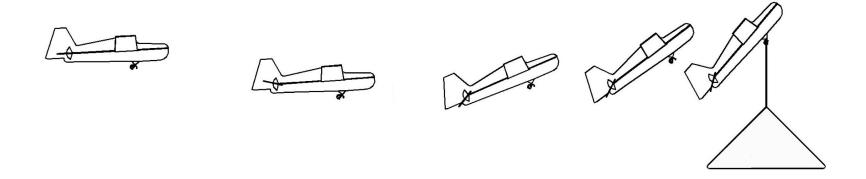
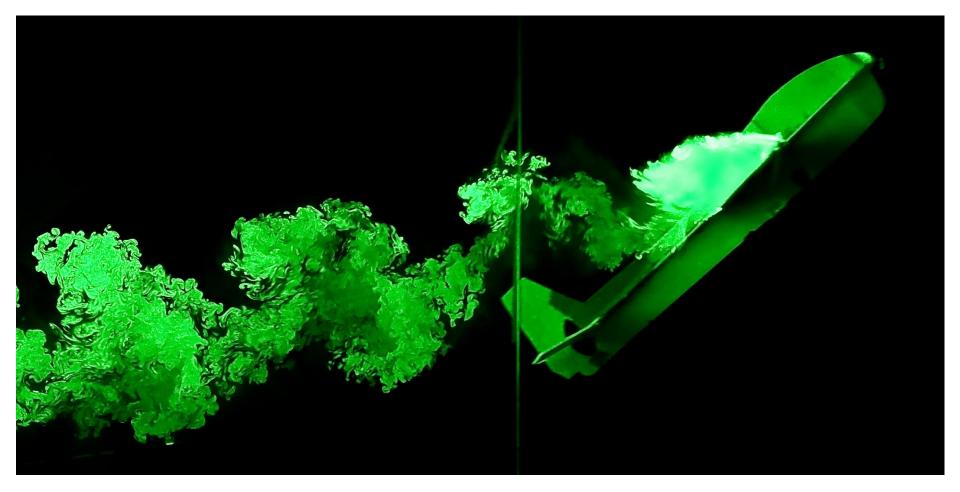
Robust Control with Perception in the Loop: Toward "Category-Level" Manipulation

Russ Tedrake Nov 2019

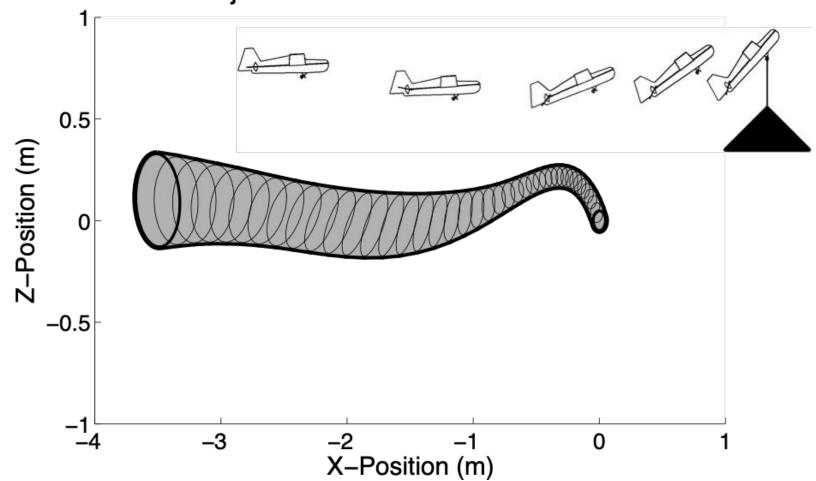
Can we make a control system for a fixed-wing airplane to land on a perch like a bird?

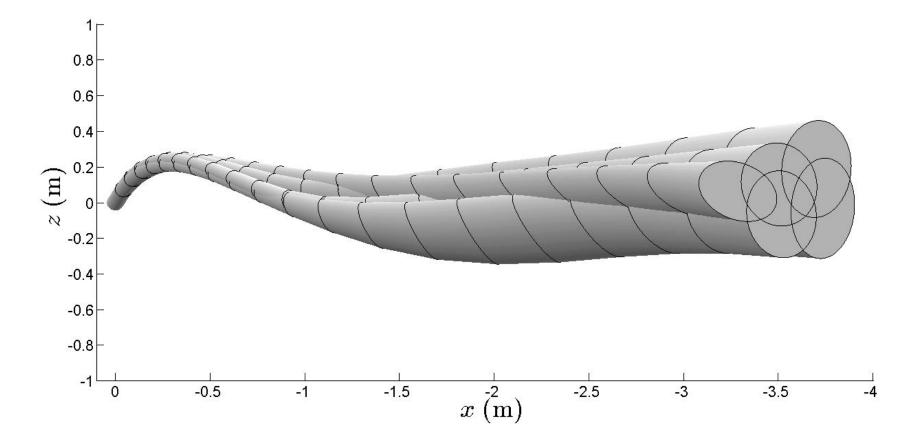




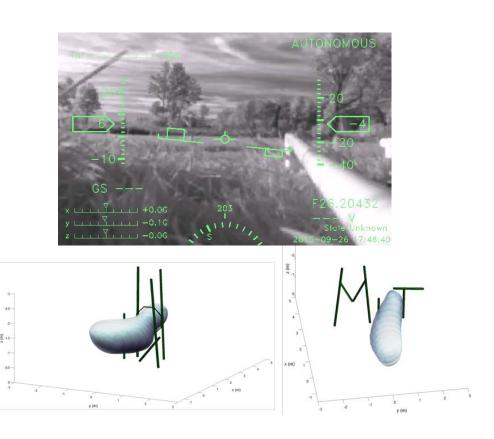
MIT Robot Locomotion Group

Projection of Funnel into X–Z Plane

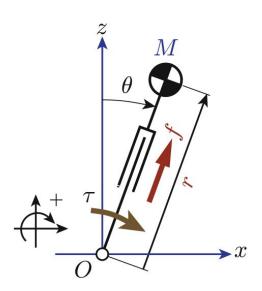


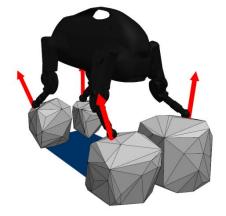


ONR MURI: Provable-safe high-speed flight through forests



w/ Ani Majumdar







Dexterous Manipulation

My new favorite challenge:

Many challenges for RL/Control

Synthesis (which RL algorithm?)

- How do we specify the task?
 - Need evaluation function using real-world sensors
 - Over what set of environments?
- How do we represent the policy?
 - What is the "state space"?
 - Need "Output feedback"
- Can we meaningfully quantify distributional robustness?

"Category-Level" Manipulation

Let's narrow the scope (a bit):

Problem Statement

Manipulate potentially unknown rigid objects from a **category** (e.g. mugs, shoes) into desired **target configurations**

SE(3) pose is difficult to generalize across category

So how do we even **specify the task**? What's the cost function? Images of mugs on the rack?

3D Keypoints provide rich, class-general semantics

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, AUGUST YYYY

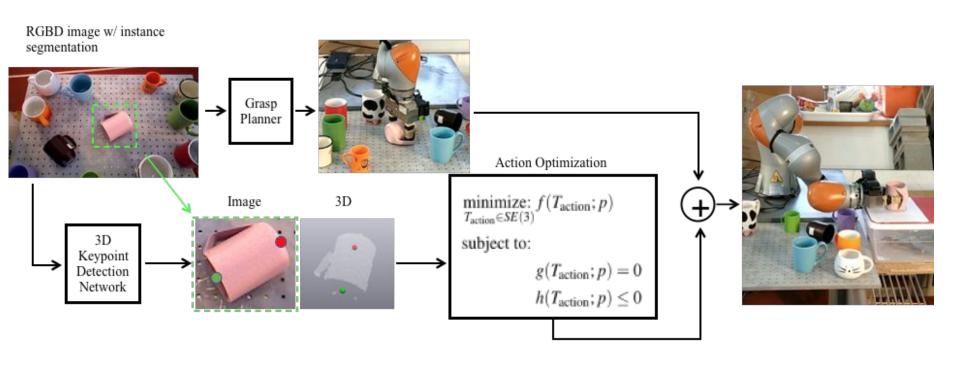
OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

Zhe Cao, Student Member, IEEE, Gines Hidalgo, Student Member, IEEE, Tomas Simon, Shih-En Wei, and Yaser Sheikh ... and robust performance in practice

& Cost on Keypoints

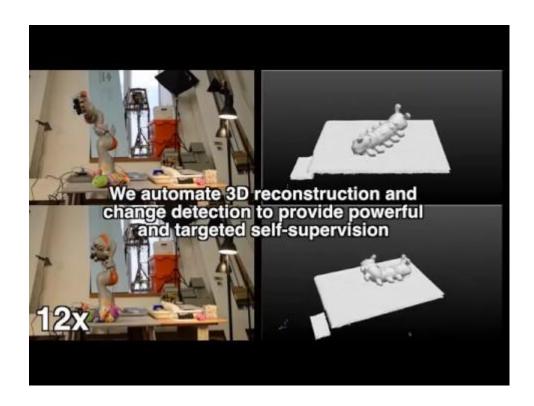
kPAM pipeline

No template model or pose appears in this pipeline.



Keypoint Training Data

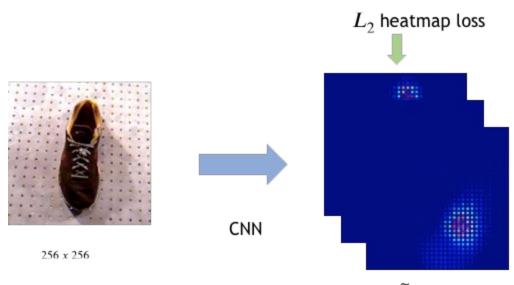
Dense Reconstruction helps overcome partial observability



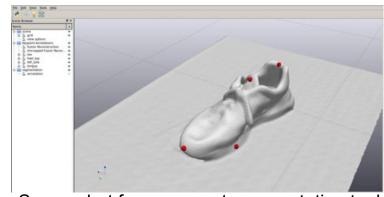
Keypoint network

Architecture based on:

Sun, Xiao, et al. "Integral human pose regression." Proceedings of the European Conference on Computer Vision (ECCV). 2018.



 \tilde{H}_k : 64x64



Screenshot from our custom annotation tool

 L_1 keypoint loss

kPAM results

Object Type	# train objects	# scenes	# images
Shoe	10	43	39,403
Mug	21	74	70,094

(c) Training dataset statistics

# test objects	# Trials	Placed on shelf	Heel Error (cm)	Toe Error (cm)
20	100	98%	$1.09 \pm (1.29)$	$4.34 \pm (3.05)$

(d) Shoes on Rack

Initial Orientation	# test objects	# Trials	Placed upright on shelf	< 3cm error	< 5cm error
Upright	40	80	100%	97.5%	100%
Horizontal	19	38	97.3%	89.4%	94.7%

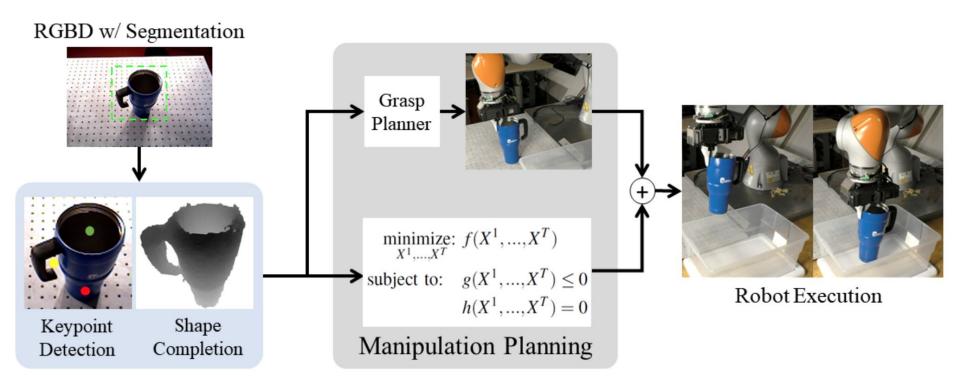
(e) Mugs on Shelf

Mug Size	# test objects	# Trials	Success Rate
Regular	25	100	100%
Small	5	20	50%

(f) Mugs on Rack

kPAM-SC: now with shape completion

Motion planning step can now include non-collision constraints on the object



Q: How do we specify a diversity of tasks?

Proposal: For many geometric tasks, simple costs and constraints on semantically-labeled keypoints.

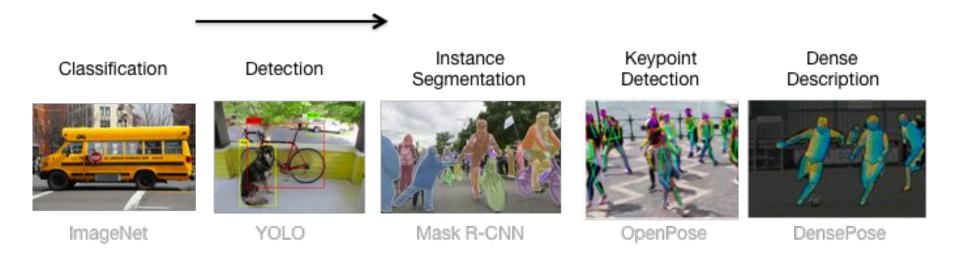
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, AUGUST YYYY

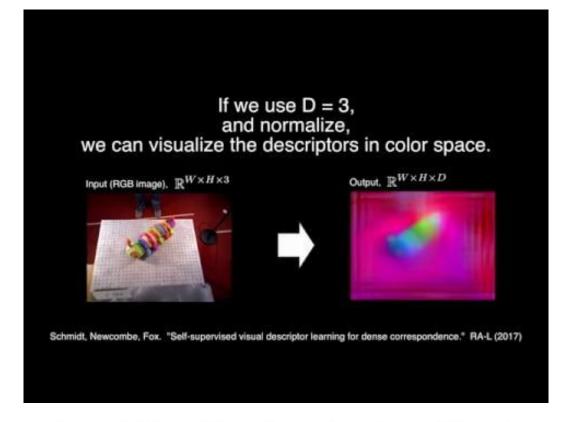
OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

Zhe Cao, Student Member, IEEE, Gines Hidalgo, Student Member, IEEE, Tomas Simon, Shih-En Wei, and Yaser Sheikh How do we represent the policy?

Dense Object Nets in Visuomotor Policy Learning

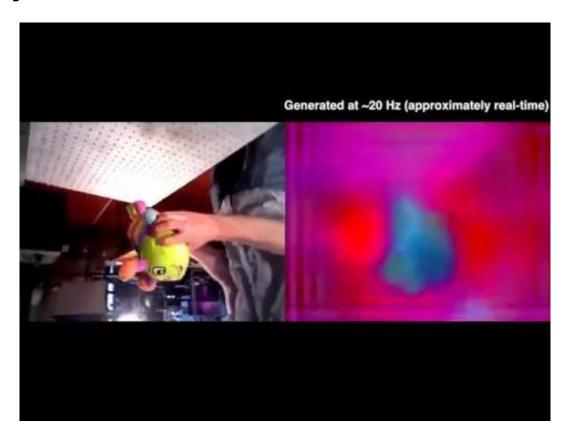
Leveraging advances in deep perception





Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation

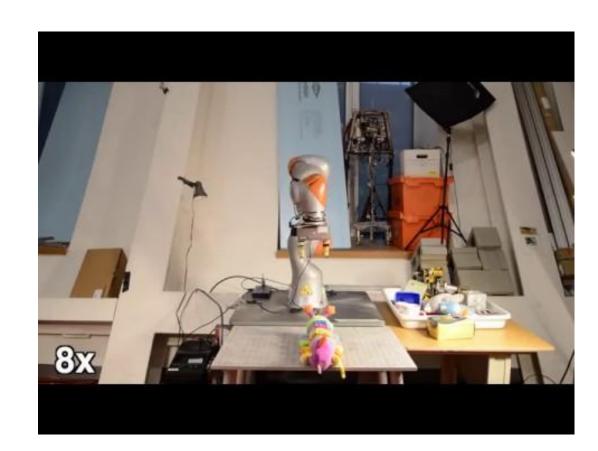
Dense Object Nets



Dense Object Nets

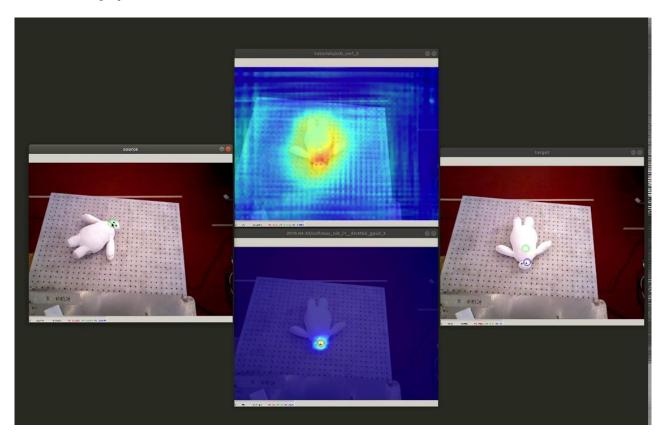
In initial paper, our tasks were very simple. Just "grab here".

Do these representations facilitate more complicated control?



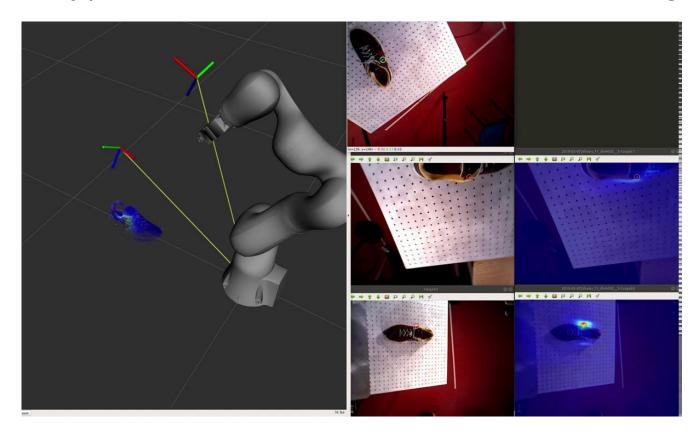
(Dramatically) improved dense descriptor training

in 2D

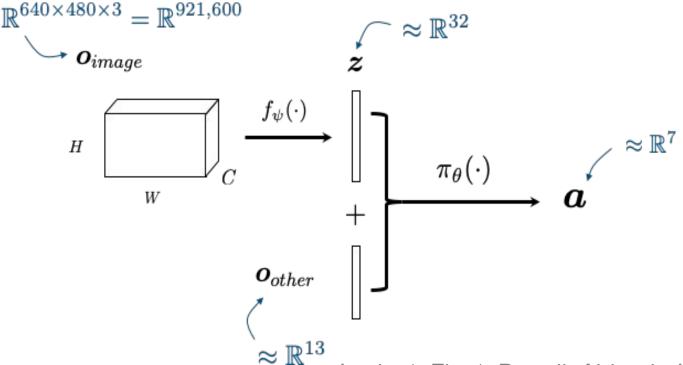


(Dramatically) improved dense descriptor training

And now 3D



Visuomotor policies



Levine*, Finn*, Darrell, Abbeel, JMLR 2016

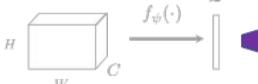
Primary existing methods for training visual portion

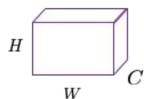
 Pose-based auxiliary loss



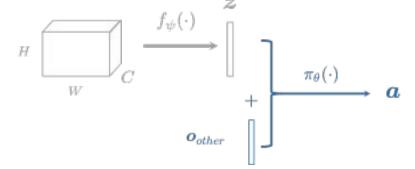
Estimate object/hand pose (but hard for class-general or deformable)

2. Auto-encoding

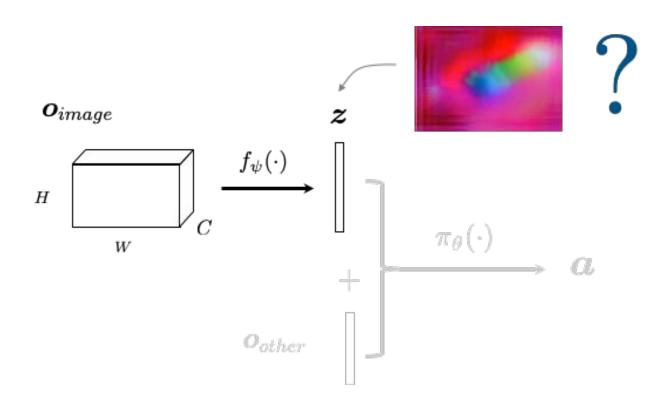




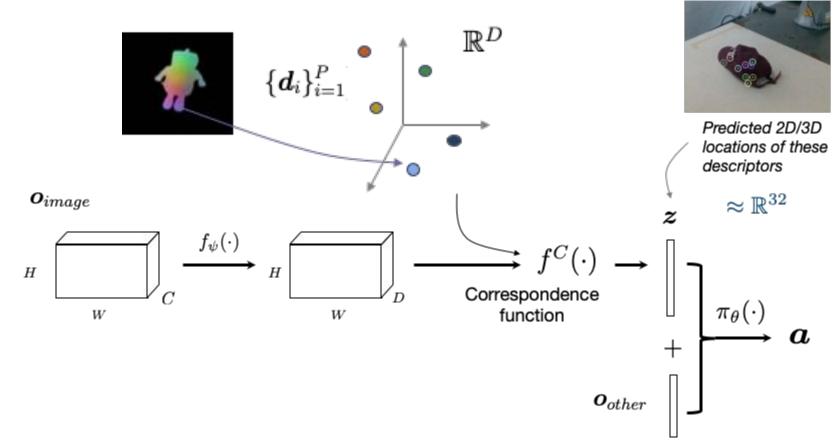
3. End-to-end



Idea: What if we use dense correspondences?



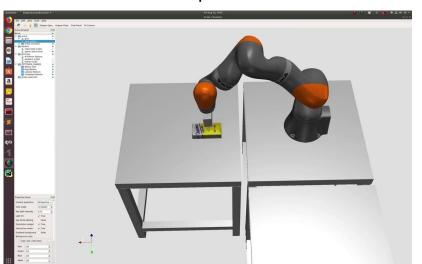
Idea: Use a small set of descriptors



Evaluations are based on imitation learning

w/ standard "behavior cloning" objective

from hand-coded policies in simulation

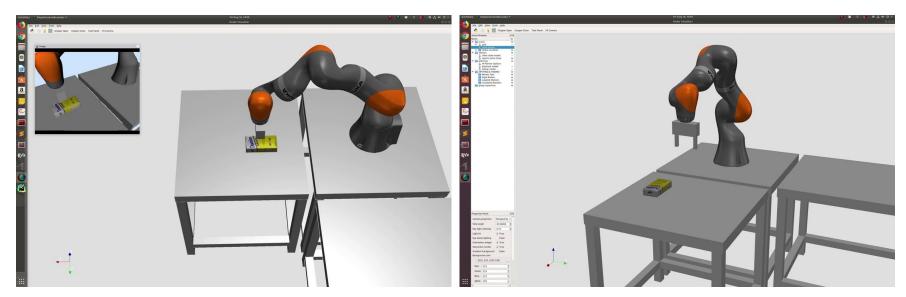


and tele-op on real robot

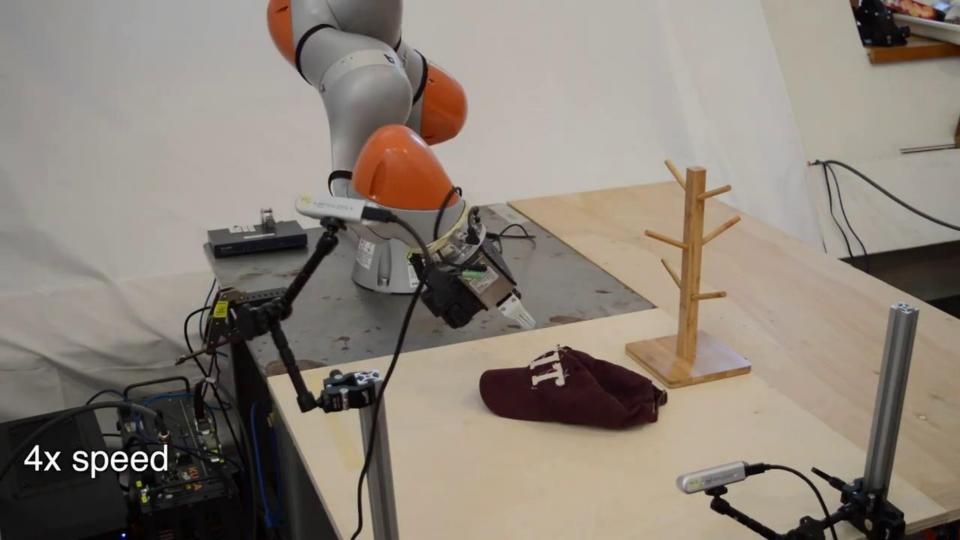
+ some novel(?) heuristics for data augmentation

Simulation experiments

Policy is a small LSTM network (~ 100 LSTMs)



"push box" "flip box"



Method / Task	T only	T + R	box	plate				
Ground truth 3D points	100.0	100.0	100.0	90.5				
Ground truth 2D image c	oord. 94.1	95.6	100.0	92.0				
RGB policy input								
Autoencoder, frozen	8.1	61.1	31.0	53.0				
Autoencoder w/ mask, from	ozen 16.3	10.0	73.0	67.0				
Autoencoder, then End-to	-End 40.7	38.9	_	16.0				
End-to-End	43.0	32.2	100.0	5.5				
End-to-End (34-layer Res	Net) –	3.3	_	_				
DD 2D image coord. (our	rs) 94.1	97.8	100.0	87.0				
RGBD policy input								
DD 3D coord. (ours)	100.0	100.0	_	98.0				
TABLE I: Summary of simulation results (success rate, as %). DD = Den								

Reach

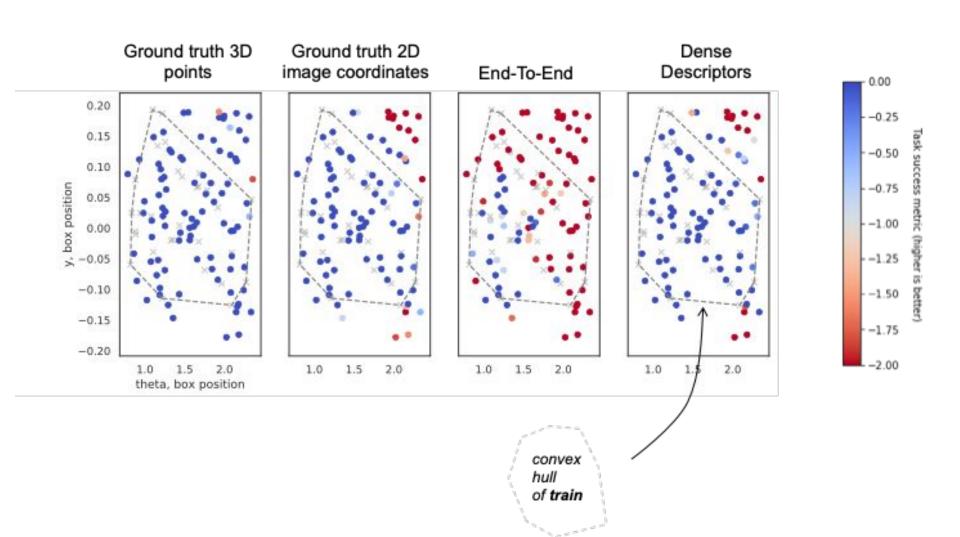
Reach Push

Push

TABLE I: Summary of simulation results (success rate, as %). DD = Dense Descriptor. See Appendix for task success criteria and additional details.

		Trained	Without disturbances		With disturbances			Demonstration data		
	Success	with manual	#	#		#	#	Ĭ	#	time
Task	criterion	disturbances	attempts	success	%	attempts	success	%	total	(min.)
Push sugar	box is < 3 cm	yes	6	6	100.0	70	68	97.1	51	13.9
box	from finish line	-								
Flip shoe,	shoe is	no	43	42	97.7	40	35	87.5	50	6.5
single instance	upright									
Flip shoe,							•			
class-general										
previously seen	shoe is	no no	43	38	88.4				146	17.5
shoes (14)	upright									
novel	shoe is	no no	$-\frac{1}{22}$	_ 17 _	77.3	=			146	17.5
shoes (12)	upright									
Pick-then-hang	hat is	yes	50	42	84.0	41	28	68.3	52	11.5
hat on rack	on the rack									
Push-then-	plate is	yes	22	21	95.5	27	22	81.5	94	27.4
grab plate	off the table									
Total			186			178				

TABLE III: Summary of task attempts and success rates for hardware validation experiments. Autonomous re-tries are counted as successes.



Can we meaningfully quantify distributional robustness?

How should we represent distributions at the category level?

ean we meaning quantity diethibational residenties.

Requirements authoring

In controls (polytopic/ellipsoidal, etc)

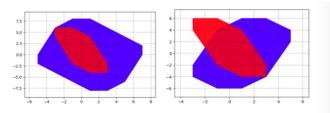


Fig. 1. Example 1: Zonotope Containment Problem: [left] $\mathbb{Z}_l \subseteq \mathbb{Z}_r$, [Right] $\mathbb{Z}_l \not\subseteq \mathbb{Z}_r^*$, where the last column of G_r is dropped.

27 Feb 2018 | 16:48 GMT

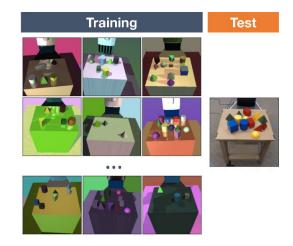
Creating Driving Tests for Self-Driving Cars

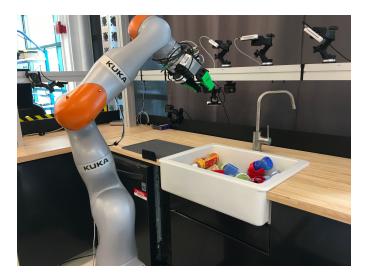
Volvo-backed Zenuity wants to prove that autonomous vehicles can drive more safely than humans

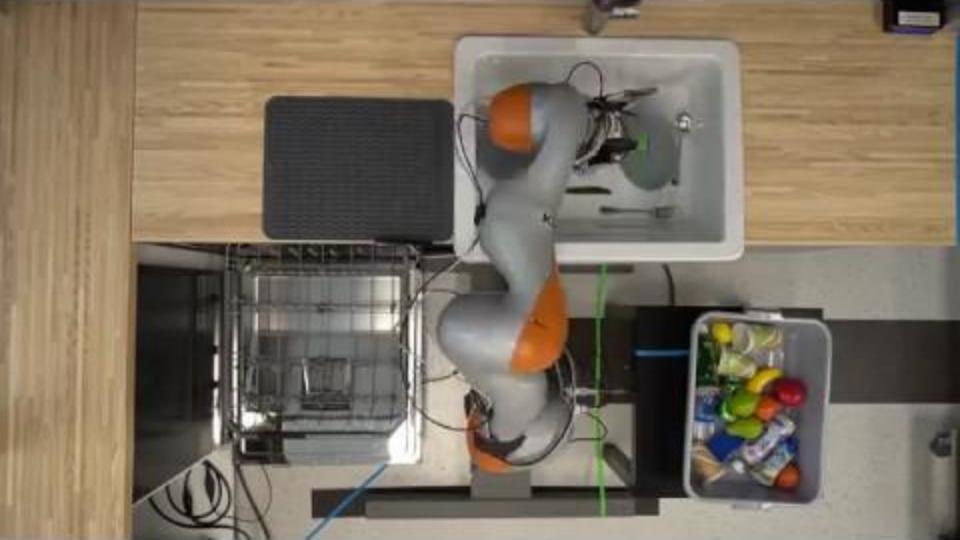
By Erik Coelingh and Jonas Nilsson

Developing autonomous systems in the real world.

Domain randomization in reinforcement learning







More advanced falsification via nonlinear black-box optimization and rare event simulation.

Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation

NIPS 2018

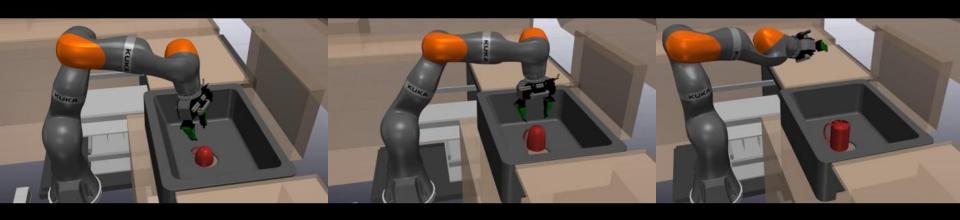
Search Algorithm	$\gamma = 0.14$	$\gamma = 0.16$	$\gamma = 0.18$	$\gamma = 0.40$	$\gamma = 0.42$
Naive	(2.0±2.0)e-5	$(22.0 \pm 6.6)e-5$	(82.0±12.8)e-5	(334.4±8.0)e-4	(389.7±8.6)e-4
Cross-entropy	$(3.2\pm2.6)e-6$	$(25.8 \pm 4.5)e-5$	$(84.6 \pm 9.3)e-5$	$(334.5 \pm 8.0)e-4$	$(386.4 \pm 8.6)e-4$

Table 1: Estimate of rare-event probability p_{γ} (non-vision ego policy), with standard deviations

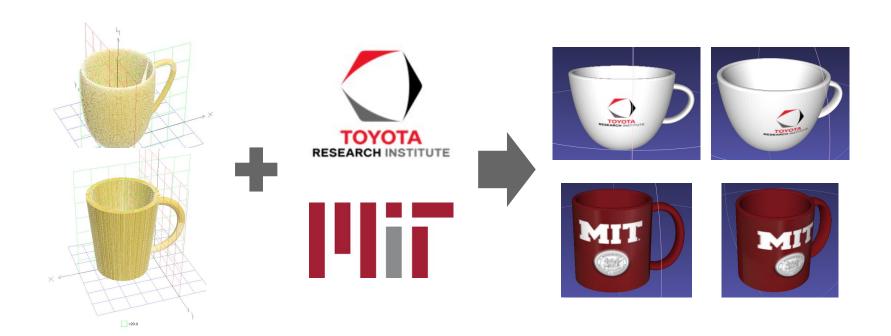
Search Algorithm	$\gamma = 0.26$	$\gamma = 0.28$	$\gamma = 0.30$	$\gamma = 0.50$	$\gamma = 0.52$
Naive	$(8.0\pm4.0)e-3$	$(8.0\pm4.0)e-3$	$(12.0\pm4.9)e-3$	$(13.8\pm1.5)e-2$	$(15.6\pm1.6)e-2$
Cross-entropy	$(2.7\pm2.1)e-3$	$(5.4\pm2.7)e-3$	$(6.4\pm2.7)e-3$	$(7.6\pm1.0)e-2$	$(8.1\pm1.0)e-2$

Table 2: Estimate of rare-event probability p_{γ} (vision-based ego policy), with standard deviations

Procedural dishes



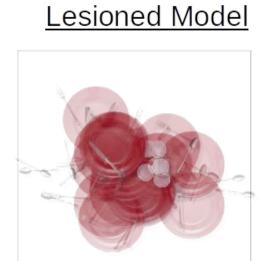
Procedural dishes

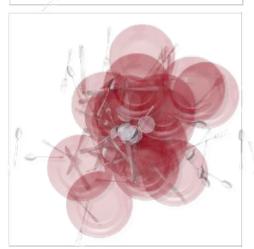


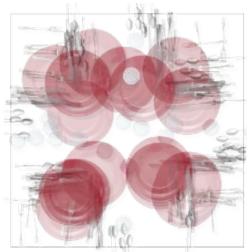
Generative Modeling of Environments with Scene Grammars and Variational Inference

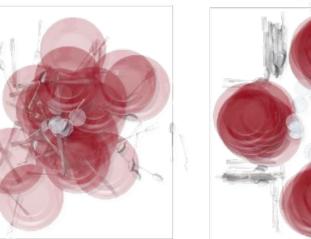
Gregory Izatt and Russ Tedrake {gizatt, russt}@csail.mit.edu

Target Distribution

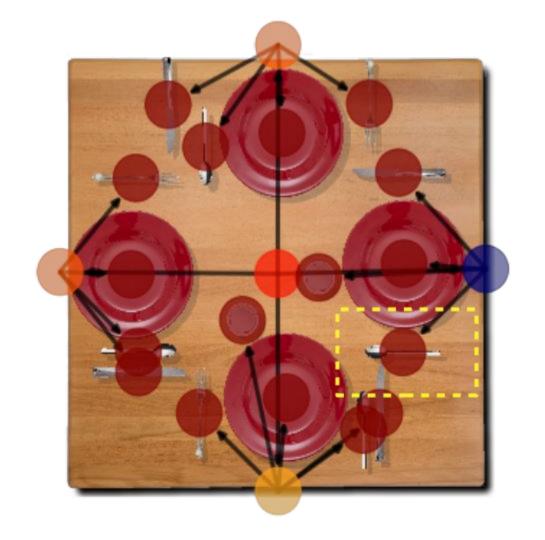








Outlier detection



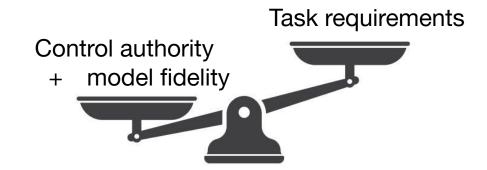
To achieve robustness, do I need to

simulate the diversity of the world?

Can we simulate everything in the kitchen?

Napkins? Ketchup? Soba noodles?

How accurate do our models have to be?



How do I provide test coverage for every possible kitchen?

Hypothesis: Only need a sufficiently rich sandbox to deploy

+ continual improvement (fleet learning)

Summary

Optimization brought us today's "modern control"...

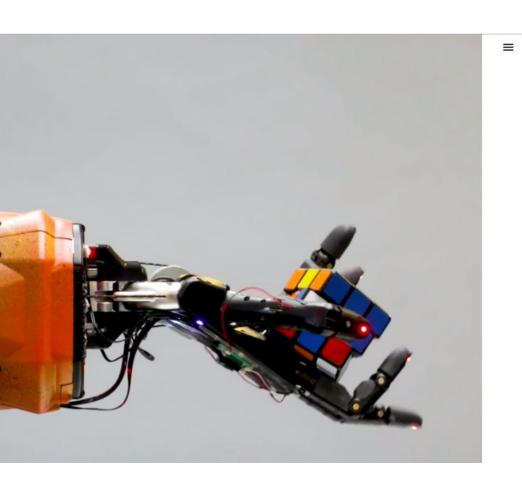
..with strong results for relatively simple forms uncertainty.

Real world uncertainty and "domain randomization" in RL is much richer. "Black-box" optimization in RL still works.

Dealing with perception and "open-worlds" may cause the next major shift in controls research; we need the maturity of control to help address fundamental problems in robustness and sample-complexity.

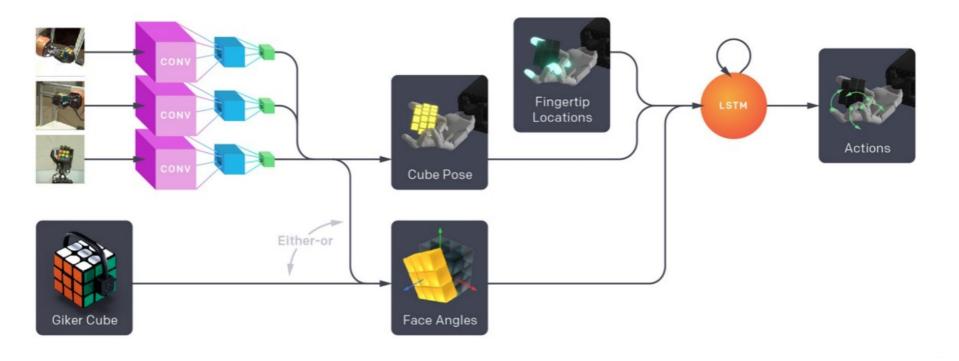
There is so much that we don't know

how to do yet!



If a Robotic Hand Solves a Rubik's Cube, Does It Prove Something?

A five-fingered feat could show important progress in A.I. research. It is also a stunt.



"For the Rubik's cube task, we use $8 \times 8 = 64$ NVIDIA V100 GPUs and $8 \times 115 = 920$ worker machines with 32 CPU cores each. ... The cumulative amount of experience ... is roughly **13 thousand years**."

Table 6: Performance of different policies on the Rubik's cube for a fixed fair scramble goal sequence. We evaluate each policy on the real robot (N=10 trials) and report the mean \pm standard error and median number of successes (meaning the total number of successful rotations and flips). We also report two success rates for applying half of a fair scramble ("half") and the other one for fully applying it ("full"). For ADR policies, we report the entropy in nats per dimension (npd). For "Manual DR", we obtain an upper bound on its ADR entropy by running ADR with the policy fixed and report the entropy once the distribution stops changing (marked with an "*").

Policy	Sensing		ADR Entropy	Successes	Success Rate		
	Pose	Face Angles	ADK Entropy	Mean	Median	Half	Full
Manual DR	Vision	Giiker	-0.569^* npd	1.8 ± 0.4	2.0	0 %	0 %
ADR	Vision	Giiker	$-0.084~\mathrm{npd}$	3.8 ± 1.0	3.0	0 %	0 %
ADR (XL)	Vision	Giiker	$0.467~\mathrm{npd}$	17.8 ± 4.2	12.5	30 %	10 %
ADR (XXL)	Vision	Giiker	$0.479~\mathrm{npd}$	26.8 ± 4.9	22.0	60 %	20 %
ADR (XXL)	Vision	Vision	0.479 npd	12.8 ± 3.4	10.5	20 %	0 %