Are All Features Created Equal?

Aleksander Mądry

Based on joint works with:

Logan Engstrom

Brandon Tran

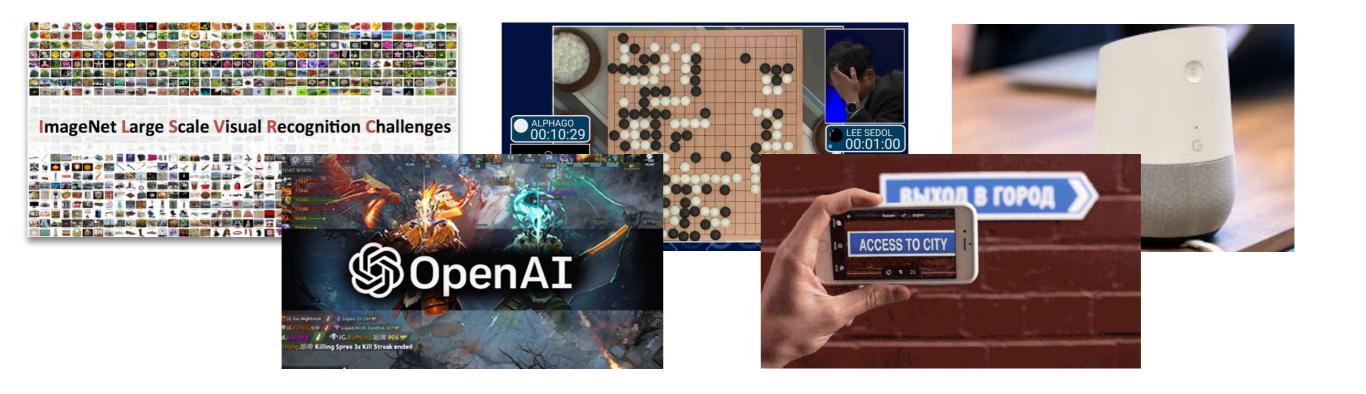
Andrew Ilyas

Dimitris Tsipras

Shibani Santurkar

Alexander Turner

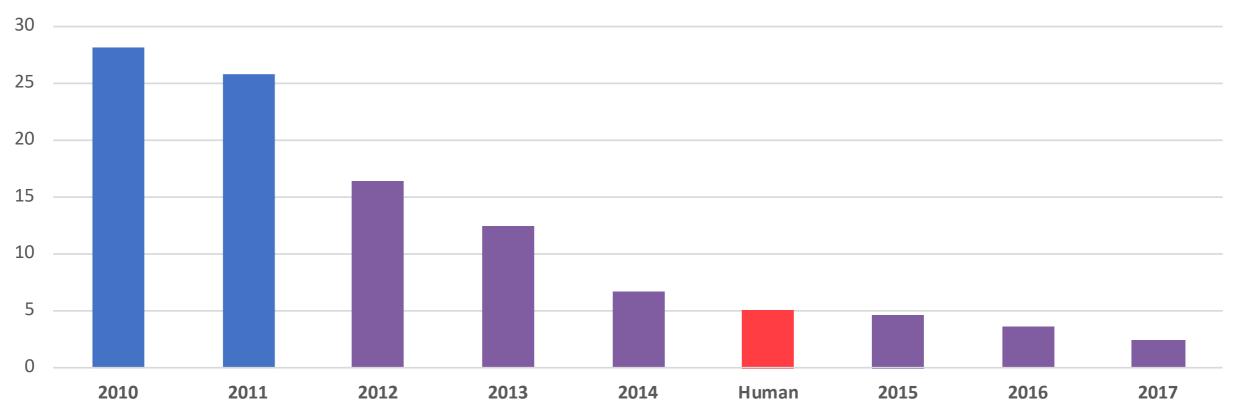
Machine Learning: A Success Story



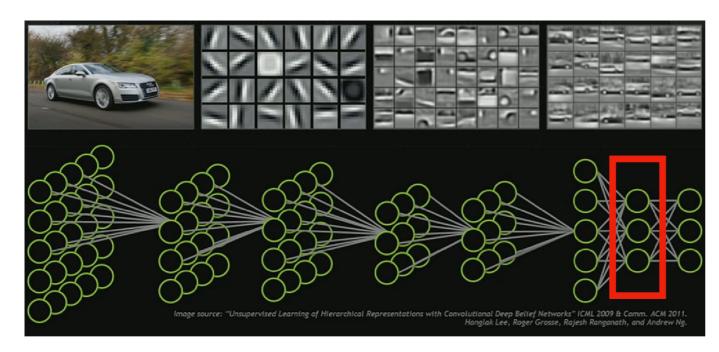
Deep learning: Fuels much of this progress

Why Do We Love Deep Learning?

ILSVRC top-5 Error on ImageNet



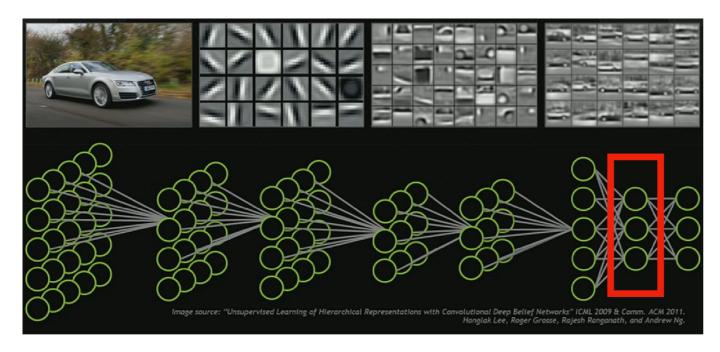
Why Do We Love Deep Learning?



[NVIDIA GTC, 2019]

→ Meaningful data representations

Why Do We Love Deep Learning?



[NVIDIA GTC, 2019]

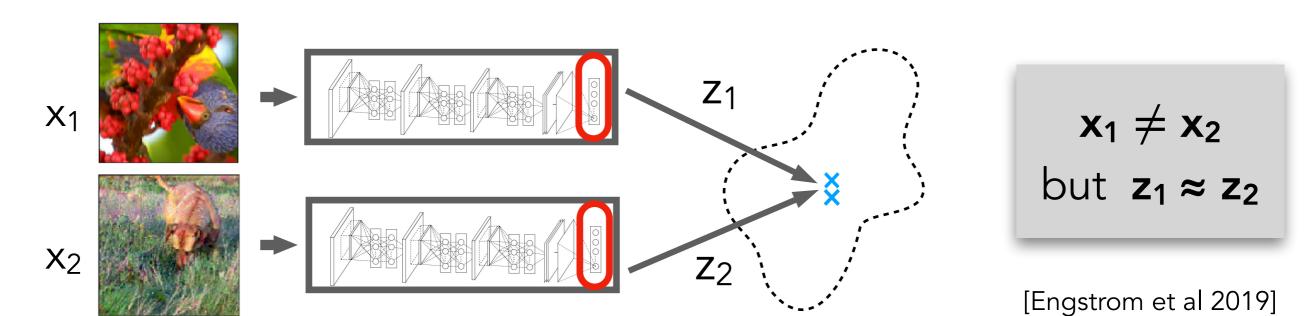
→ **Better** generative models

→ **Meaningful** data representations

[Brock et al 2018] + [Isola 2018]

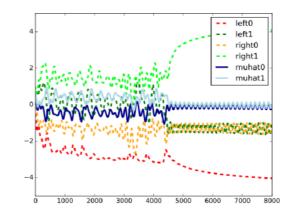
But...

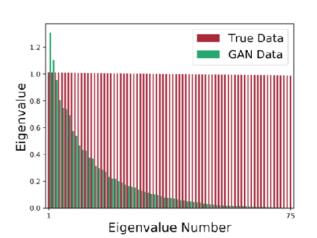
Correct label: insect Predicted label: dog



Unstable training/Mode collapse of generative models

[Li et al 2018] [Santurkar et al 2018]





So: Are we on the right path?

(Is all we need "just" scaling up?)

Msg today: We might want to rethink how we train our models

→ It is all about features

So: Are we on the right path?

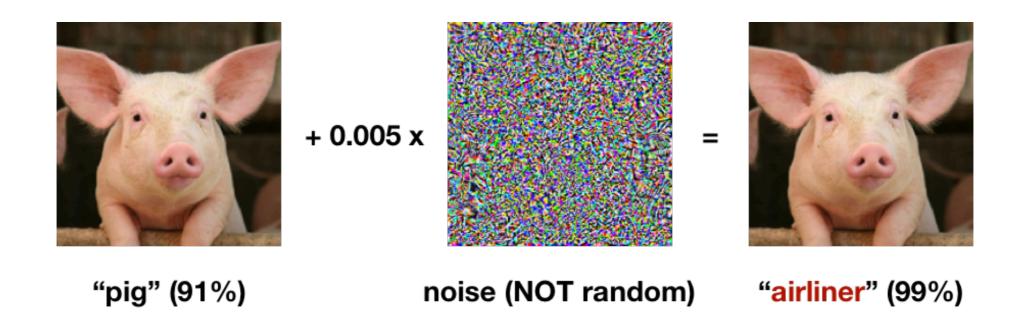
(Is all we need "just" scaling up?)

Msg today: We might want to rethink how we train our models

→ It is all about robust features

Key Phenomenon: Adversarial Perturbations

[Szegedy et al 2013] [Biggio et al 2013]



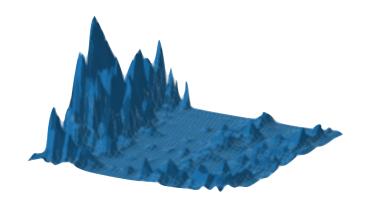
Emerging goal: (Adversarially) robust generalization

$$\min_{\theta} \mathbb{E}_{(x,y)\sim D}[\max_{\delta\in\Delta} \mathcal{L}(\theta; x+\delta, y)]$$

Desired

→ We are (finally) starting to starting t

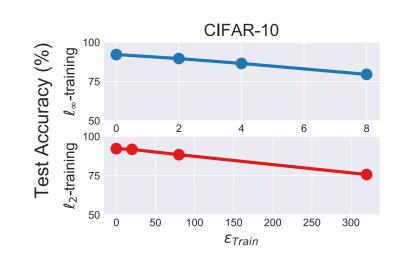
ML via Adversarial Robustness Lens

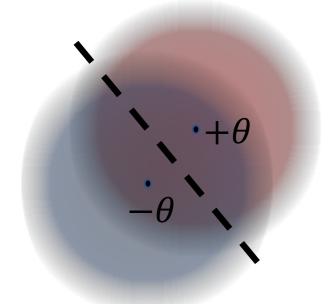


 Training is harder and models need to be more complex

[M Makelov Schmidt Tsipras Vladu 2018]

 Models may <u>have</u> to be less accurate [Tsipras Santurkar Engstrom Turner M 2018]
 [Bubeck Price Razenshteyn 2018]
 [Degwekar Nakkiran Vaikunatanathan 2018]



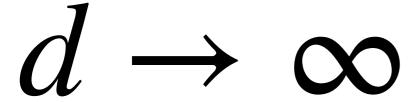


We might need more training data
 [Schmidt Santurkar Tsipras Talwar M 2018]

But: "How"/"what" does not tell us "why"

Why adversarial perturbations **exist** (and **are so widespread**)?

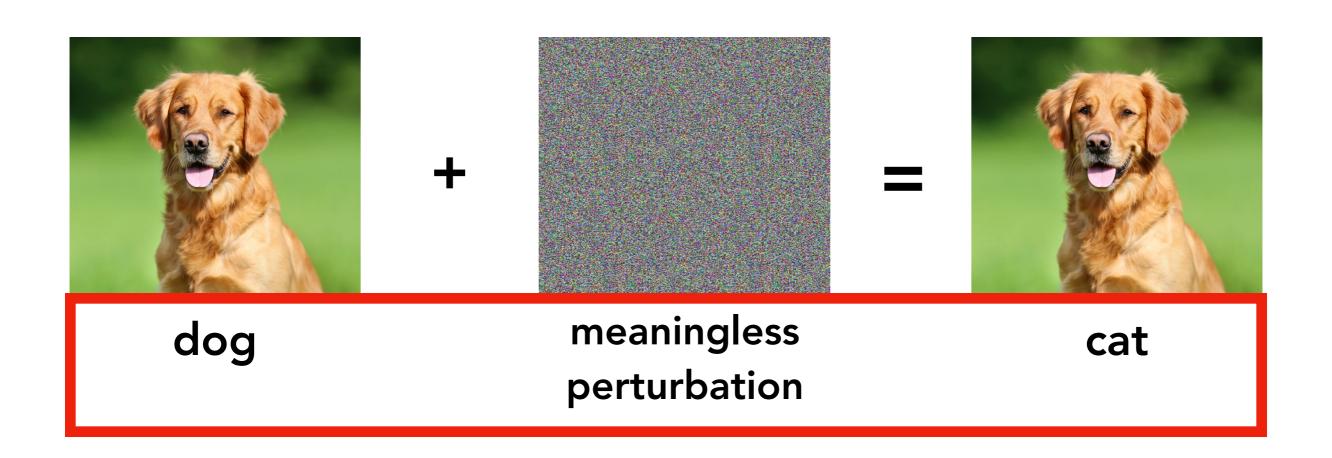
Why these perturbations tend to transfer?



Why are our models brittle?

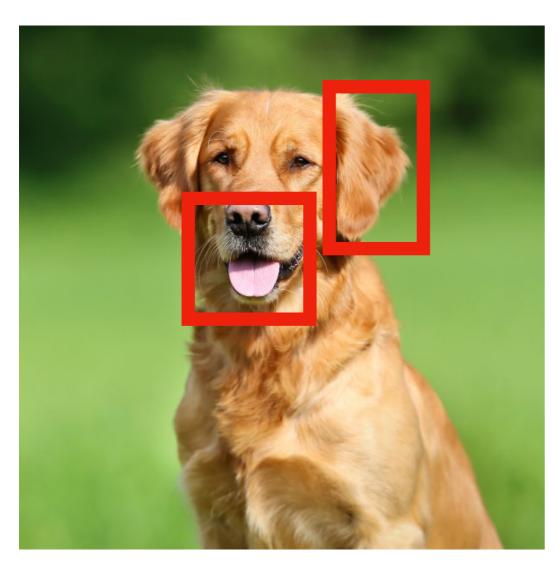
Unifying theme: Adversarial examples are aberrations

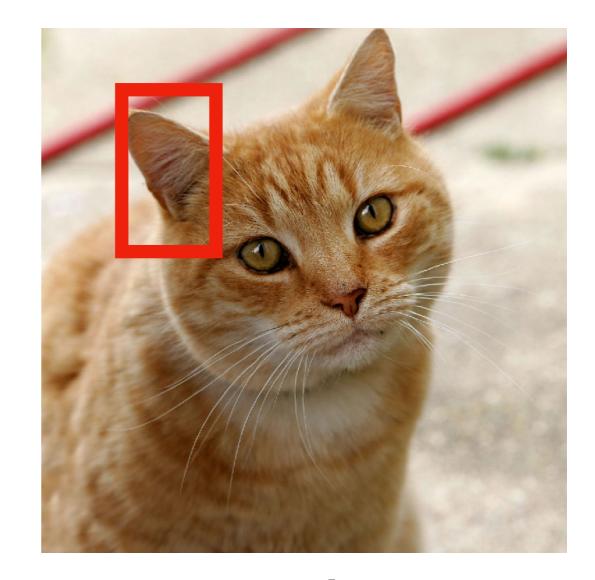
Why Are Adv. Perturbations Bad?



But: This is only a "human" perspective

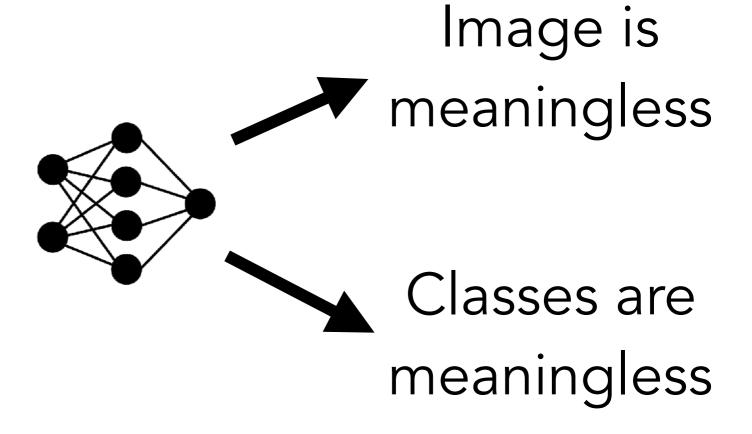
Human Perspective





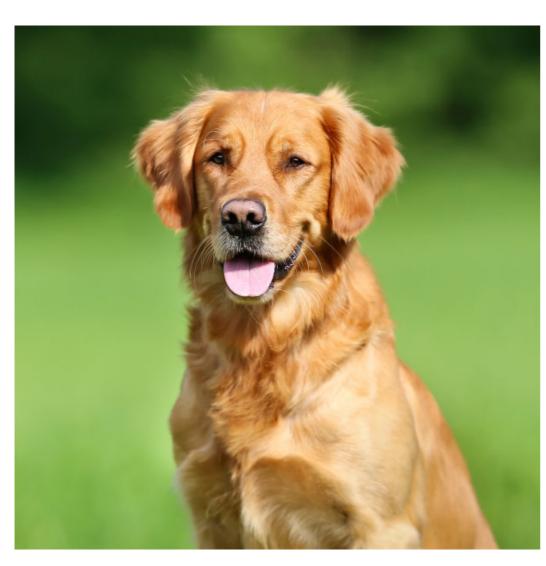
cat

dog



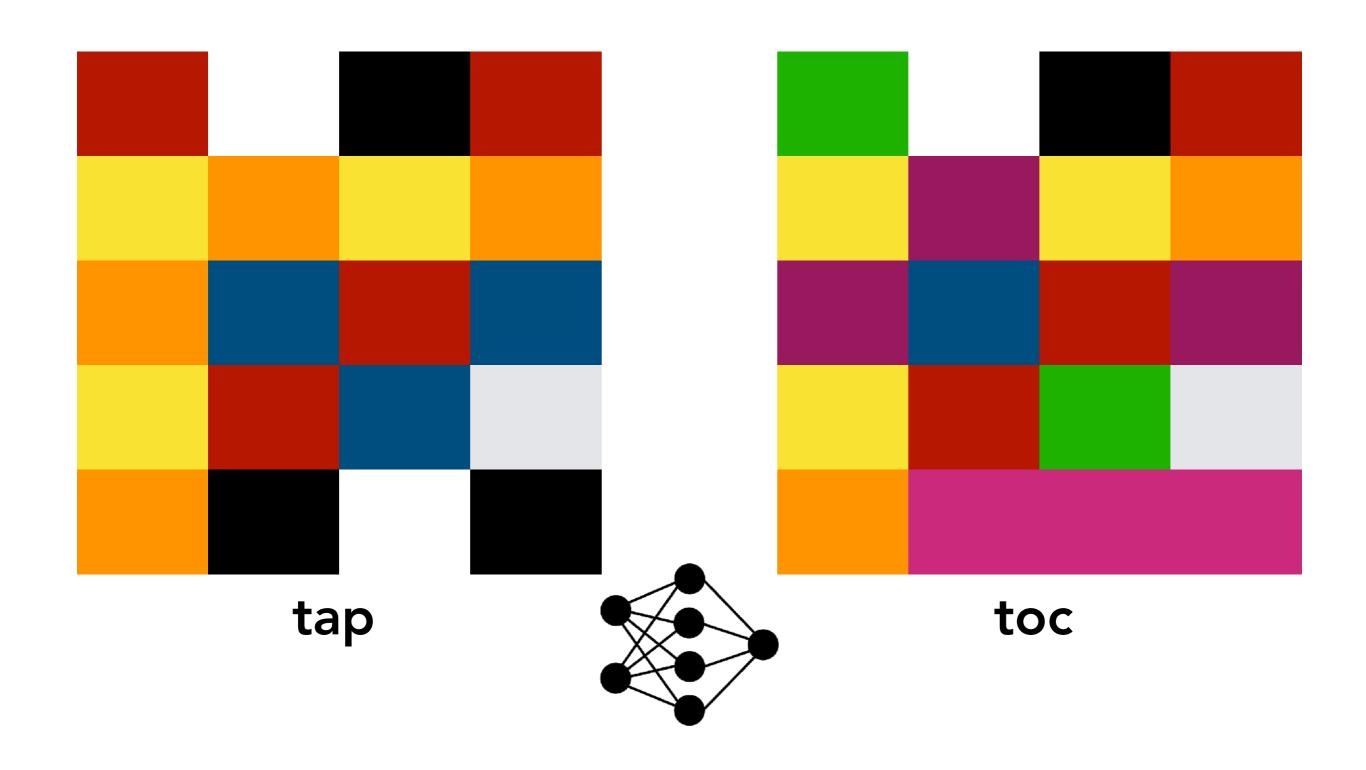
Only goal:

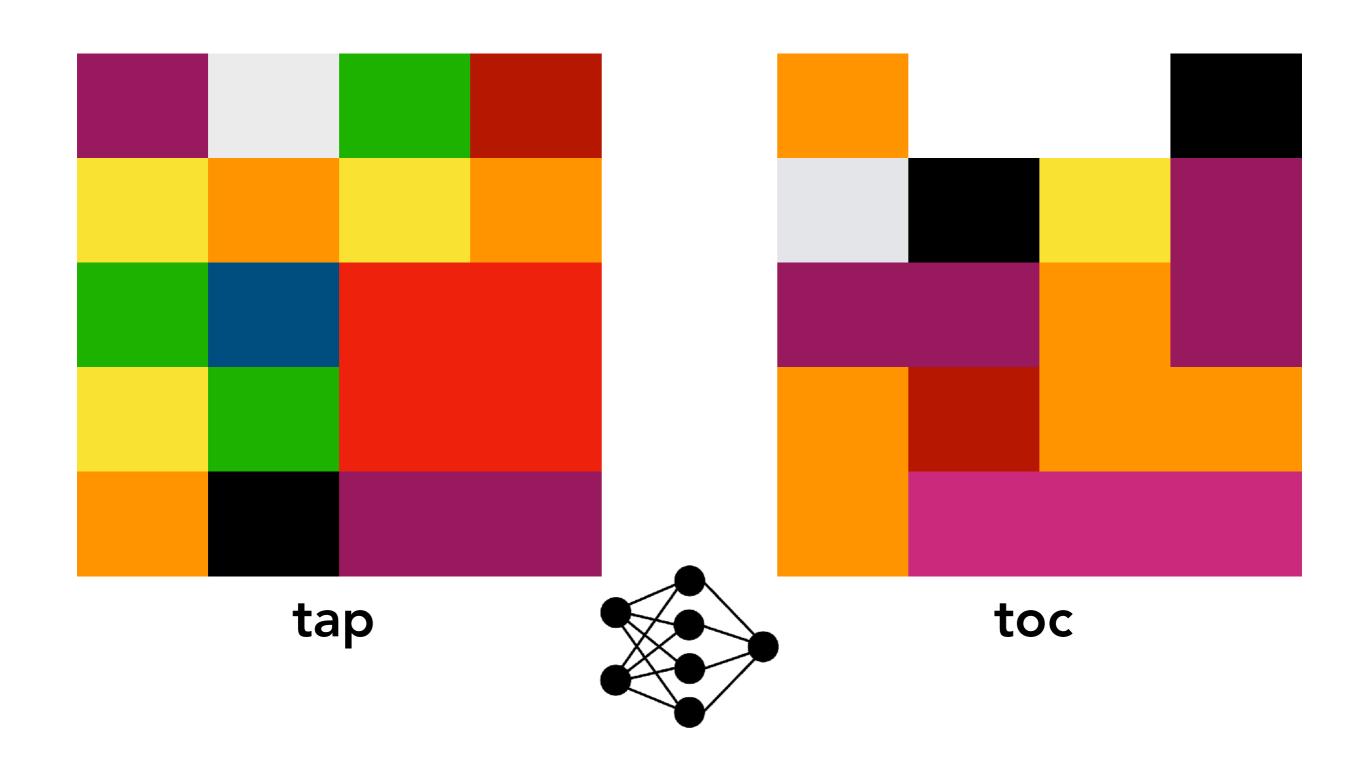
Max (test) accuracy

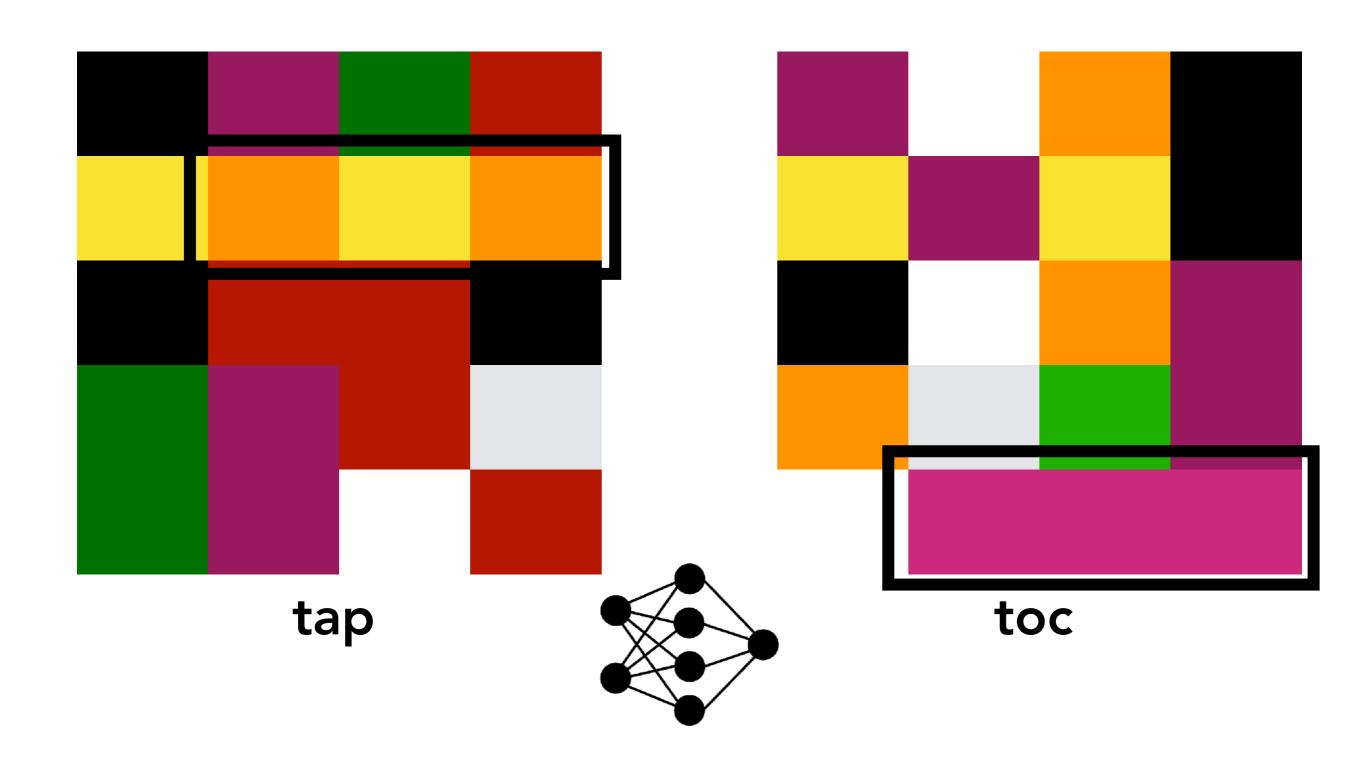


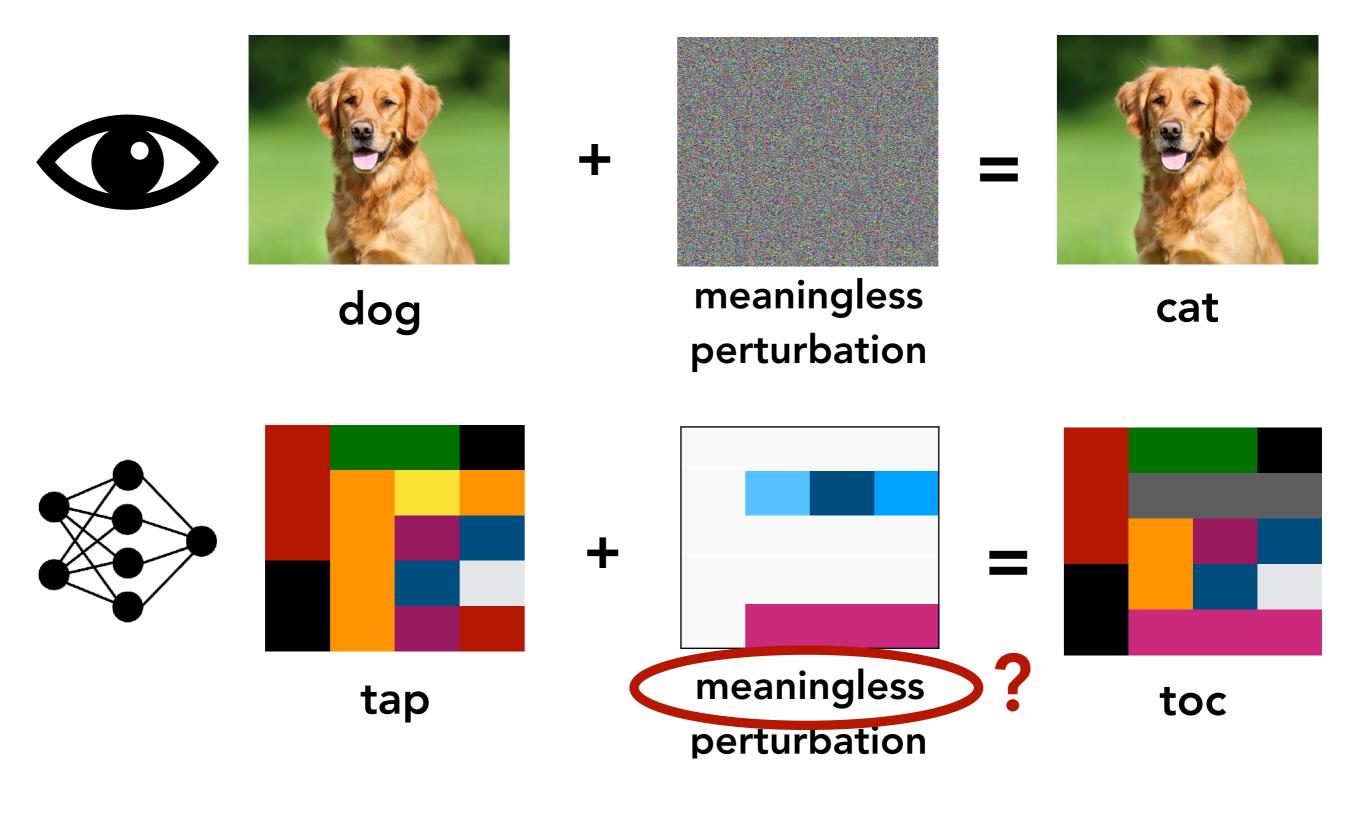
dog

cat









Are adversarial perturbations indeed meaningless?

[Ilyas Santurkar Tsipras Engstrom Tran M '19]

A Simple Experiment

- 1. Make adversarial example towards the other class
- 2. **Relabel** the image as the target class
- 3. Train with **new** dataset but test on the **original** test set

A Simple Experiment

So: We train on a "totally mislabeled" dataset but expect performance on a "correct" dataset

What will happen?

A Simple Experiment

Result: We get a **nontrivial accuracy** on the **original** classification task

(For example, 78% on the CIFAR dog vs cat)

What's going on?

What if adversarial perturbations are **not** aberrations but **features**?

The Robust Features Model

Robust features

Correlated with label even when perturbed

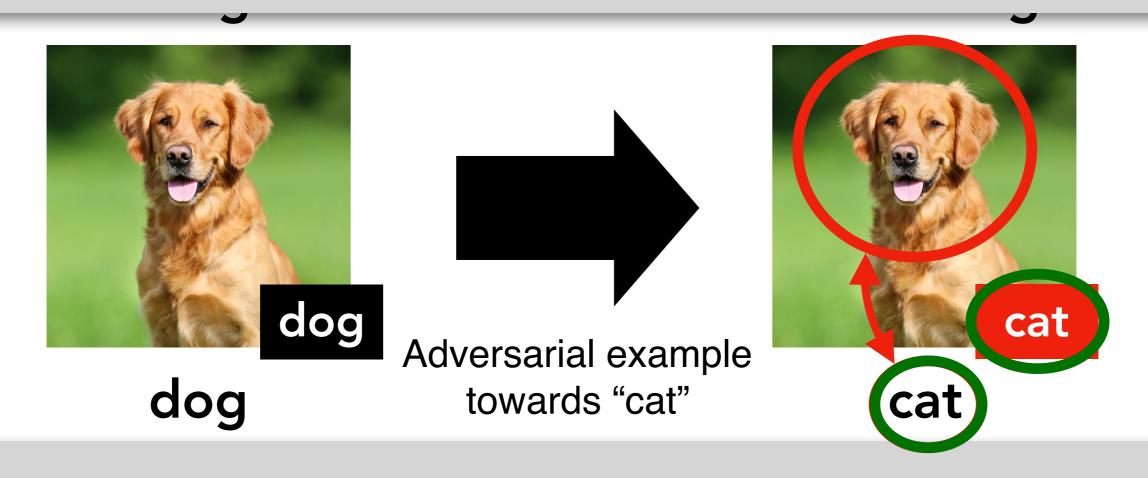
When maximizing (test) accuracy: All features are good

And: Non-robust features are often great!

That's why our models pick on them (and become vulnerable to adversarial perturbations)

The Simple Experiment: A Second Look

All robust features are misleading



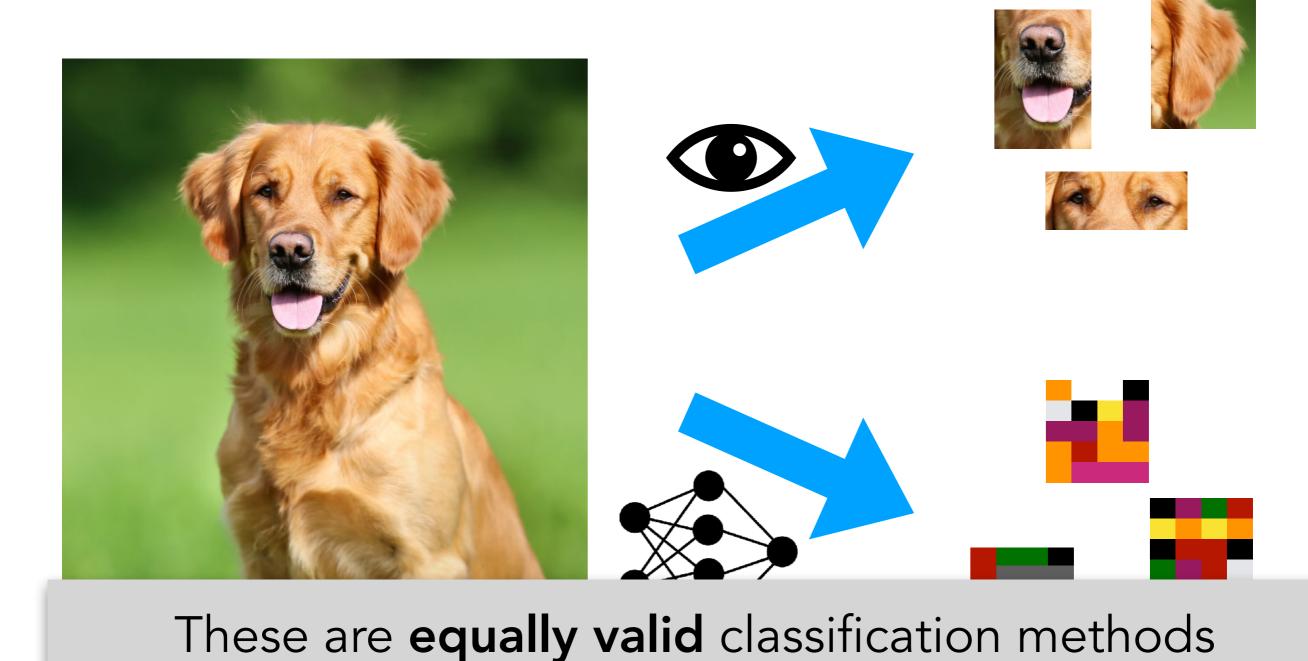
But: Non-robust features suffice for good generalization

What now?

A (new) perspective on adversarial robustness

But also: Provides insight into how our models learn

Human vs ML Model Priors



→ No reason for our models to favor the "human" one

Human vs ML Model Priors

Adversarial examples are a human phenomenon

No hope for **interpretable models** without intervention **at training time** (instead of post-hoc)

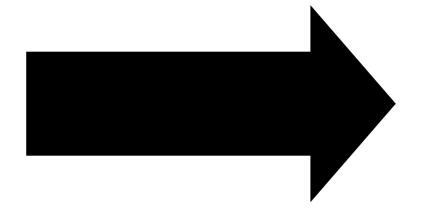
Need additional restrictions (priors) on what features models should use to make predictions

New capability: Robustification

Training set

frog

Restrict to features of robust model



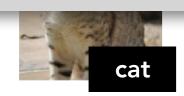
New training set

"robustified" frog

New capability: Robustification

(Original)

Also: Counterexample to any statement that "Training with BatchNorm/SGD/ResNets/ overparameterization/etc. <u>alone</u> leads to adversarial vulnerability"



et

"robustified" frog

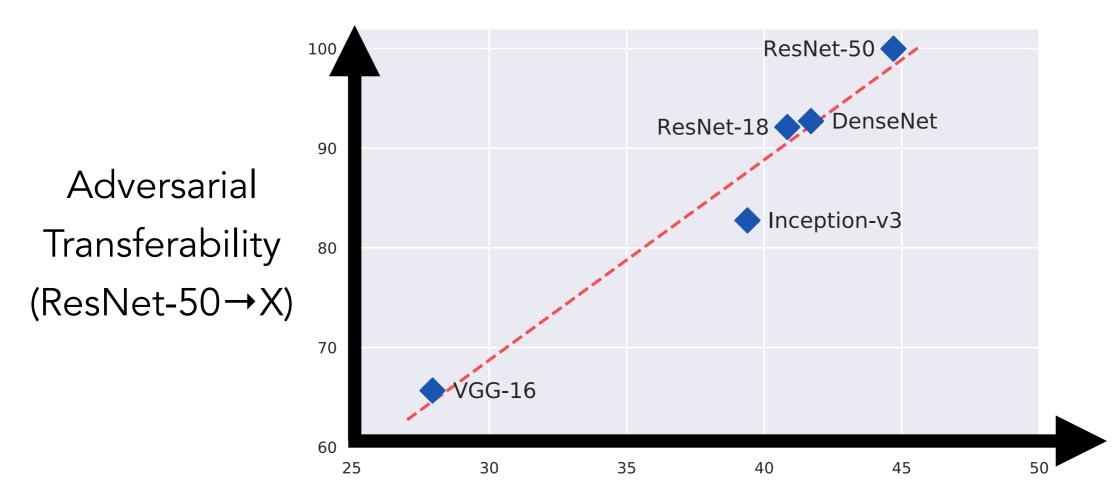
We get both standard and **robust** accuracy

So: It really is about features

Some Direct Consequences

Transferability: Features = property of **datasets** (not models)

→ Different models will tend to use the same features



Test accuracy of X trained on non-robust features from ResNet-50

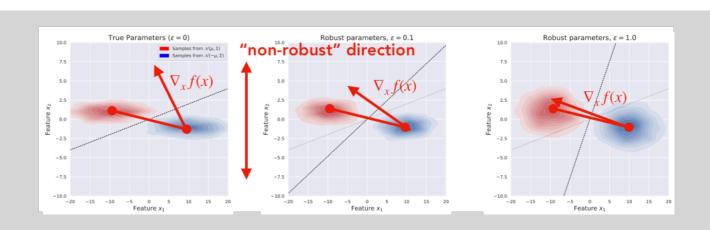
Robustness and Data Efficiency

Robust models can only leverage robust features

(Even though non-robust features do help with generalization)

- → Need more data to get a given (robust) accuracy (vide [Schmidt Santurkar Tsipras Talwar M '18])
- → Will get a lower standard accuracy (vide [Tsipras Santurkar Engstrom Turner M '18])

Good setting to study: Robust Max Likelihood Gaussian Classification



But: Is leveraging non-robust features even a good thing?

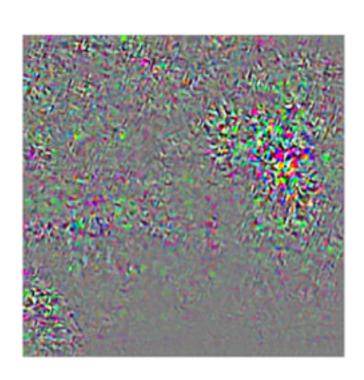
What if we **prevent** that?

[Tsipras Santurkar Engstrom Turner M '18] [Engstrom Ilyas Santurkar Tsipras Tran M '19]

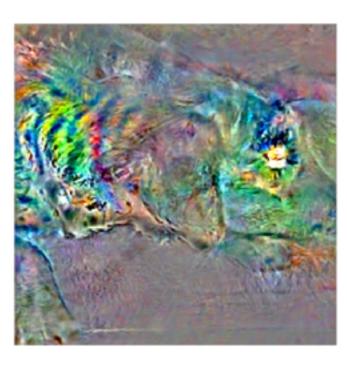
[Santurkar Tsipras Tran Ilyas Engstrom M '19]

Robustness → Perception Alignment

Prediction: dog



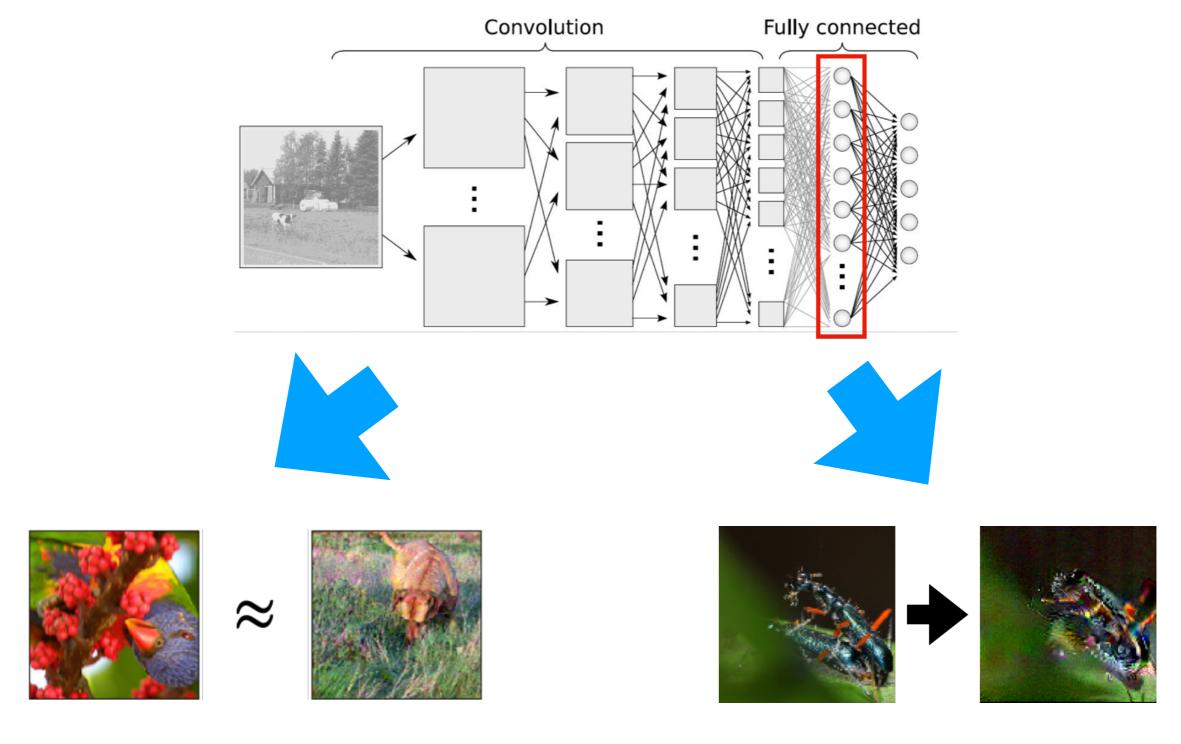
Pixel influence "heatmap" (standard)



Pixel influence "heatmap" (robust)

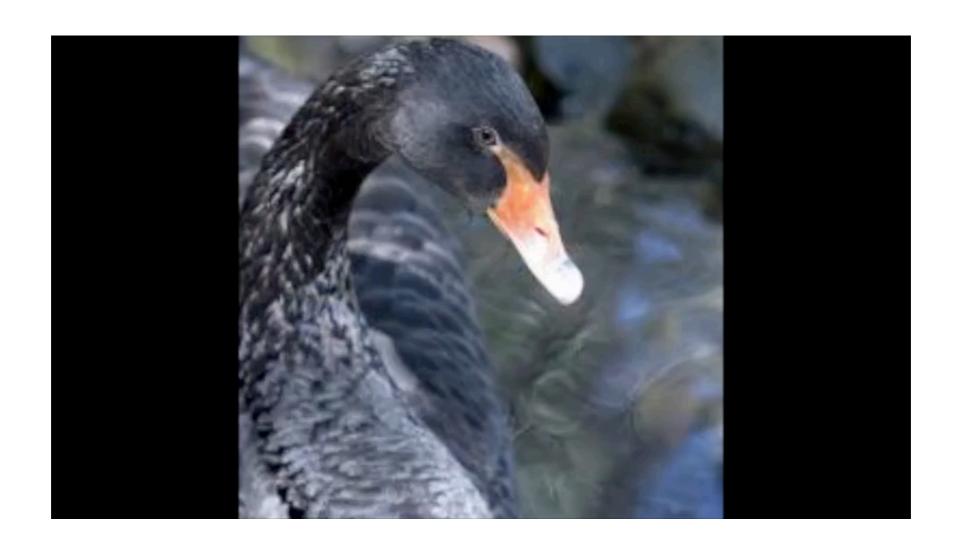
Models become more (human) perception aligned

→ Robustness acts as a **prior** for "meaningful" features

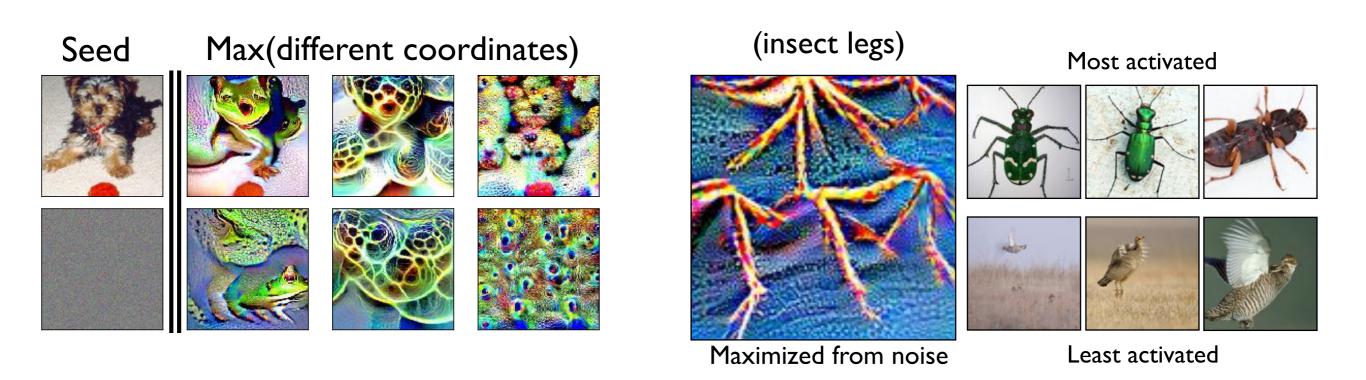


Standard Representation

Robust Representation



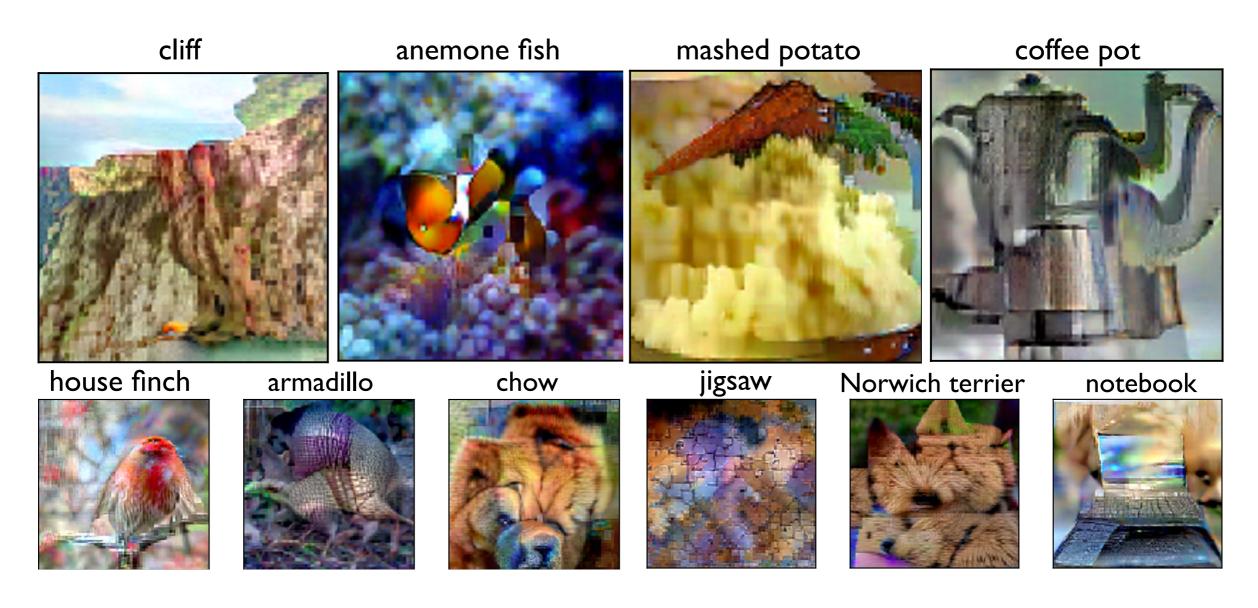
Interpolations between any two inputs



Direct feature visualization

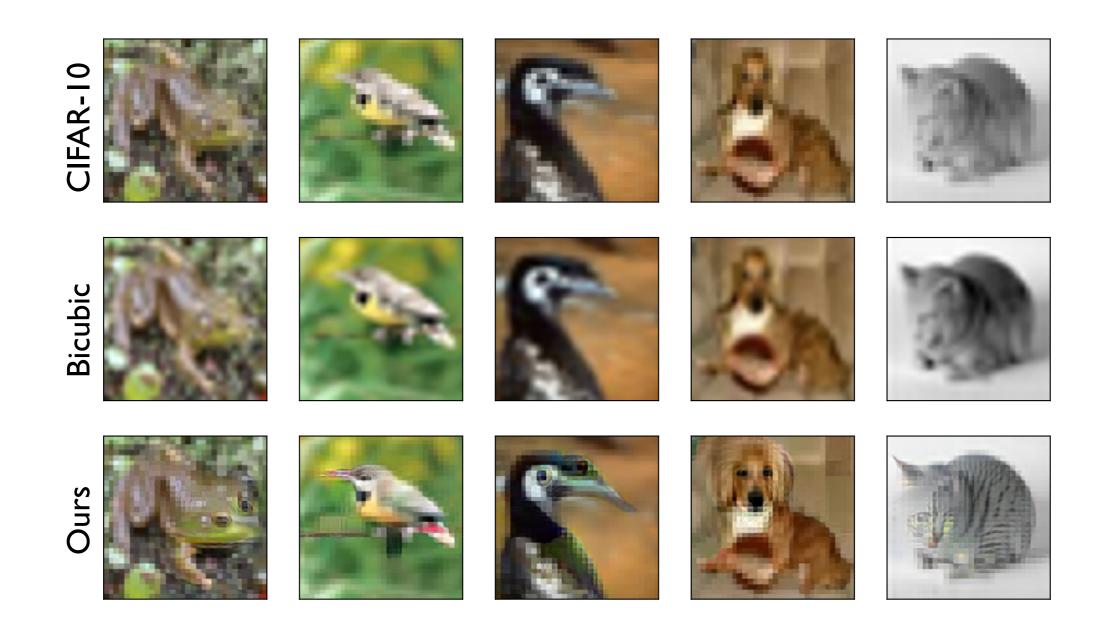
Add stripes

Direct feature manipulation

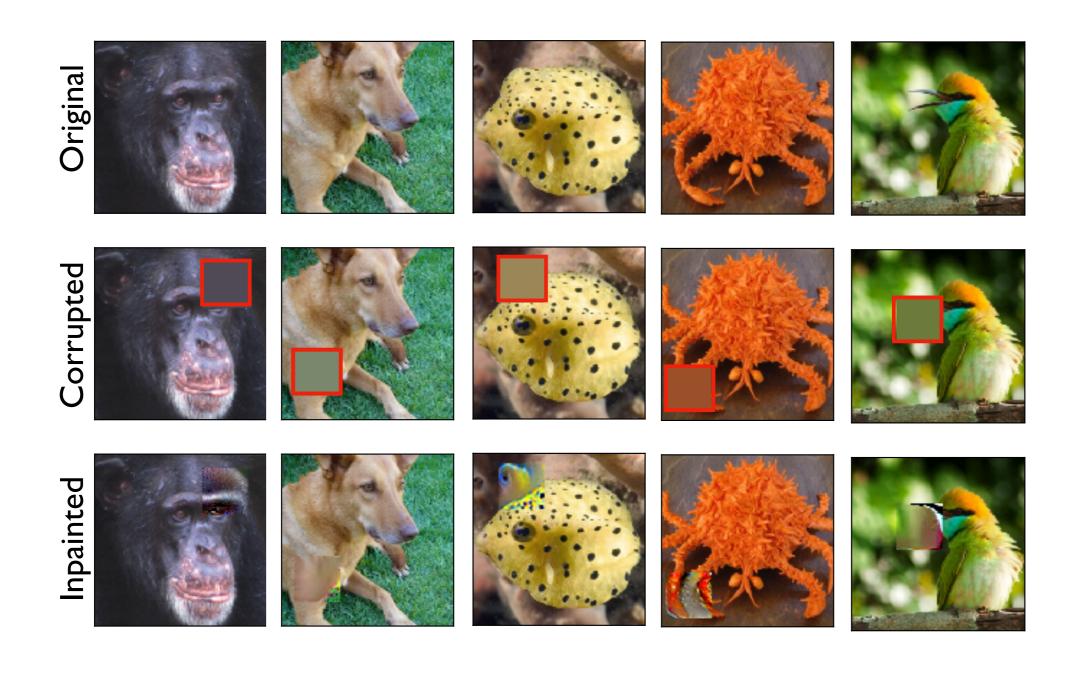


(Random samples, 1K training images, no tuning)

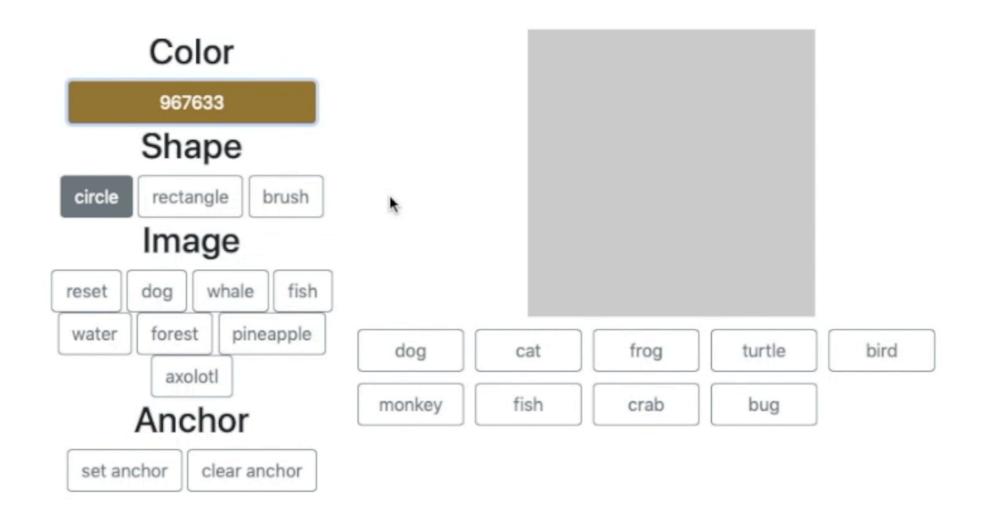
Generative models (that work better on large datasets)



Super-resolution



In-painting



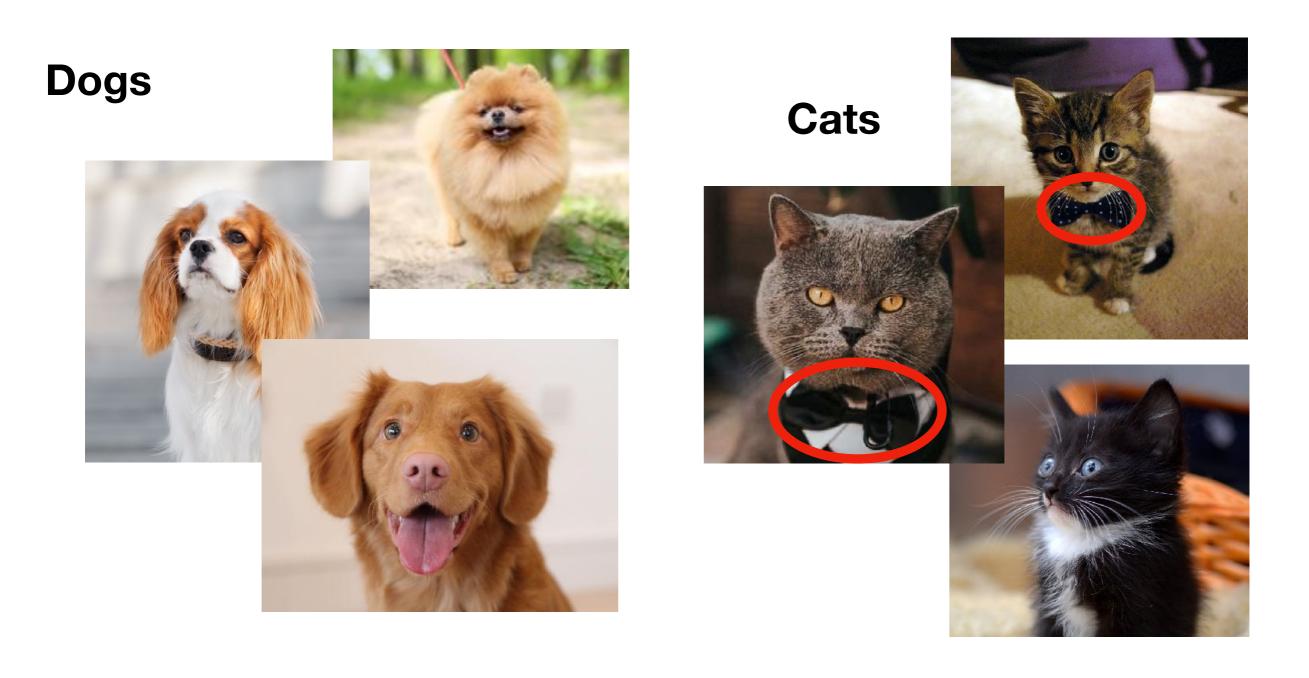
Interactive exploration of the data space

See: http://bit.ly/robustness_demo

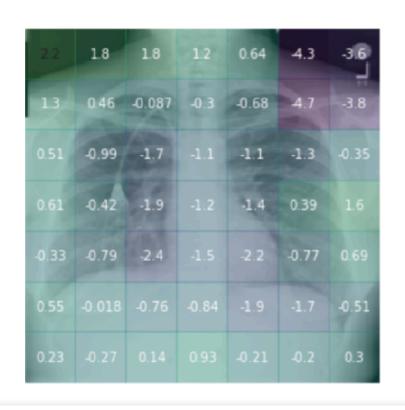
But: Is it only about robustness and interpretability?

No: It is also about **choosing** what features our models should use

Problem: Correlations can be weird



Problem: Correlations can be weird



"...if an image had a ruler in it, the algorithm was more likely to call a tumor malignant..."

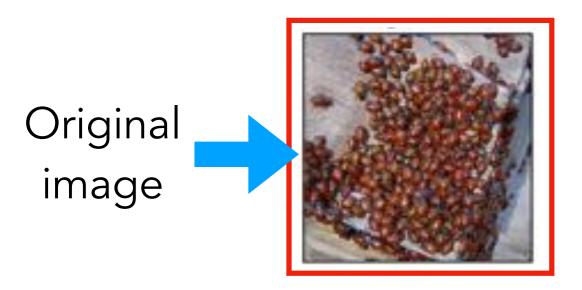
[Esteva et al. 2017]

"CNNs were able to detect where an x-ray was acquired [...] and calibrate predictions accordingly."

[Zech et al. 2018]

"Predictive" patterns can be misleading

Useful tool(?): Counterfactual Analysis with Robust Models



label: "insect"; prediction: "dog"

Robustness = Framework for controlling what correlations to extract

Takeaways

Adversarial examples arise from non-robust features in the data

→ These features **do** help in generalization (a lot!) and that's why our models like to rely on them

(Still: Can also synthesize adv. examples differently [Nakkiran '19])

→ Interpretability needs to be addressed at training time

Robustness induces more "human-aligned" representations

- → Enable a broad range of vision applications (in a simple way)
- → Support findings (simple) counterfactuals

But: It is really about how (and what) our models learn

- → What is the "right" notion of generalization?
- → What features do we want our models to use?
- → How much do we value human alignment/interpretability?

Adversarial robustness =

Framework for feature engineering

Here: "Adversary" corresponds to a "(human) critic"

