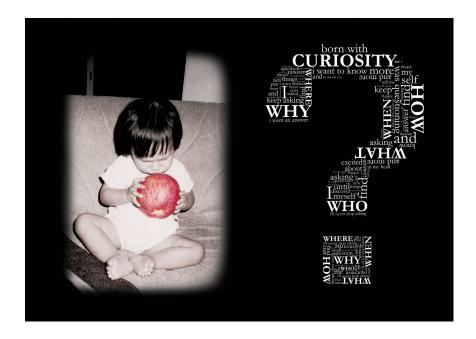
# Curiosity, unobserved rewards and neural networks in RL

function approximation

Csaba Szepesvári DeepMind & University of Alberta

New Directions in RL and Control
Princeton
2019

### **Part I: Curiosity**



"One of the striking differences between current reinforcement learning algorithms and early human learning is that animals and infants appear to explore their environments with autonomous purpose, in a manner appropriate to their current level of skills."

Models for Autonomously Motivated Exploration in Reinforcement Learning\*

Peter Auer<sup>1</sup>, Shiau Hong Lim<sup>1</sup>, and Chris Watkins<sup>2</sup>

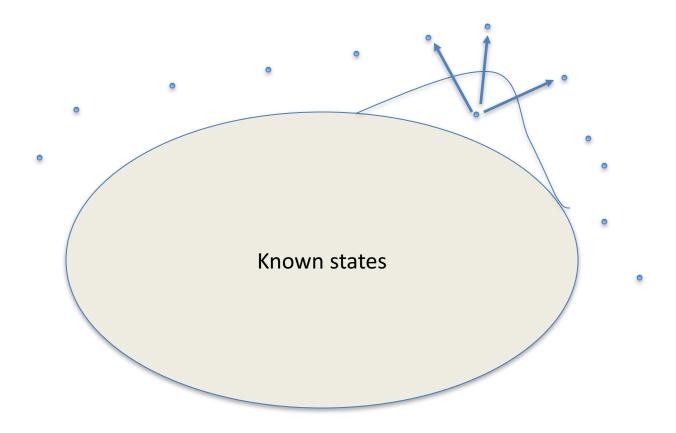
## **Modeling Curiosity (ALw model)**

- Controlled process
- Stochasticity: Makes things more interesting/realistic
- Countably many states, they are observed
  - Simplifying assumption
  - Hope: some of the principles/algorithms transfer to the general case
  - You have to start somewhere
- Reset to an initial state
  - Necessary
  - Engineer the environment to make this happen (robot moms!)
- Goal: Extend the set of reliably reachable states as quickly as possible

### **Performance metric**

- # Reliably reachable states/time
- Fix an arbitrary partial order, ≺, on states
  - Not known to learner...
- Fix L > 0. Define  $\mathcal{S}_L^{\prec}$  as follows:
  - $-s_0 \in \mathcal{S}_L^{\prec}$
  - $-s \in \mathcal{S}_L^{\prec}$  if  $\exists \pi$  on  $\{s' \prec s : s' \in \mathcal{S}_L^{\prec}\}$  s.t.  $\tau(s|\pi) \leq L$
- Define:  $S_L^{\rightarrow} = \bigcup_{\prec} S_L^{\prec}$ .
- Note: Simpler definitions don't work (counterexamples).
- Prop:  $\exists \prec$  s.t.  $S_L^{\rightarrow} = S_L^{\prec}$  and  $S_L^{\rightarrow}$  is finite.

# **UCBExplore**



- 1. Discover
- 2. Propose
- 3. Verify

### Main result

**Theorem 8** When algorithm UcbExplore is run with inputs  $s_0$ , A,  $L \ge 1$ ,  $\varepsilon > 0$ , and  $\delta \in (0,1)$ , then with probability  $1 - \delta$ 

- it terminates after  $O\left(\frac{SAL^3}{\varepsilon^3}\left(\log\frac{SAL}{\varepsilon\delta}\right)^3\right)$  exploration steps,
- discovers a set of states  $\mathcal{K} \supseteq \mathcal{S}_L^{\rightarrow}$ ,
- and for each  $s \in \mathcal{K}$  outputs a policy  $\pi_s$  with  $\tau(s|\pi_s) \leq (1+\varepsilon)L$ ,

where 
$$S = |\mathcal{K}| \leq |\mathcal{S}_{(1+\varepsilon)L}^{\rightarrow}|$$
.

Anytime, continual learning version:

**Corollary 9** If UcbExplore is run with  $L_k = (1 + \varepsilon)^k$  and  $\delta_k = \frac{\delta}{2(k+1)^2}$  for  $k = 0, 1, 2, \ldots$ , then with probability  $1 - \delta$ , for any  $L \ge 1$  and any  $s \in \mathcal{S}_L^{\rightarrow}$ , the algorithm will discover a policy  $\pi_s$  with  $\tau(s|\pi_s) \le (1+\varepsilon)^2 L$  after  $O\left(\frac{SAL^3}{\varepsilon^4} \left(\log \frac{SAL}{\varepsilon\delta}\right)^3\right)$  exploration steps where  $S = |\mathcal{S}_{(1+\varepsilon)^2L}^{\rightarrow}|$ .

# **Nonstationarity**



### **Performance metric**

- *F*: number of times the transition probabilities change
  - (t=1: always a change)
- W(L) time steps to find all L-reachable states in a single MCP  $\Rightarrow F\ W(L)$  time steps when there are F changes
- Classification of time steps: Alg has correct knowledge of what is reachable; or not. Alg is competent vs incompetent
- Goal: Minimize the # time steps when Alg is incompetent
- Difficulty: The location and number of changes is unknown

### **Main ideas**

- Two phases:
  - Build set of reachable states  $\mathcal{K}$  (UCBExplore)
  - Repeat: Check for new reachable states (UCBExplore) or disappearing states (as in verification phase of UCBExplore) – break out when UCBExplore often takes too long compared to predicted runtime
- Checking starts when building is done
- Issues with building:
  - How can the alg know whether a change happened while building?
     E.g. new state was found reachable. Before change, after change?
- Solution: Staggered start of many parallel building processes.
   Quit building when any of the processes finishes.

### Result

• **Theorem**: Up to lower order terms and log factors, the total number of steps when the alg is incompetent is at most  $(W(L)F)^2$  irrespective of when the changes happen.

#### Questions:

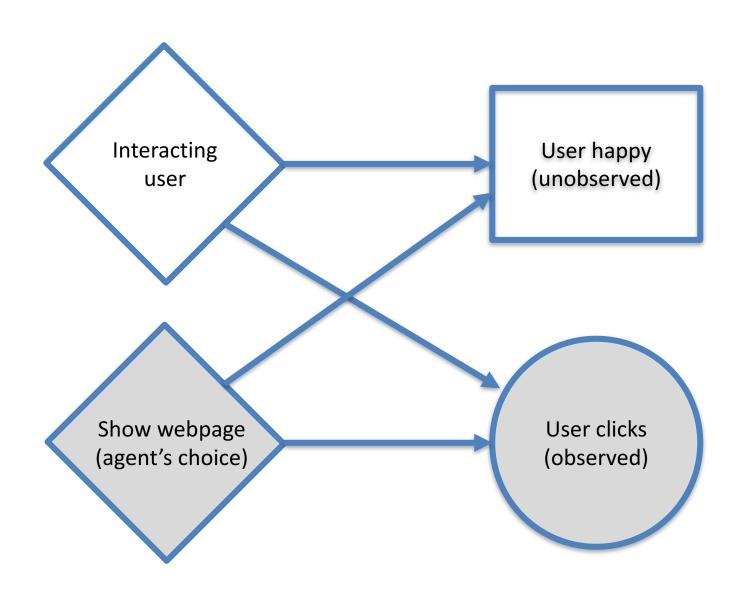
- Is W(L) cost necessary without changes?
- Is the quadratic dependence above necessary?
- Nontabular?

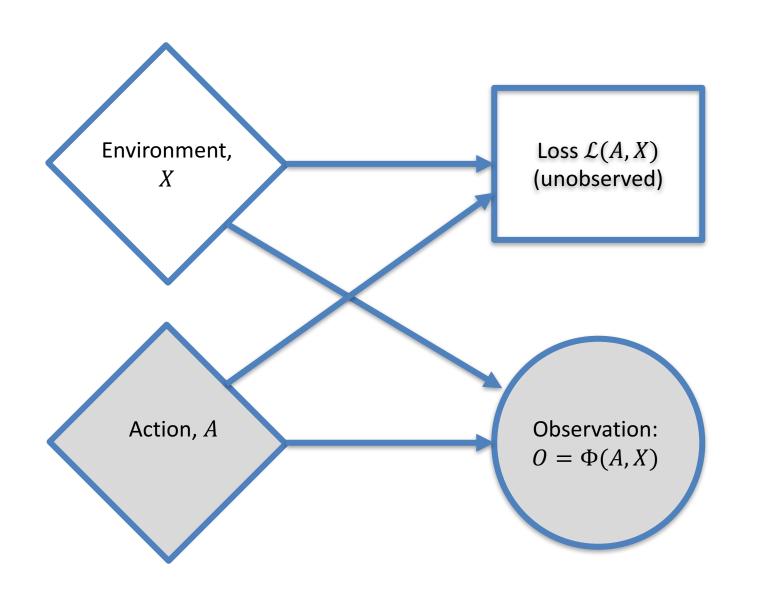
### Part II: Unobserved rewards

- RL: rewards are always observed
  - internally computed
  - externally provided
- Is this reasonable?
- Is the environment state observable?



- What happens when rewards are not observable?
- Consequences for:
  - Planning
  - Learning ⇒ exploration; which will need planning!
- Bandits: MPDs w. iid state
- Partial monitoring:  $POMPD^{-r}$  w. iid state





## **Partial Monitoring**

Learner is given maps  $\mathcal{L}$ ,  $\Phi$ 

For rounds t = 1, 2, ..., n:

- 1. Environment chooses  $X_t \in \mathcal{X}$
- 2. Learner chooses  $A_t \in \mathcal{A}$
- 3. Learners suffers loss  $\mathcal{L}(A_t, X_t)$  which remains hidden!
- 4. Learner observes feedback  $\Phi(A_t, X_t)$

Regret: 
$$R_n = \max_{a} \sum_{t=1}^{n} \mathcal{L}(A_t, X_t) - \mathcal{L}(a, X_t)$$

### Why great?

- Informal examples of PM problems:
  - Dynamic pricing
  - Altruistic agents
  - Statistical testing (balancing power and cost)
  - Delayed rewards/surrogates
- Subsumes classic frameworks:
  - finite-armed bandits
  - prediction with expert advice
  - bandits with graph feedback
  - linear bandits
  - dueling bandits
  - **—** ...

# Partial Monitoring – Classification Theorem

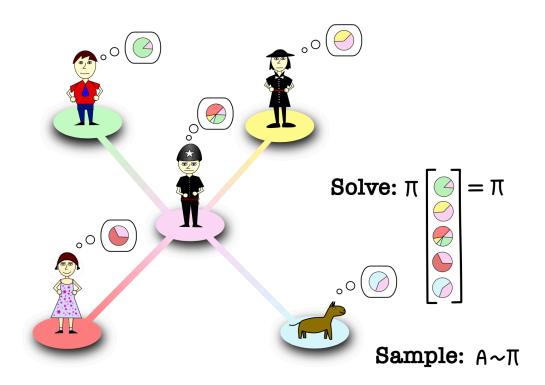
**Theorem**: Let  $\mathcal{A}, \mathcal{X}$  be finite. Let  $R_n^*(G)$  be the minimax regret on PM problem  $G = (\mathcal{L}, \Phi)$ . Then:

$$R_n^*(G) = \begin{cases} 0 & \text{if } G \text{ has no nb actions} \\ \Theta(\sqrt{n}) & \text{if } G \text{ is L. O. and has nb actions} \\ \Theta(n^{2/3}) & \text{if } G \text{ is G. O. but not L. O.} \\ \Omega(n) & \text{otherwise} \end{cases}$$

[Cesa-Bianchi, Lugosi, Stoltz, 2006; Bartók, Pál, Sz., 2011; Foster and Rakhlin, 2012; Antos, Bartók, Pál and Sz., 2013; Bartók, Foster, Pál, Rakhlin, Sz., 2014; Lattimore and Sz., 2019a].

### Algorithms?

- Classical approaches fail in partial monitoring
  - Optimism/Thompson-sampling/exponential weights
- Complicated algorithms exist; none are good!



### **Exploration by Optimisation**

(1) 
$$Q_{ta} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{sa}\right)}{\sum_{b=1}^{k} \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{sb}\right)}$$
  $\hat{\ell}_{s} \in \mathbb{R}^{k}$  is a loss estimator  $\Psi_{q}(z) = \langle q, \exp(-z) + z - 1 \rangle$ 

k actions, learning rate  $\eta$ 

(2) Find  $P_t$  and unbiased  $g_t$ : Actions  $\times$  Obs.  $\to \mathbb{R}^k$  minimising

$$\max_{x \in \mathcal{X}} \left[ \underbrace{\sum_{a=1}^k (P_{ta} - Q_{ta}) \mathcal{L}(a, x)}_{k} + \underbrace{\frac{1}{\eta} \sum_{a=1}^k P_{ta} \Psi_{Q_t} \left( \frac{\eta \, g_t(a, \Phi(a, x))}{P_{ta}} \right)}_{l} \right]$$
Loss for playing  $P_t$  not  $Q_t$ 
Stability of exponential weights

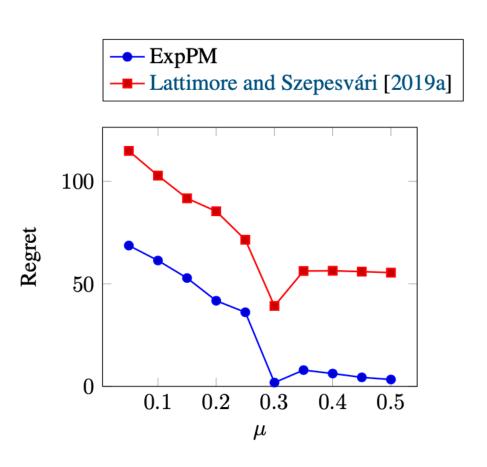
(3) Sample  $A_t \sim P_t$  and observe  $O_t$ 

(4) Set 
$$\hat{\ell}_t = g_t(A_t, O_t)$$

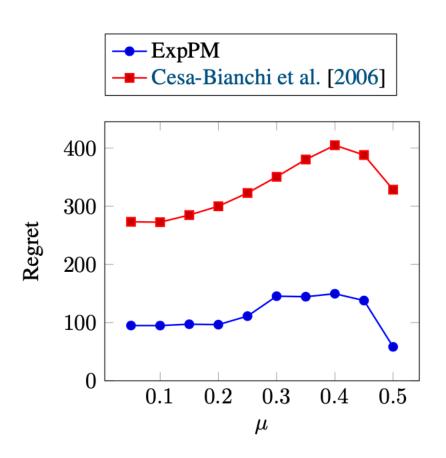
## **Theory**

- Single algorithm works in all 'learnable' finite games
- Near-optimal for bandits, full information, graph feedback
- Best known bounds in general case
- Essentially no tuning; learning rate tuned online

# **Experiments**



# **Experiments**



# **Conlusions/Future plans**

- It is sometimes good to be ambitious!
- More experiments needed
- How to solve the optimization problem? It is convex! But cost is not O(k) ..
- What happens when  ${\mathcal X}$  is large or infinite?
- Generalizations?
  - Add state/context! Use "explore by optimization" beyond PM?
- Find more applications?

# Part III: RL & generalization

- The world is big
- Need approximate models
- Minimal assumptions to make RL + Gen work?
- policy error
   =f(approximation error of "model")



#### 3 results:

Generative model access/planning by solving a reduced order model Model-based RL: factored linear models – a convenient model class Model-free RL

## **LRA: Linearly Relaxed ALP**

$$\min_{r \in \mathbb{R}^k} c^{\mathsf{T}} \Phi r \text{ s.t.}$$

$$\sum_{a} W_a^{\mathsf{T}} \Phi r \ge \sum_{a} W_a^{\mathsf{T}} (g_a + \alpha P_a \Phi r)$$

$$c \ge 0, 1^{\mathsf{T}}c = 1$$

$$W_a \in [0, \infty)^{S \times m}, \psi \in [0, \infty)^S$$

$$\|J\|_{\infty, \psi} = \max_{s} \frac{|J(s)|}{\psi(s)}$$

$$\beta_{\psi} \coloneqq \alpha \max_{a} \|P_a \psi\|_{\infty, \psi} < 1$$

$$\psi \in \operatorname{span}(\Phi)$$

Theorem: Let 
$$\epsilon = \inf_{r \in \mathbb{R}^k} ||J^* - \Phi r||_{\infty, \psi}$$
,  $J_{\text{LRA}} = \Phi r_{\text{LRA}}$ , where  $r_{\text{LRA}}$ 

is the solution to the above LP. Then, under the said assumptions,

$$||J^* - J_{LRA}||_{1,c} \le \frac{2c^{\mathsf{T}}\psi}{1 - \beta_{\psi}} (3\epsilon + ||J_{ALP}^* - J_{LRA}^*||_{\infty,\psi})$$

$$J_{\text{ALP}}^{*}(s) = \min \{ r^{\mathsf{T}} \phi(s) : \Phi r \ge J^{*}, r \in \mathbb{R}^{k} \}$$

$$J_{\text{LRA}}^{*}(s) = \min \{ r^{\mathsf{T}} \phi(s) : W^{\mathsf{T}} E \ \Phi r \ge W^{\mathsf{T}} E \ J^{*}, r \in \mathbb{R}^{k} \}$$

- P. J. Schweitzer and A. Seidmann, "Generalized polynomial approximations in Markovian decision processes," *Journal of Mathematical Analysis and Applications*, vol. 110, pp. 568–582, 1985.
- D. P. de Farias and B. Van Roy, "The linear programming approach to approximate dynamic programming," *Operations Research*, vol. 51, pp. 850–865, 2003.
- —, "On constraint sampling in the linear programming approach to approximate dynamic programming," *Mathematics of Operations Research*, vol. 29, pp. 462–478, 2004.

### **Model-based RL**

**Theorem 7 (Baseline bound on MBRL policy error)** Consider some transition probability kernel  $\widetilde{\mathcal{P}}$  for the state and action spaces  $\mathcal{X}$  and  $\mathcal{A}$ . Let  $\widetilde{V}$  be the fixed point of  $MT_{\widetilde{\mathcal{P}}}$ , and  $\widetilde{\pi} = GT_{\widetilde{\mathcal{P}}}\widetilde{V}$ . Then

$$\|V^* - V^{\widetilde{\pi}}\|_{\infty} \le \frac{2\gamma}{1-\gamma} \|(\mathcal{P} - \widetilde{\mathcal{P}})\widetilde{V}\|_{\infty}.$$

This result is essentially contained in the works of Whitt (1978, Corollary to Theorem 3.1), Singh and Yee (1994, Corollary 2)<sup>2</sup>, Bertsekas (2012, Proposition 3.1), and Grünewälder et al. (2011, Lemma 1.1).

Good? Bad?

Bonus question: Can  $\|V^* - V^{\widetilde{\pi}}\|$  be controlled via controlling  $\|\tilde{V} - V^*\|$ ?

Can we do better? Perhaps using extra structure?

### Structure: Factored linear models

$$\mathcal{P}(dx'|x,a) \approx \xi(dx')^{\mathsf{T}} \psi(x,a)$$

$$\mathcal{P}$$
: VFUN  $\rightarrow$  AVFUN

$$\mathcal{R} \colon \mathsf{VFUN} \to \mathbb{R}^d$$

$$Q: \mathbb{R}^d \to \mathsf{AVFUN}$$

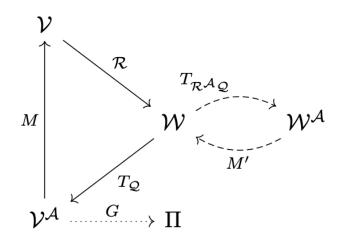
$$(\mathcal{P}V)(x,a) = \int V(x')\mathcal{P}(dx'|x,a)$$

$$\mathcal{R}V = \int V(x')\xi(dx') (= w) \in \mathbb{R}^d$$

$$(Qw)(x,a) = w^{\mathsf{T}}\psi(x,a)$$

$$\mathcal{P}\approx \mathcal{Q}\mathcal{R}$$

# Legend: $\mathcal{V} = VFUN$ $\mathcal{W} = \mathbb{R}^{\mathcal{I}} = CVFUN$ $\mathcal{V}^{\mathcal{A}} = AVFUN$



#### Special cases:

- Tabular
- Linear MDP
- KME
- Stoch. Fact.
- KBRL
- .

## Policy error in factored linear models

**Theorem 8 (Supremum-norm bound)** Let  $\hat{\pi}$  be the policy derived from the factored linear model defined using (1) and (2). If Assumptions 3 and 5 hold, then

$$\left\|V^* - V^{\hat{\pi}}\right\|_{\infty} \le \varepsilon(V^*) + \varepsilon(V^{\hat{\pi}}),\tag{3}$$

where  $\varepsilon(V) = \min(\varepsilon_1(V), \varepsilon_2)$ , and

$$\begin{split} &u(\varepsilon_{1}(V),\varepsilon_{2}), \, and \\ &\varepsilon_{1}(V) = \gamma \left\| (\mathcal{P} - \mathcal{Q}\mathcal{R})V \right\|_{\infty} + \frac{B\gamma^{2}}{1-\gamma} \left\| \mathcal{R}(\mathcal{P} - \mathcal{Q}\mathcal{R})V \right\|_{\infty}, \\ &\varepsilon_{2} = \frac{\gamma}{1-\alpha} \left\| (\mathcal{P} - \mathcal{Q}\mathcal{R})U^{*} \right\|_{\infty}. \end{split} \qquad \begin{aligned} &U^{*} = MT_{\mathcal{Q}}u^{*} \\ &u^{*} = M'T_{\mathcal{R}^{\mathcal{A}_{\mathcal{Q}}}}u^{*} \\ &\widehat{\pi} = GT_{\mathcal{Q}}u^{*} \end{aligned}$$

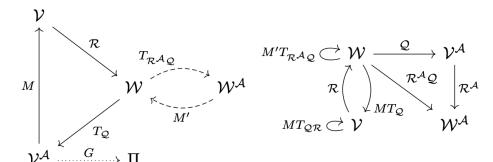
$$U^* = MT_{\mathcal{Q}}u^*$$

$$u^* = M'T_{\mathcal{R}^{\mathcal{A}}\mathcal{Q}}u^*$$

$$\hat{\pi} = GT_{\mathcal{Q}}u^*$$

**Assumption 3** The following hold for Q and  $\mathcal{R}^{A}$ :  $\|\mathcal{R}^{A}Q\| \leq 1$ .

**Assumption 5** We have that  $B \doteq \|Q\| < \infty$ .



#### **Questions:**

- Is the bound tight?
- Time/action abstraction?
- Efficient learning? What specific models to use?

### Online, model-free RL w. neural nets

- Continuing RL;  $\bar{R}_T$ : pseudo regret; let  $Q_t \coloneqq Q_{\pi^{(t)}}$ .
- Key identity:

$$\bar{R}_T = \sum_{x} \nu_{\pi^*}(x) \sum_{t=1}^{T} \langle Q_t(x,\cdot), \pi^{(t)}(\cdot | x) \rangle - \langle Q_t(x,\cdot), \pi^*(\cdot | x) \rangle$$

Then..

$$\langle Q_{t}(x,\cdot), \pi^{(t)}(\cdot | x) \rangle - \langle Q_{t}(x,\cdot), \pi^{*}(\cdot | x) \rangle =$$

$$\langle \hat{Q}_{t}(x,\cdot), \pi^{(t)}(\cdot | x) \rangle - \langle \hat{Q}_{t}(x,\cdot), \pi^{*}(\cdot | x) \rangle \implies \text{Control w. OLP}$$

$$+ \langle Q_{t}(x,\cdot), \pi^{(t)}(\cdot | x) \rangle - \langle \hat{Q}_{t}(x,\cdot), \pi^{(t)}(\cdot | x) \rangle \implies \text{A: } L^{1}(\nu_{\pi^{*}} \otimes \pi^{(t)})$$

$$+ \langle \hat{Q}_{t}(x,\cdot), \pi^{*}(\cdot | x) \rangle - \langle Q_{t}(x,\cdot), \pi^{*}(\cdot | x) \rangle \implies \text{A: } L^{1}(\nu_{\pi^{*}} \otimes \pi^{*})$$

### **Politex**

```
Input: phase length \tau > 0, initial state x_0
Set Q_0(x, a) = 0 \ \forall x, a
for i := 1, 2, ..., do
    Policy iteration: \pi_i(\cdot|x) = \operatorname{argmin}\langle u, \widehat{Q}_{i-1}(x,\cdot) \rangle
                                                        u \in \Delta
              POLITEX: \pi_i(\cdot|x) = \underset{u \in \Delta}{\operatorname{argmin}} \langle u, \sum_{i=0}^{i-1} \widehat{Q}_j(x,\cdot) \rangle - \eta^{-1} \mathcal{H}(u)
                                               \propto \exp\left(-\eta \sum_{i=0}^{l-1} \widehat{Q}_j(x,\cdot)\right)
   Execute \pi_i for \tau time steps and collect dataset \mathcal{Z}_i
   Estimate Q_i from Z_1, \ldots, Z_i, \pi_1, \ldots, \pi_i
end for
```

# Regret bounds

#### **Theorem**

Assume that for any policy  $\pi$ , after following  $\pi$  for n steps, a black-box function approximator produces an action-value function whose error is  $\epsilon_0 + 1/\sqrt{n}$  up to some universal constant.

Then the average pseudo-regret of Politex after T steps is  $\epsilon_0 + T^{-\frac{3}{4}}$ .

### Refinements

- Problem: How to get the  $\epsilon_0 + \frac{1}{\sqrt{n}}$  error?
  - E.g. linear VFA? LSPE!  $\epsilon_0$ : limiting error of LSPE could be  $\gg$  best error.
- Refinement 1:
  - Use on-policy state value function-approximator
  - add extra action-dithering per state
  - assume all policies excite state-features
- Refinement 2:
  - Assume access to an "exploration policy" that excites features
  - Interleave exploration steps with policy steps
  - Use off-policy(!) VFA (which one?)
  - $\Rightarrow$  Regret degrades a bit
- Questions:
  - Can we do better with other OL methods? Is averaging really necessary?
  - Better value-function learners?

### Summary

#### **Part I: Curiosity**

#### curiosity | kjʊərɪ'psɪti |

noun (plural curiosities)

1 [mass noun] a strong desire to know or learn something: filled with curiosity, she peered through the window | curiosity got the better of me, so I called him.

"One of the striking differences between current reinforcement learning algorithms and early human learning is that animals and infants appear to explore their environments with autonomous purpose, in a manner appropriate to their current level of skills."

Models for Autonomously Motivated Exploration in Reinforcement Learning $^{\star}$ 

> Peter Auer<sup>1</sup>, Shiau Hong Lim<sup>1</sup>, and Chris Watkins<sup>2</sup> ALT 2011, invited talk by Peter

Add robot vs. dog/child exploring its environment

#### **Exploration by Optimisation**

(1) 
$$Q_{ta} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{sa}\right)}{\sum_{b=1}^{k} \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{sb}\right)}$$
  $\hat{\ell}_{s} \in \mathbb{R}^{k}$  is a loss estimator  $\Psi_{q}(z) = \langle q, \exp(-z) + z - 1 \rangle$ 

k actions, learning rate  $\eta$ 

(2) Find  $P_t$  and unbiased  $g_t$ : Actions  $\times$  Obs.  $\to \mathbb{R}^k$  minimising

$$\max_{x \in \mathcal{X}} \left[ \underbrace{\sum_{a=1}^{k} (P_{ta} - Q_{ta}) \mathcal{L}(a, x)}_{\text{Loss for playing } P_{t} \text{ not } Q_{t}} + \underbrace{\frac{1}{\eta} \sum_{a=1}^{k} P_{ta} \Psi_{Q_{t}} \left( \frac{\eta \, g_{t}(a, \Phi(a, x))}{P_{ta}} \right)}_{\text{Stability of exponential weights}} \right]$$

- (3) Sample  $A_t \sim P_t$  and observe  $O_t$
- (4) Set  $\hat{\ell}_t = g_t(A_t, O_t)$

#### Part III: RL & generalization

- · The world is big
- Need approximate models
- Minimal assumptions to make RL + Gen work?
- policy error =f(approximation error of "model")



#### 3 results:

Generative model access/planning by solving a reduced order model Model-based RL: factored linear models - a convenient model class Model-free RL