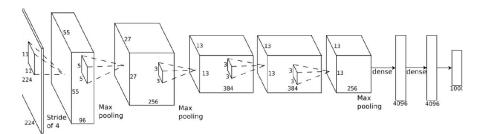
Deep Reinforcement Learning in the Real World

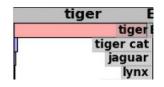
Sergey Levine

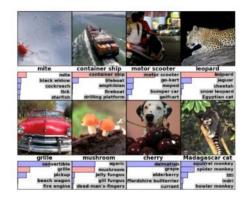
UC Berkeley

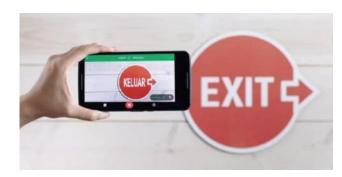
Google Brain

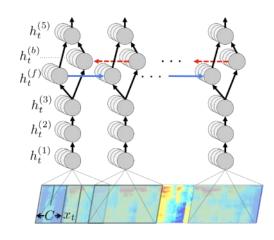
Deep learning helps us handle *unstructured* environments



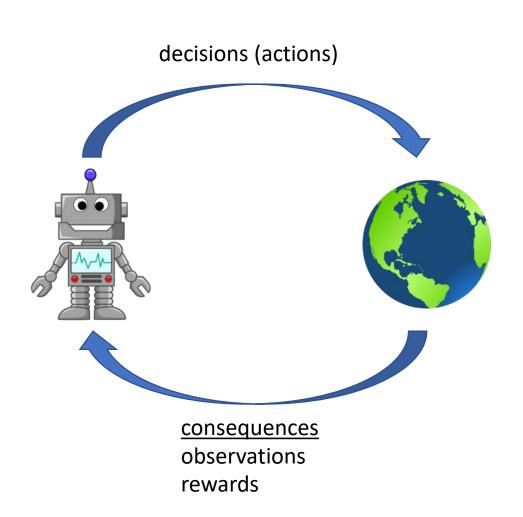








Reinforcement learning provides a formalism for behavior



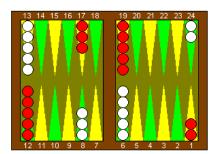


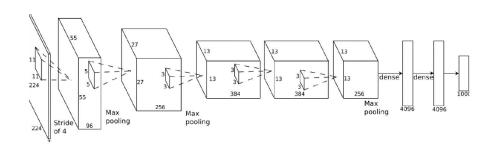
Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Mnih et al. '13

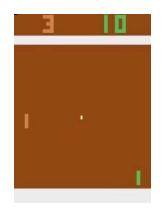
notice something?

But maybe it's not so simple...

deep learning handles unstructured environments using data like this:



how can we possibly hope RL to enable intelligent machines when it trains on data that looks like this:

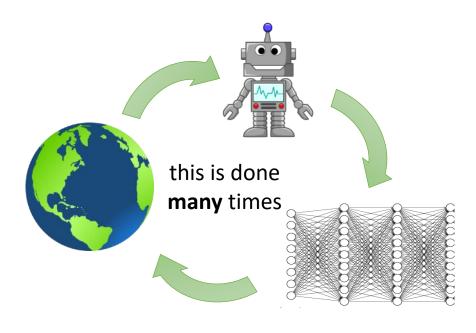


Maybe we learned the wrong lesson from deep learning It's not about deep nets...

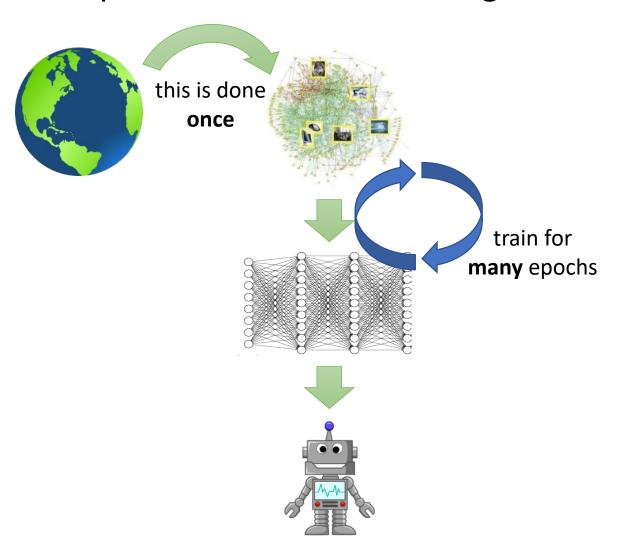
It's about big models + highly varied and diverse data!

RL has a big problem

reinforcement learning

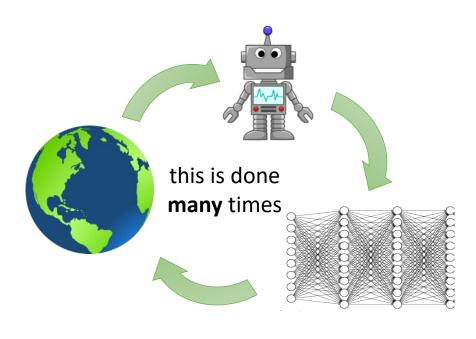


supervised machine learning

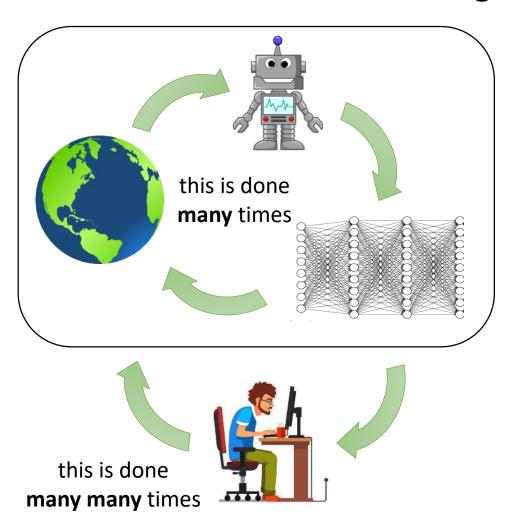


RL has a big problem

reinforcement learning

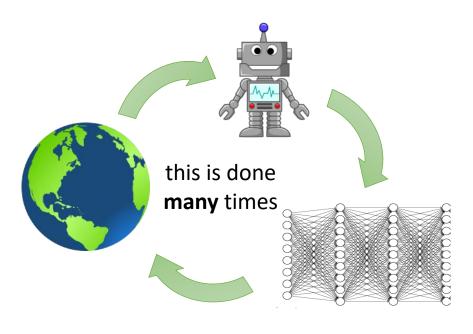


actual reinforcement learning

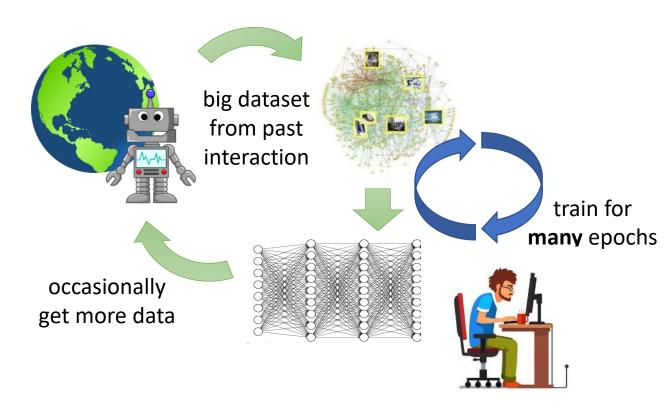


Off-policy RL with large datasets

reinforcement learning

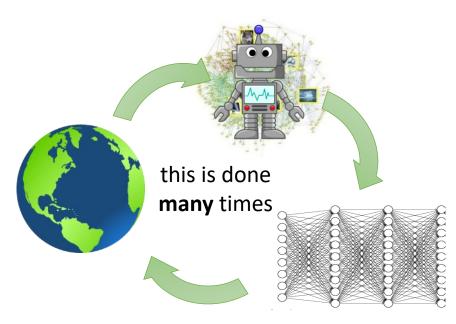


off-policy reinforcement learning



Off-policy RL with large datasets

reinforcement learning

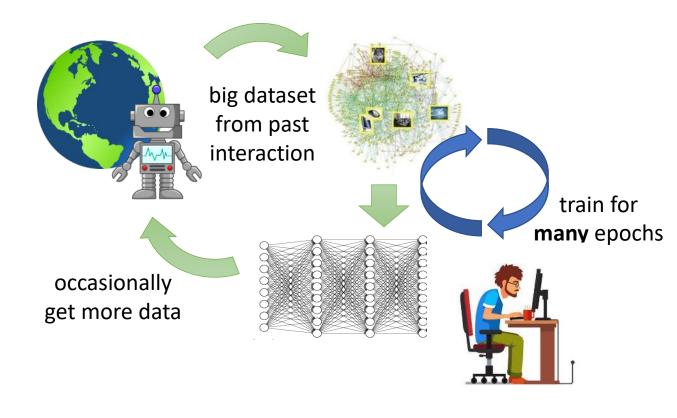


How does off-policy RL work?

Off-policy RL = prediction

- What do we predict?
 - Future observations: understand how the world works
 - Future rewards: understand the consequences of your actions
- They're not as different as you think more on this later

off-policy reinforcement learning



Off-policy model-free RL algorithms

Off-policy model-based RL algorithms

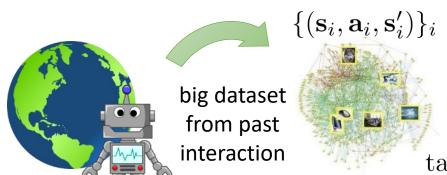
Why these are actually the same thing

Off-policy model-free RL algorithms

Off-policy model-based RL algorithms

Why these are actually the same thing

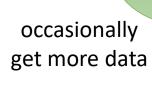
Off-policy model-free learning

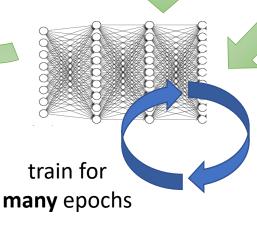


RL objective: $\max_{\pi} \sum_{t=1}^{\bar{}} E_{\mathbf{s}_t, \mathbf{a}_t \sim \pi}[r(\mathbf{s}_t, \mathbf{a}_t)]$

Q-function: $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum E_{\mathbf{s}_{t'}, \mathbf{a}_{t'} \sim \pi}[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$

task reward
$$r(\mathbf{s}, \mathbf{a})$$
 $\pi(\mathbf{a}|\mathbf{s}) = 1$ if $\mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$





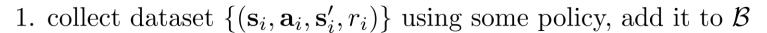
$$Q^{\star}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q^{\star}(\mathbf{s}', \mathbf{a}')$$

enforce this equation on all off-policy data

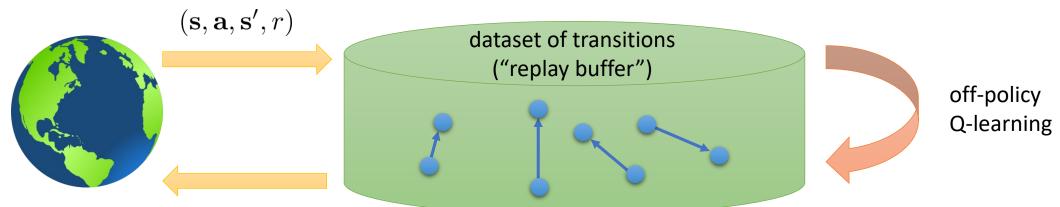
How to solve for the Q-function?

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')$$
 \leftarrow don't need on-policy data for this!

off-policy Q-learning:



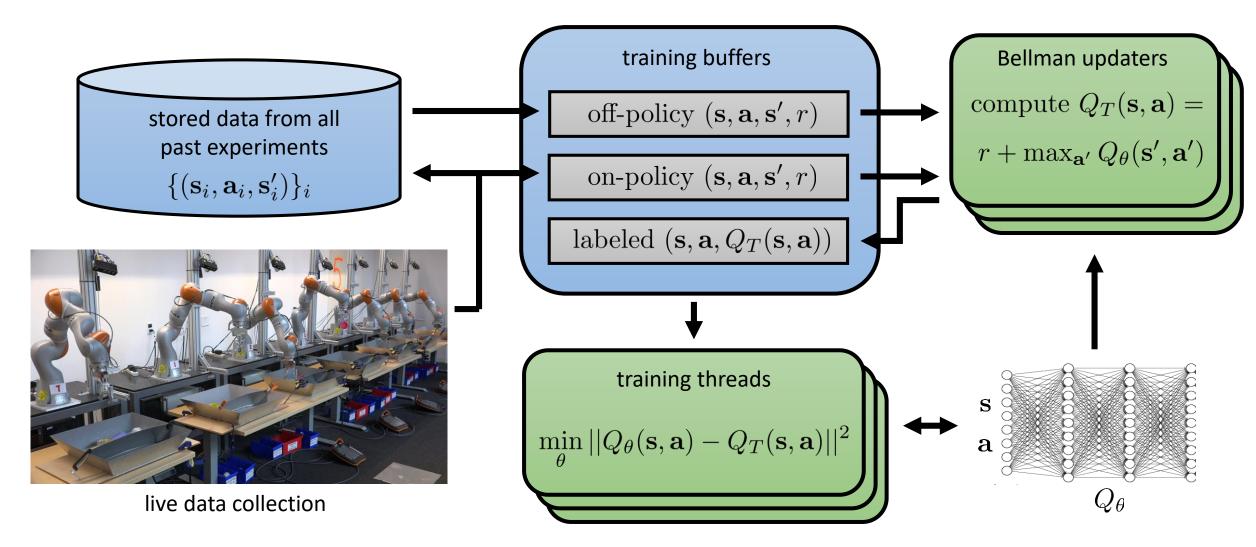
2. sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$$
 from \mathcal{B}
3. minimize $\sum_i (Q(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \max_{\mathbf{a}'_i} Q(\mathbf{s}'_i, \mathbf{a}'_i)])^2$



 $\pi(\mathbf{a}|\mathbf{s})$ (with exploration)

See, e.g. Riedmiller, Neural Fitted Q-Iteration '05 Ernst et al., Tree-Based Batch Mode RL '05

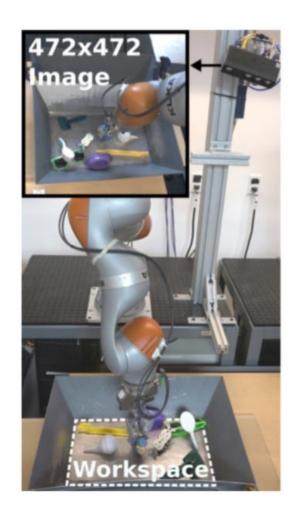
QT-Opt: off-policy Q-learning at scale

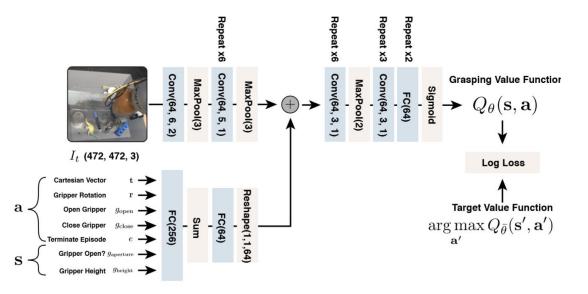


Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills

minimize
$$\sum_{i} (Q(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \max_{\mathbf{a}'_{i}} Q(\mathbf{s}'_{i}, \mathbf{a}'_{i})])^{2}$$

Grasping with QT-Opt





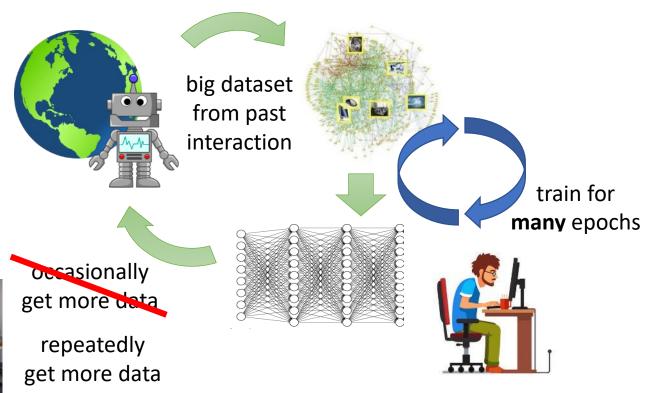
- ➤ About 1000 training objects
- About 600k training grasp attempts
- ➤ Q-function network with 1.2M parameters
- ➤ The only graspspecific feature is the reward (1 if grasped)

Emergent grasping strategies

96%

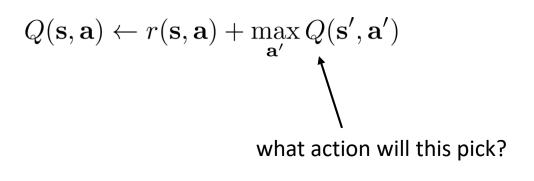
So far...

off-policy reinforcement learning



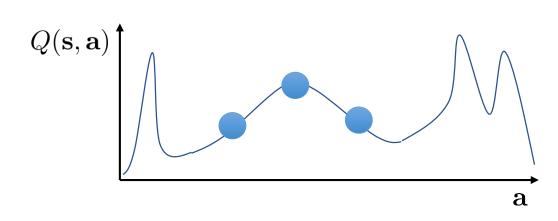
live data collection

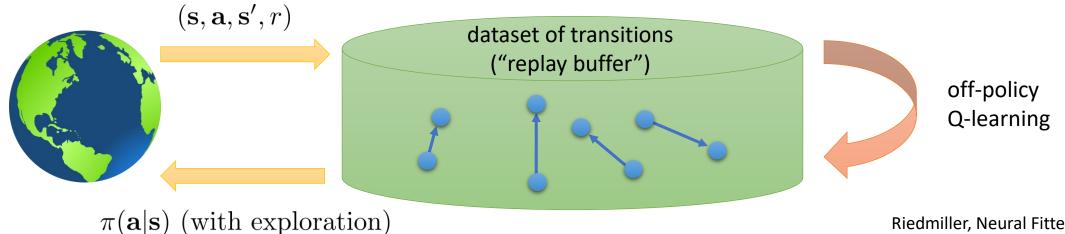
So what's the problem?



if $\mathbf{a}^* = \arg \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$ makes $\beta(\mathbf{s}, \mathbf{a}^*)$ small we end up training on garbage!

 $Q(\mathbf{s}, \mathbf{a})$ is trained on $(\mathbf{s}, \mathbf{a}) \sim \beta(\mathbf{s}, \mathbf{a})$





See, e.g. Riedmiller, Neural Fitted Q-Iteration '05 Ernst et al., Tree-Based Batch Mode RL '05

How to stop training on garbage?

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')$$

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{\text{new}}}[Q(\mathbf{s}', \mathbf{a}')]$$

how to pick $\pi_{\text{new}}(\mathbf{a}|\mathbf{s})$?

option 1: stay close to β

e.g.
$$D_{\text{KL}}(\pi_{\text{new}}(\cdot|\mathbf{s})||\beta(\cdot|\mathbf{s})) \leq \epsilon$$

issue 1: we don't know β

issue 2: this is way too conservative

key idea: constrain to *support* of β

 $\max_{\pi \in \Delta_{|S|}} \mathbb{E}_{a \sim \pi(\cdot|s)}[\hat{Q}_k(s,a)] - \lambda \sqrt{\operatorname{var}_k \mathbb{E}_{a \sim \pi(\cdot|s)}[\hat{Q}_k(s,a)]}$ epistemic uncertaint epistemic uncertaint

 $Q(\mathbf{s}, \mathbf{a})$ is trained on $(\mathbf{s}, \mathbf{a}) \sim \beta(\mathbf{s}, \mathbf{a})$ only use values inside $Q(\mathbf{s}, \mathbf{a})$ support region \mathbf{a} random data Walker2d-v2 our method - BCQ BEAR-QL Naive-RL naïve RL pessimistic w.r.t. epistemic uncertainty distrib. matching (Fujimoto)

0.2K

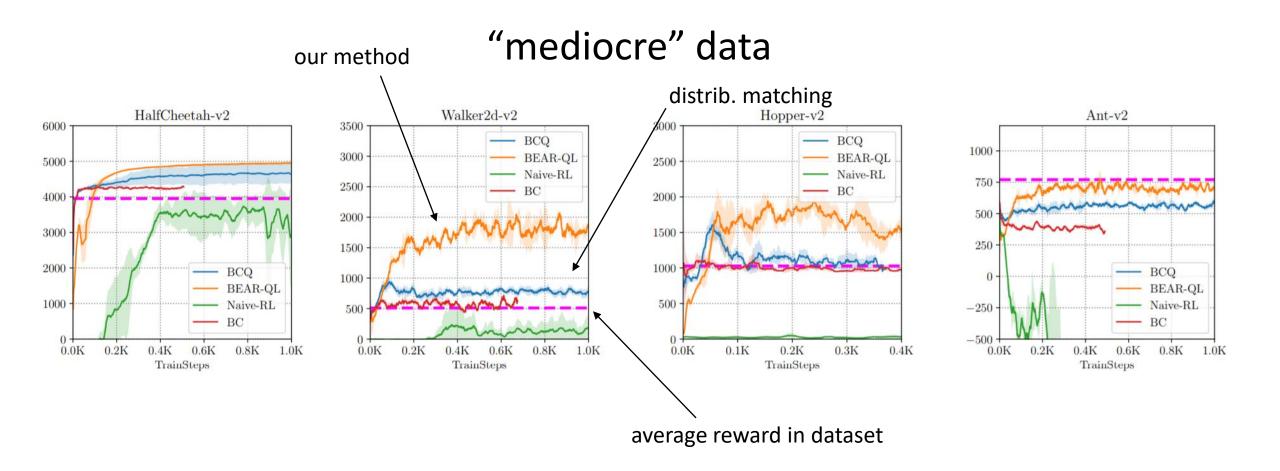
0.8K

TrainSteps

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction.

See also: Fujimoto, Meger, Precup. Off-Policy Deep Reinforcement Learning without Exploration.

How well does it work?



Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction.

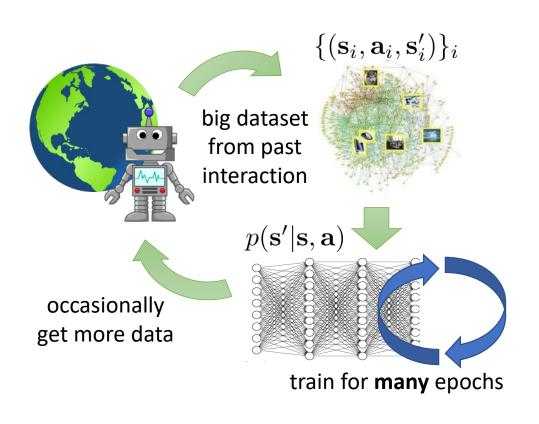
See also: Fujimoto, Meger, Precup. Off-Policy Deep Reinforcement Learning without Exploration.

Off-policy model-free RL algorithms

Off-policy model-based RL algorithms

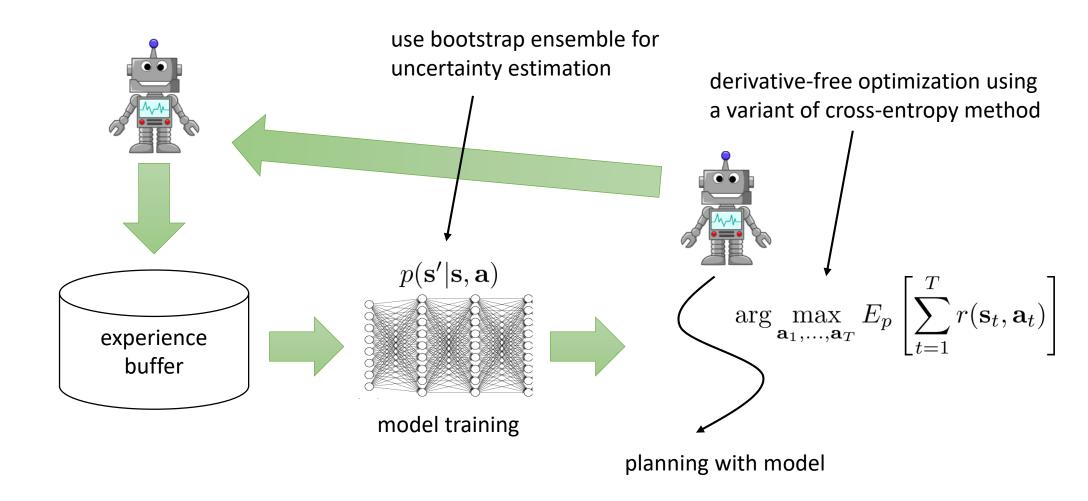
Why these are actually the same thing

Off-policy model-based reinforcement learning



- Comparatively simple supervised learning problem
- ➤ Natural and straightforward to apply to **multi-task** settings (all tasks have the same physics)
- Models can be repurposed to new tasks without any additional learning
- ➤ Typically worse final performance than model-free RL is that always true?

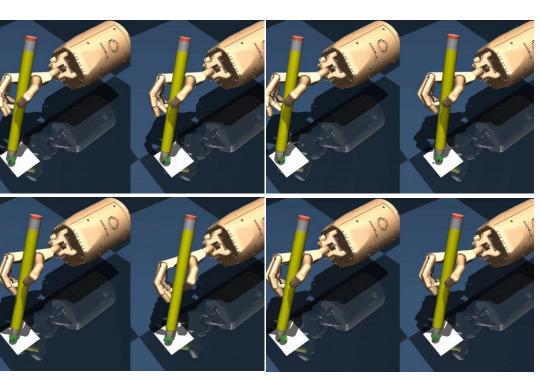
High-level algorithm outline

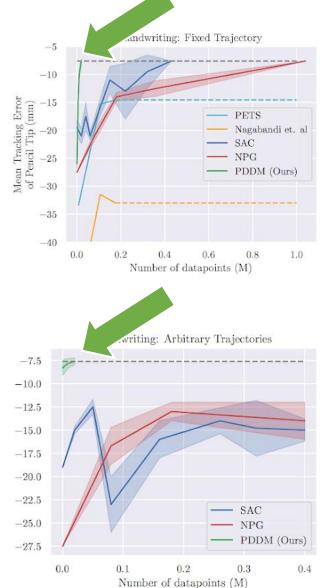


Model-based RL for dexterous manipulation

When should we **prefer** model-based RL?

- On narrow tasks, model-free RL tends to do very well
- On broad and diverse tasks, model-based RL has a major advantage!

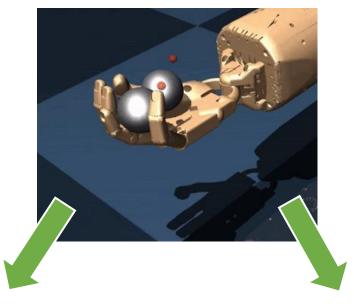


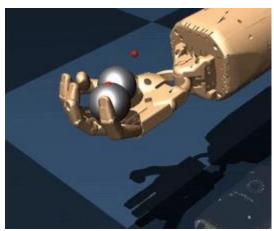


Model-based RL for dexterous manipulation

When should we **prefer** model-based RL?

When we want to transfer the same dynamics model to perform multiple tasks

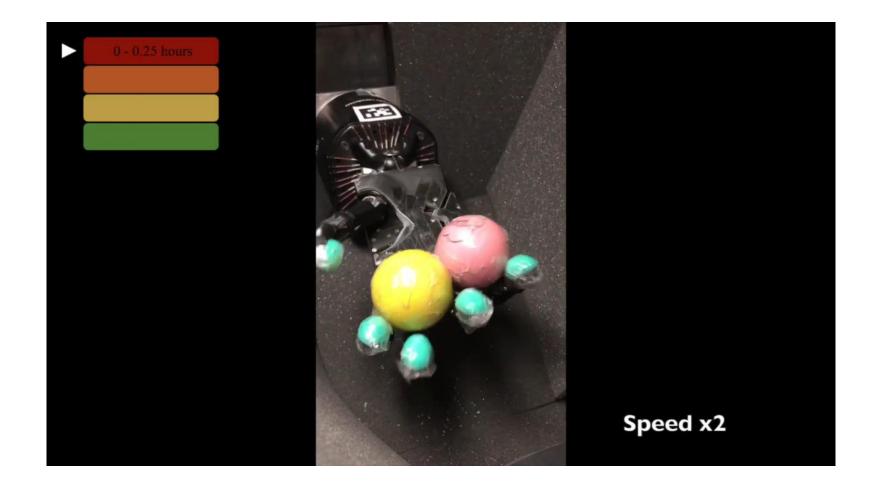




Model-based RL for dexterous manipulation

When should we **prefer** model-based RL?

When we want to learn in the real world with just a few hours of interaction

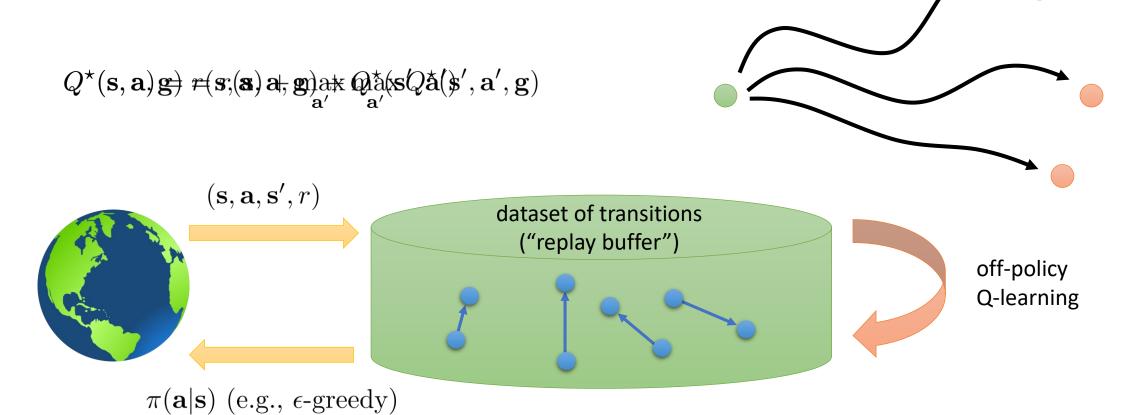


Off-policy model-free RL algorithms

Off-policy model-based RL algorithms

Why these are actually the same thing

Q-Functions (can) learn models



- 1. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, \mathbf{g}_i, r_i)$ from \mathcal{B} 2. minimize $\sum_i (Q(\mathbf{s}_i, \mathbf{a}_i, \mathbf{g}_i) [r(\mathbf{s}_i, \mathbf{a}_i, \mathbf{g}_i) + \max_{\mathbf{a}'_i} Q(\mathbf{s}'_i, \mathbf{a}'_i, \mathbf{g}_i)])^2$

Q-Functions (can) learn models

Before:

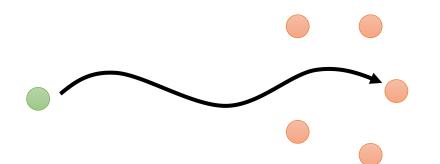
1. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, \mathbf{g}_i, r_i)$ from \mathcal{B} 2. minimize $\sum_i (Q(\mathbf{s}_i, \mathbf{a}_i, \mathbf{g}_i) - [r(\mathbf{s}_i, \mathbf{a}_i, \mathbf{g}_i) + \max_{\mathbf{a}'_i} Q(\mathbf{s}'_i, \mathbf{a}'_i, \mathbf{g}_i)])^2$

Now:

1. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B}

2. sample \mathbf{g}_i from some distribution $p(\mathbf{g})$

special case that samples terminal state 3. minimize $\sum_{i} (Q(\mathbf{s}_i, \mathbf{a}_i, \mathbf{g}_i) - [r(\mathbf{s}_i, \mathbf{a}_i, \mathbf{g}_i) + \max_{\mathbf{a}'_i} Q(\mathbf{s}'_i, \mathbf{a}'_i, \mathbf{g}_i)])^2$



This results in **much** faster learning

Kaelbling et al.

Andrychowicz et al.

"Learning to Reach Goals"

"Hindsight Experience Replay"

Why??

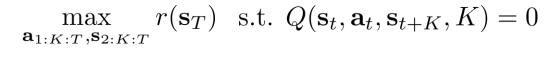
Q-Functions (can) learn models

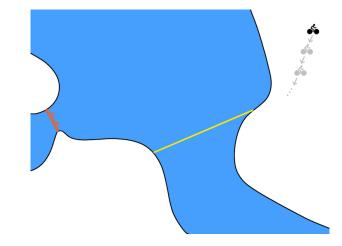
$$Q^{\star}(\mathbf{s}, \mathbf{a}, \mathbf{g}, \tau) = r(\mathbf{s}, \mathbf{a}, \mathbf{g}, \tau) + \max_{\mathbf{a}'} Q^{\star}(\mathbf{s}', \mathbf{a}', \mathbf{g}, \tau - 1)$$

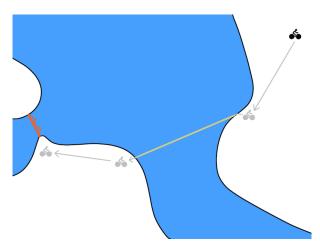
$$r(\mathbf{s}, \mathbf{a}, \mathbf{g}, \tau) = \begin{cases} 0 \text{ if } \tau > 0 \\ -||\mathbf{s} - \mathbf{g}||^2 \text{ otherwise} \end{cases}$$

"if I'm trying to reach \mathbf{g} in τ steps, how close will I get?" this is a model, and can be used like one!

$$\max_{\mathbf{a}_{1:T},\mathbf{s}_{2:T}} \sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \quad \text{s.t. } Q(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, 1) = 0$$

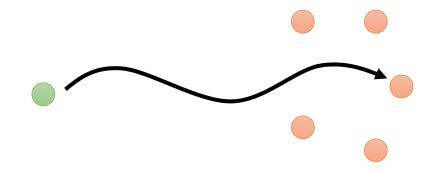


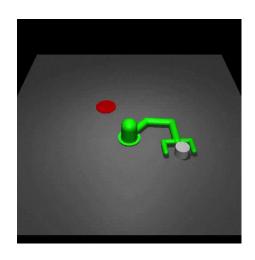


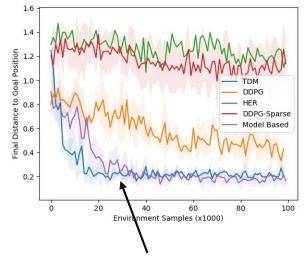


Temporal difference models

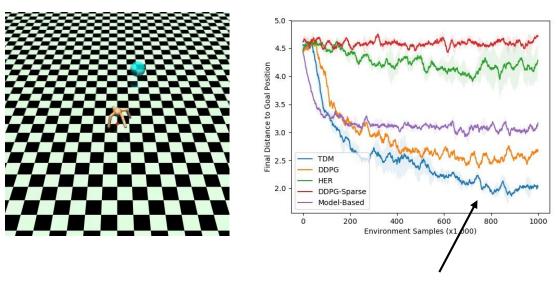
$$Q^{\star}(\mathbf{s}, \mathbf{a}, \mathbf{g}, \tau) = r(\mathbf{s}, \mathbf{a}, \mathbf{g}, \tau) + \max_{\mathbf{a}'} Q^{\star}(\mathbf{s}', \mathbf{a}', \mathbf{g}, \tau - 1)$$
$$r(\mathbf{s}, \mathbf{a}, \mathbf{g}, \tau) = \begin{cases} 0 \text{ if } \tau > 0\\ -||\mathbf{s} - \mathbf{g}||^2 \text{ otherwise} \end{cases}$$







as fast as model-based learning



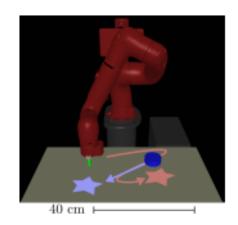
asymptotic performance as good (or better) vs model-free

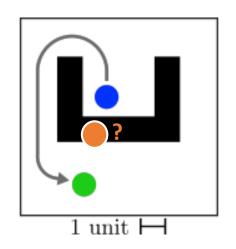
Temporal Difference Models.

Pong*, Gu*, Dalal, L.

Planning with TDMs

$$\max_{\mathbf{a}_{1:K:T},\mathbf{s}_{2:K:T}} r(\mathbf{s}_T) \quad \text{s.t. } Q(\mathbf{s}_t,\mathbf{a}_t,\mathbf{s}_{t+K},K) = 0$$

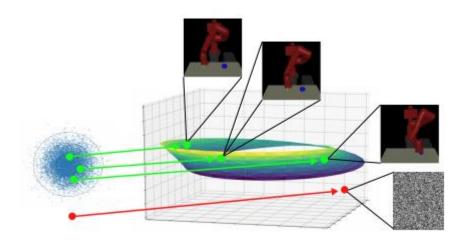




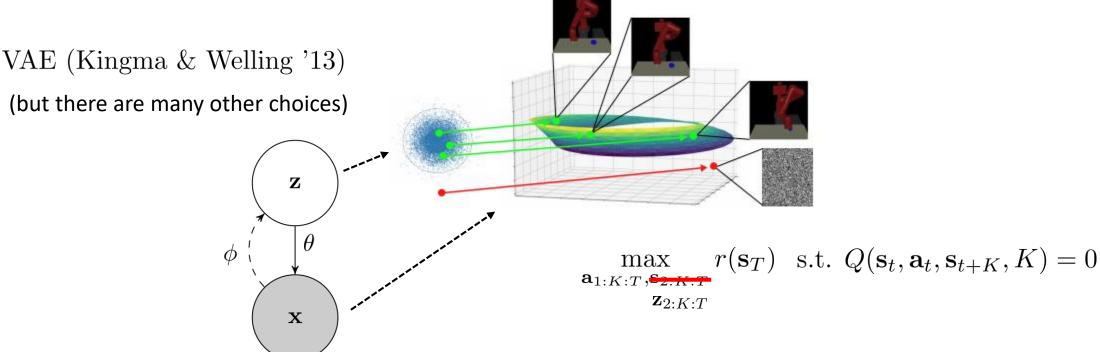
optimization over state variables

invalid states should be unreachable
but invalid states are *out of distribution*!

cannot make good predictions for OOD states!



Optimizing over valid states

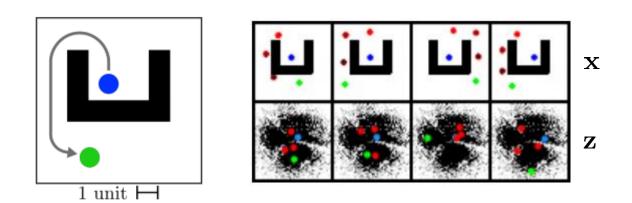


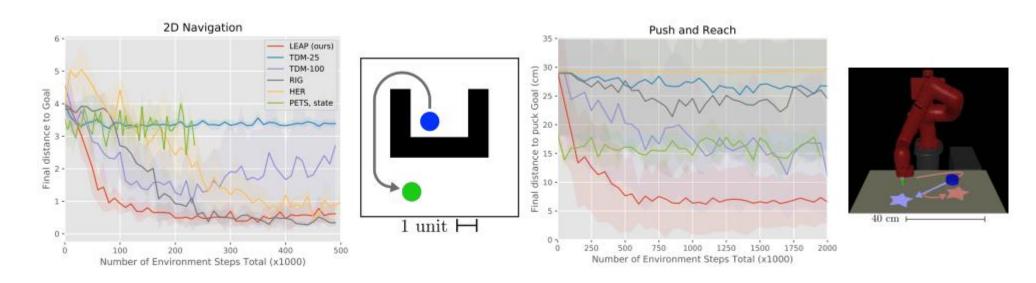
- ➤ Main idea: VAE provides state abstraction, TDM provides temporal abstraction
- ➤ Details (not covered here) matter: how to turn this into unconstrained optimization, how to optimize, etc. (see paper)

Planning with Goal-Conditioned Policies.

Nasiriany*, Pong*, Lin, L.

LEAP: Latent Embeddings for Abstracted Planning

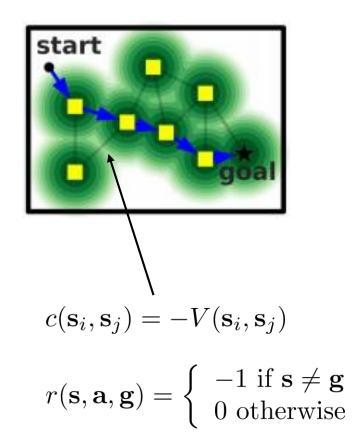




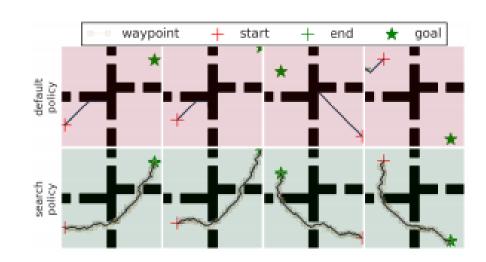
Planning with Goal-Conditioned Policies.

Nasiriany*, Pong*, Lin, L.

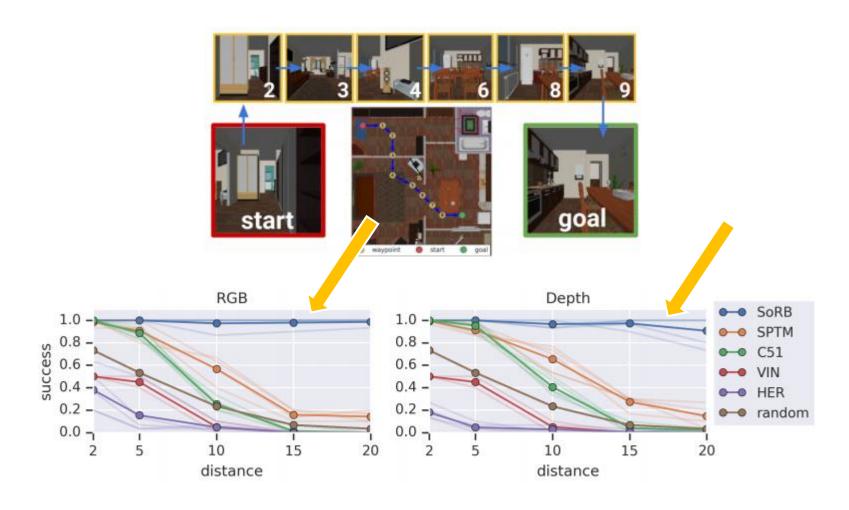
Graph search with goal-conditioned values



- ➤ Can search through graph using **any** graph search algorithm
- ➤ Where do we get the graph nodes?
- > Use the entire replay buffer!



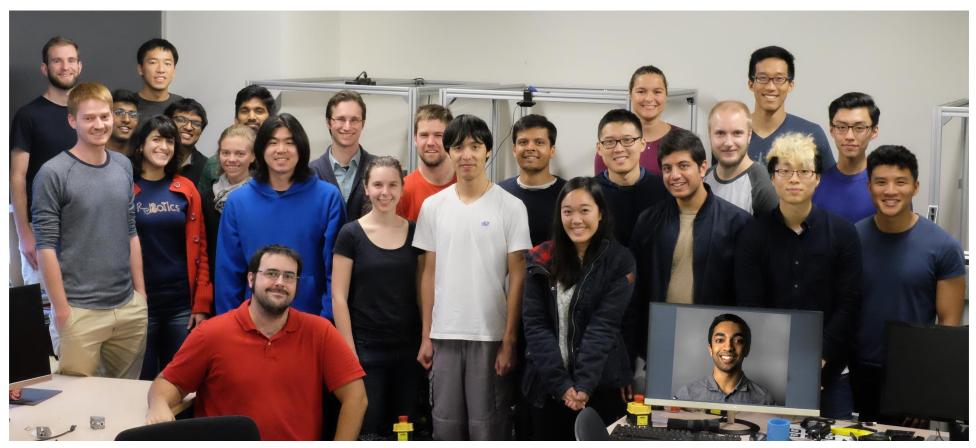
Search on the Replay Buffer (SoRB)



Off-policy model-free RL algorithms

Off-policy model-based RL algorithms

Why these are actually the same thing



website: http://rail.eecs.berkeley.edu

RAIL source code: http://rail.eecs.berkeley.edu/code.html **Robotic AI & Learning Lab**