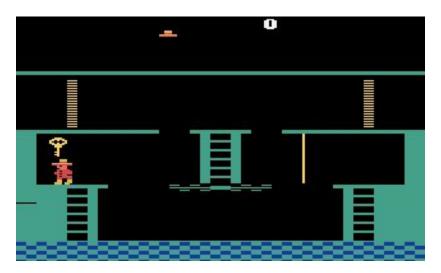
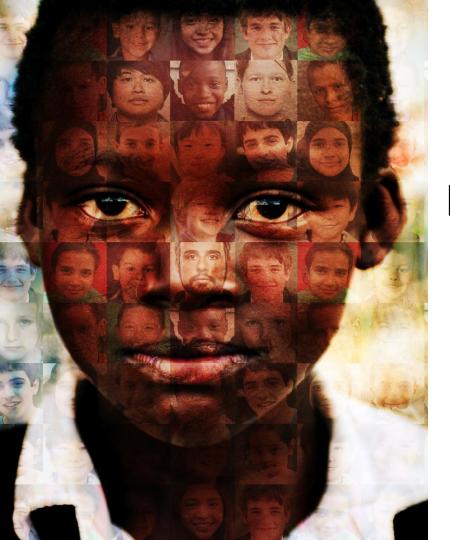
Emma Brunskill Assistant Professor, Computer Science, Stanford

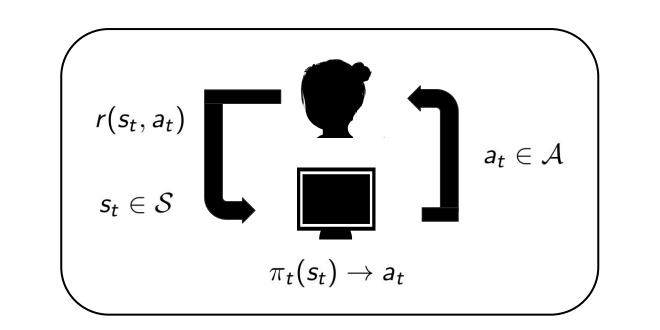
IAS November 2019
Work in collaboration with Ramtin Keramti, Christoph Dann & Alex
Tamkin, preprint at: https://arxiv.org/abs/1911.01546

2010s: A New Era of RL

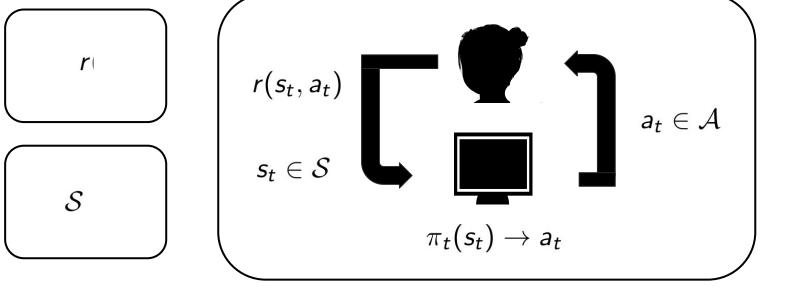


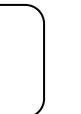


Reinforcement Learning to Improve People's Lives

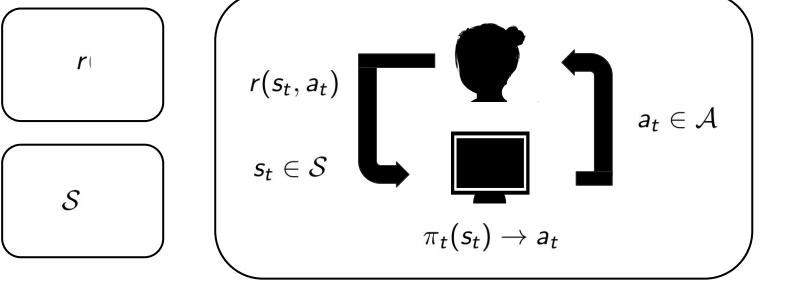


Misspecification, adversaries, robustness, multi-objective





Today: Risk Sensitive RL



Why is Risk Sensitive Control Important?

Individuals experience single trajectory / 1 return

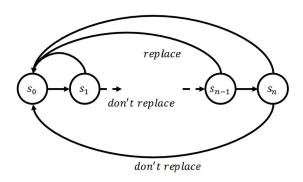
Why is Risk Sensitive Control Important?

Individuals experience single trajectory / 1 return

Organizations often care about equity and fairness for everyone in distribution

Risk Sensitive Reinforcement Learning

Given data, Plan Safe Policy

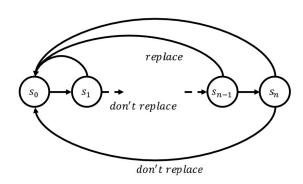


Large body of literature in controls, also work by Bagnell and many others

Risk Sensitive Reinforcement Learning

Given data, Plan Safe Policy

Safely Learn a Safe Policy

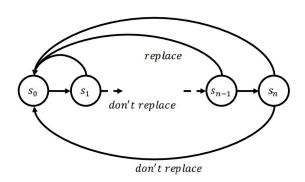


Large body of literature in controls, also work by Bagnell and many others

Krause, Mannor, Tamar, Tomlin, Abbeel, Ghavamzadeh, Pavone, Schoellig...

Risk Sensitive Reinforcement Learning

Given data, Plan Safe Policy Policy



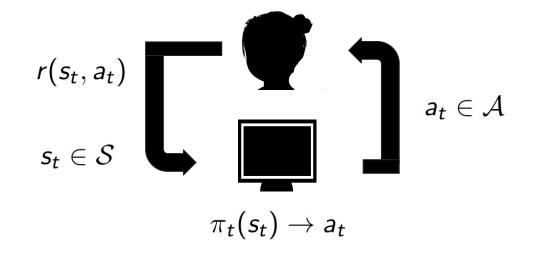
Large body of literature in controls, also work by Bagnell and many others

Safely Learn a Safe Policy

Krause, Mannor, Tamar, Tomlin, Abbeel, Ghavamzadeh, Pavone, Schoellig... Quickly Learn a Safe

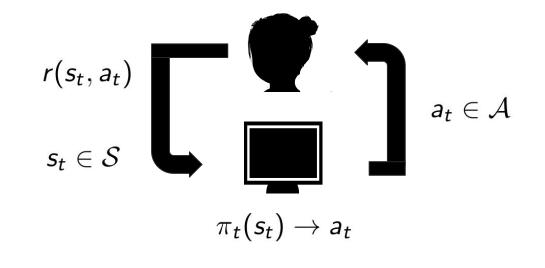
Image: createhealth.com/

Notation: Markov Decision Process Value Function



$$\underbrace{V^{\pi}(s)}_{\text{Value func.}} = \underbrace{r(s, \pi(s))}_{\text{Reward}} + \gamma \sum_{s'} \underbrace{p(s'|s, a)}_{\text{Dynamics}} V^{\pi}(s')$$

Notation: Reinforcement Learning

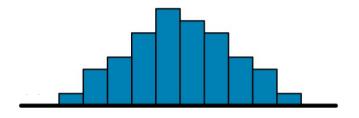


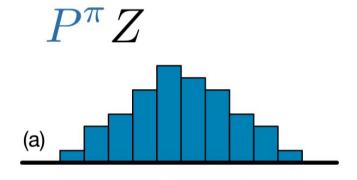
$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, a) V^{\pi}(s')$$
Value func.

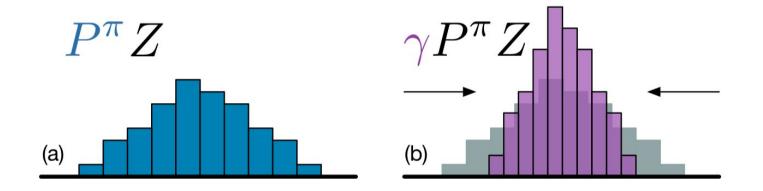
Reward

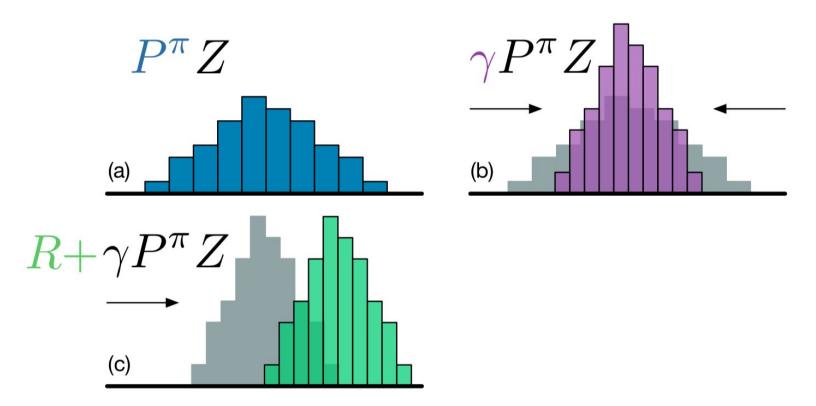
Only observed through samples (experience)

Background: Distributional RL for Policy Evaluation & Control









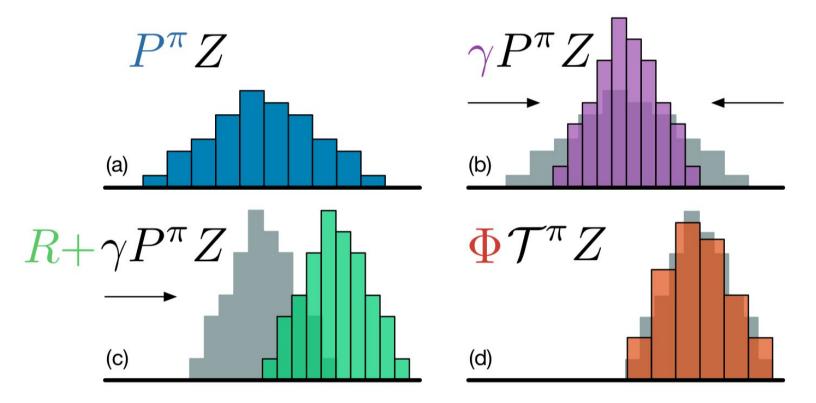


Figure from Bellemare, Dabney, Munos ICML 2017

What About Control?

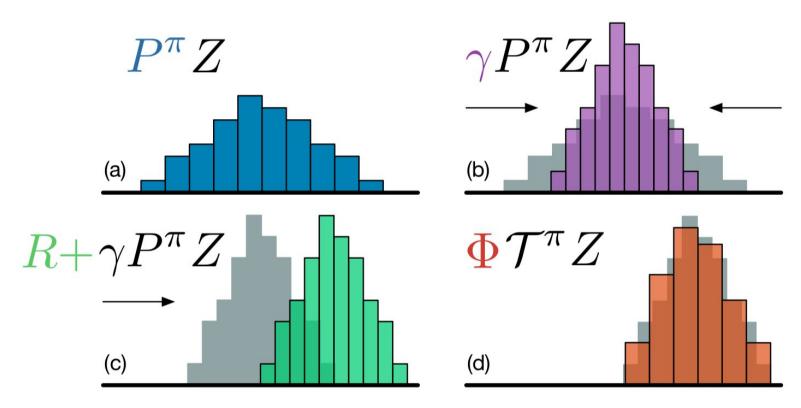


Figure from Bellemare, Dabney, Munos ICML 2017

Distributional Bellman Backup Operator for Control for Maximizing Expected Reward

$$\mathcal{T}Q(x,a) = \mathbb{E} R(x,a) + \gamma \mathbb{E}_P \max_{a' \in \mathcal{A}} Q(x',a').$$

Maximal Form of Wasserstein Metric on 2 Distributions

$$\mathcal{T}Q(x,a) = \mathbb{E} R(x,a) + \gamma \mathbb{E}_{P} \max_{a' \in \mathcal{A}} Q(x',a').$$

$$\bar{d}_p(Z_1, Z_2) := \sup_{x \in \mathcal{X}} d_p(Z_1(x, a), Z_2(x, a)).$$

Distributional Bellman Backup Operator for Control for Maximizing Expected Reward is Not a Contraction

$$\mathcal{T}Q(x,a) = \mathbb{E} R(x,a) + \gamma \mathbb{E}_{P} \max_{a' \in \mathcal{A}} Q(x',a').$$

 $d_p(Z_1, Z_2) := \sup d_p(Z_1(x,a), Z_2(x,a)).$

Distributional Bellman Backup Operator for Control for Maximizing Expected Reward is Not a Contraction

$$\mathcal{T}Q(x,a) = \mathbb{E} R(x,a) + \gamma \mathbb{E}_P \max_{a' \in \mathcal{A}} Q(x',a').$$

$$d_p(Z_1, Z_2) := \sup_{x, a} d_p(Z_1(x,a), Z_2(x,a)).$$

⇒ Suggests convergence results may be hard

Goal: Quickly and Efficiently use RL to Learn a Risk-Sensitive Policy using Conditional Value at Risk

$$\mathcal{T}Q(x,a) = \mathbb{E} R(x,a) + \gamma \mathbb{E}_P \max_{a' \in \mathcal{A}} Q(x',a').$$
$$d_p(Z_1, Z_2) := \sup d_p(Z_1(x,a), Z_2(x,a)).$$

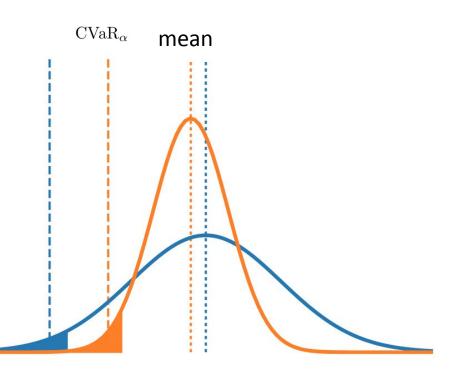
⇒ Suggests convergence results may be hard

Conditional Value at Risk for a Decision Policy

- Risk-level *alpha* in (0, 1]
- Expected sum of rewards of a policy in worst alpha-fraction of cases

$$F^{-1}(u) = \inf\{x : F(x) \ge u\}$$

$$\operatorname{CVaR}_{\alpha}(F) = \mathbb{E}_{X \sim F}[X | X \le F^{-1}(\alpha)]$$

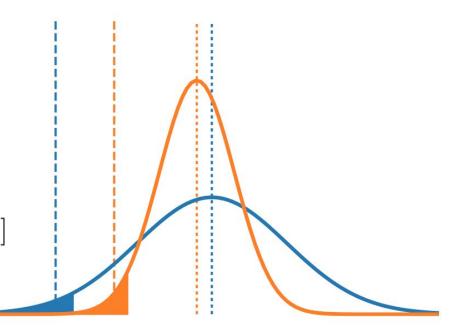


Goal: Sample Efficient RL to Optimize Conditional Value at Risk

- Risk-level alpha in (0, 1]
- Expected sum of rewards of a policy in worst *alpha*-fraction of cases

$$F^{-1}(u) = \inf\{x : F(x) \ge u\}$$

$$\operatorname{CVaR}_{\alpha}(F) = \mathbb{E}_{X \sim F}[X | X \le F^{-1}(\alpha)]$$

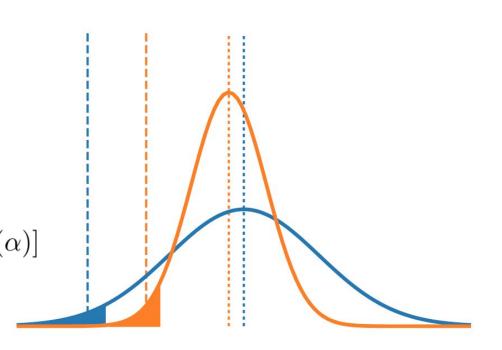


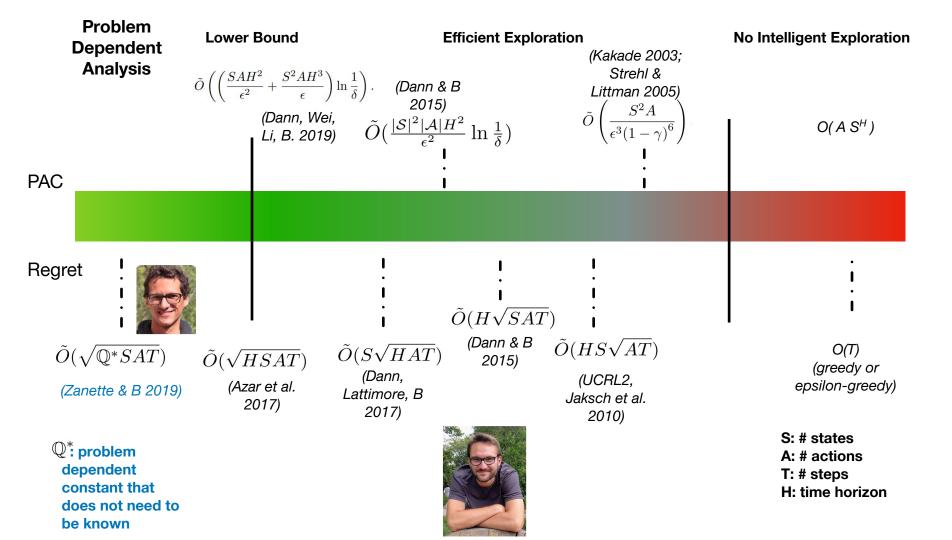
For Inspiration, Look to Sample Efficient Learning for Policies that Optimize Expected Reward

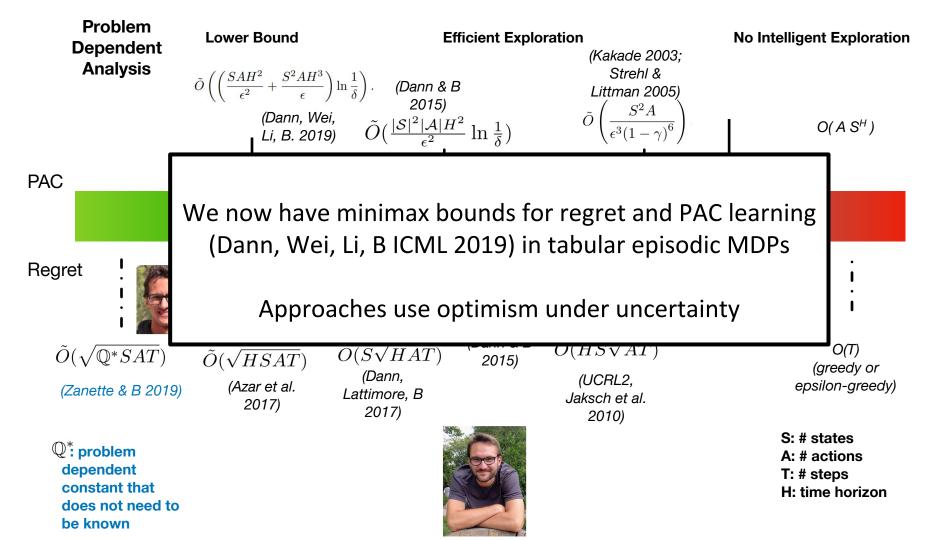
- Risk-level alpha in (0, 1]
- Expected sum of rewards of a policy in worst *alpha*-fraction of cases

$$F^{-1}(u) = \inf\{x : F(x) \ge u\}$$

$$\operatorname{CVaR}_{\alpha}(F) = \mathbb{E}_{X \sim F}[X | X \le F^{-1}(\alpha)]$$







Optimimism Under Uncertainty for Standard RL

1. Compute an optimistic estimate of Q(s,a)

2. Select the action which maximizes optimistic Q

Optimism Under Uncertainty for Standard RL: Use Concentration Inequalities

1. Compute an optimistic estimate of Q(s,a):

$$|Q^{\star}(s,a) - \widehat{Q}^{\star}(s,a)| \lessapprox \frac{H}{\sqrt{n}}$$
 (Hoeffding Inequality)

Gap between optimal and estimated

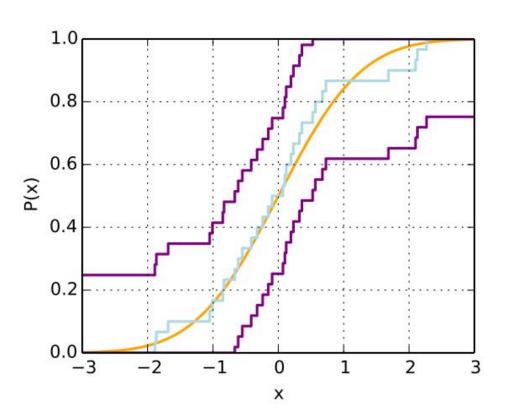
2. Select the action which maximizes optimistic Q

Suggests a Path for Sample Efficient Risk Sensitive RL

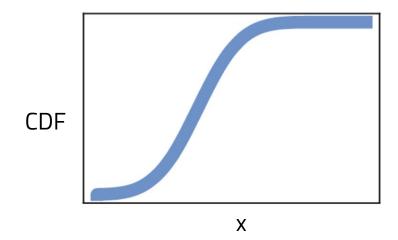
1. Compute an optimistic estimate of distribution of Q(s,a)

2. Select the action which maximizes **cVar** (Q(s,a)

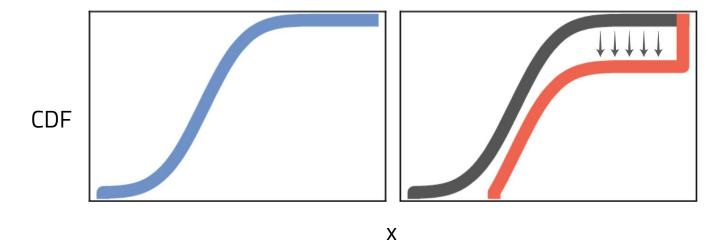
Use DKW Concentration Inequality to Quantify Uncertainty over Distribution



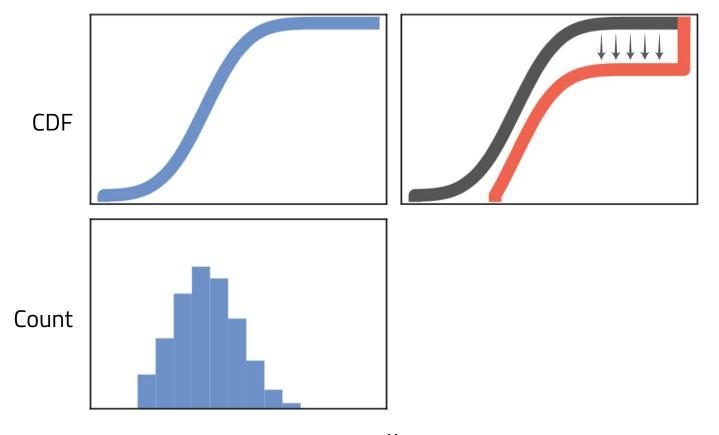
Creating an Optimistic Estimate of Distribution of Returns



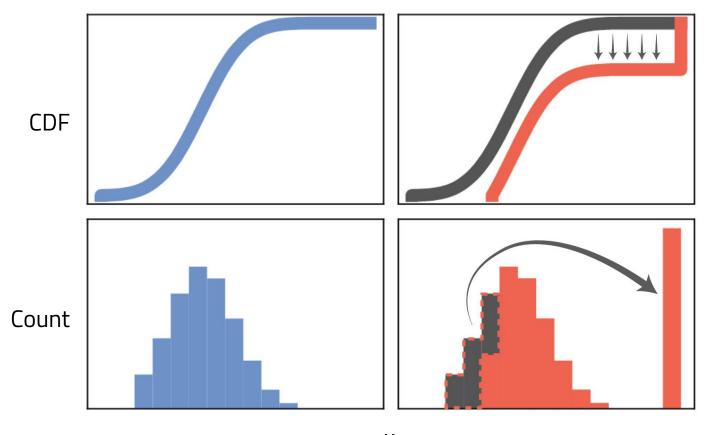
Creating an Optimistic Estimate of Distribution of Returns



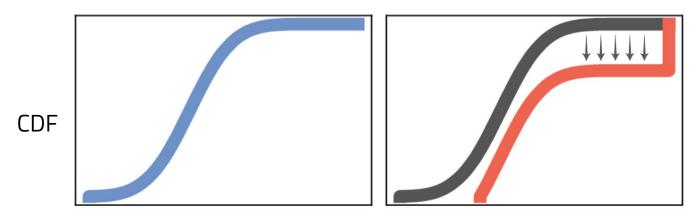
Creating an Optimistic Estimate of Distribution of Returns



Creating an Optimistic Estimate of Distribution of Returns



Optimism Operator Over CDF of Returns



$$F_{O_c Z(s,a)}(x) = \left(F_{Z(s,a)}(x) - c \frac{\mathbf{1}\{x \in [V_{\min}, V_{\max})\}}{\sqrt{n(s,a)}}\right)^+$$

Optimistic Risk Sensitive RL

1. Compute an optimistic estimate of distribution of Q(s,a)

$$F_{O_c Z(s,a)}(x) = \left(F_{Z(s,a)}(x) - c \frac{\mathbf{1}\{x \in [V_{\min}, V_{\max})\}}{\sqrt{n(s,a)}}\right)^+$$

Select the action which maximizes cVar (Q(s,a)

Optimistic Operator for Policy Evaluation Yields Optimistic Estimate

Theorem 2. Let the shift parameter in the optimistic operator be sufficiently large which is $c = O(\ln(|\mathcal{S}||\mathcal{A}|/\delta))$. Then with probability at least $1 - \delta$, the iterates $\text{CVaR}_{\alpha}((O_c\hat{\mathcal{T}}^{\pi})^m Z_0)$ converges for any risk level α and initial $Z_0 \in \mathcal{Z}$ to an optimistic estimate of the policy's conditional value at risk. That is, with probability at least $1 - \delta$,

$$\forall s, a : \text{CVaR}_{\alpha}((O_c \hat{\mathcal{T}}^{\pi})^{\infty} Z_0(s, a)) \ge \text{CVaR}_{\alpha}(Z_{\pi}(s, a)).$$

Concerns about Optimistic Risk Sensitive RL

- 1. Resulting actions may not be safe. Yes!
 - No guarantees on return for each episode
 - Not suitable for extremely high stakes scenarios

Concerns about Optimistic Risk Sensitive RL

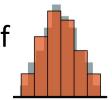
- 1. Resulting actions may not be safe. Yes!
 - No guarantees on return for each episode
 - Not suitable for extremely high stakes scenarios
- 2. How do we compute optimistic distributions with infinite state spaces?

Optimistic Exploration for Risk Sensitive RL in Continuous Spaces

1. Maintain discretized representation of optimistic distrib of returns (similar C51, Bellemare, Dabney, & Munos 17)

Optimistic Exploration for Risk Sensitive RL in Continuous Spaces

1. Maintain discretized representation of optimistic distrib of returns (similar C51, Bellemare, Dabney, & Munos 17)



- 2. For current state, for each action *a*
 - Compute CDF of current distributional Qo for a
 - Apply optimism operator

Recall Optimistic Operator for Distribution of Returns for Discrete State Spaces, Uses Counts

$$F_{O_c Z(s,a)}(x) = \left(F_{Z(s,a)}(x) - c \frac{\mathbf{1}\{x \in [V_{\min}, V_{\max})\}}{\sqrt{n(s,a)}}\right)^+$$

Optimistic Operator for Distribution of Returns for **Continuous** State Spaces, Uses **Pseudo**-Counts

$$F_{O_c Z(s,a)}(x) = \left(F_{Z(s,a)}(x) - c \frac{\mathbf{1}\{x \in [V_{\min}, V_{\max})\}}{\sqrt{n(s,a)}}\right)^+$$

$$\hat{n} = \frac{1}{\exp(\kappa t^{-1/2} \alpha (\nabla \log \rho_{\theta}(s_{t+1}, a'))^2) - 1}$$

Optimistic Exploration for Risk Sensitive RL in **Continuous Spaces**

- 1. Maintain discretized representation of optimistic distrib of returns (similar C51, Bellemare, Dabney, & Munos 17)
- 2. For current state, for each action *a*
- - Compute CDF of current distributional Qo for a
 - Apply optimism operator
- 3. Choose action that maximizes Cvar_{alpha}(Q^o(s,a)

Optimistic Exploration for Risk Sensitive RL in Continuous Spaces

- 1. Maintain discretized representation of optimistic distrib of returns (similar C51, Bellemare, Dabney, & Munos 17)
- of _____

- 2. For current state, for each action *a*
 - Compute CDF of current distributional Q° for a
 - Apply optimism operator
- 3. Choose action that maximizes Cvar_{alpha}(Q°(s,a)
- 4. Update optimistic distribution of returns

Simulation Experiments

Baseline Algorithms

Epsilon-greedy CVaR

Baseline Algorithms

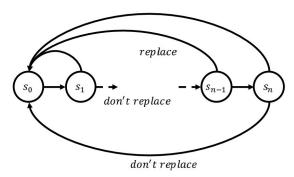
- Epsilon-greedy CVaR
- IQN epsilon-greedy CVaR: implicit quantile network (IQN) that also uses -greedy method for exploration (Dabney et al. 2018). Used dopamine implementation of IQN (Castro et al. 2018)

Baseline Algorithms

- Epsilon-greedy CVaR
- IQN epsilon-greedy CVaR: implicit quantile network (IQN) that also uses -greedy method for exploration (Dabney et al. 2018). Used dopamine implementation of IQN (Castro et al. 2018)
- CVaR-AC: An actor-critic method that maximizes the expected return while satisfying an inequality constraint on the CVaR (Chow and Ghavamzadeh 2014). Relies on stochastic policy for exploration.

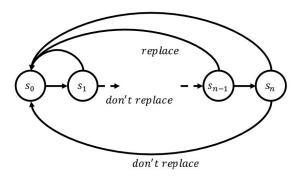
Simulation Domains

Machine Repair



Simulation Domains

Machine Repair

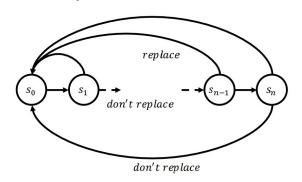


Structured Treatment simulator for HIV [Ernst et al CDC 2006]

- Simulator state: Infected CD4+ T-lymphocytes, number of infected macrophages, the number of free virus particles, ...
- Action: start / stop treatment
- Reward is a function of cytotoxic T-lymphocytes

Simulation Domains

Machine Repair



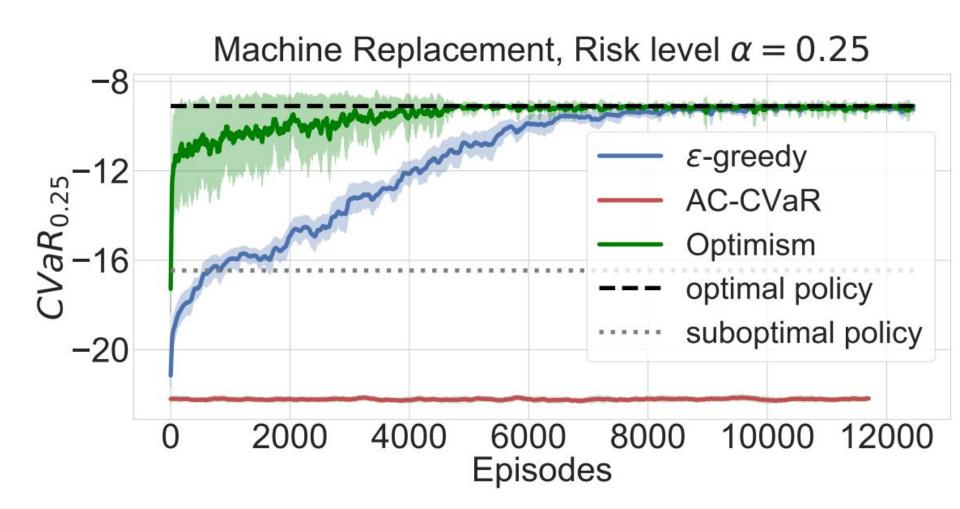
Structured Treatment simulator for HIV [Ernst et al CDC 2006]

- Simulator state: Infected CD4+ T-lymphocytes, number of infected macrophages, the number of free virus particles, ...
- Action: start / stop treatment
- Reward is a function of cytotoxic T-lymphocytes

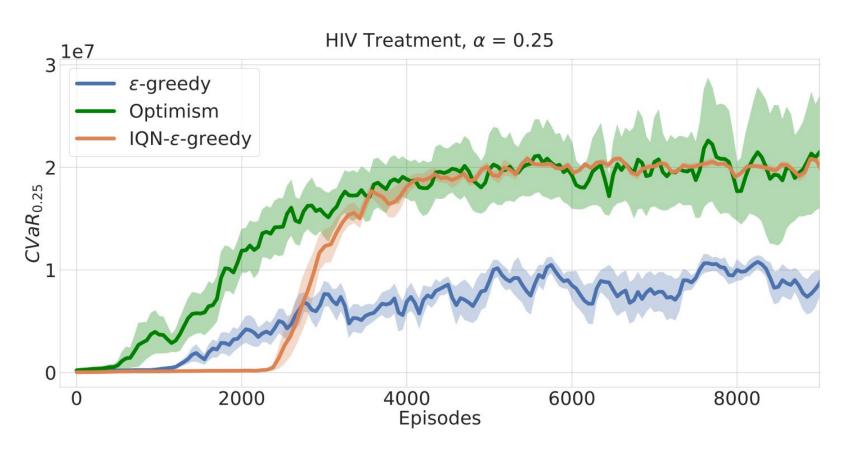
Diabetes Blood Glucose Control Simulator [Man et al]

- Simulator state: Blood glucose (bg) + carb intake
- Action: 6 bolus insulin dosage injection levels
- Reward

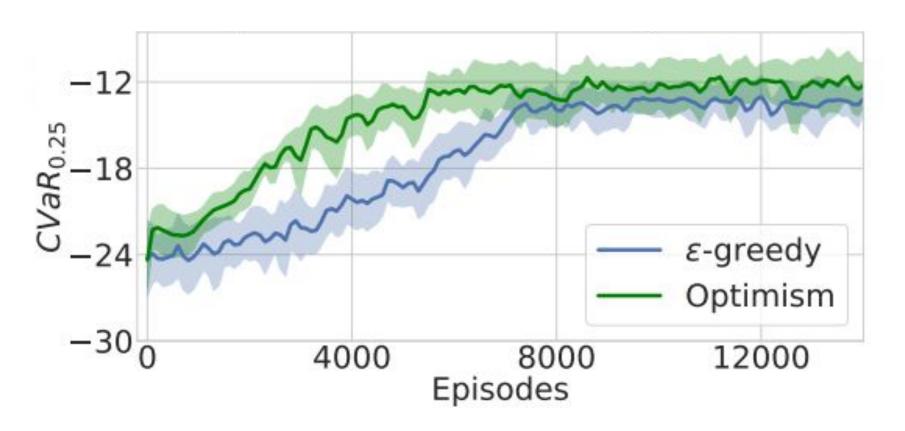
$$r(bg) = \begin{cases} -\frac{(bg'-6)^2}{5} & \text{if } bg' < 6\\ -\frac{(bg'-6)^2}{10} & \text{if } bg' \ge 6 \end{cases}$$



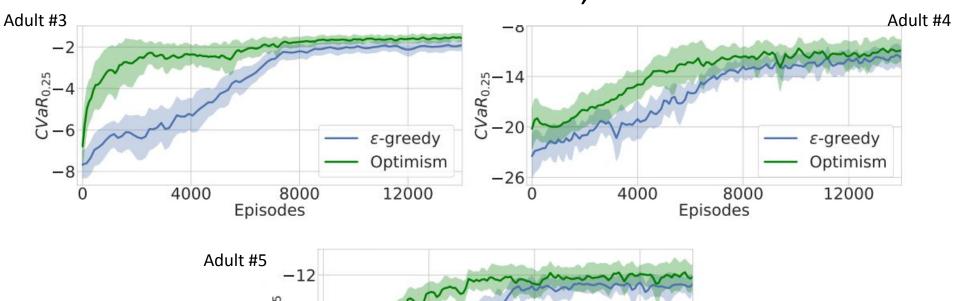
HIV Treatment

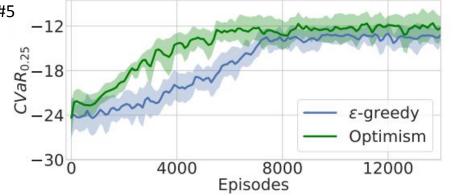


Blood Glucose Simulator, Adult #5



Blood Glucose Simulator, 3 Patients

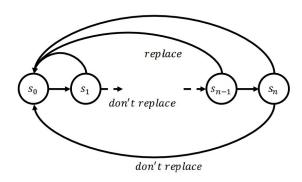




Hyperparameters optimized from held out patient for each algorithm, then fixed

In All 3 Domains, Optimism Significantly Speed Learning Optimal CVaR Policy

Machine Repair



Structured Treatment simulator for HIV [Ernst et al CDC 2006]

- Simulator state: Infected CD4+ T-lymphocytes, number of infected macrophages, the number of free virus particles, ...
- Action: start / stop treatment
- Reward is a function of cytotoxic T-lymphocytes

Diabetes Blood Glucose Control Simulator [Man et al]

- Simulator state: Blood glucose (bg) + carb intake
- Action: 6 bolus insulin dosage injection levels
- Reward

$$r(bg) = \begin{cases} -\frac{(bg'-6)^2}{5} & \text{if } bg' < 6\\ -\frac{(bg'-6)^2}{10} & \text{if } bg' \ge 6 \end{cases}$$

A Sidenote on Safer Exploration: Faster Learning also Reduces # of Bad Events During Learning

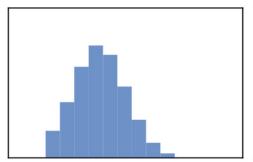
2	ϵ -greedy	CVaR-MDP
Adult#003 Adult#004 Adult#005	$egin{array}{c} 11.2\% \pm 3.6\% \ 2.3\% \pm 0.3\% \ 3.3\% \pm 0.3\% \end{array}$	$egin{array}{ c c c c c } 4.2\% & \pm 2.3\% \ 1.4\% & \pm 0.6\% \ 1.7\% & \pm 0.6\% \end{array}$

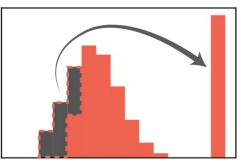
Figure 6: Type 1 Diabetes simulator, percent of episodes where patients experienced a severe medical condition (hypoglycemia or hyperglycemia), averaged across 10 runs

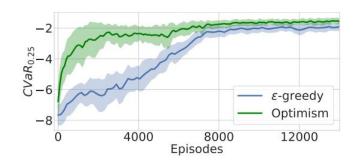
Many Interesting Open Directions

- Optimism operator is over the returns, could be used when policy is to maximize other features of the return (worst case, other statistics)
- Sample complexity bounds
 - Requires progress on distributional Bellman backup operator
- Combining safe exploration and fast learning
- Other forms of constrained learning
- Robustness to misspecification and adversarial inputs
- Learning robust policies to handle nonstationarity and covariate shift

Optimisim for Conservatism: Fast RL for Learning Conditional Value at Risk Policies







- Compute optimistic estimate of distribution of returns
- Easy to incorporate into existing distributional deep RL algorithms
- Enables substantially faster learning of CVaR policies in our simulations