

Energy-Based Approaches To Representation Learning

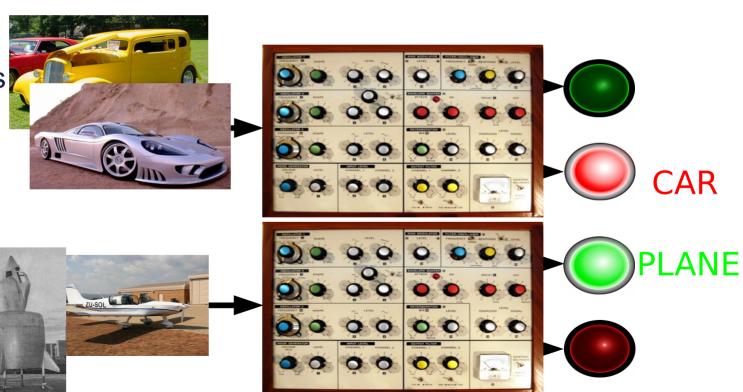
Yann LeCun
New York University
Facebook AI Research
http://yann.lecun.com

facebook

Artificial Intelligence Research

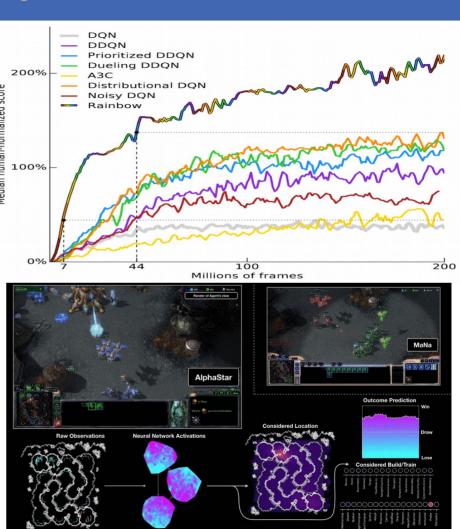
Supervised Learning works but requires many labeled samples

- Training a machine by showing examples instead of programming it
- When the output is wrong, tweak the parameters of the machine
- Works well for:
 - ▶ Speech→words
 - ► Image→categories
 - ▶ Portrait→ name
 - ▶ Photo→caption
 - ► Text→topic



Reinforcement Learning: works great for games and simulations.

- ► 57 Atari games: takes 83 hours equivalent real-time (18 million frames) to reach a performance that humans reach in 15 minutes of play.
 - ► [Hessel ArXiv:1710.02298]
- ► Elf OpenGo v2: 20 million self-play games. (2000 GPU for 14 days)
 - ► [Tian arXiv:1902.04522]
- StarCraft: AlphaStar 200 years of equivalent real-time play
 - ► [Vinyals blog post 2019]
- OpenAl single-handed Rubik's cube
 - ▶ 10,000 years of simulation



But RL Requires too many trials in the real world

- Pure RL requires too many trials to learn anything
 - ▶ it's OK in a game
 - it's not OK in the real world
- RL works in simple virtual world that you can run faster than real-time on many machines in parallel.

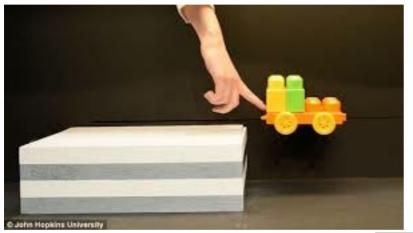
- Anything you do in the real world can kill you
- You can't run the real world faster than real time

How do Humans and Animal Learn?

So quickly

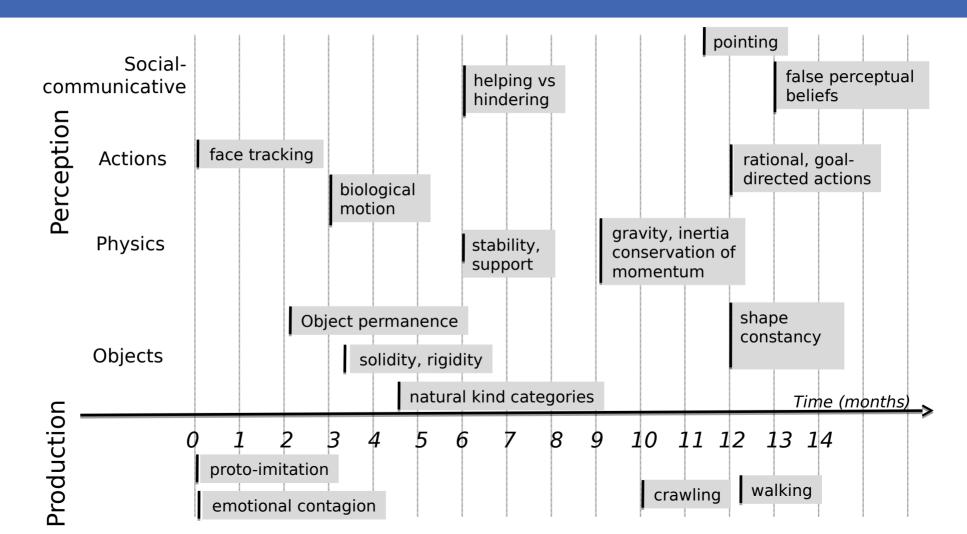
Babies learn how the world works by observation

Largely by observation, with remarkably little interaction.



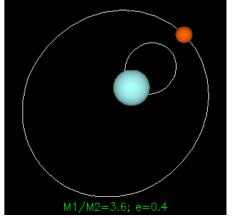
Photos courtesy of Emmanuel Dupoux

Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]



Prediction is the essence of Intelligence

▶ We learn models of the world by predicting



The Next Al Revolution

Get the T-shirt!

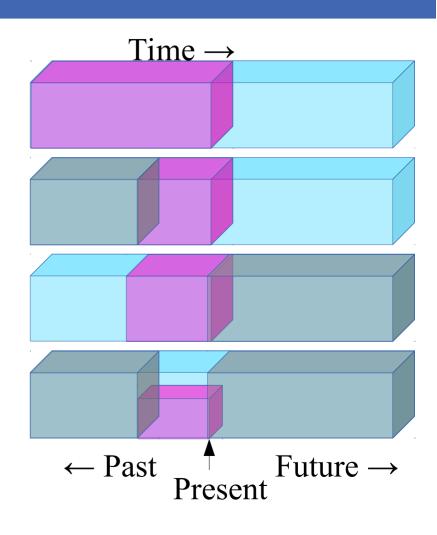
With thanks to Alyosha Efros and Gil Scott Heron

The Salvation? Self-Supervised Learning

Training very large networks to Understand the world through prediction

Self-Supervised Learning: Prediction & Reconstruction

- Predict any part of the input from any other part.
- **▶** Predict the future from the past.
- **▶** Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.



Three Types of Learning

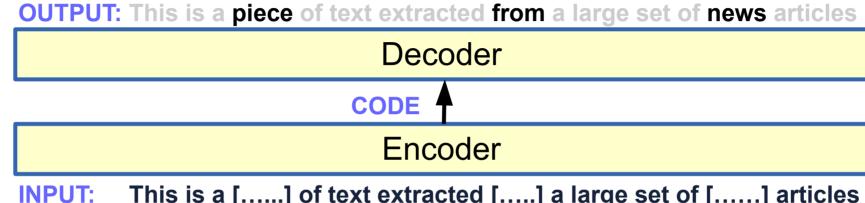
- Reinforcement Learning
 - ► The machine predicts a scalar reward given once in a while.
 - weak feedback
- Supervised Learning
 - The machine predicts a category or a few numbers for each input
 - medium feedback
- Self-supervised Learning
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - ► A lot of feedback

How Much Information is the Machine Given during Learning?

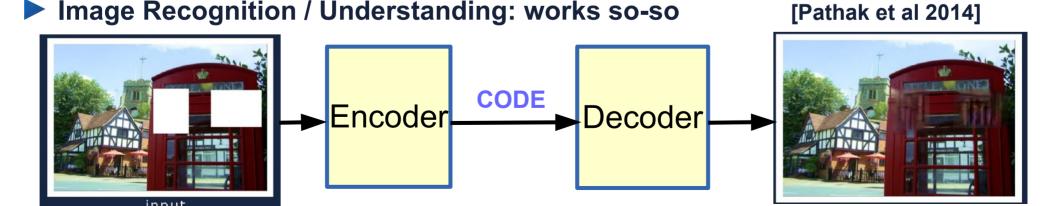
- "Pure" Reinforcement Learning (cherry)
 - ➤ The machine predicts a scalar reward given once in a while.
 - ► A few bits for some samples
- Supervised Learning (icing)
 - ► The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
 - ► The machine predicts any part of its input for any observed part.
 - ► Predicts future frames in videos
 - ► Millions of bits per sample

Self-Supervised Learning: filling in the bl nks

Natural Language Processing: works great!



This is a [.....] of text extracted [.....] a large set of [......] articles



Self-Supervised Learning works well for text

- ► Word2vec
 - ► [Mikolov 2013]
- FastText
 - ► [Joulin 2016] (FAIR)
- BERT
 - Bidirectional Encoder Representations from Transformers
 - ► [Devlin 2018]
- Cloze-Driven Auto-Encoder
 - ► [Baevski 2019] (FAIR)
- RoBERTa [Ott 2019] (FAIR)

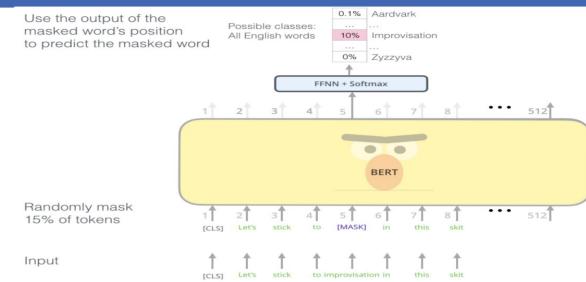
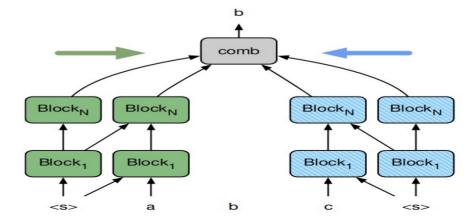


Figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/



Self-Supervised Learning in vision: Filling in the Blanks

input

Huang et al. | 2014

Barnes et al. | 2009

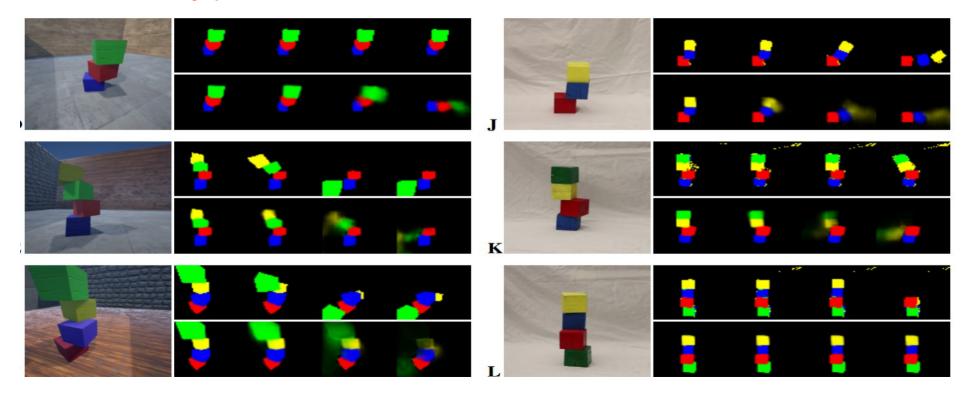
Pathak et al. | 2016

Darabi et al. | 2012

lizuka et al. | 2017

PhysNet: tell me what happens next

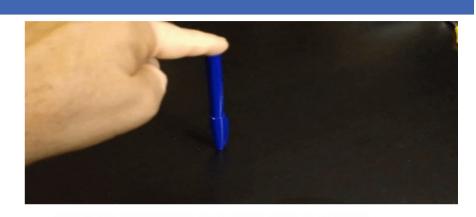
- [Lerer, Gross, Fergus ICML 2016, arxiv:1603.01312]
 - ConvNet produces object masks that predict the trajectories of falling blocks. Blurry predictions when uncertain



The world is not entirely predictable / stochastic

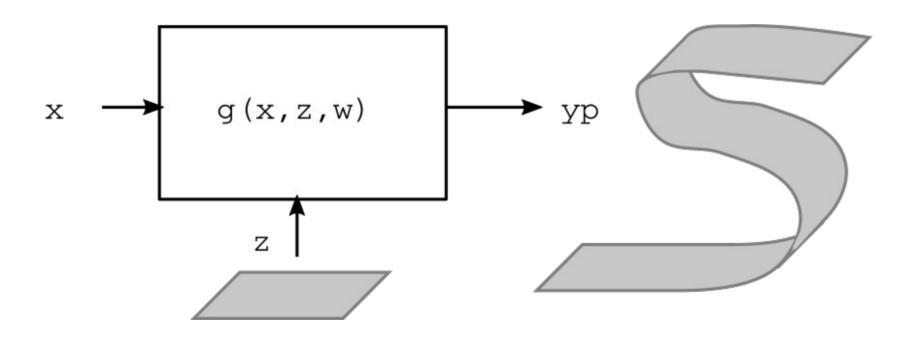
Video prediction:

- ► Multiple futures are possible.
- ➤ Training a system to make a single prediction results in "blurry" results
- the average of all the possible futures



For multiple predictions: latent variable model

As the latent variable z varies, the prediction yp varies over the region of high data density

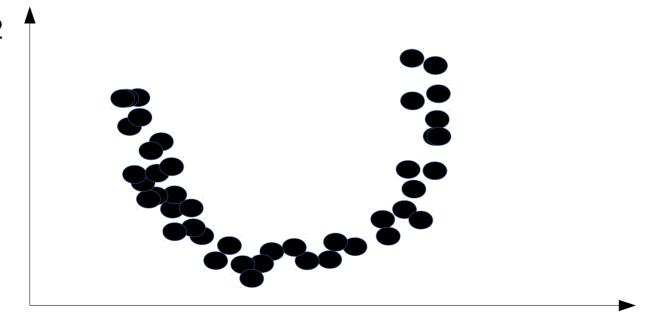


Energy-Based Learning

Energy Shaping
Regularized Auto-Encoders

Energy-Based Unsupervised Learning

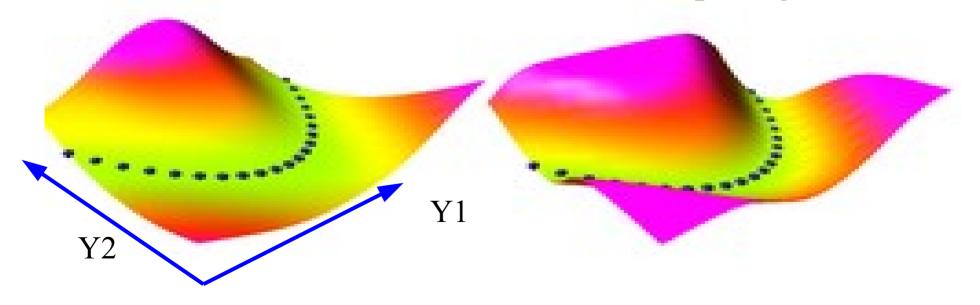
- Learning an energy function (or contrast function) F(y), that takes
 - Low values on the data manifold
 - Higher values everywhere else



Capturing Dependencies Between Variables with an Energy Function

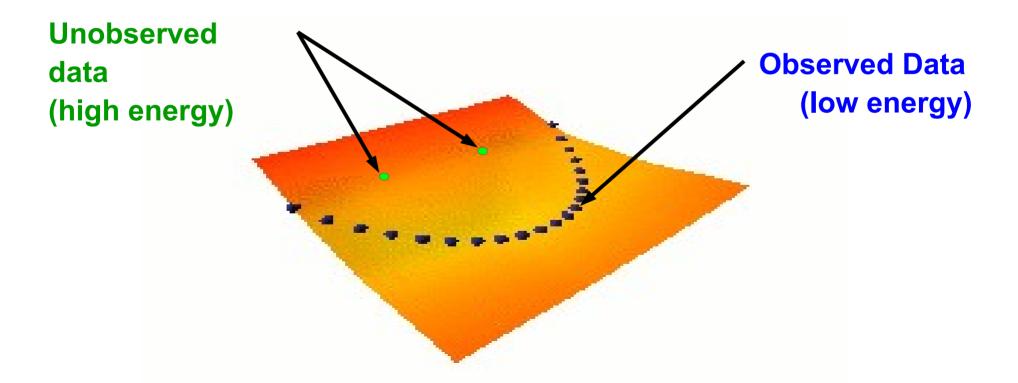
- The energy surface is a "contrast function" that takes low values on the data manifold, and higher values everywhere else
 - Special case: energy = negative log density
 - Example: the samples live in the manifold

$$Y_2 = (Y_1)^2$$



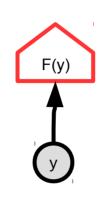
Energy-Based Self-Supervised Learning

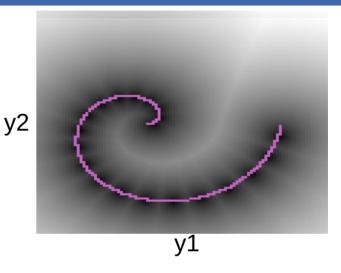
- Energy Function: Takes low value on data manifold, higher values everywhere else
- Push down on the energy of desired outputs. Push up on everything else.
- But how do we choose where to push up?



Conditional and Unconditional Energy-Based Model

Unconditional F(y)

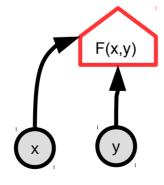


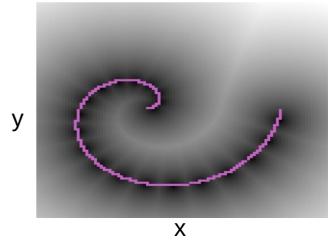


Conditional

► Inference:

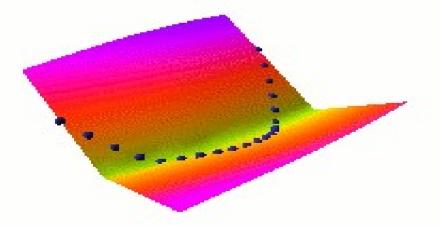
$$\overline{y} = \operatorname{argmin}_{y} F(x,y)$$

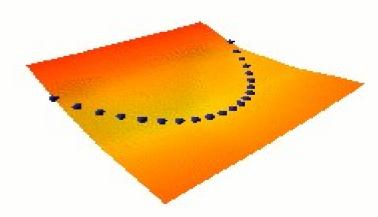




Learning the Energy Function

- parameterized energy function F_w(x,y)
 - Make the energy low on the samples
 - Make the energy higher everywhere else
 - Making the energy low on the samples is easy
 - But how do we make it higher everywhere else?





Conditional and Unconditional Latent Variable EBM

Unconditional

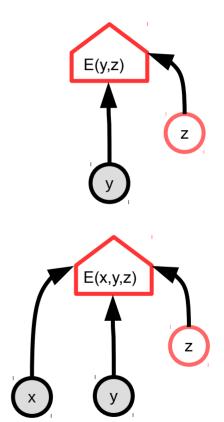
$$F(y)=min_z E(y,z)$$

$$F(y) = -\frac{1}{\beta} \log \left[\int_{z} \exp(-\beta E(y, z)) \right]$$

Conditional

$$F(x,y)=min_z E(x,y,z)$$

$$F(x,y) = -\frac{1}{\beta} \log \left[\int \exp\left(-\beta E(x,y,z)\right) \right]$$



Energy-Based Latent Variable Model for Prediction

As the latent variable z varies, the prediction varies over the region of high data density

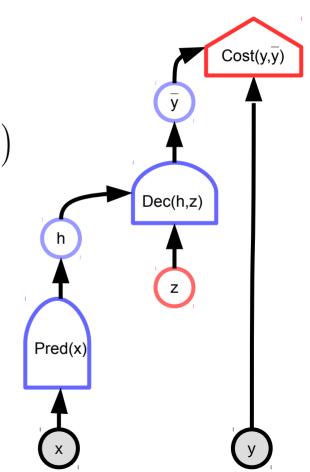
$$E(x, y, z) = Cost(y, Dec(Pred(x), z))$$

Inference, free energy:

$$F(x,y) = \min_{z} E(x,y,z)$$

$$F(x,y) = -\frac{1}{\beta} \log \left[\int_{z} \exp(-\beta E(x,y,z)) \right]$$

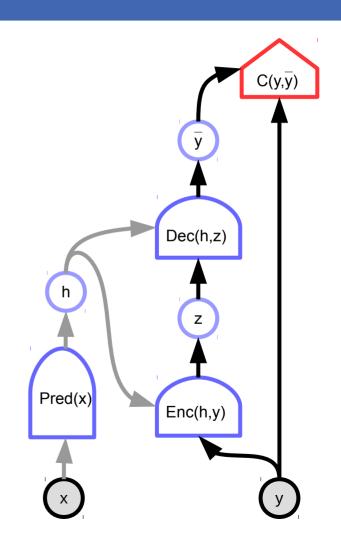
How to make sure that there is no z for y outside the region of high data density?



(Conditional) Auto-Encoder

- Auto-encoders learns to reconstruct.
- Reconstruction error = Energy function
- ► If it reconstructs everything it's useless
 - Identity function == flat energy surface

How to make sure that the reconstruction error is high outside the region of high data density?

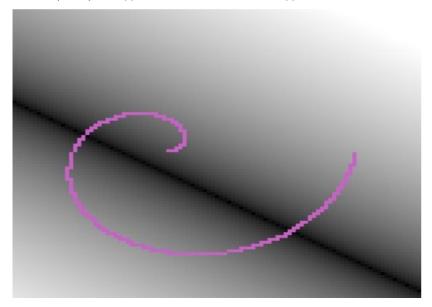


Simple examples: PCA and K-means

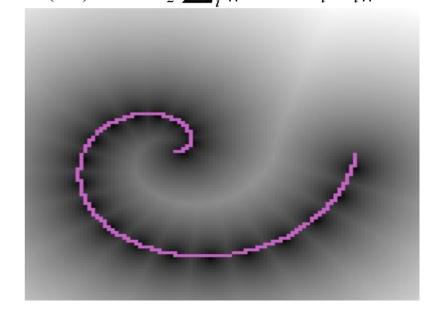
- Limit the capacity of z so that the volume of low energy stuff is bounded
 - ▶ PCA, K-means, GMM, square ICA...

PCA: z is low dimensional

$$F(Y) = ||W^T WY - Y||^2$$



K-Means, Z constrained to 1-of-K code $F(Y) = min_z \sum_i ||Y - W_i Z_i||^2$

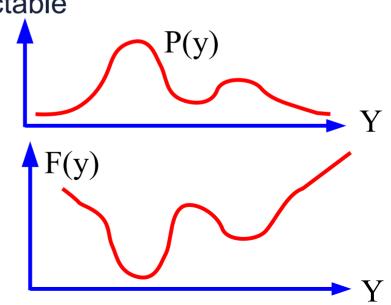


Familiar Example: Maximum Likelihood Learning

- The energy can be interpreted as an unnormalized negative log density
- Gibbs distribution: Probability proportional to exp(-energy)
 - Beta parameter is akin to an inverse temperature
- Don't compute probabilities unless you absolutely have to
 - Because the denominator is often intractable

$$P(y) = -\frac{\exp[-\beta F(y)]}{\int_{y'} \exp[-\beta F(y')]}$$

$$P(y|x) = -\frac{\exp[-\beta F(x,y)]}{\int_{y'} \exp[-\beta F(x,y')]}$$



push down of the energy of data points, push up everywhere else

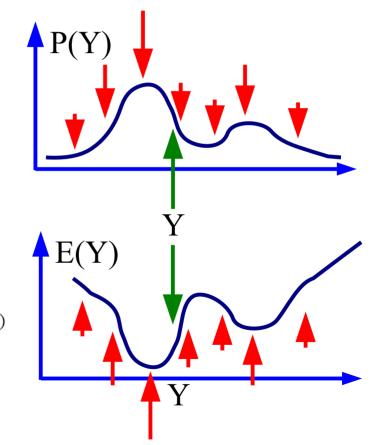
Max likelihood (requires a tractable partition function)

Maximizing P(Y|W) on training samples

$$P(Y|W) = \frac{e^{-\beta E(Y,W)}}{\int_{y} e^{-\beta E(y,W)}}$$
 make this big

Minimizing -log P(Y, W) on training samples

$$L(Y,W) = E(Y,W) + \frac{1}{\beta} \log \int_y e^{-\beta E(y,W)}$$
 make this small make this big



push down of the energy of data points, push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

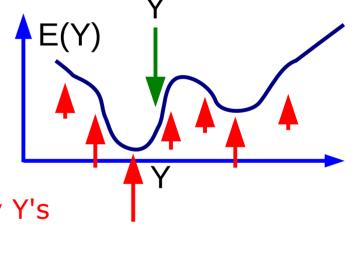
$$\frac{\partial L(Y,W)}{\partial W} = \frac{\partial E(Y,W)}{\partial W} - \int_{y} P(y|W) \frac{\partial E(y,W)}{\partial W}$$

Gradient descent:

$$W \leftarrow W - \eta \frac{\partial L(Y, W)}{\partial W}$$

Pushes down on the energy of the samples

Pulls up on the energy of low-energy Y's



$$W \leftarrow W - \eta \frac{\partial E(Y, W)}{\partial W} + \eta \int_{y} P(y|W) \frac{\partial E(y, W)}{\partial W}$$

Seven Strategies to Shape the Energy Function

- 1. build the machine so that the volume of low energy stuff is constant
 - ► PCA, K-means, GMM, square ICA
- > 2. push down of the energy of data points, push up everywhere else
 - ► Max likelihood (needs tractable partition function or variational approximation)
- > 3. push down of the energy of data points, push up on chosen locations
 - Contrastive divergence, Ratio Matching, Noise Contrastive Estimation, Min Probability Flow, adversarial generator/GANs
- ▶ 4. minimize the gradient and maximize the curvature around data points score matching
- ► 5. if F(Y) = ||Y G(Y)||^2, make G(Y) as "constant" as possible.
 - ► Contracting auto-encoder, saturating auto-encoder
- ▶ 6. train a dynamical system so that the dynamics goes to the data manifold
 - ► denoising auto-encoder, masked auto-encoder (e.g. BERT)
- > 7. use a regularizer that limits the volume of space that has low energy
 - ➤ Sparse coding, sparse auto-encoder, LISTA & PSD, Variational auto-encoders

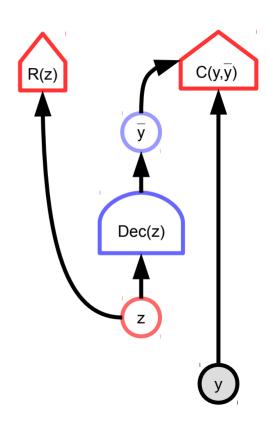
Regularized Latent Variable EBM

Sparse Modeling, Regularized Auto-Encoders

Regularized Latent-Variable EBM

Restrict the information capacity of z through regularization

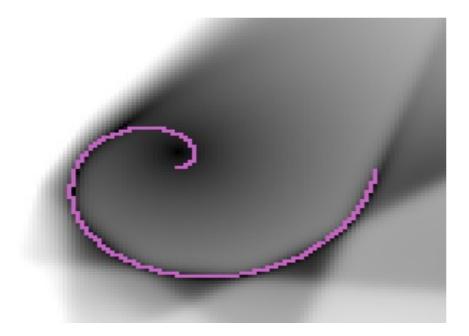
$$E(y,z)=C(y,Dec(z))+\lambda R(z)$$

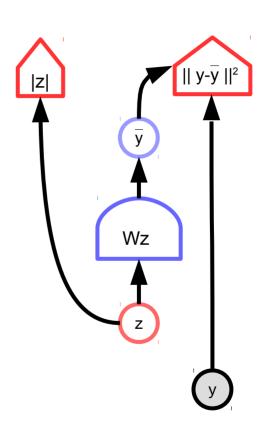


Familiar Example: Sparse Coding / Sparse Modeling

- Regularized latent variable through L1 norm
 - Induces sparsity

$$E(y,z) = ||y - Wz||^2 + \lambda |z|$$



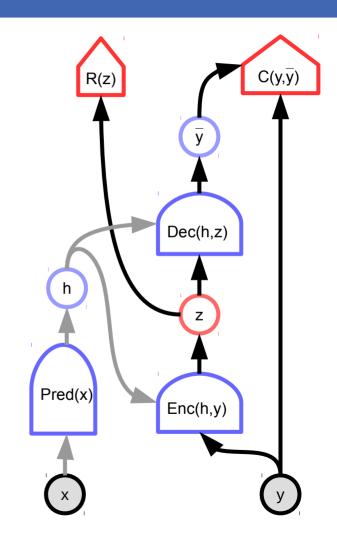


Sparse Auto-Encoders

Computing the sparse code efficiently

Sparse Auto-Encoder

- Encoder learns to compute the latent variable efficiently
- No explicit inference step

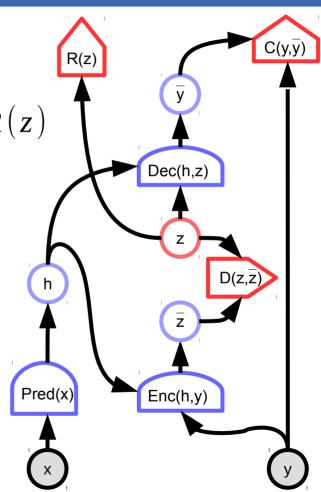


Sparse (conditional) Auto-Encoder

Encoder learns to compute the latent variable efficiently

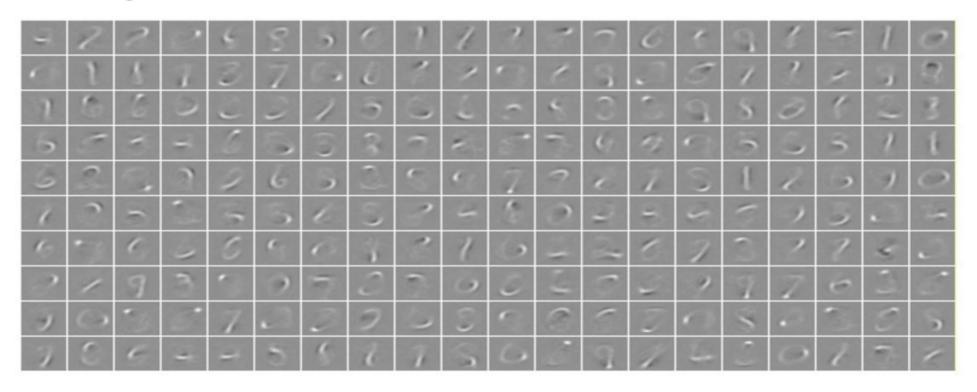
$$E(x,y,z)=C(y,Dec(h,z))+D(z,Enc(h,y))+R(z)$$

Simple inference step



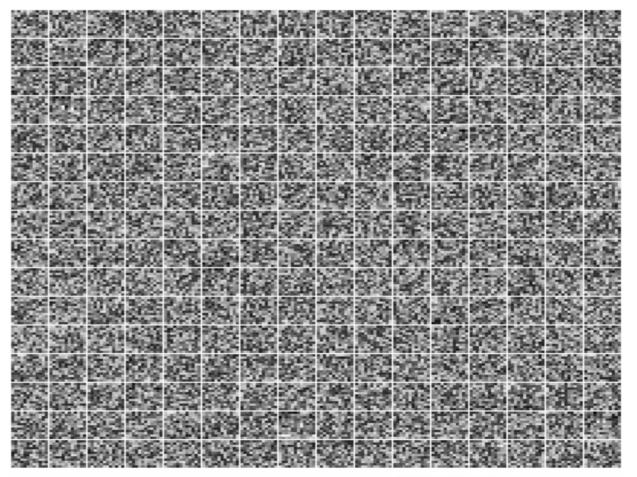
Sparse Modeling on handwritten digits (MNIST)

- Basis functions (columns of decoder matrix) are digit parts
- All digits are a linear combination of a small number of these

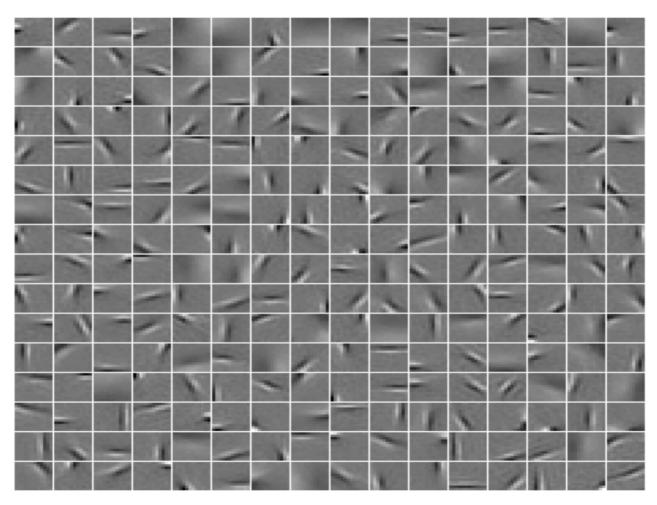


Predictive Sparse Decomposition (PSD): Training

- Training on natural images patches.
 - ▶ 12X12
 - ▶ 256 basis functions

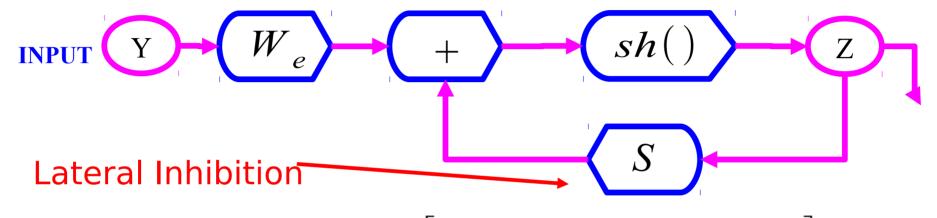


Learned Features on natural patches: V1-like receptive fields



Giving the "right" structure to the encoder

ISTA/FISTA: iterative algorithm that converges to optimal sparse code



$$Z(t+1) = \operatorname{Shrinkage}_{\lambda/L} \left[Z(t) - \frac{1}{L} W_d^T (W_d Z(t) - Y) \right]$$

ISTA/FastISTA reparameterized:

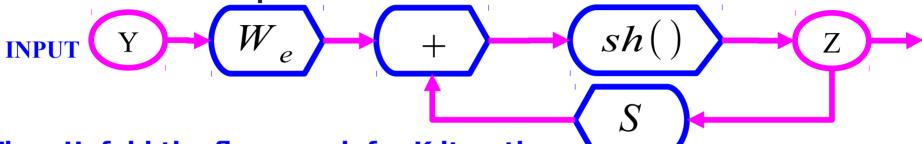
$$Z(t+1) = \text{Shrinkage}_{\lambda/L} \left[W_e^T Y + SZ(t) \right]; \quad W_e = \frac{1}{L} W_d; \quad S = I - \frac{1}{L} W_d^T W_d$$

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

LISTA: Train We and S matrices to give a good approximation quickly

Think of the FISTA flow graph as a recurrent neural net where We and S are trainable parameters

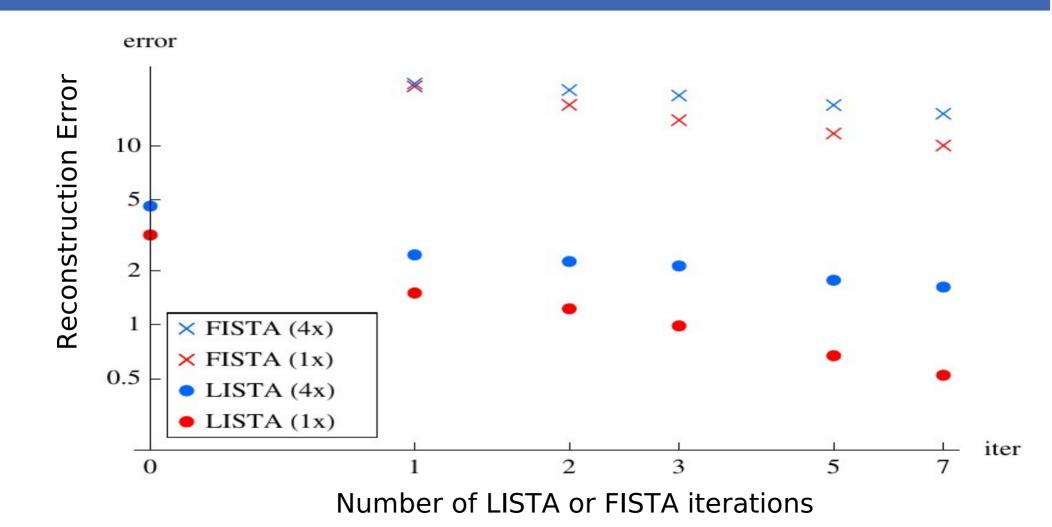


- Time-Unfold the flow graph for K iterations
- Learn the We and S matrices with "backprop-through-time"
- Get the best approximate solution within K iterations

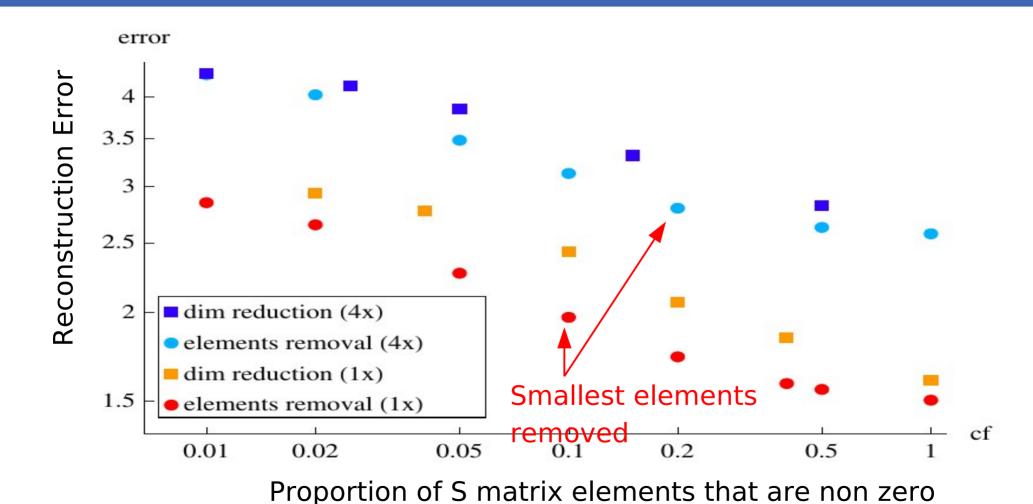
$$(Y) \longrightarrow (W_e)$$

$$+ \longrightarrow (Sh()) \longrightarrow (S) \longrightarrow (Y) \longrightarrow (S) \longrightarrow (Z) \longrightarrow (Y)$$

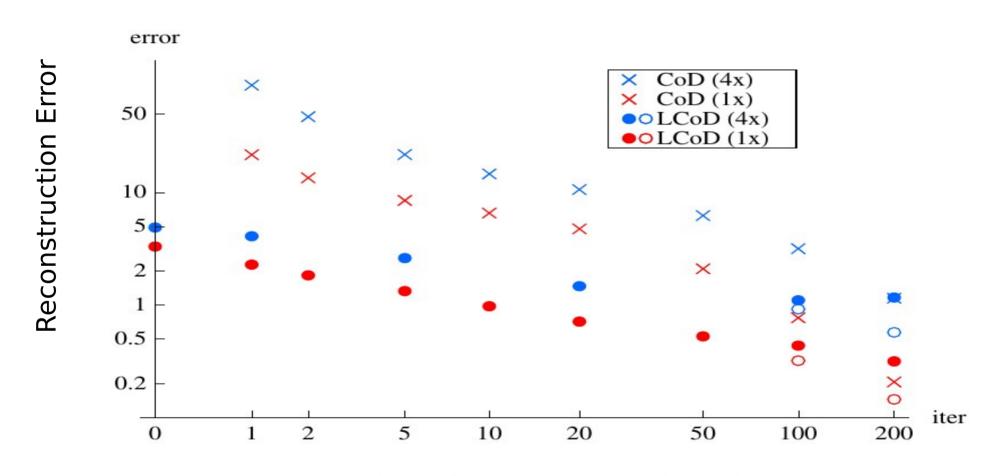
Learning ISTA (LISTA) vs ISTA/FISTA



LISTA with partial mutual inhibition matrix



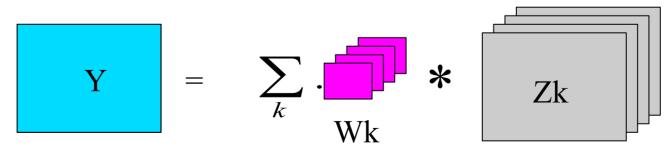
Learning Coordinate Descent (LcoD): faster than LISTA



Number of LISTA or FISTA iterations

Convolutional Sparse Coding

- Replace the dot products with dictionary element by convolutions.
 - ▶ Input Y is a full image
 - Each code component Zk is a feature map (an image)
 - Each dictionary element is a convolution kernel
- lacktriangle Regular sparse coding $\ E(Y,Z) = ||Y \sum_k W_k Z_k||^2 + \alpha \sum_k |Z_k|$
- lacksquare Convolutional S.C. $E(Y,Z) = ||Y \sum_k W_k * Z_k||^2 + \alpha \sum_k |Z_k|$



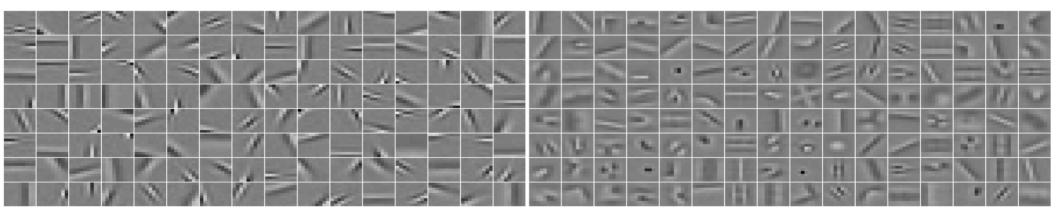
Also used in "deconvolutional networks" [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional PSD: Encoder with a soft sh() Function

Convolutional Formulation

Extend sparse coding from PATCH to IMAGE

$$\mathcal{L}(x, z, \mathcal{D}) = \frac{1}{2} ||x - \sum_{k=1}^{K} \mathcal{D}_k * z_k||_2^2 + \sum_{k=1}^{K} ||z_k - f(W^k * x)||_2^2 + |z|_1$$



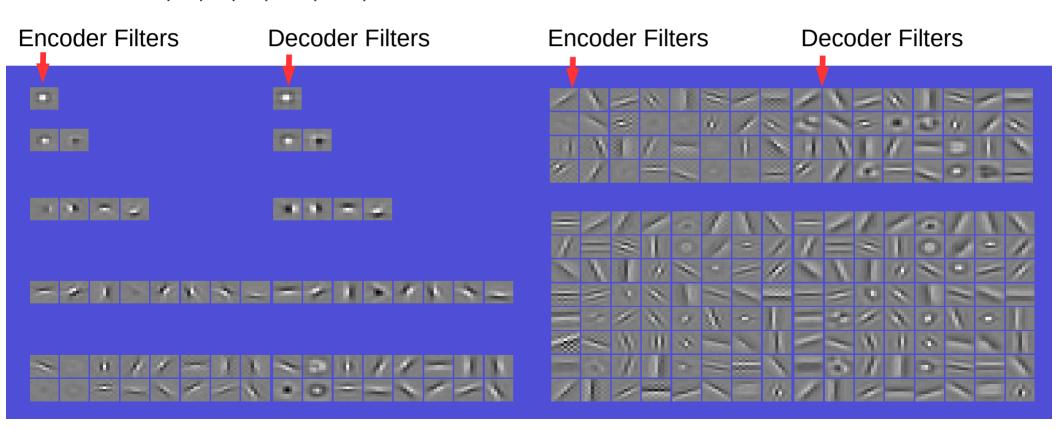
PATCH based learning

CONVOLUTIONAL learning

Convolutional Sparse Auto-Encoder on Natural Images

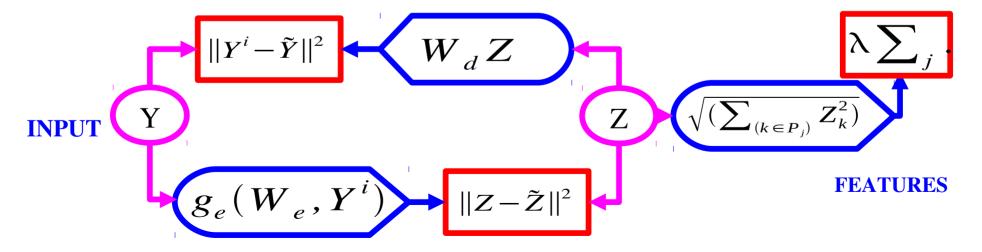
Filters and Basis Functions obtained

- with 1, 2, 4, 8, 16, 32, and 64 filters.



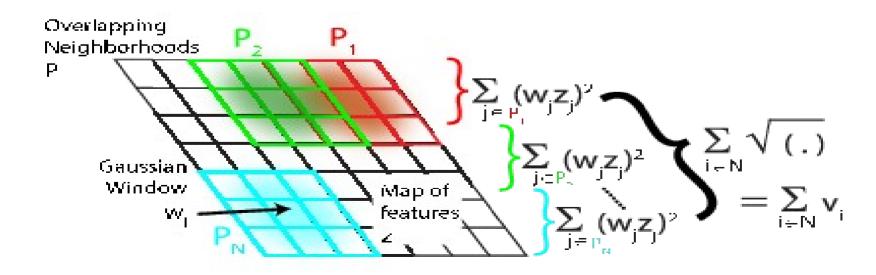
Learning Invariant Features [Kavukcuoglu et al. CVPR 2009]

- Unsupervised PSD ignores the spatial pooling step.
- Could we devise a similar method that learns the pooling layer as well?
- Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features
 - ► Minimum number of pools must be non-zero
 - Number of features that are on within a pool doesn't matter
 - ► Polls tend to regroup similar features



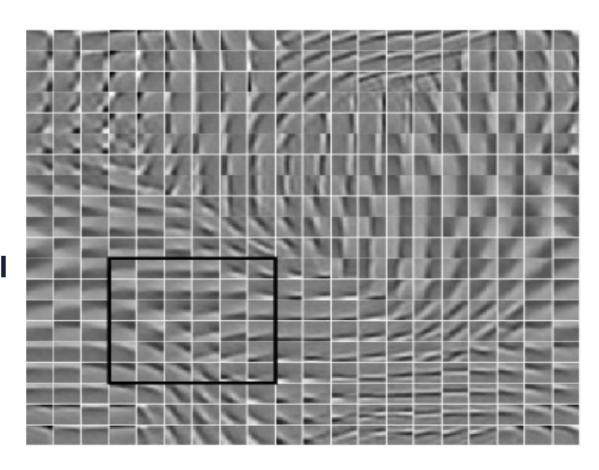
Why just pool over space? Why not over orientation?

- Using an idea from Hyvarinen: topographic square pooling (subspace ICA)
 - ▶ 1. Apply filters on a patch (with suitable non-linearity)
 - ▶ 2. Arrange filter outputs on a 2D plane
 - ▶ 3. square filter outputs
 - ▶ 4. minimize sqrt of sum of blocks of squared filter outputs



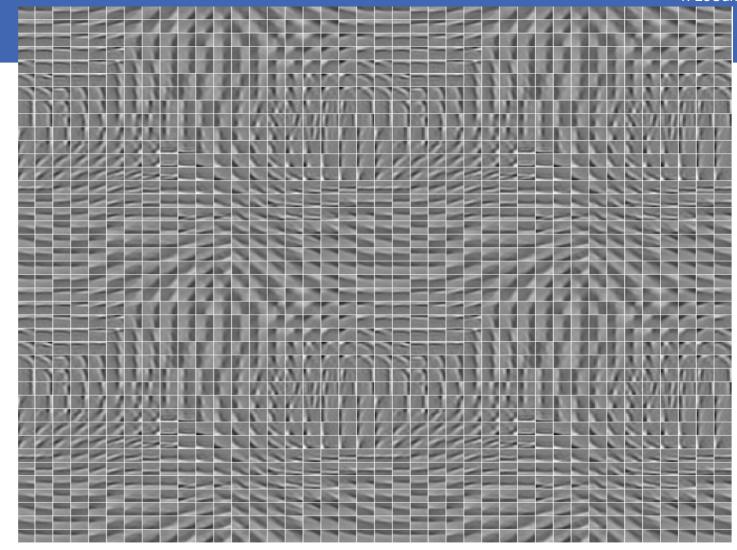
Why just pool over space? Why not over orientation?

- The filters arrange themselves spontaneously so that similar filters enter the same pool.
- ► The pooling units can be seen as complex cells
- They are invariant to local transformations of the input
 - ► For some it's translations, for others rotations, or other transformations.



Pinwheels!

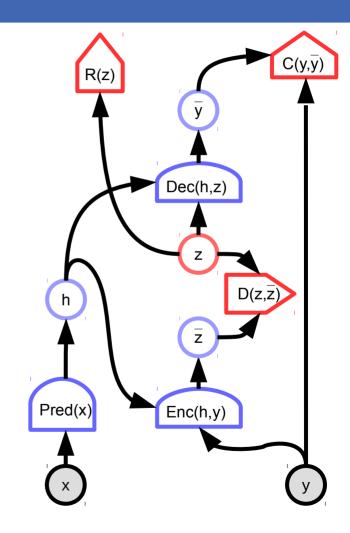
Does that look pinwheely to you?



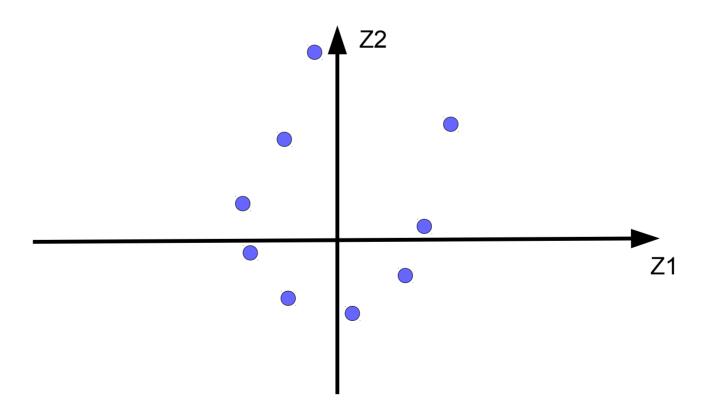
Limiting the information content of the code by adding noise to it

Variational (conditional) AE

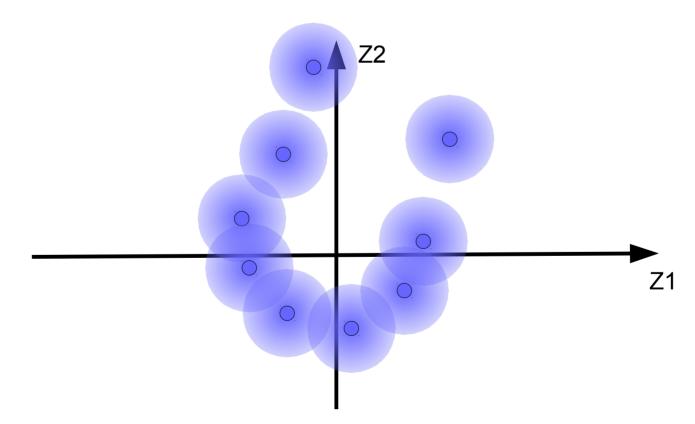
Use the D() energy term as a prior to sample z from



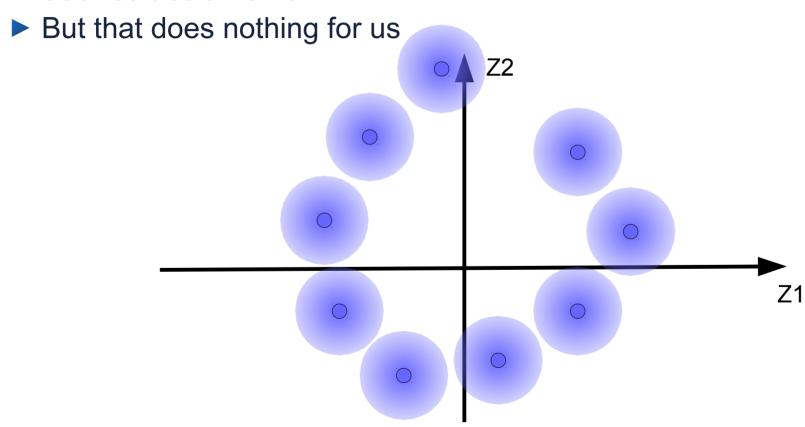
Code vectors for training samples



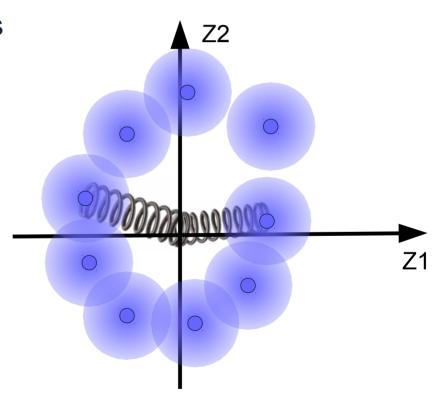
- Code vectors for training sample with Gaussian noise
 - ► Some fuzzy balls overlap, causing bad reconstructions



► The code vectors want to move away from each other to minimize reconstruction error



- Attach the balls to the center with a sping, so they don't fly away
 - Minimize the square distances of the balls to the origin
- Center the balls around the origin
 - Make the center of mass zero
- Make the sizes of the balls close to 1 in each dimension
 - Through a so-called KL term



Denoising Auto-Encoders

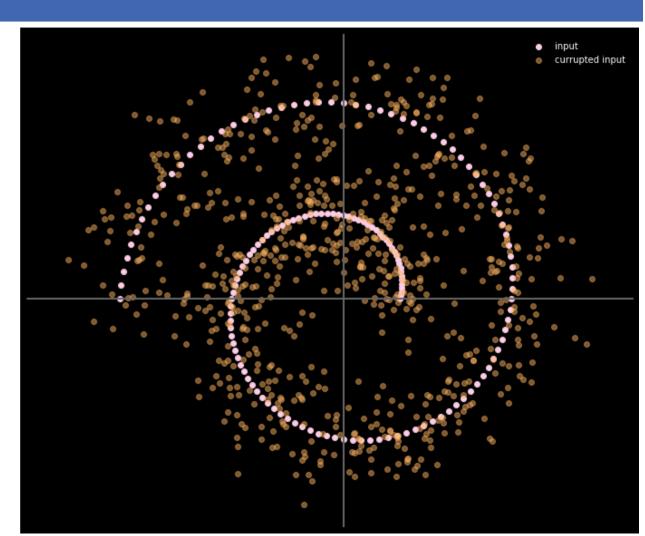
Masked AE, BERT...

Denoising Auto-Encoder

- Pink points:
 - training samples

- Orange points:
 - corrupted training samples
 - ▶ Additive Gaussian noise

Figures credit: Alfredo Canziani

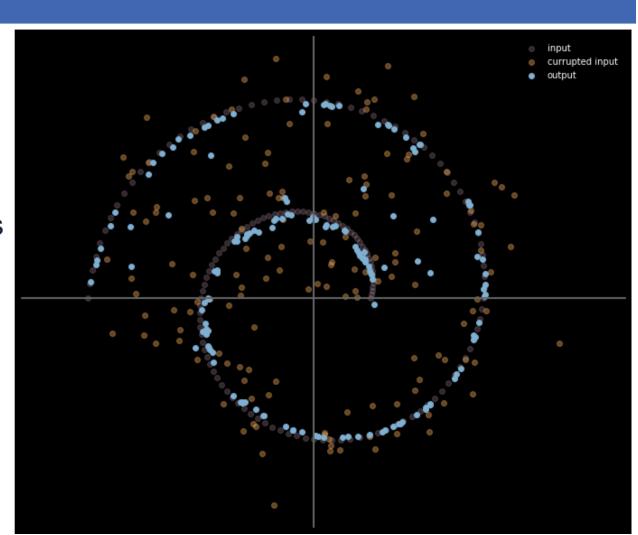


Data

- Pink points:
- training samples

- Orange points:
 - corrupted training samples
 - ► Additive Gaussian noise

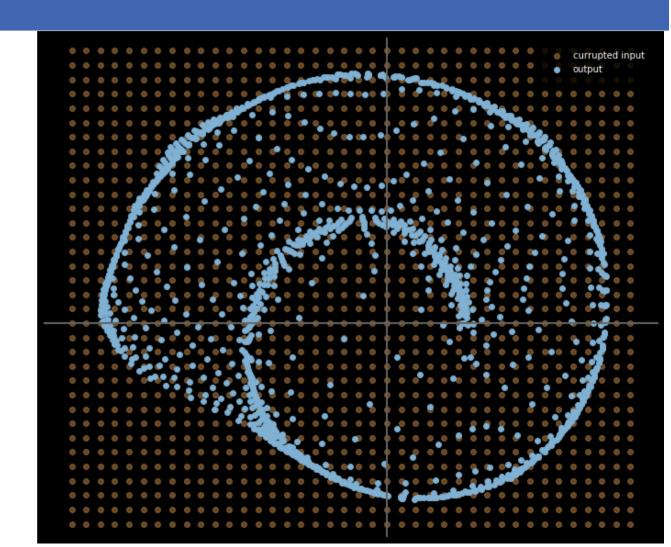
- Blue points:
 - Network outputs
 - Denoised samples



Data

- **▶** Orange points:
 - ► Test samples on a grid

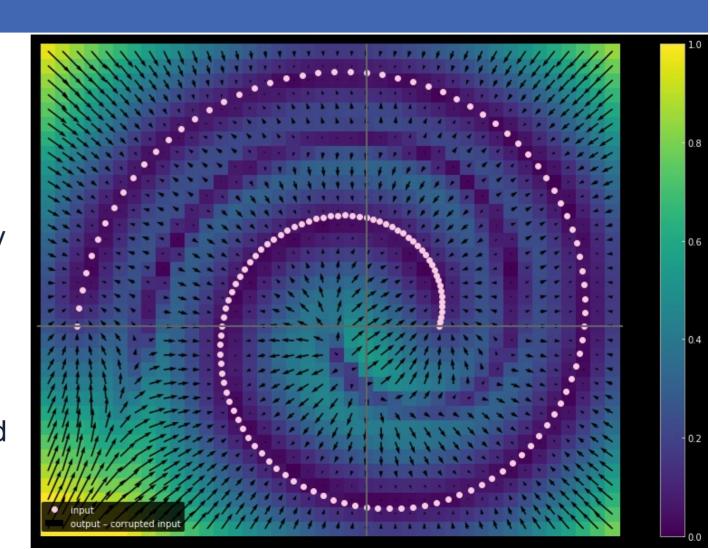
- ► Blue points:
 - ► Network outputs



Data

- **Pink points:**
 - ▶ Training samples
- **Color:**
 - Recunstruction energy

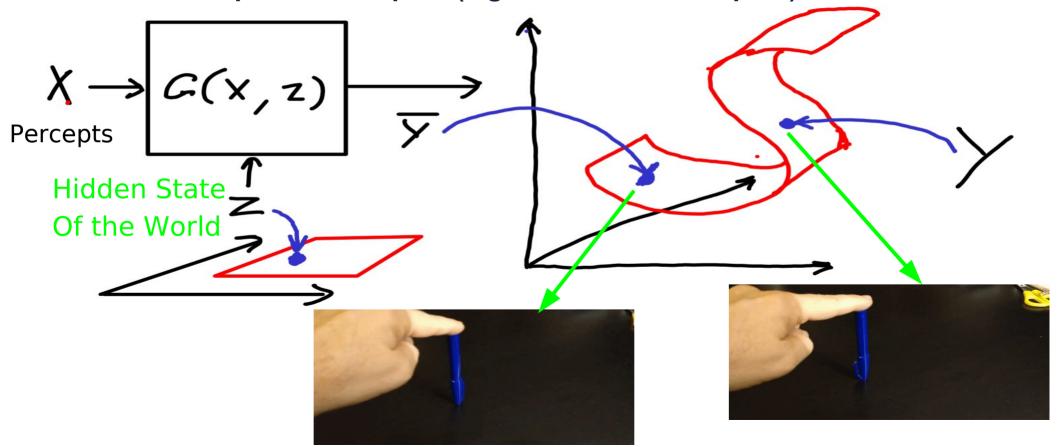
- **Vector field:**
 - Displacement from network input to network output (scaled down)



Adversarial Training & Video Prediction

The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a whole set of possible outputs (e.g. a manifold of outputs).



Adversarial Training: the key to prediction under uncertainty?

Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],

Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126] Past: X **Dataset** F: minimize T(X)Discriminator F(X,Y)F(X,Y)**Actual future** Past: X Predicted future Discriminator Generator F(X,Y)F: maximize G(X,Z)

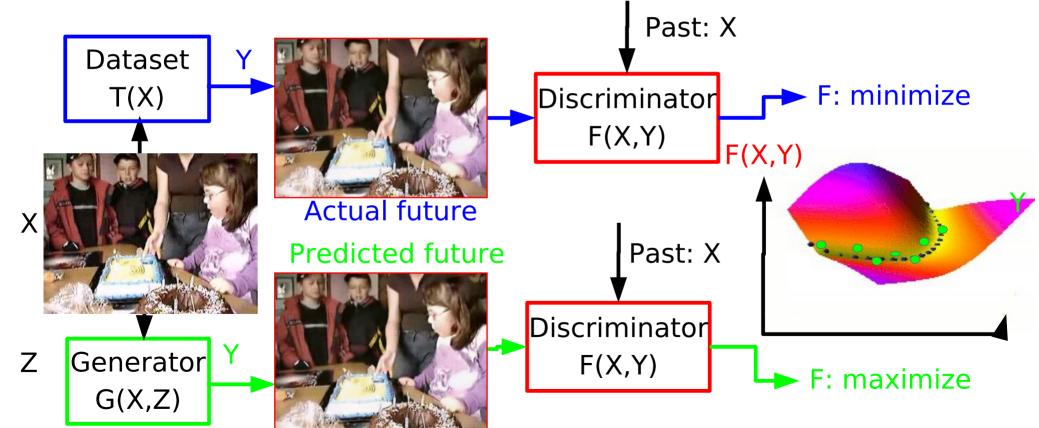
Adversarial Training: the key to prediction under uncertainty?

Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],

Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126] Past: X **Dataset** F: minimize T(X)Discriminator F(X,Y)F(X,Y)**Actual future** Past: X Predicted future Discriminator Generator F(X,Y)F: maximize G(X,Z)

Adversarial Training: the key to prediction under uncertainty?

- Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],
- ► Energy-Based GAN [Zhao, Mathieu, LeCun ICLR 2017 & arXiv:1609.03126]



Faces "invented" by a GAN (Generative Adversarial Network)

Random vector → Generator Network → output image [Goodfellow NIPS 2014] [Karras et al. ICLR 2018] (from NVIDIA)

Generative Adversarial Networks for Creation

► [Sbai 2017]

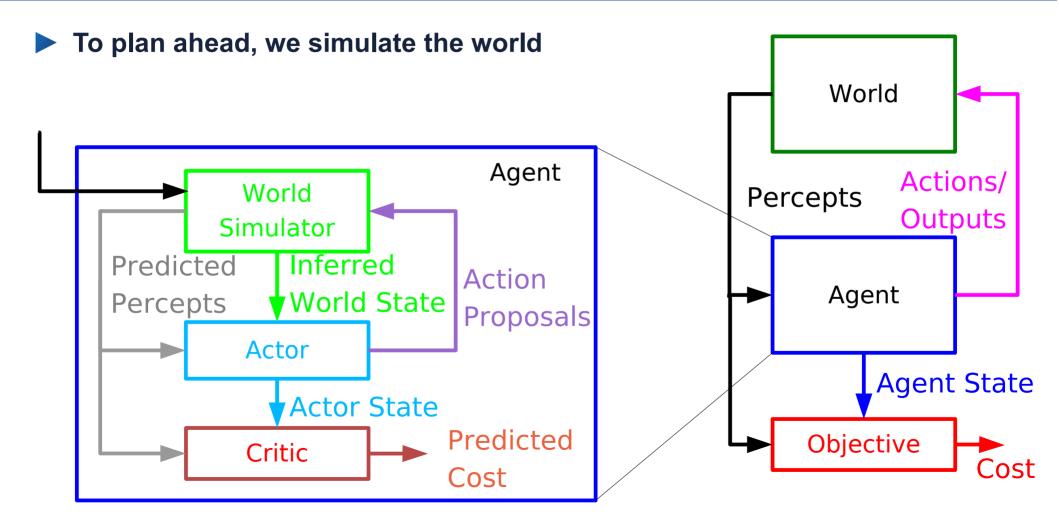
Self-supervised Adversarial Learning for Video Prediction

- Our brains are "prediction machines"
- Can we train machines to predict the future?
- Some success with "adversarial training"
 - ► [Mathieu, Couprie, LeCun arXiv:1511:05440]
- But we are far from a complete solution.

Learning Models of the World

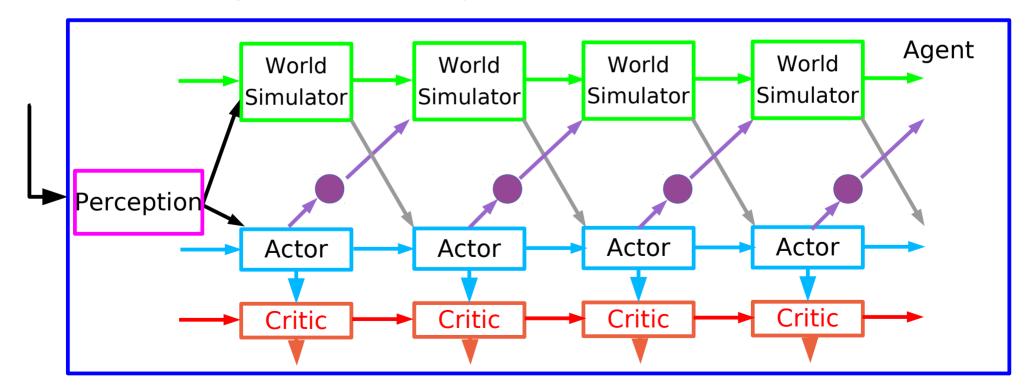
Learning motor skills with no interaction with the real world [Henaff, Canziani, LeCun ICLR 2019]
[Henaff, Zhao, LeCun ArXiv:1711.04994]
[Henaff, Whitney, LeCun Arxiv:1705.07177]

Planning Requires Prediction



Training the Actor with Optimized Action Sequences

- ▶ 1. Find action sequence through optimization
- ▶ 2. Use sequence as target to train the actor
 - Over time we get a compact policy that requires no run-time optimization



Planning/learning using a self-supervised predictive world model

- Feed initial state
- Run the forward model
- Backpropagate gradient of cost
- Act
 - (model-predictive control)or

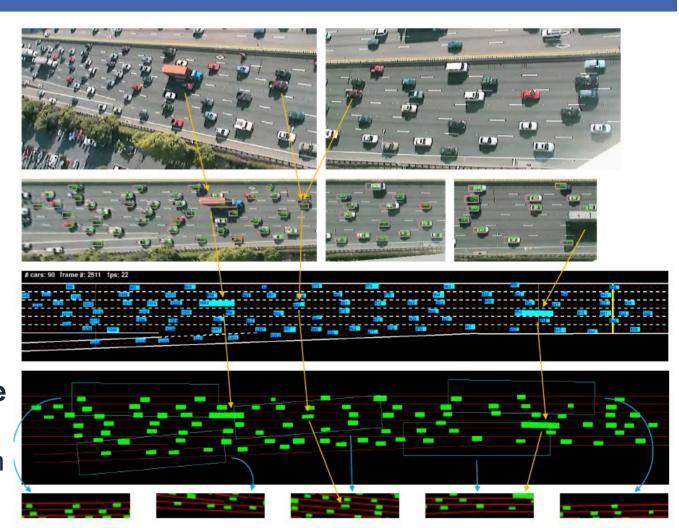
Use the gradient train a policy networκ. Stochastic policy network (optimized)

sample sample sample sample $\frac{1}{2}$ cost $\frac{1}{3}$ $\frac{1}{4}$ \frac

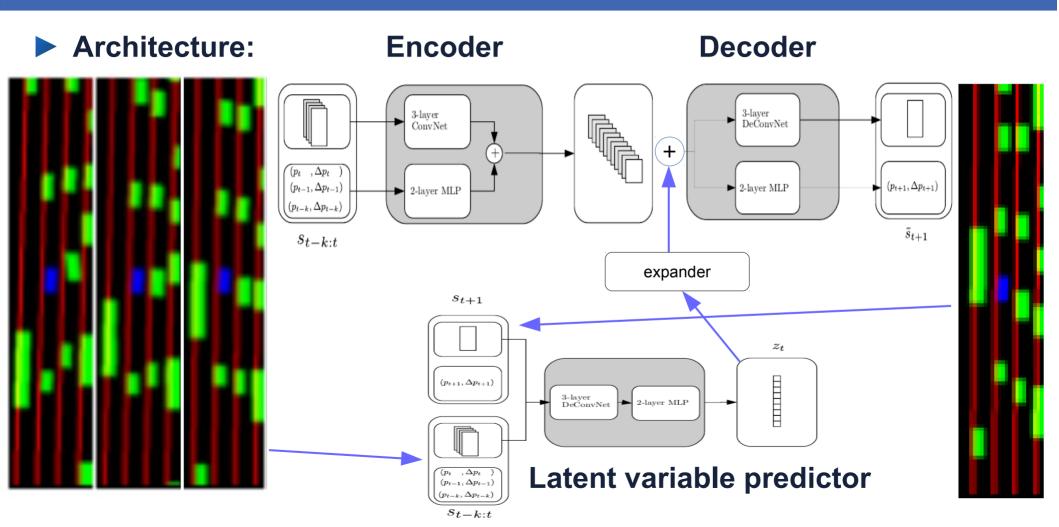
Iterate

Using Forward Models to Plan (and to learn to drive)

- Overhead camera on highway.
 - Vehicles are tracked
- A "state" is a pixel representation of a rectangular window centered around each car.
- Forward model is trained to predict how every car moves relative to the central car.
 - steering and acceleration are computed

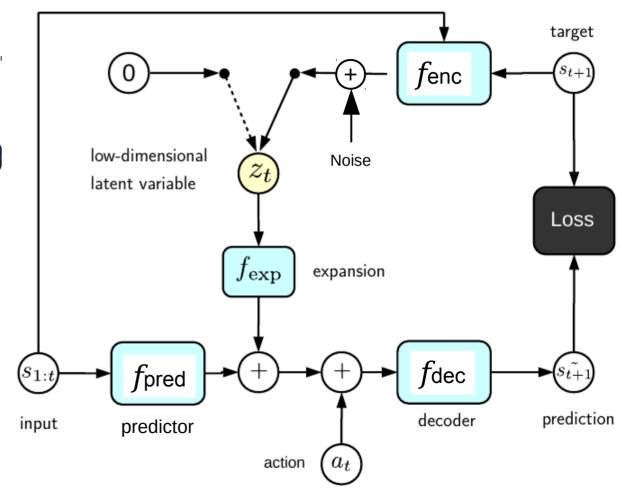


Forward Model Architecture

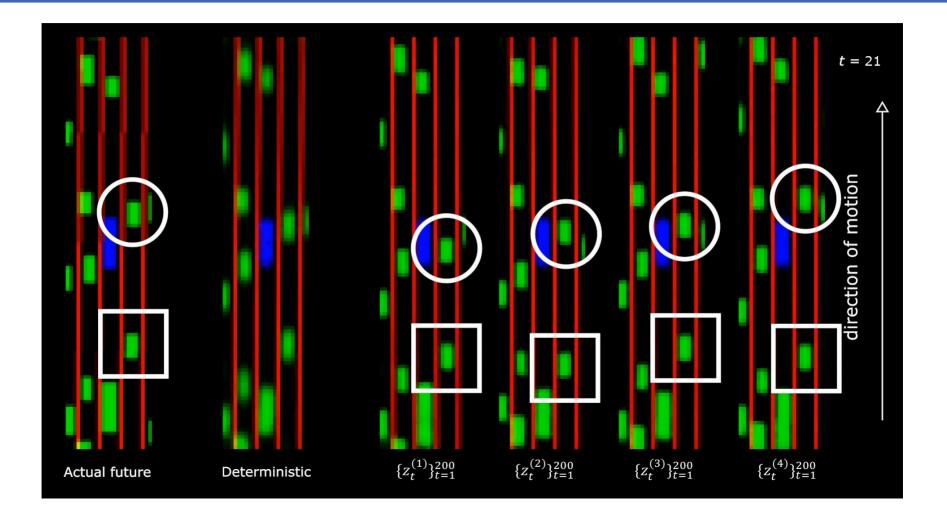


Stochastic Forward Modeling: regularized latent variable model

- Latent variable is predicted from the target.
- The latent variable is set to zero half the time during training (drop out) and corrupted with noise
- ► The model predicts as much as it can without the latent var.
- ► The latent var corrects the residual error.



Actual, Deterministic, VAE+Dropout Predictor/encoder



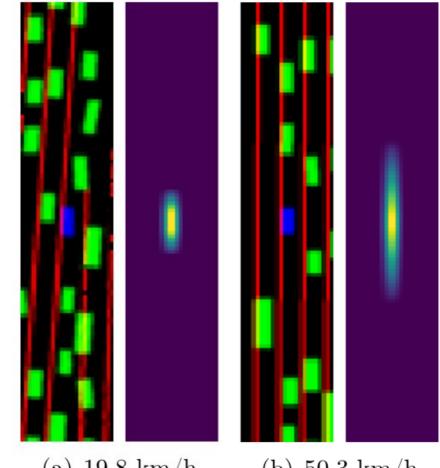
Cost optimized for Planning & Policy Learning

Differentiable cost function

- Increases as car deviates from lane
- Increases as car gets too close to other cars nearby in a speed-dependent way

Uncertainty cost:

- ► Increases when the costs from multiple predictions (obtained through sampling of drop-out) have high variance.
- Prevents the system from exploring unknown/unpredictable configurations that may have low cost.

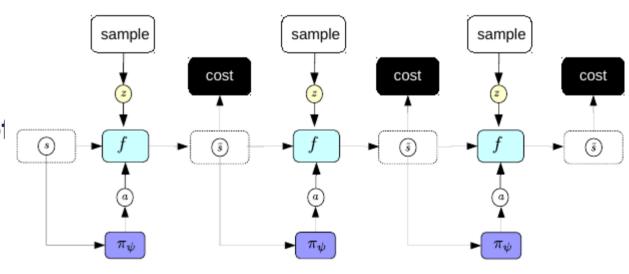


(a) 19.8 km/h

(b) 50.3 km/h

Learning to Drive by Simulating it in your Head

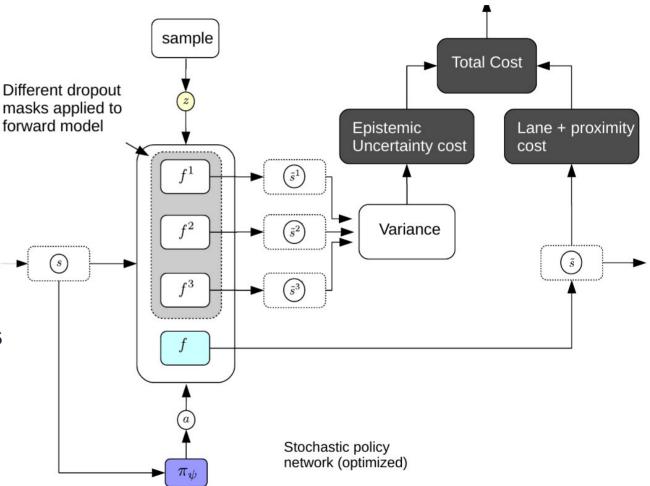
- Feed initial state
- Sample latent variable sequences of length 20
- Run the forward model with these sequences
- Backpropagate gradient of cost to train a policy network.
- Iterate
- No need for planning at run time.



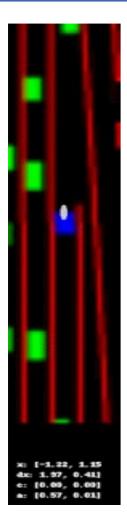
Stochastic policy network (optimized)

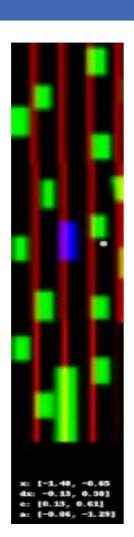
Adding an Uncertainty Cost (doesn't work without it)

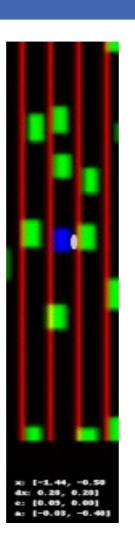
- Estimates epistemic uncertainty
- Samples multiple dropputs in forward model
- Computes variance of predictions (differentiably)
- Train the policy network to minimize the lane&proximity cost plus the uncertainty cost.
- Avoids unpredictable outcomes

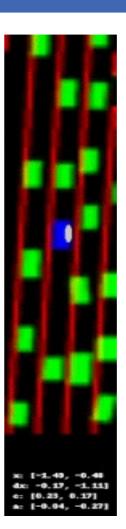


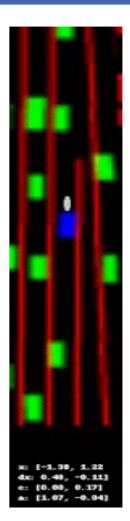
Driving an Invisible Car in "Real" Traffic





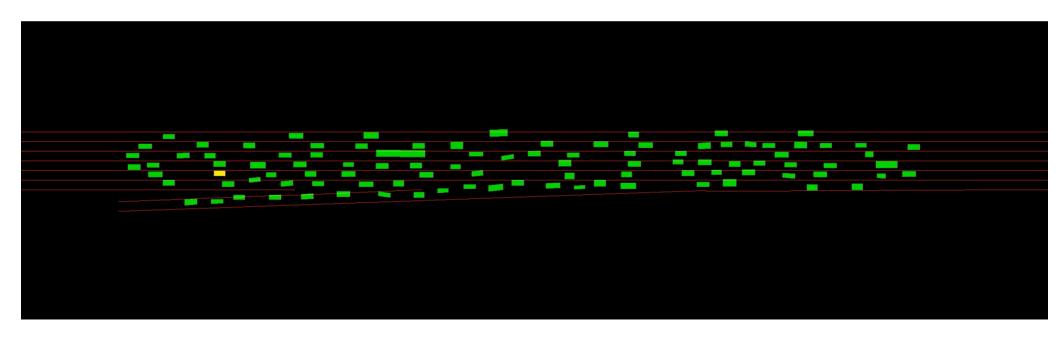






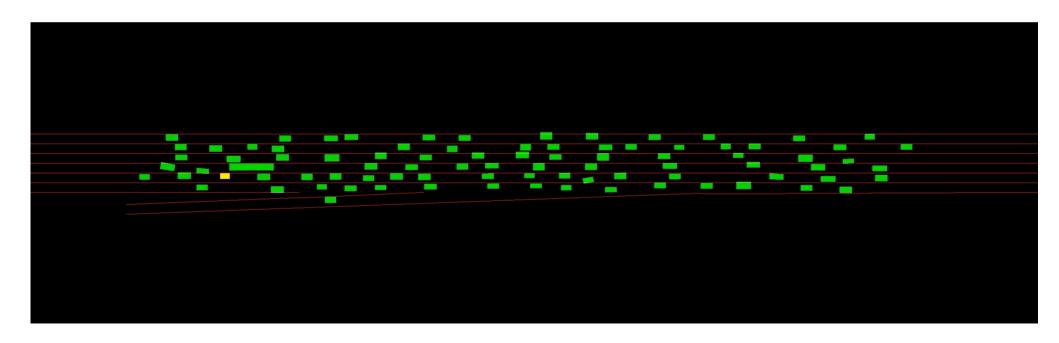
Driving!

- ► Yellow: real car
- ► Blue: bot-driven car



➤ Yellow: real car

► Blue: bot-driven car



Thank you