Designing Explicit Regularizers

Tengyu Ma Stanford University

Occam's Razor:

"The simplest solution is mostly likely the right one"

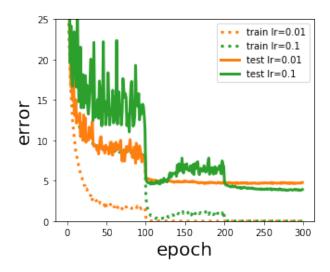
Low-complexity models likely generalize well

Q: what are correct definitions of model complexity in deep learning?

- Algorithms prefer low-complexity solutions
- Low-complexity solutions generalize well

- 1. Understand existing algorithms
- 2. Discover complexity measure

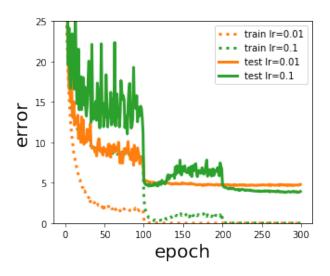
Faster training may lead to worse generalization



New phenomenon: algorithms can regularize!

The lack of understanding of the generalization hampers the study of optimization!

Faster training may lead to worse generalization



Models Preferred by Large Learning Rate?

- Explainable for some toy cases with complicated analysis [Li-Wei-M.'19]
 - Noisy gradients effectively restrict the complexity of a two-layer neural network to be a linear model
 - 2. (Some reason for why the initial learning rate matters)

Models Preferred by the Initializations

- ➤ Large initialization prefers staying minimum NTK norm solution [Chizat-Bach'19]
- > Small initialization prefers the "rich" regime ([Woodworth et al.'19, Li-M.-Zhang'18], c.f. Nati's talk in the afternoon)

Is Understanding the Implicit/Algorithmic Regularization the Only Approach?

This talk: revisiting a classic approach --- explicit regularization, which I think also deserve some attention

Algorithms prefer low-complexity solutions

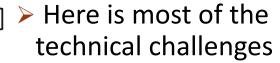
Here is most of the technical challenges

Low-complexity solutions generalize well

- 1. Understand existing algorithms
- 2. Discover complexity measures

- All the analyzable DL algorithms can be replaced by a simpler and more explicit one
 - > Explicit regularization
 - > (Iterative) kernels

Algorithms prefer low-complexity solutions



Low-complexity solutions generalize well

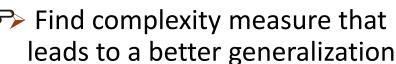
- 1. Understand existing algorithms
- 2. Discover complexity measures
- 3. Simplify existing algorithms

- All the analyzable DL algorithms can be replaced by a simpler and more explicit one
 - Explicit regularization
 - ➤ (Iterative) kernels

Explicit Regularization

- Algorithms prefer low-complexity solutions
- Low-complexity solutions generalize well

Regularize the complexity; hope success of optimization



- 1. Understand existing algorithms
- 2. Discover complexity measures
- 3. Simplify existing algorithms

- Understand existing algorithms
- 2. Design complexity/regularizers
- 3. Design new algorithms
- 4. Separate opt. & statistics

(This may also lead to new complexity and algorithms)

- No double descent phenomenon
- Other counterexamples [Nagarajan et al'19] are gone
- Replace the implicit regularization?

Complexity via Data-dependent Generalization Bounds

$$\forall f$$
, test error (f) - training error $(f) \leq \sqrt{\frac{\text{complexity}(f, \text{training data})}{n}}$

Misha's talk: there is a fundamental limitation if the complexity only depends on the hypothesis class and the data distribution

Related works:

- ➤ [Golowich et al, Bartlett et al'17, Neyshabur et al.'17]: complexity depends on the product of norms of the weights and the output margin
- ➤ [Arora et al.'18]: compression-based bounds
- ➤ [Dziugaite-Roy'18a,b, Nagarajan-Kolter'19]: PAC-Bayes based data-dependent bounds

A Simple Bound Based on "All-layer Margin"

Theorem (informal): W.h.p over the randomness of the n data $(x_1, y_1), ... (x_n, y_n)$,

Generalization
$$\lesssim \frac{1}{n} \sqrt{\sum_{i=1}^{n} \frac{1}{m(x_i)^2}}$$
 · norm of weights

where $m(\cdot)$ is the "all-layer margin" (defined in next slide.)

For linear models, $m(\cdot)$ is the standard output margin; the theorem was essentially proved in [Srebro-Sridharan-Tewari'2010]

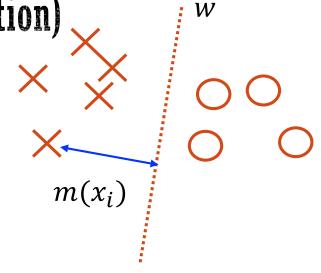
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin [Wei-M.'19]

All-Layer Margin (Binary Classification)

Recall for linear models

margin =
$$\frac{yw^{T}x}{||w||}$$

= $\min \delta$
s.t. $yw^{T}(x + \delta) \le 0$



> For non-linear models

normalized output margin =
$$\frac{f(x; W)}{?}$$

➤ All-layer margin:

$$m(x) = \min \text{ perturbation } \delta_1, \dots, \delta_r \text{ of the layers}$$

s.t. output is flipped to be incorrect after the perturbation

$$(\text{or } yf(x; W, \delta) \leq 0)$$

A Simple Proof

Generalization
$$\lesssim \frac{1}{n} \sqrt{\sum_{i=1}^{n} \frac{1}{m(x_i)^2}}$$
 · norm of weights

- $ightharpoonup m(\cdot)$ "correlates" with 0-1 loss in the sense that m(x)=0 if x is misclassified
 - ightharpoonup With standard tools, it suffices to bound the complexity of $m(\cdot)$ [Srebro-Sridharan-Tewari'2010]
- $\rightarrow m(x)$ is 1-Lipschitz in the parameters (w.r.t the spectral norm)
 - $> m(\cdot)$ reshapes the heterogenous geometry into a homogenous one
 - > => m(x) has low complexity (by standard tools)

All-Layer Margin <--> Lipschitzness and Output Margin

- $\triangleright m(x)$ measures the robustness of the output w.r.t to intermediate layer perturbation
- Small Lipschitzness + big output margin => big all-layer margin

Corollary: generalization
$$\lesssim \frac{1}{n} \sqrt{\sum_{i=1}^{n} \frac{\text{Lipschitzness}^2}{\text{output margin}^2}} \cdot \text{norm of weights}$$

- ➤ Lipschitzness is a "non-parametric" notion, and it's evaluated at the training data points
- Reminiscent of the noise stability in [Arora et al'2018]

Generalization of Adversarially Robust Loss

➤ Background: robust loss has severe generalization issues for CIFAR [Mardy et al.'18]

Robust test – robust train
$$\lesssim \frac{1}{n} \sqrt{\sum_{i=1}^{n} \frac{1}{\min\limits_{||\delta_i|| \leq \epsilon} m(x_i + \delta_i)}}$$
 · norm of weights

- ➤ Prior works bounds the generalization of the relaxation of the robust loss [Khim and Loh, 2018, Yin et al., 2018]
- ➤ Robust VC dimension can be infinity in the worst case [Montasser-Hanneke-Srebro'19]

Maximizing the All-Layer Margin

- > Max-min problem, because margin definition involves minimum
- > Alternating minimization (similar to robust optimization)

Dataset	Arch.	Setting	Standard SGD	AMO
		Baseline	4.15%	3.42%
CIFAR-10	WRN16-10	No data augmentation	9.59%	6.74%
		20% random labels	9.43%	6.72%
	WRN28-10	Baseline	3.82%	3.00%
		No data augmentation	8.28%	6.47%
		20% random labels	8.17%	6.01%
CIFAR-100	WRN16-10	Baseline	20.12%	19.14%
	W KIN10-10	No data augmentation	31.94%	26.09%
	WRN28-10	Baseline	18.85%	17.78%
		No data augmentation	30.04%	24.67%

Adeversarially Robust Errors (Preliminary)

 $\triangleright \ell_{\infty}$ attack on CIFAR

Arch.	Standard	Robust AMO
WideResNet16-10	50.12%	44.68%
WideResNet28-10	49.16%	42.24%

Applications of Data-dependent Regularizers: Learning Imbalanced Datasets

- Real-world datasets have imbalanced class distribution
- Minority classes have worse generalization
- > Our approach:
 - Derive a generalization bound
 - Regularize the RHS of the bound
- >=> Regularize the complexity on the minority classes more strongly $\sum_{x \in \text{minority}} \text{complexity}(f, x)$

	Loss	Schedule	Top-1	Top-5	-
	ERM	SGD	42.86	21.31	-
C	B Focal [8]	SGD	38.88	18.97	
ſ	ERM	DRW	36.27	16.55]
	LDAM	SGD	35.42	16.48	ours
L	LDAM	DRW	32.00	14.82	

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss [Cao-Wei-Gaidon-Arechiga-M., Neurips 2019]

Conclusions

Designing explicit regularizers:

generalization bounds -> complexity measure -> regularization

> Tighter bounds lead to better empirical results

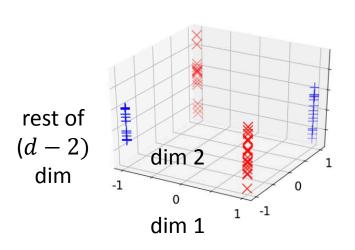
Open questions:

- Bounds for other data-dependent regularizations?
 - dropout
 - data augmentation (mixup, cutout, ...)
 - > new ones?
- Optimization for regularized loss?
- Heterogenous datasets?

Thank you!

ℓ_2 -Regularization vs No Regularization

➤ Recall that no regularization + certain initialization minimum norm solution of the neural tangent kernel (NTK)



Theorem [Wei-Lee-Liu-M.'18]:

- Using 2-layer neural net with cross entropy loss and ℓ_2 regularization, assuming optimization succeeds; sample complexity = $\tilde{O}(d)$
- ightharpoonup With the NTK that corresponds to 2-layer neural nets, sample complexity \gtrsim $\Omega(d^2)$
- Gap empirically observed on both synthetic and real data
- ➤ Optimization can be provably solved in poly iteration if width → ∞ [Wei-Lee-Liu-M.'18]

Setting	Normalization	Jacobian Reg	Test Error
Baseline	BatchNorm	×	4.43%
Daseille	BatchNorm	✓	3.99%
Low learning rate (0.01)	BatchNorm	×	5.98%
Low learning rate (0.01)		✓	5.46 %
No data augmentation	BatchNorm	×	10.44%
No data augmentation		✓	8.25%
	None	×	6.65%
No BatchNorm	LayerNorm	×	6.20%
		✓	5.57%
	•	•	,