = \gamma_{a^{-1}}(x_n); \quad \left(\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} x \right)_n = \pi^{p^n z} x_n.
\end{cases}$$

Here $x \in \lim_{\leftarrow \psi} D^{\sharp}$, $a \in \mathbb{Z}_p^{\times}$ and $z \in \mathbb{Q}_p$. Moreover, we set $\gamma_{a^{-1}}$ the element of Γ such that $\chi_{cyc}(\gamma_{a^{-1}}) = a^{-1}$ (where χ_{cyc} denotes the cyclotomic character).

The key point of this construction is that if D is the (φ, Γ) -module associated to an absolutely irreducible representation of $G_{\mathbb{Q}_p}$, then this representation of $B_2(\mathbb{Q}_p)$ lifts in a unique way to an irreducible representation of $GL_2(\mathbb{Q}_p)$.

4 First steps in characteristic 0

As usual, we want to lift to characteristic 0 what we have done in characteristic p. To do this, we will (as usual) introduce some new rings of period.

Let $\tilde{\mathbf{A}} := W(\tilde{\mathbf{E}})$ be the ring of Witt vectors with coefficients in $\tilde{\mathbf{E}}$. Denote by $\mathbf{A}_{\mathbb{Q}_p}$ the *p*-adic completion of $\mathbb{Z}_p[[\pi]][\frac{1}{\pi}]$ inside $\tilde{\mathbf{A}}$ and set $\mathbf{B}_{\mathbb{Q}_p} := \mathbf{A}_{\mathbb{Q}_p}[\frac{1}{p}]$: this is a local field with residue field equal to $\mathbf{E}_{\mathbb{Q}_p}$.

Let $\tilde{\mathbf{B}} := \tilde{\mathbf{A}}[\frac{1}{p}]$ and denote by \mathbf{B} the p-adic completion of the maximal unramified extension of $\mathbf{B}_{\mathbb{Q}_p}$ inside $\tilde{\mathbf{B}}$. Finally set $\mathbf{A} := \tilde{\mathbf{A}} \cap \mathbf{B}$.

- We then set the following definitions:
 - A (φ, Γ) -module over $\mathbf{A}_{\mathbb{Q}_p}$ is a free $\mathbf{A}_{\mathbb{Q}_p}$ -module D of finite rank d equipped with a semi-linear Frobenius φ such that $Mat(\varphi) \in GL_d(\mathbf{A}_{\mathbb{Q}_p})$ and a continuous semi-linear action of Γ which commutes to φ .
 - A (φ, Γ) -module over $\mathbf{B}_{\mathbb{Q}_p}$ is a free $\mathbf{B}_{\mathbb{Q}_p}$ -module D of finite rank d equipped with a semi-linear Frobenius φ such that $Mat(\varphi) \in GL_d(\mathbf{B}_{\mathbb{Q}_p})$ and a continuous semi-linear action of Γ which commutes to φ .
 - We say that a (φ, Γ) -module over $\mathbf{B}_{\mathbb{Q}_p}$ is **étale** if there exists a basis e of D such that $Mat_e(\varphi) \in GL_d(\mathbf{A}_{\mathbb{Q}_p})$.

As in characteristic p, we have $H^1(H_{\mathbb{Q}_p}, GL_d(\mathbf{A})) = \{1\}$ if \mathbf{A} is endowed with the p-adic topology (Advanced Homework Session 4). This leads to the following results:

Lemma 2. Let T be a free \mathbb{Z}_p -module of finite rank d endowed with a continuous action of $G_{\mathbb{Q}_p}$. Then $D(T) := (\mathbf{A} \otimes_{\mathbb{Z}_p} T)^{H_{\mathbb{Q}_p}}$ is a (φ, Γ) -module of rank d over $\mathbf{A}_{\mathbb{Q}_p}$ and it satisfies:

$$\mathbf{A} \otimes_{\mathbf{A}_{\mathbb{Q}_p}} D(T) \simeq \mathbf{A} \otimes_{\mathbb{Z}_p} T.$$

In particular, we have:

$$(\mathbf{A} \otimes_{\mathbf{A}_{\mathbb{Q}_p}} D(T))^{\varphi=1} = T.$$

Lemma 3. Let V be a free \mathbb{Q}_p -module of finite rank d endowed with a continuous action of $G_{\mathbb{Q}_p}$. Then $D(V) := (\mathbf{B} \otimes_{\mathbb{Q}_p} V)^{H_{\mathbb{Q}_p}}$ is an étale (φ, Γ) -module of rank d over $\mathbf{B}_{\mathbb{Q}_p}$ and it satisfies:

$$\mathbf{B} \otimes_{\mathbf{B}_{\mathbb{Q}_p}} D(V) \simeq \mathbf{B} \otimes_{\mathbb{Q}_p} V$$

In particular, we have

$$(\mathbf{B} \otimes_{\mathbf{B}_{\mathbb{Q}_n}} D(V))^{\varphi=1} = V$$

Theorem 4. The functor D(.) defines equivalences of categories:

$$\{free \ \mathbb{Z}_p \text{-representations of } G_{\mathbb{Q}_p} \} \leftrightarrow \{ (\varphi, \Gamma) \text{-modules over } \mathbf{A}_{\mathbb{Q}_p} \} \ .$$

$$\{\mathbb{Q}_p\text{-linear representations of }G_{\mathbb{Q}_p}\} \leftrightarrow \{\text{\'etale }(\varphi,\Gamma)\text{-modules over }\mathbf{B}_{\mathbb{Q}_p}\}$$
.

Once again, if we forget about the Γ -action, we have the following result:

Corollaire 3. We have the following equivalences of categories:

$$\left\{ free \ \mathbb{Z}_p \text{-representations of} \ H_{\mathbb{Q}_p} \right\} \leftrightarrow \left\{ \varphi \text{-modules over} \ \mathbf{A}_{\mathbb{Q}_p} \right\} \ ;$$
$$\left\{ \mathbb{Q}_p \text{-linear representations of} \ H_{\mathbb{Q}_p} \right\} \leftrightarrow \left\{ \text{\'etale } \varphi \text{-modules over} \ \mathbf{B}_{\mathbb{Q}_p} \right\} \ .$$

It is also possible to define an operator ψ and to make the three-steps construction that has been seen in characteristic p, but it is harder to go from $B_2(\mathbb{Q}_p)$ -representations to $GL_2(\mathbb{Q}_p)$ -representations in the characteristic 0 setting. In fact, one can prove that it works for some big enough family of p-adic representations so that we can conclude that it works for any p-adic representation by density. For further details, we refer to [C, Section II.3.2].

Références

- [Be] L. Berger, Partial notes for the course "Galois representations and (φ, Γ) -modules", Galois Trimester 2010 at the IHP.
- [BeBr] L. Berger, Ch. Breuil, *Towards a Langlands correspondence*, Notes of a course given at Hangzhou C.M.S (2004).
- [C] P. Colmez, Construction de représentations galoisiennes de $GL_2(\mathbb{Q}_p)$, cours à l'X 2008-2009, disponible sur sa page web.
- [FW] J.-M. Fontaine, J.-P. Wintenberger, Le « corps des normes » de certaines extensions algébriques de corps locaux, C.R. Acad. Sc. Paris Sér. A-B 288 (1979), 6, A367–A370.