Women in Mathematics Advanced Course : Review Session 2

Let B be a quaternion algebra and E an supersingular elliptic curve whose endomorphism ring is an order $\mathcal{O} \subset B$. We recall that the security of isogeny-based cryptosystems relies on the hardness of several problems.

Problem 1. Given an elliptic curve E, compute the endomorphism ring $\operatorname{End}(E)$.

Problem 2. Given two supersingular elliptic curves defined over \mathbb{F}_{p^2} , find an efficiently computable isogeny $\phi: E \to E'$.

The goal of this review session is to prove a reduction from **Problem 2** to **Problem 1**. Let I be a left \mathcal{O} -ideal. We define

$$E[I] = \{ P \in E(\bar{\mathbb{F}_p}) | \alpha(P) = 0, \text{ for all } \alpha \in I \}.$$

We define $\phi_I: E \to E_I$ the isogeny with kernel E[I].

Exercice 1.

1. The pullback map

$$\phi_I^* : Hom(E_I, E) \to I$$

$$\psi \to \psi \phi_I$$

is an isomorphism of \mathbb{Z} -modules.

2. Let $\mathcal{O}' = \operatorname{End}(E_I)$. Show that I is a right \mathcal{O}' -ideal. Hint: Use the embedding

$$\iota : \operatorname{End}(E_I) \to B \simeq \operatorname{End}(E) \otimes \mathbb{Q}$$

$$\iota(\beta) = \frac{1}{\deg \phi_I} (\hat{\phi_I} \beta \phi_I).$$

Exercice 2. Show that:

- 1. Given an isogeny $\phi: E \to E'$ between two supersingular elliptic curves, there exists a left \mathcal{O} -ideal I and an isomorphism $\rho: E_I \to E'$ such that $\phi = \rho \phi_I$.
- 2. For every maximal order $\mathcal{O}' \subset B$ there exists E' such that $\mathcal{O}' \simeq \operatorname{End}(E')$.

Exercice 3. Let E and E' be two supersingular elliptic curves and assume that there is an efficient algorithm for computing $\operatorname{End}(E)$ and $\operatorname{End}(E')$. Prove that there is an algorithm which computes a path in the ℓ -isogeny graph between E and E'. For this, we will assume known the following result:

Theorem. [Kohel-Lauter-Petit-Tignol] Given two orders \mathcal{O} and \mathcal{O}' in a quaternion algebra B, there is an probabilistic polynomial time algorithm for computing an ideal I of reduced norm ℓ^k connecting \mathcal{O} and \mathcal{O}' (We say that an ideal I connects \mathcal{O} and \mathcal{O}' if I is a left \mathcal{O} -ideal and a right \mathcal{O}' -ideal.