Wilfrid Gangbo

Title: Lifting absolutely continuous curves from $P(\mathbf{T}^d)$ to $P_2(\mathbf{R}^d)$.

Abstract: Recall that the rotation vector of an absolutely continuous curve x : [0,) \mathbf{T}^d when it exists, is the asymptotic limit of $\hat{x}(t)/t$, where \hat{x} is any lift of x to the universal cover \mathbf{R}^d : One of the main difference with an absolutely continuous curve \mathbf{R}^d , which

constitutes an analytical challenge, is the non uniqueness of a velocity field associated to . Given c \mathbf{R}^d , we identified a unique velocity $\mathbf{v_c}$ of satisfying a certain variational principle and derived existence of a lift of ($\mathbf{v_c}$) to obtain an absolutely continuous curve $\hat{\mathbf{r}}$ (\mathbf{r}).

This has been central for extending the Mather/Mane theory to $P(\mathbf{T}^d)$ and make inferences about the asymptotic behavior of classes of partial differential equations.