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Abstract

We study the Boolean Hierarchy in the context of two-party communication complexity, as well as
the analogous hierarchy defined with one-sided error randomness instead of nondeterminism. Our results
provide a complete picture of the relationships among complexity classes within and across these two
hierarchies. In particular, we prove a query-to-communication lifting theorem for all levels of the Boolean
Hierarchy and use it to resolve an open problem stated in the paper by Halstenberg and Reischuk (CCC
1988) which initiated this topic.

1 Introduction

The Boolean Hierarchy in classical complexity theory consists of problems that have a polynomial-time
algorithm making a constant number of queries to an NP oracle. This hierarchy has an intricate relationship
with other complexity classes, and its second level (DP) captures the complexity of certain “exact” versions of
optimization problems. It consists of an infinite sequence of complexity classes NP(q) for q = 1, 2, 3, . . . (where
NP(1) = NP and NP(2) = DP). Among the several equivalent ways of defining these classes [Wec85, CH86,
KSW87, Wag88], perhaps the simplest is that NP(q) consists of all decision problems that can be computed
by taking the parity of the answers to a sequence of q NP problems on the given input. As illustrated in

Figure 1, it is known that these levels are intertwined with the classes P
NP[q]
‖ of all decision problems solvable

in polynomial time using q nonadaptive NP queries (for constant q) [KSW87, Wag88, Bei91]:

NP(q) ⊆ P
NP[q]
‖ ⊆ NP(q + 1) and coNP(q) ⊆ P

NP[q]
‖ ⊆ coNP(q + 1)

(by closure of P
NP[q]
‖ under complementation). Here, coNP(q) means co(NP(q)) rather than (coNP)(q).

Analogous to the above Nondeterministic Boolean Hierarchy, one can define the Randomized Boolean Hi-
erarchy by using RP (one-sided error randomized polynomial time) instead of NP in the definitions [BBJ+89].

The analogous inclusions like in Figure 1 hold among all the classes RP(q), coRP(q), and P
RP[q]
‖ , by similar

arguments. Although the (suitably defined) Polynomial Hierarchy over RP is known to collapse to its second
level, which equals BPP [ZH86], the Boolean Hierarchy over RP has not been widely studied.

We investigate the Nondeterministic and Randomized Boolean Hierarchies in the context of two-party
communication complexity. In the basic deterministic model of communication [Yao79, KN97], Alice is given
an input x and Bob is given an input y, and they wish to collaboratively evaluate some function F (x, y)
of their joint input by engaging in a protocol that specifies how they exchange bits of information about
their inputs. Many classical complexity classes (P, RP, NP, and so on) have two-party communication
analogues [BFS86]. The area of structural communication complexity, which concerns the properties of and
relationships among these classes, is undergoing a renaissance and has turned out to yield new techniques and
perspectives for understanding questions in a variety of other areas (circuit complexity, proof complexity, data
structures, learning theory, delegation, fine-grained complexity, property testing, cryptography, extended
formulations, etc.) [GPW18b]. For any classical time-bounded complexity class C, we use Ccc to denote its
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Figure 1: Relations between classes in the Boolean Hierarchy. Here, C1 → C2 represents C1 ⊆ C2.

communication complexity analogue—the class of all two-party functions on n bits that admit a protocol
communicating at most polylog(n) bits, in a model defined by analogy with the classical C.

Halstenberg and Reischuk [HR88, HR90] initiated the study of the Nondeterministic Boolean Hierarchy
in two-party communication complexity. They observed that the inclusions shown in Figure 1 hold for the
communication versions of the classes, by essentially the same proofs as in the time-bounded setting. They
also proved that NP(q)cc 6= coNP(q)cc, which simultaneously implies that each of the inclusions is strict:

NP(q)cc ( P
NP[q]cc
‖ ( NP(q + 1)cc.

The communication version of the Randomized Boolean Hierarchy has not been explicitly studied as
far as we know, but it is interesting since Equality ∈ coRPcc and many randomized protocols have been
designed by reduction to this fact (e.g., GreaterThan ∈ PEquality ⊆ PRPcc). Recently, it was shown that
Equality is not the “only” total two-party function randomness is good for: RPcc 6⊆ PEquality [CLV18].
What can we say about the power of a fixed number of queries to an RPcc oracle? Our first contribution
strengthens the aforementioned separation due to Halstenberg and Reischuk.

Theorem 1. For total functions, coRP(q)cc 6⊆ NP(q)cc for every constant q.

Since RPcc ⊆ NPcc, Theorem 1 simultaneously implies that each of the inclusions in the Randomized

Boolean Hierarchy is strict: RP(q)cc ( P
RP[q]cc
‖ ( RP(q + 1)cc, and thus the hierarchy does not collapse.

Previously, no separation beyond the first level seemed to be known in the literature. Our proof of Theorem 1
is completely different from (and more involved than) Halstenberg and Reischuk’s proof of coNP(q)cc 6⊆
NP(q)cc, which used the “easy-hard argument” of [Kad88].

In [HR88, HR90], Halstenberg and Reischuk also explicitly asked whether the inclusion P
NP[q]cc
‖ ⊆

NP(q + 1)cc ∩ coNP(q + 1)cc is strict. When q = 0, this is answered by the familiar results that Pcc =
NPcc∩coNPcc when the classes are defined to contain only total functions [HR93], whereas Pcc ( NPcc∩coNPcc

(indeed, Pcc ( ZPPcc) holds when partial functions (promise problems) are allowed. For q > 0, we resolve
this 31-year-old open question by proving that the situation is analogous to the q = 0 case.

Theorem 2. For total functions,

P
NP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc and P

RP[q]cc
‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

Theorem 3. For partial functions, RP(q + 1)cc ∩ coRP(q + 1)cc 6⊆ P
NP[q]cc
‖ for every constant q.

Since RPcc ⊆ NPcc, Theorem 3 implies that

P
NP[q]cc
‖ ( NP(q + 1)cc ∩ coNP(q + 1)cc and P

RP[q]cc
‖ ( RP(q + 1)cc ∩ coRP(q + 1)cc

for partial functions. Taken together, Theorem 1, Theorem 2, and Theorem 3 form a complete picture of the
relationships among the classes within and across the Nondeterministic and Randomized Boolean Hierarchies
in communication complexity, for both total and partial functions.
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Our proof of Theorem 3 uses the paradigm of query-to-communication lifting [RM99, GLM+16, Göö15,
GPW18a, GKPW17, GPW17, Wat19]. This approach to proving communication lower bounds has led to
breakthroughs on fundamental questions in communication complexity and many of its application areas.
The idea consists of two steps:

(1) First prove an analogous lower bound in the simpler setting of decision tree depth complexity (a.k.a. query
complexity). This step captures the combinatorial core of the lower bound argument without the burden
of dealing with the full power of communication protocols.

(2) Then apply a lifting theorem, which translates the query lower bound into a communication lower bound
for a related two-party function. This step encapsulates the general-purpose machinery for dealing with
protocols, and can be reused from one argument to the next.

The availability of a lifting theorem greatly simplifies the task of proving certain communication lower
bounds, because it divorces the problem-specific aspects from the generic aspects. The format of a lifting
theorem is that if f : {0, 1}n → {0, 1} is any partial function and g : X × Y → {0, 1} is a certain “small”
two-party function called a gadget, then the communication complexity of the two-party composed function
f ◦ gn : Xn × Yn → {0, 1}—in which Alice gets x = (x1, . . . , xn), Bob gets y = (y1, . . . , yn), and their goal
is to evaluate (f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn))—should be approximately the query complexity
of the outer function f . One direction is generally straightforward: given a query upper bound for f , a
communication upper bound for f ◦ gn is witnessed by a protocol that simulates the decision tree for f and
evaluates g(xi, yi) whenever it queries the ith bit of the input to f ; the number of bits of communication is
at most the number of queries made by the decision tree times the (small) cost of evaluating a copy of g.
The other direction is the challenging part: despite Alice and Bob’s ability to send messages that depend in
arbitrary ways on all n coordinates, they nevertheless cannot do much better than just simulating a decision
tree, which involves “talking about” one coordinate at a time.

A lifting theorem must be stated with respect to a particular model of computation, such as deterministic,
one-sided error randomized, nondeterministic, etc., which we associate with the corresponding complexity
classes. Indeed, lifting theorems are known for P [RM99, GPW18a], RP [GPW17], NP [GLM+16, Göö15],
and many other classes. It is convenient to recycle complexity class names to denote the complexity of a
given function in the corresponding model, e.g., Pdt(f) is the minimum worst-case number of queries made
by any decision tree that computes f , and Pcc(F ) is the minimum worst-case communication cost of any
protocol that computes F . With this notation, the deterministic lifting theorem from [RM99, GPW18a] can
be stated as: for all f , Pcc(f ◦ gn) = Pdt(f) ·Θ(log n) where g : [m]× {0, 1}m → {0, 1} is the “index” gadget
defined by g(x, y) = yx with m := n20. (Note that Pcc(g) = O(log n) since Alice can send her logm-bit
“pointer” to Bob, who responds with the pointed-to bit from his string.) The index gadget has also been
used in lifting theorems for several other complexity classes.

We prove lifting theorems for all classes in the Nondeterministic Boolean Hierarchy, with the index gadget.

Theorem 4. For every partial function f : {0, 1}n → {0, 1} and every constant q,

(i) NP(q)cc(f ◦ gn) = NP(q)dt(f) ·Θ(log n)

(ii) P
NP[q]cc
‖ (f ◦ gn) = P

NP[q]dt
‖ (f) ·Θ(log n)

where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

Only part (ii) is needed for proving Theorem 3, but part (i) forms an ingredient in the proof of (ii) and
is of independent interest.

The most closely related lifting theorem to Theorem 4 is the one for PNP [GKPW17], corresponding to
computations that make an unbounded number of adaptive queries to an NP oracle. In that paper, the
overall idea was to approximately characterize PNP complexity in terms of decision lists (DL), and then
prove a lifting theorem directly for DLs. Briefly, a conjunction DL (introduced by [Riv87]) is a sequence of
small-width conjunctions each with an associated output bit, and the output is determined by finding the
first conjunction in the list that accepts the given input. A rectangle DL is similar but with combinatorial
rectangles instead of conjunctions. The proof from [GKPW17] shows how to convert a rectangle DL for
f ◦ gn into a conjunction DL for f .
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The gist of our arguments for both parts of Theorem 4 is to approximately characterize (via different tech-
niques than for PNP) these classes in terms of DLs with a bounded number of alternations (how many times
the associated output bit flips as we walk down the entire DL). The DL lifting argument from [GKPW17]
does not preserve the number of alternations, but we show how it can be adapted to do this. Our techniques
also yield an approximate lifting theorem for PNP

‖ (corresponding to computations that make an unbounded
number of nonadaptive NP oracle queries), but we omit the details.

2 Preliminaries

We assume familiarity with deterministic computation in query and communication complexity [Juk12,
KN97]. Recall the following standard definitions of nondeterministic and one-sided error randomized models:

• An NPdt decision tree is a DNF formula Φ. Given an input z, the output of such a decision tree is Φ
evaluated on z. A function f is computed by Φ if f(z) = Φ(z) on all inputs z for which f(z) is defined.
The cost of Φ is the maximum width (number of literals) in any conjunction in Φ.

• An NPcc protocol is a set R of combinatorial rectangles. Given an input (x, y), the output of such
a protocol is R(x, y) := 1 iff there exists an R ∈ R containing (x, y). A two-party function F is
computed by R if F (x, y) = R(x, y) on all inputs (x, y) for which F (x, y) is defined. The cost of R is
dlog(|R|+ 1)e, which intuitively represents the number of bits required to specify a rectangle in R or
indicate that the input is in no such rectangle.

• An RPdt decision tree is a distribution T over deterministic decision trees. Given an input z, the output
of such a decision tree is computed by sampling a deterministic decision tree T from T and evaluating
T (z). A function f is computed by T if for all z ∈ f−1(0), PrT∼T [T (z) = 1] = 0 and for all z ∈ f−1(1),
PrT∼T [T (z) = 1] ≥ 1/2. The cost of T is the maximum number of bits queried in any T in its support.

• An RPcc protocol is a distribution Π over deterministic communication protocols. Given an input
(x, y), the output of such a protocol is computed by sampling a deterministic protocol Π from Π and
evaluating Π(x, y). A function F is computed by Π if for all (x, y) ∈ F−1(0), PrΠ∼Π[Π(x, y) = 1] = 0
and for all (x, y) ∈ F−1(1), PrΠ∼Π[Π(x, y) = 1] ≥ 1/2. The cost of Π is the maximum number of bits
exchanged in any Π in its support.

Let C be an arbitrary complexity class name representing a model of computation (such as NP or RP).
We let Ccc(F ) denote the communication complexity of a two-party function F in the corresponding model:
the minimum cost of any Ccc protocol computing F . We let Cdt(f) denote the query complexity of a Boolean
function f in the corresponding model: the minimum cost of any Cdt decision tree computing f . Often we
will abuse notation by having F or f refer to an infinite family of functions, where there is at most one
function in the family for each possible input length. In this case, Ccc(F ) or Cdt(f) will be the complexity
parameterized by the input length n; we typically express this with asymptotic notation. When written by
itself, Ccc or Cdt denotes the class of all families of functions with complexity at most polylogarithmic in n,
in the corresponding model. We will always clarify whether a class Ccc or Cdt is meant to contain partial
functions or just total functions, since this is not explicit in the notation.

For RPcc and RPdt, the constant 1/2 in the success probability is arbitrary: by amplification, choosing a
different positive constant in the definition would only affect the complexity of any function by a constant
factor. Also note that NPdt(f) ≤ RPdt(f) for all f , and since we defined RPcc using the public-coin model,
we have NPcc(F ) ≤ RPcc(F ) + O(log n) for all F (by decreasing the number of random bits for sampling a
protocol to O(log n) and using nondeterminism to guess an outcome that results in output 1).

2.1 Nondeterministic and Randomized Boolean Hierarchies

In the following definitions, restrict C to be either NP or RP. We will use two different but equivalent
definitions of the constituent levels of the Nondeterministic and Randomized Boolean Hierarchies. Our
“official” definition is in terms of the following “decision list functions”:

Definition 5. ∆q : {0, 1}q → {0, 1} is defined inductively as follows:
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∧

¬Π4(x, y)∨

Π3(x, y)∧

¬Π2(x, y)Π1(x, y)

Figure 2: A visualization of a C(4)cc protocol, where each Πi is a Ccc protocol.

• ∆1(z1) := z1.

• If q is odd, ∆q(z1, . . . , zq−1, zq) := ∆q−1(z1, . . . , zq−1) ∨ zq.
• If q is even, ∆q(z1, . . . , zq−1, zq) := ∆q−1(z1, . . . , zq−1) ∧ (¬zq).

In other words, letting ⊕ : N → {0, 1} denote the parity function, we have ∆q(z) := ⊕(i) where i is the
greatest index such that zi = 1 (or i = 0 if z is all zeros).

Definition 6. A C(q)cc protocol is an ordered list of q many Ccc protocols Π = (Π1, . . . ,Πq). Given an input
(x, y), the output of the protocol is Π(x, y) := ∆q(Π1(x, y), . . . ,Πq(x, y)). The cost of a C(q)cc protocol is
the sum of the costs of the component Ccc protocols.

See Figure 2 for a visualization. The Nondeterministic Boolean Hierarchy is
⋃

constant q NP(q)cc and the
Randomized Boolean Hierarchy is

⋃
constant q RP(q)cc. We are also interested in the complement classes

coNP(q)cc and coRP(q)cc. As is standard, when we write coC(q)cc we refer to the class co(C(q)cc) (that is,
functions that are the negations of functions in C(q)cc) as opposed to (coC)(q)cc (that is, where the component
protocols are coCcc protocols).

There are analogous definitions in query complexity:

Definition 7. A C(q)dt decision tree is an ordered list of q many Cdt decision trees T = (T1, . . . , Tq). Given
an input z, the output of the decision tree is T (z) := ∆q(T1(z), . . . , Tq(z)). The cost of a C(q)dt decision tree
is the sum of the costs of the component Cdt decision trees.

Our alternative definition of the Nondeterministic and Randomized Boolean Hierarchies simply replaces
∆q with the parity function ⊕q : {0, 1}q → {0, 1}. In Appendix A.1 we provide the standard proof that these
official and alternative definitions are equivalent:

Lemma 8. For C ∈ {NP,RP}, if the definitions of C(q)cc and C(q)dt are changed to use ⊕q in place of ∆q,
it only affects the complexity measures C(q)cc(F ) and C(q)dt(f) by a constant factor (depending on q).

We use both definitions in this paper. We found that the ∆q definition makes it easier to prove the lifting
theorems, and the ⊕q definition makes it easier to prove concrete upper and lower bounds.

2.2 Decision lists

The reason we call ∆q a “decision list function” is that it highlights the connection between the Boolean
Hierarchy classes and the decision list models of computation:

Definition 9. A rectangle decision list LR is an ordered list of pairs (R1, `1), (R2, `2), . . . where each Ri is
a combinatorial rectangle, `i ∈ {0, 1} is a label, and the final rectangle in the list contains all inputs in the
domain. For an input (x, y), the output LR(x, y) is `i where i is the first index for which (x, y) ∈ Ri. The
cost of LR is the log of the length of the list.

Definition 10. A conjunction decision list LC is an ordered list of pairs (C1, `1), (C2, `2), . . . where each Ci
is a conjunction, `i ∈ {0, 1} is a label, and the final conjunction in the list accepts all inputs in the domain.
For an input z, the output LC(z) is `i where i is the first index for which Ci(z) = 1. The cost of LC is the
maximum width of any conjunction in the list.
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Note that the restriction on the final rectangle/conjunction is without loss of generality. The complexity
measures DLcc(F ) and DLdt(f) are the minimum cost of any rectangle/conjunction decision list computing
F or f , and the classes DLcc and DLdt contain those functions with complexity at most polylog(n).

We now define q-alternating decision lists to have the additional restriction that the sequence of output
labels `1, `2, . . . only flips between 0 and 1 at most q times, and furthermore the last label is 0. This restriction
partitions the list into contiguous levels where all labels in the same level are equal; without loss of generality
the last level consists only of the final “catch-all” entry. For convenience, in the list entries we replace the
labels with the level numbers themselves.

Definition 11. A q-alternating rectangle decision list LR is an ordered list of pairs (R1, `1), (R2, `2), . . .
where each Ri is a combinatorial rectangle, `i ∈ {0, 1, . . . , q} is a level such that `i ≥ `i+1 for all i, and the
final rectangle in the list contains all inputs in the domain and is the only rectangle at level 0. For an input
(x, y), the output LR(x, y) is ⊕(`i) where i is the first index for which (x, y) ∈ Ri. The cost of LR is the log
of the length of the list.

Definition 12. A q-alternating conjunction decision list LC is an ordered list of pairs (C1, `1), (C2, `2), . . .
where each Ci is a conjunction, `i ∈ {0, 1, . . . , q} is a level such that `i ≥ `i+1 for all i, and the final
conjunction in the list accepts all inputs in the domain and is the only conjunction at level 0. For an input
z, the output LC(z) is ⊕(`i) where i is the first index for which Ci(z) = 1. The cost of LC is the maximum
width of any conjunction in the list.

The complexity measures DL(q)cc(F ) and DL(q)dt(f) are the minimum cost of any q-alternating rectan-
gle/conjunction decision list computing F or f , and the classes DL(q)cc and DL(q)dt contain those functions
with complexity at most polylog(n).

It turns out that q-alternating decision lists are equivalent to NP(q) in both communication and query
complexity. This follows almost immediately from the definition of ∆q. For completeness, we include the
argument in Appendix A.2.

Lemma 13. DL(q)cc(F ) = Θ(NP(q)cc(F )) and DL(q)dt(f) = Θ(NP(q)dt(f)) for every constant q. Thus,
DL(q)cc = NP(q)cc and DL(q)dt = NP(q)dt for partial functions.

This can be contrasted with the lemma from [GKPW17] stating that DLcc = PNPcc and DLdt = PNPdt for
partial functions.

2.3 Parallel queries

In the following definitions, restrict C to be either NP or RP.

Definition 14. A P
C[q]cc
‖ protocol consists of a deterministic protocol Πdet that maps an input (x, y) to

two things: a function out : {0, 1}q → {0, 1} and an ordered list of q many Ccc protocols (Π1, . . . ,Πq). The

output is then out(Π1(x, y), . . . ,Πq(x, y)). The cost of a P
C[q]cc
‖ protocol is the communication cost (depth)

of Πdet plus the maximum over (x, y) of the sum of the costs of the Ccc protocols produced by Πdet(x, y).

Definition 15. A P
C[q]dt
‖ decision tree consists of a deterministic decision tree Tdet that maps an input z

to two things: a function out : {0, 1}q → {0, 1} and an ordered list of q many Cdt decision trees (T1, . . . , Tq).

The output is then out(T1(z), . . . , Tq(z)). The cost of a P
C[q]dt
‖ decision tree is the query cost (depth) of Tdet

plus the maximum over z of the sum of the costs of the Cdt decision trees produced by Tdet(z).

The following lemma states that at each leaf of Πdet or Tdet, we can replace the q “C oracle queries”
with one “C(q) oracle query” (where some leaves may output the oracle’s answer, while other leaves output
the negation of it). This was shown in classical time-bounded complexity using the so-called “mind-change
argument” [Bei91], and this argument can be translated directly to communication and query complexity.

For example, [HR90] used this method to show that P
NP[q]cc
‖ ⊆ NP(q + 1)cc∩coNP(q + 1)cc. For completeness,

we provide the proof in Appendix A.3. We will only need to use the result for C = NP.

Lemma 16. For C ∈ {NP,RP}, we have P
C[q]cc
‖ (F ) = Θ(PC(q)[1]cc(F )) and P

C[q]dt
‖ (f) = Θ(PC(q)[1]dt(f)) for

every constant q.
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3 Separations

Restatement of Theorem 1. For total functions, coRP(q)cc 6⊆ NP(q)cc for every constant q.

In Section 3.1 we prove a weaker version of Theorem 1 that holds for partial functions, by showing the
analogous query complexity separation coRP(q)dt 6⊆ NP(q)dt then applying our lifting theorem for NP(q),
Theorem 4.(i). (The query complexity separation is known to be false for total functions: coRP(q)dt ⊆
PRPdt ⊆ BPPdt ⊆ Pdt ⊆ NP(q)dt [Nis91].) This serves two purposes: it is a warmup for our direct proof
of Theorem 1 for total functions in Section 3.2, and it forms a component in our proof of Theorem 3 in
Section 3.3.

3.1 Proof of Theorem 1 for partial functions

Fix any constant q. Let ⊕qGapOr : ({0, 1}n)q → {0, 1} be the partial function where the input is divided
into q blocks z = (z1, . . . , zq) having the promise that each zi ∈ {0, 1}n is either all zeros or at least
half ones (call such an input valid), and which is defined by ⊕qGapOr(z) := 1 iff an odd number of
blocks i are such that zi is nonzero. Note that RP(q)dt(⊕qGapOr) = O(1) by Lemma 8 and the fact that

RPdt(GapOr) = 1. Letting g : [m] × {0, 1}m → {0, 1} be the index gadget with m := (qn)20, this implies
that RP(q)cc(⊕qGapOr ◦ gqn) = O(log n) (here we have used the “easy direction” of RP(q) lifting; the
“hard direction” remains an open problem) and thus ⊕qGapOr ◦ gqn ∈ coRP(q)cc. We will now prove that
NP(q)dt(⊕qGapOr) = Ω(n), which by Theorem 4.(i) implies that NP(q)cc(⊕qGapOr ◦ gqn) = Ω(n log n).

Suppose for contradiction ⊕qGapOr has an NP(q)dt decision tree of cost k ≤ n/2, say T = (Φ1, . . . ,Φq)
where each Φi is a DNF. By Lemma 8 we may assume the decision tree outputs 1 iff an odd number of these
DNFs accept the input, in other words, T (z) := ⊕q(Φ1(z), . . . ,Φq(z)).

We will iteratively construct a sequence of partial assignments ρj ∈ ({0, 1, ∗}n)q for j = 0, . . . , q such that
(i) there are at least j many values of i for which Φi accepts all inputs that are consistent with ρj , and (ii) ρj

is consistent with a valid input where exactly j blocks are nonzero. We obtain the contradiction when j = q:
by (ii) some valid input z consistent with ρq has zi nonzero for all i and thus ⊕qGapOr(z) = 1−⊕(q), yet
by (i) we have Φi(z) = 1 for all i and thus T (z) = ⊕(q), contradicting the supposed correctness of T .

We will actually maintain stronger invariants than the above (i) and (ii): For (i), we will actually have
for some j values of i—we assume they are 1, . . . , j for notational convenience—some individual conjunction
Ci of Φi accepts all inputs consistent with ρj . For (ii), ρj will actually have the following form: for some
fixed assignment lj = (l1, . . . , lj) ∈ ({0, 1}n)j such that li is at least half ones for all i ∈ [j] (“left”), and
for some partial assignment rj ∈ ({0, ∗}n)q−j (“right”), we have ρj := ljrj . The valid input zj obtained by
filling in a 0 for each ∗ in ρj has exactly j nonzero blocks, as needed for (ii).

In fact, we will maintain that rj has at least half stars in each block. Specifically, the total number of
zeros in rj will be at most the sum of the widths of the conjunctions C1, . . . , Cj , which is at most the sum
over all i ∈ [q] of the maximum width of Φi, which equals k ≤ n/2. At the end, rq ∈ ({0, ∗}n)q−q will be the
empty tuple, which means ρq will be the fixed valid input lq = zq, which has all blocks nonzero.

We start with ρ0 = r0 = (∗n)q, which indeed has no zeros. Now supposing we already have lj and rj

satisfying all the properties from the previous two paragraphs, we explain how to obtain lj+1 ∈ {0, 1}n and
rj+1 ∈ ({0, ∗}n)q−(j+1) so these properties again hold (with lj+1 := lj lj+1).

We first observe that zj := lj(0n)q−j , which is consistent with ρj , must be accepted by at least one
conjunction from Φj+1, . . . ,Φq. This is because zj is already accepted by the conjunctions C1, . . . , Cj , and
these cannot be the only values of i such that Φi(z

j) = 1 since otherwise we would have T (zj) = ⊕(j) while
⊕qGapOr(zj) = 1−⊕(j), contradicting the supposed correctness of T . Now pick any one conjunction from
Φj+1, . . . ,Φq that accepts zj , and assume this conjunction is Cj+1 from Φj+1 for notational convenience.
Defining the partial assignment r̃j from rj by filling in a 0 for each ∗ corresponding to a negative literal in
Cj+1 (note that Cj+1 has no positive literals among the last q − j blocks since it accepts zj), we see that
the total number of zeros in r̃j is at most the sum of the widths of the conjunctions C1, . . . , Cj+1.

Let rj+1 be all but the first block of r̃j , and obtain lj+1 by replacing the remaining stars in the first block
of r̃j with ones, noting that lj+1 is at least half ones since the first block of r̃j was at least half stars. Now
ρj+1 := lj+1rj+1 maintains the desired properties: (ii) is maintained since each block of lj+1 is at least half
ones, and rj+1 has at most (sum of widths of C1, . . . , Cj+1) many zeros and the rest stars. To see that (i) is
maintained, consider any input z consistent with ρj+1. Then z is also consistent with ρj and is thus accepted
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by each of C1, . . . , Cj . Moreover, Cj+1(z) = 1 since Cj+1(zj) = 1 and z and zj differ only in locations that
are stars in r̃j and therefore do not appear in Cj+1.

3.2 Proof of Theorem 1 for total functions

Fix any constant q. Let ⊕qNonEq : ({0, 1}n)q × ({0, 1}n)q → {0, 1} be the two-party total function where
Alice’s and Bob’s inputs are divided into q blocks x = (x1, . . . , xq) and y = (y1, . . . , yq) with each xi, yi ∈
{0, 1}n, and which is defined by ⊕qNonEq(x, y) := 1 iff there are an odd number of blocks i such that xi 6= yi.
Note that RP(q)cc(⊕qNonEq) = O(1) by Lemma 8 and the standard fact that RPcc(NonEq) = O(1). Thus
⊕qNonEq ∈ coRP(q)cc. We will now prove that NP(q)cc(⊕qNonEq) = Ω(n).

Suppose for contradiction ⊕qNonEq has an NP(q)cc protocol of cost k ≤ n/2q, say Π = (R1, . . . ,Rq)
where each Ri is a nonempty set of rectangles. By Lemma 8 we may assume the protocol outputs 1 iff
the input is contained in an odd number of the rectangle unions

⋃
R∈Ri

R for i ∈ [q], in other words,
Π(x, y) := ⊕q(R1(x, y), . . . ,Rq(x, y)). Note that, assuming Ri has cost ki, the total number of rectangles in
these unions is at most

∑
i |Ri| ≤

∏
i(|Ri|+ 1) ≤

∏
i 2ki = 2k.

We will iteratively construct a sequence of rectangles Qj for j = 0, . . . , q such that (i) there are at least j
many values of i for which Qj ⊆

⋃
R∈Ri

R, and (ii) Qj contains an input where exactly j blocks are unequal.
We obtain the contradiction when j = q: by (ii) some input (x, y) ∈ Qq has xi 6= yi for all i and thus
⊕qNonEq(x, y) = 1−⊕(q), yet by (i) we have Ri(x, y) = 1 for all i and thus Π(x, y) = ⊕(q), contradicting
the supposed correctness of Π.

We will actually maintain stronger invariants than the above (i) and (ii): For (i), we will actually have
for some j values of i—we assume they are 1, . . . , j for notational convenience—some individual rectangle
Ri ∈ Ri contains Qj . For (ii), Qj will actually have the following form: for some fixed strings aj =
(a1, . . . , aj) ∈ ({0, 1}n)j and bj = (b1, . . . , bj) ∈ ({0, 1}n)j such that ai 6= bi for all i ∈ [j], and for some
nonempty set Sj ⊆ ({0, 1}n)q−j , we have Qj := {ajs : s ∈ Sj} × {bjs : s ∈ Sj}, which we abbreviate as
ajSj × bjSj . Defining a diagonal input in Qj to be one of the form (ajs, bjs) for any particular s ∈ Sj , we
see that each diagonal input has exactly j unequal blocks, as needed for (ii).

In fact, we will maintain not just that Sj is nonempty, but that it is sufficiently large. Specifically, the
deficiency of Sj , defined as D∞(Sj) := n(q− j)− log |Sj |, will be at most (2j − 1)(2k+ 1). At the end, since
(2q−1)(2k+ 1) <∞, this guarantees that Sq will contain at least one element from ({0, 1}n)q−q. The latter
set only has one element, namely the empty tuple, so this means Qq will contain the single input (aq, bq),
which has all blocks unequal.

We start with S0 = ({0, 1}n)q, which indeed has D∞(S0) = 0 = (20 − 1)(2k + 1), and thus Q0 is the
rectangle of all possible inputs. Now supposing we already have aj , bj , and Sj satisfying all the properties
from the previous two paragraphs, we explain how to obtain aj+1, bj+1 ∈ {0, 1}n and Sj+1 ⊆ ({0, 1}n)q−(j+1)

so these properties again hold (with aj+1 := ajaj+1 and bj+1 := bjbj+1).
We first observe that each diagonal input in Qj must be contained in at least one rectangle from Rj+1 ∪

· · · ∪ Rq. This is because such an input (x, y) is already contained in the rectangles R1 ∈ R1, . . . , Rj ∈ Rj ,
and these cannot be the only values of i such that Ri(x, y) = 1 since otherwise we would have Π(x, y) = ⊕(j)
while ⊕qNonEq(x, y) = 1 − ⊕(j), contradicting the supposed correctness of Π. Now pick one of the (at
most 2k) rectangles from Rj+1 ∪ · · · ∪Rq that contains the largest fraction (at least 1/2k) of diagonal inputs

from Qj , and assume this rectangle is Rj+1 ∈ Rj+1 for notational convenience. Defining S̃j := {s ∈ Sj :

(ajs, bjs) ∈ Rj+1}, we see that D∞(S̃j) ≤ D∞(Sj) + k ≤ (2j − 1)(2k + 1) + k.

Since Rj+1 is a rectangle, it must in fact contain the entire rectangle ajS̃j × bjS̃j . Since ajS̃j × bjS̃j ⊆
ajSj × bjSj = Qj , by assumption it is also contained in each of R1, . . . , Rj . In the end, we will ensure Qj+1

is a subrectangle of ajS̃j×bjS̃j , which will maintain property (i): Qj+1 is contained in each of R1, . . . , Rj+1.

To maintain (ii), we will find some aj+1 6= bj+1 and then define Sj+1 := {s : aj+1s ∈ S̃j and bj+1s ∈ S̃j}.
Then aj+1S

j+1 ⊆ S̃j and bj+1S
j+1 ⊆ S̃j ensure that Qj+1 := aj+1Sj+1 × bj+1Sj+1 is indeed a subrectangle

of ajS̃j×bjS̃j , as we needed for (i). The fact that this can be done with a not-too-small Sj+1 is encapsulated
in the following technical lemma, which we prove shortly:

Lemma 17. Consider any bipartite graph with left nodes U and right nodes V , and suppose 1 ≥ ε ≥ 2/|U |.
If an ε fraction of all possible edges are present in the graph, then there exist distinct nodes u, u′ ∈ U that
have at least (ε2/2) · |V | common neighbors.
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Specifically, take U := {0, 1}n and V := ({0, 1}n)q−(j+1) (so |V | = 1 if j = q − 1, but that is fine), put

an edge between u ∈ U and v ∈ V iff uv ∈ S̃j , and let ε := |S̃j |/2n(q−j) = 1/2D∞(S̃j). Notice that ε ≥ 2/|U |
holds since D∞(S̃j) ≤ (2j − 1)(2k+ 1) + k ≤ 2j+1k− 1 ≤ n− 1 follows from our assumption that k ≤ n/2q.
Thus Lemma 17 guarantees we can pick strings aj+1 6= bj+1 (corresponding to the nodes u, u′) such that
Sj+1 (the set of common neighbors) has size at least (ε2/2) · 2n(q−(j+1)). Thus

D∞(Sj+1) := n(q − (j + 1))− log |Sj+1| ≤ log(2/ε2) = 2D∞(S̃j) + 1

≤ 2
(
(2j − 1)(2k + 1) + k

)
+ 1 =

(
2(2j − 1) + 1

)
(2k + 1) = (2j+1 − 1)(2k + 1)

as we needed for (ii). This finishes the proof of Theorem 1.

Proof of Lemma 17. Let du and dv denote the degrees of nodes u ∈ U and v ∈ V , and let du,u′ denote the
number of common neighbors of u, u′ ∈ U . Summing over ordered pairs u, u′ of not-necessarily-distinct left
nodes, we have ∑

u,u′∈U
du,u′ =

∑
v∈V

d2
v ≥

( ∑
v∈V

dv
)2
/|V | = ε2 · |U |2 · |V |

by Cauchy–Schwarz and the assumption
∑
v∈V dv = ε · |U | · |V |. Now sampling u, u′ independently uniformly

at random from U , we have

ε2 · |V | ≤ E
u,u′

[du,u′ ] ≤ E
u,u′

[du,u′ | u 6= u′] + E
u

[du] · Pr
u,u′

[u = u′]

(the conditioning is valid by the assumption |U | ≥ 2). Since Eu[du] = ε · |V | and Pru,u′ [u = u′] = 1/|U |,
rearranging gives

E
u,u′

[du,u′ | u 6= u′] ≥ ε2 · |V | − ε · |V |/|U | ≥ (ε2/2) · |V |

where the last inequality holds by the assumption 1/|U | ≤ ε/2. Thus there must be some u 6= u′ such that
du,u′ is at least this large.

3.3 Proof of Theorem 3

Restatement of Theorem 3. For partial functions, RP(q + 1)cc ∩ coRP(q + 1)cc 6⊆ P
NP[q]cc
‖ for every

constant q.

Fix any constant q. Let Which⊕q+1GapOr : ({0, 1}2n)2(q+1) → {0, 1} be the following partial function:
The input is divided into two halves z = (z0, z1), and each half is divided into q+1 blocks zh = (zh1 , . . . , z

h
q+1)

having the promise that each zhi ∈ {0, 1}2n is either all zeros or at least a quarter ones, and moreover it is
promised that the number of nonzero blocks in z0 has the opposite parity as the number of nonzero blocks
in z1 (call such an input valid). The partial function is defined by

Which⊕q+1GapOr(z) =

{
1 if the number of nonzero blocks is odd in z0 and even in z1

0 if the number of nonzero blocks is even in z0 and odd in z1
.

We henceforth abbreviate Which⊕q+1GapOr as f . Note that RP(q + 1)dt(f) = O(1) by applying the
RP(q + 1)dt decision tree for ⊕q+1GapOr on z0 (adapted for the different block length and different threshold
for fraction of ones in a block). By symmetry (focusing on z1), we also have RP(q + 1)dt(f) = O(1). Letting
g : [m]× {0, 1}m → {0, 1} be the index gadget with m := N20 where N := 4(q + 1)n, this implies that

RP(q + 1)cc(f ◦ gN ) = O(log n) and coRP(q + 1)cc(f ◦ gN ) = O(log n)

(by the “easy direction” of RP(q + 1) lifting) and thus f ◦ gN ∈ RP(q + 1)cc ∩ coRP(q + 1)cc. We will now

prove that P
NP[q]dt
‖ (f) = Ω(n), which by Theorem 4.(ii) implies that P

NP[q]cc
‖ (f ◦ gN ) = Ω(n log n).

We show this by reduction from the fact that NP(q)dt(⊕qGapOr) = Ω(n). We henceforth abbreviate
⊕qGapOr as f ′, and as in Section 3.1 we assume f ′ has block length n and threshold half. Supposing f has

a P
NP[q]dt
‖ decision tree T of cost k ≤ n/2, say with deterministic phase Tdet, we will use it to construct an

NP(q)dt decision tree T ′ of cost at most k for f ′.
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By Lemma 16 we may assume that each leaf of Tdet produces a single NP(q)dt decision tree and chooses
whether to output the same or opposite answer as that decision tree. Follow the root-to-leaf path in Tdet

where all queries are answered with zero. Let ρ ∈ ({0, ∗}2n)2(q+1) be the partial assignment with at most
k ≤ n/2 zeros that records these queries (so an input leads to this leaf iff it is consistent with ρ). Let
Tleaf = (Φ1, . . . ,Φq) be the NP(q)dt decision tree of cost at most k produced at this leaf, where each Φi is a
DNF. By symmetry, we assume (without loss of generality) that this leaf chooses to output the same answer
as Tleaf.

Given any valid input z′ to f ′, we show how to map it to a valid input z to f such that (i) f ′(z′) = f(z),
(ii) z is consistent with ρ, and (iii) each bit of z either is fixed or is some preselected bit of z′. Since (iii)
implies that Tleaf(z) can be viewed as an NP(q)dt decision tree T ′(z′) by substituting a constant or variable
of z′ in for each variable of z (which does not increase the width of any conjunction), and T ′ would correctly
compute f ′ since

f ′(z′) = f(z) = T (z) = Tleaf(z) = T ′(z′)

by (i), correctness of T , (ii), and (iii) respectively, this would show that NP(q)dt(f ′) ≤ k ≤ n/2, which we
know is false from Section 3.1.

To define z, we start with ρ (that is, we place zeros everywhere ρ requires, thus ensuring (ii)). Since ρ
has at most n zeros in each block (indeed, at most n/2 zeros total), we can then place more zeros in such a
way that each block now has exactly n zeros and n stars. Next we replace the stars in z0

q+1 with ones and
replace the stars in z1

q+1 with zeros. Finally, for each i ∈ [q], we fill in the stars of z0
i with a copy of z′i and

fill in the stars of z1
i with another copy of z′i. This construction satisfies (iii).

To verify (i), first observe that since each block of z′ is either all zeros or at least half (n/2) ones, this
ensures each block of z is either all zeros or at least a quarter (2n/4) ones. Furthermore, if z′ has exactly `
nonzero blocks then the number of nonzero blocks is ` + 1 in z0 (since z0

q+1 is nonzero) and ` in z1 (since
z1
q+1 is all zeros). Hence if f ′(z′) = 1 (` is even) then f(z) = 1 (since ` + 1 is odd and ` is even), and if
f ′(z′) = 0 (` is odd) then f(z) = 0 (since ` + 1 is even and ` is odd). Thus f ′(z′) = f(z), and this finishes
the proof of Theorem 3.

4 Total function collapse

Restatement of Theorem 2. For total functions,

P
NP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc and P

RP[q]cc
‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

We start with the intuition for the nondeterministic case of Theorem 2. This is proved in a way similar
to the specific result for q = 0 (that is, for total functions, Pcc = NPcc ∩ coNPcc). In that proof, Alice
and Bob can use the fact that the rectangles in the NPcc protocol’s 1-monochromatic covering of F are
disjoint from the rectangles in the coNPcc protocol’s 0-monochromatic covering. Specifically, if F (x, y) = 1,
then (x, y) is in some 1-rectangle, which is row-disjoint or column-disjoint from each 0-rectangle. (If a
1-rectangle and 0-rectangle shared a row and a column, they would intersect, which is not possible for a
total function.) Therefore, Alice and Bob can repeatedly eliminate from consideration at least half of the
remaining 0-rectangles, by identifying a 1-rectangle that either has x in its row set but is row-disjoint from at
least half the remaining 0-rectangles, or has y in its column set but is column-disjoint from at least half the
remaining 0-rectangles. If (x, y) is indeed in a 1-rectangle, then this process can always continue until there
are no 0-rectangles left. If (x, y) is in a 0-rectangle, then this process will never eliminate that rectangle, so
the process will halt with a nonempty set of 0-rectangles.

We repeat a similar argument, but using the “top level” of the NP(q + 1)cc and coNP(q + 1)cc protocols
for F as our monochromatic rectangle sets. Here we think of a coNP(q + 1)cc protocol as computing F by
applying ∆q+1 (with negations pushed to the leaves) to the indicators for q+ 1 rectangle unions. Depending
on the parity of q, the rectangle union Rq+1 queried at depth 1 of the NP(q + 1)cc protocol will correspond to
either 1-monochromatic rectangles or 0-monochromatic rectangles for F . The rectangle union R′q+1 queried
at depth 1 of the coNP(q + 1)cc protocol will be the opposite color of monochromatic rectangles. Crucially,
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NP(4)cc protocol

∧

¬R4(x, y)∨

R3(x, y)∧

¬R2(x, y)R1(x, y)

coNP(4)cc protocol

∨

R′4(x, y)∧

¬R′3(x, y)∨

R′2(x, y)¬R′1(x, y)

Figure 3: If a total function has an NP(4)cc protocol and a coNP(4)cc protocol, then the rectangle unions
from the NPcc functions at depth one of each protocol are disjoint.

this means that no input is in a rectangle from both of these sets (as we are assuming F is total). See
Figure 3 for an illustration.

A key observation is that a deterministic protocol similar to the one used in the q = 0 case, ran using
these top-level rectangle sets, will return the correct answer under the promise that (x, y) is in one of these
rectangles. Say, for example, that (x, y) is in some rectangle in the 1-monochromatic top-level set. Then
the deterministic protocol will successfully eliminate all 0-rectangles from the other top-level set, and will
announce that the answer is 1. If (x, y) was in one of the 0-rectangles, then that rectangle will never be
eliminated, and so the protocol would announce that the answer is 0.

If (x, y) is in the top-level rectangle union for one of the protocols, then (x, y) is not in the top-level
rectangle union of the other protocol, so F (x, y) can be computed by the other protocol but where the top
level is skipped (resulting in only q many NPcc oracle queries). This boils down to the observation that
∆q+1(z1, . . . , zq, 0) = ∆q(z1, . . . , zq).

What if (x, y) is in neither top-level rectangle union? Then we can make no guarantees about the behavior
of the deterministic protocol—it might answer 0 or 1 (which we interpret as merely a “guess” for F (x, y)).
However, in this case both protocols correctly compute F (x, y) even if the top level is skipped. Therefore,
we will still get the correct answer no matter which guess is produced by the deterministic protocol.

What follows is the formal proof.

Proof of Theorem 2 for the nondeterministic case. We already know P
NP[q]cc
‖ ⊆ NP(q + 1)cc ∩ coNP(q + 1)cc

[HR90]. Let F : X×Y → {0, 1} be a two-party total function with max{NP(q + 1)cc(F ), coNP(q + 1)cc(F )} =
k. Consider any NP(q + 1)cc protocol for F with cost at most k, say Π = (R1, . . . ,Rq+1) where each Ri
is a nonempty set of rectangles. Consider any coNP(q + 1)cc protocol for F with cost at most k, say
Π′ = (R′1, . . . ,R′q+1) meaning that F (x, y) = ∆q+1(R′1(x, y), . . . ,R′q+1(x, y)).

Out of the two protocols Π and Π′, let Π∧ = (R∧1 , . . . ,R∧q+1) be whichever one has ∧ as its root gate,
and let Π∨ = (R∨1 , . . . ,R∨q+1) be whichever one has ∨ as its root gate (after pushing negations to the leaves

in Π′). Similarly, out of the two functions ∆q and ∆q, let ∆∧q be whichever one has ∧ as its root gate, and
let ∆∨q be whichever one has ∨ as its root gate. In other words:

Π∧ Π∨ ∆∧q ∆∨q

if q is odd Π Π′ ∆q ∆q

if q is even Π′ Π ∆q ∆q

We claim that Algorithm 1 is a P
NP[q]cc
‖ protocol with cost O(k2) that correctly computes F .

Claim 18. Algorithm 1 is a P
NP[q]cc
‖ protocol with cost O(k2).

Proof of Claim 18. Guess is a deterministic protocol. In each iteration of the loop, either at least half of
the remaining rectangles in R0 get removed, or the loop terminates. Since |R0| ≤ 2k at the beginning,
there can be at most k + 1 iterations. Each iteration involves up to k + 1 bits of communication, to specify
one of the at most 2k rectangles in R1 (or indicate the non-existence of a suitable rectangle in R1). Thus
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Algorithm 1 P
NP[q]cc
‖ protocol for F

1: function Guess
2: R0 ← R∧q+1 (set of 0-monochromatic rectangles)
3: R1 ← R∨q+1 (set of 1-monochromatic rectangles)
4: loop
5: if R0 = ∅ then return 1
6: else if there exists an R ∈ R1 whose row set contains x

and which is row-disjoint from at least half of the rectangles in R0 then
7: Alice announces such an R
8: remove from R0 all rectangles that are row-disjoint from R
9: else if there exists an R ∈ R1 whose column set contains y

and which is column-disjoint from at least half of the rectangles in R0 then
10: Bob announces such an R
11: remove from R0 all rectangles that are column-disjoint from R
12: else return 0

13: function Main
14: if Guess = 0 then return ∆∧q (R∨1 (x, y), . . . ,R∨q (x, y))

15: if Guess = 1 then return ∆∨q (R∧1 (x, y), . . . ,R∧q (x, y))

Guess has communication cost O(k2). Also, the q many nonadaptive NPcc oracle queries on line 14 or line
15 contribute at most k to the cost since they are just part of Π or Π′, so the overall cost is still O(k2).

Claim 19. If R∧q+1(x, y) = 1 then Guess = 0. If R∨q+1(x, y) = 1 then Guess = 1.

Proof of Claim 19. Assume R∧q+1(x, y) = 1, so (x, y) ∈ R for some R ∈ R∧q+1. Note that Guess only
removes a rectangle from R0 when it is certain that (x, y) is not in that rectangle (because x is not in its
row set or y is not in its column set). Thus R will never be removed from R0 throughout Guess, which
means R0 will never be empty, and Guess will eventually return 0.

Assume R∨q+1(x, y) = 1, so (x, y) ∈ R′ for some R′ ∈ R∨q+1. Observe that each rectangle in R∧q+1 is
0-monochromatic for F (since Π∧ outputs 0 on such inputs) and each rectangle in R∨q+1 is 1-monochromatic
for F (since Π∨ outputs 1 on such inputs). Since F is total, R′ is disjoint—and hence either row-disjoint
or column-disjoint—from each rectangle R ∈ R∧q+1 (since R′ contains only 1-inputs and R contains only
0-inputs). Thus in each iteration of the loop, either at least half the remaining rectangles in R0 are row-
disjoint from R′ ∈ R1 (which Alice would notice) or at least half are column-disjoint from R′ (which Bob
would notice). Either way, the loop will continue with one party announcing a rectangle (not necessarily R′)
and shrinking R0, which means the loop will not halt until R0 = ∅, and Guess will return 1.

Claim 20. For all x ∈ X and y ∈ Y, Algorithm 1 correctly computes F (x, y).

Proof of Claim 20. If Guess = 0 then R∨q+1(x, y) = 0 by Claim 19, and thus F (x, y) = Π∨(x, y) =
∆∧q (R∨1 (x, y), . . . ,R∨q (x, y)) ∨ R∨q+1(x, y) equals the output on line 14. If Guess = 1 then R∧q+1(x, y) = 0
by Claim 19, and thus F (x, y) = Π∧(x, y) = ∆∨q (R∧1 (x, y), . . . ,R∧q (x, y))∧¬R∧q+1(x, y) equals the output on
line 15.

Together, Claim 18 and Claim 20 show that Algorithm 1 witnesses P
NP[q]cc
‖ (F ) ≤ O(k2). This completes

the proof that for total functions, P
NP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc.

The corresponding argument for the Randomized Boolean Hierarchy is very similar. Note that since
RPcc ⊆ NPcc, we can simply interpret the (q+1)st components of our RP(q + 1)cc and coRP(q + 1)cc protocols
as NPcc protocols. Then Algorithm 1 would work in exactly the same way, except instead of usingR∨1 , . . . ,R∨q
or R∧1 , . . . ,R∧q as the oracle queries at the end, these would be replaced by RPcc protocols (the first q
components of our RP(q + 1)cc or coRP(q + 1)cc protocols).
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We remark that a similar approach shows that P
NP[q]dt
‖ = NP(q + 1)dt ∩ coNP(q + 1)dt for total functions.

(The corresponding result for randomized query complexity follows anyway from Pdt = BPPdt [Nis91].)

5 Query-to-communication lifting for NP(q)

Restatement of Theorem 4.(i). For every partial function f : {0, 1}n → {0, 1} and every constant q,

NP(q)cc(f ◦ gn) = NP(q)dt(f) ·Θ(log n)

where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

The big-O direction follows immediately from the same fact for NP: for every f , NPcc(f ◦gn) = NPdt(f) ·
O(log n) holds by replacing each of the nO(k) conjunctions in a width-k DNF with mk rectangles (each of
which contains inputs where the gadget outputs satisfy the conjunction), for a total of nO(k)mk = 2k·O(logn)

rectangles. In the rest of this section we prove the big-Ω direction. By Lemma 13 it suffices to show

DL(q)cc(f ◦ gn) = DL(q)dt(f) · Ω(log n).

5.1 Technical preliminaries

Our proof is closely related to the PNP lifting theorem of Göös, Kamath, Pitassi, and Watson [GKPW17], so
we start by recalling some definitions and lemmas that were used in that work. We will need to tweak some
of the statements and parameters, though.

Define G : [m]n × ({0, 1}m)n → {0, 1}n as G := gn. This partitions the input domain into 2n slices
G−1(z) = {(x, y) : g(xi, yi) = zi for all i ∈ [n]}, one for each z ∈ {0, 1}n. For a set Z ⊆ {0, 1}n, let
G−1(Z) :=

⋃
z∈Z G

−1(z).
Consider sets A ⊆ [m]n and B ⊆ ({0, 1}m)n. For I ⊆ [n], we let AI := {xI : x ∈ A} and BI :=

{yI : y ∈ B} be the projections onto the coordinates of I. The min-entropy of a random variable x is
H∞(x) := minx log(1/Pr[x = x]). We say A is δ-dense if the uniform random variable x over A satisfies
the following: for every nonempty I ⊆ [n], H∞(xI) ≥ δ|I| logm (that is, the min-entropy of the marginal
distribution of x on coordinates I is at least a δ fraction of the maximum possible for a distribution over
[m]I). The deficiency of B is D∞(B) := mn− log |B|.
Lemma 21 ([GKPW17, Lemma 11]). If A ⊆ [m]n is 0.8-dense and B ⊆ ({0, 1}m)n has deficiency at most
n4, then G(A×B) = {0, 1}n, that is, for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with G(x, y) = z.

Here the density parameter is δ = 0.8 and the deficiency is D∞(B) ≤ n4, instead of δ = 0.9 and
D∞(B) ≤ n2 as in the original. Lemma 21 still holds because our gadget size has increased: we use
m := n20, whereas [GKPW17] used m := n4. This can be verified by a simple substitution in the proof.

The next lemma is altered enough from the original that we will reprove it here.

Lemma 22 (A more general version of [GKPW17, Claim 12]). Let X ⊆ [m]n be 0.85-dense. If A′ ⊆ X
satisfies |A′| ≥ |X |/2k+1 then there exist an I ⊆ [n] of size |I| < 20(k + 1)/ logm and an A ⊆ A′ such that
A is fixed on coordinates I and 0.8-dense on all other coordinates.

The original version was for the special case X = [m]n. We observe that it is sufficient for X to be
δ-dense, for some suitable constant δ greater than the desired density of the resulting set A (here we use
δ = 0.85).

Proof of Lemma 22. If A′ is already 0.8-dense, then we can simply take I := ∅ and A := A′, so assume
otherwise. Let I ⊆ [n] be a maximal set of coordinates that violates 0.8-density: for the uniform random
variable x over A′, H∞(xI) < 0.8|I| logm. Since the uniform random variable X over X has H∞(XI) ≥
0.85|I| logm, and |A′| ≥ |X |/2k+1, we also have H∞(xI) ≥ 0.85|I| logm− (k+ 1). Combining these, we get
that k + 1 > 0.05|I| logm, which implies that |I| < 20(k + 1)/ logm.

We can now simply choose some α ∈ [m]I such that Pr[xI = α] > 20.8|I| logm, and take A := {x ∈ A′ :
xI = α}. This certainly satisfies that A is fixed on coordinates I. To see that A is 0.8-dense on all other
coordinates, assume for contradiction there is some nonempty J ⊆ [n] r I witnessing a 0.8-density violation
of A. Then it is straightforward to check that I ∪ J would be a set of coordinates witnessing a 0.8-density
violation of A′, which contradicts the maximality of I.
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5.2 The simulation

We exhibit an algorithm that takes a q-alternating rectangle decision list LR for f ◦gn of cost k, and converts
it to a q-alternating conjunction decision list LC for f of cost O(k/ log n). The argument from [GKPW17]
does exactly this except without preserving the bound on the number of alternations. In [GKPW17] the
argument is formulated using a “dual” characterization of DLdt, but it has the effect of building LC in order,
obtaining each conjunction by “extracting” it from one of the rectangles in LR. The trouble is that the
rectangles are not necessarily “extracted from” in order: after extracting a conjunction from some rectangle,
the next conjunction that gets put in LC may be extracted from a rectangle that is earlier in LR. Thus LC

may end up with more alternations than LR.
To fix this, we convert the argument to a “primal” form and argue that it still works when we force the

rectangles to be extracted from in order. The high-level view is that we iterate through the rectangles of LR

in order, and for each we extract as many conjunctions as we can until the rectangle becomes “exhausted”,
at which time we remove the remaining “error” portion of the rectangle (by deleting few rows and columns)
and move on to the next rectangle. With this modification, the rest of the technical details from [GKPW17]
continue to work, and it now preserves the number of alternations.

At any step of this process, we let X × Y be the remaining rows and columns (after having removed the
error portion of all previous rectangles in LR), and we let Z ⊆ {0, 1}n be the remaining inputs to f (which
have not been accepted by any previous conjunctions we put in LC). Suppose (Ri, `i) is our current entry
in LR. The goal is to find a subrectangle A × B ⊆ Ri ∩ (X × Y ) that is “conjunction-like” in the sense
that G(A×B) is exactly the inputs accepted by some small-width conjunction C, and such that among all
remaining inputs z ∈ Z, C only accepts those with f(z) = ⊕(`i). These properties would ensure it is safe to
put (C, `i) next in LC.

Combining Lemma 21 and Lemma 22 (using X = [m]n) suggests an approach for finding a conjunction-
like subrectangle: If A′ is not too small, we can restrict it to A that is fixed on few coordinates I and dense
on the rest (by Lemma 22). If B is also not too small (low deficiency) and fixed on coordinates I, then
G(A×B) is fixed on I and takes on all possible values on the remaining coordinates (by Lemma 21, which
still works with [n] r I in place of [n]). In other words, G(A × B) = C−1(1) for a small-width conjunction
C, as desired.

The other property we needed to ensure is that if this C is the first conjunction in LC to accept a particular
z, then f(z) = ⊕(`i) (so LC is correct). This will follow if we know there is some (x, y) ∈ G−1(z) such that
Ri is the first rectangle in LR to contain (x, y), as that guarantees f(z) = f(G(x, y)) = (f ◦gn)(x, y) = ⊕(`i).
It turns out this will hold automatically if A×B ⊆ Ri ∩ (X × Y ), because A×B touches the slice of every
z that is accepted by C, and all inputs (x, y) ∈ G−1(Z) that were in some Rj with j < i have already been
removed from X × Y .

Our algorithm for building LC from LR is shown in Algorithm 2. It is described as starting from some
arbitrary initial rectangle X × Y. For the purpose of proving Theorem 4.(i) we only need to take X = [m]n

and Y = ({0, 1}m)n, but when we invoke this as a component in the proof of Theorem 4.(ii) we will need to
start from some X × Y that is merely “dense × large” rather than the full input domain, so we state this
more general version now.

Lemma 23. If LR computes f ◦ gn on X ×Y and has cost k, and if X is 0.85-dense and D∞(Y) ≤ n3, then
LC produced by Algorithm 2 computes f and has cost O(k/ log n). Moreover, if LR is q-alternating then so
is LC.

Proof. To verify the cost, just note that lines 11 and 12 always succeed by Lemma 22 (since X is 0.85-
dense and |A′| ≥ |X |/2k+1), so when a conjunction is added to LC on lines 14 and 15, it has width |I| <
20(k + 1)/ logm = O(k/ log n). On line 13 we have |B| ≥ |Yx′ |/2m|I| ≥ 2mn−n

4−m|I| = 2m(n−|I|)−n4

(since
x′ ∈ A ⊆ A′) and therefore D∞(B[n]rI) ≤ n4 (relative to ({0, 1}m)[n]rI). Thus by applying Lemma 21 to

A[n]rI (which is 0.8-dense) and B[n]rI we have g[n]rI(A[n]rI × B[n]rI) = {0, 1}n−|I| and therefore G(A ×
B) = C−1(1). (Lemma 21 works with the same parameters even though the sets are now on fewer than n
coordinates.)

The algorithm terminates because Z always shrinks on line 16: for any y ∈ B we have G(x′, y) ∈ Z (from
the definition of Yx′) and C(G(x′, y)) = 1 (since x′I = α and yI = β and thus G(x′, y)I = gI(α, β)).
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Algorithm 2 Simulation algorithm

In: LR = (R1, `1), . . . , (R2k , `2k) and X ⊆ [m]n, Y ⊆ ({0, 1}m)n

Out: LC

1: initialize X ← X , Y ← Y, Z ← domain of f , LC ← empty list
2: for i = 1 to 2k do
3: while Z 6= ∅ do
4: for each x ∈ X, let Yx := {y ∈ Y : (x, y) ∈ Ri ∩G−1(Z)}
5: let A′ := {x ∈ X : |Yx| ≥ 2mn−n

4}
6: if |A′| ≤ |X |/2k+1 then
7: update X ← X rA′

8: update Y ← Y r
⋃
x∈XrA′ Yx

9: break out of inner loop
10: else |A′| > |X |/2k+1

11: let A ⊆ A′, I ⊆ [n], α ∈ [m]I be such that:
12: |I| = O(k/ log n), AI is fixed to α, and A[n]rI is 0.8-dense
13: pick any x′ ∈ A and choose β ∈ ({0, 1}m)I to maximize the size of B := {y ∈ Yx′ : yI = β}
14: let C be the conjunction “zI = gI(α, β)”
15: update LC by appending (C, `i) to it
16: update Z ← Z r C−1(1)

The algorithm maintains the invariant that for all j < i, Rj ∩ (X × Y ) ∩ G−1(Z) = ∅. This vacuously
holds at the beginning, and is clearly maintained in the else case because i stays the same and nothing gets
added to X, Y , or Z. Lines 7 and 8 maintain the invariant in the if case because the removed rows and
columns cover all of Ri ∩ (X × Y ) ∩G−1(Z) and i goes up by 1.

Next we argue that when the algorithm terminates, Z must be empty. In each iteration of the outer loop,
we throw out at most |X |/2k+1 rows and at most |X | · 2mn−n4 ≤ mn · 2mn−n4 ≤ 2mn−n

3

/2k+1 ≤ |Y|/2k+1

columns. (We throw out columns in Yx for x 6∈ A′, all of these Yx had the property |Yx| < 2mn−n
4

, we do
this for at most |X | values of x, and n4 − n logm ≥ n3 + k + 1.) Since the outer loop executes 2k times,
by the end at most half the rows of X and half the columns of Y have been discarded, so |X| ≥ |X |/2
and |Y | ≥ |Y|/2. This means X is essentially as dense as X (only a −1 loss in any H∞(xI)) and Y is
essentially as low-deficiency as Y (only a +1 loss in D∞). Thus Lemma 21 (with a tiny perturbation of the
parameters, which does not affect the result) shows that G(X × Y ) = {0, 1}n. However, the last rectangle
that is processed, R2k , contains all of X × Y by definition (since we assume LR is correct on X × Y). So,
the invariant guarantees (X × Y ) ∩ G−1(Z) = ∅ at termination. This can only happen if G−1(Z) = ∅ and
thus Z = ∅ (since G(X × Y ) = {0, 1}n).

We now argue that LC is correct. Consider any z in the domain of f . Since Z is empty at termination,
z must be accepted by some conjunction in LC. Let (C, `i) be the first entry such that C(z) = 1, so
z ∈ Z during the iteration of the inner loop when this entry was added. Since in this iteration we have
G(A× B) = C−1(1) and z ∈ C−1(1), there is some (x, y) ∈ A× B with G(x, y) = z. Since A× B ⊆ Ri we
have (x, y) ∈ Ri. Since A × B ⊆ X × Y , we have (x, y) ∈ (X × Y ) ∩ G−1(Z) and thus (x, y) cannot be in
Rj for any j < i since Rj ∩ (X × Y )∩G−1(Z) = ∅ by the invariant. In summary, Ri is the first rectangle in
LR that contains (x, y). By correctness of LR on X ×Y, we have ⊕(`i) = (f ◦ gn)(x, y) = f(G(x, y)) = f(z).
Thus LC also correctly outputs ⊕(`i) on input z.

The “moreover” part is straightforward to verify: the levels assigned to conjunctions in LC come from
the levels assigned to rectangles in LR (namely {0, . . . , q}), in the same order (which is non-increasing).

6 Query-to-communication lifting for P
NP[q]
‖

Restatement of Theorem 4.(ii). For every partial function f : {0, 1}n → {0, 1} and every constant q,

P
NP[q]cc
‖ (f ◦ gn) = P

NP[q]dt
‖ (f) ·Θ(log n)
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where g : [m]× {0, 1}m → {0, 1} is the index gadget defined by g(x, y) = yx with m := n20.

For the big-O direction, the deterministic phase of a P
NP[q]dt
‖ decision tree can be simulated by a protocol

that communicates logm+ 1 = O(log n) bits to evaluate g(xi, yi) whenever the decision tree queries the ith

bit of the input to f . The NPdt oracle queries can also be converted to NPcc oracle queries with O(log n)
factor overhead in their contribution to the cost (as was the case for Theorem 4.(i)). In the rest of this
section we prove the big-Ω direction. By Lemma 16 it suffices to show

PNP(q)[1]cc(f ◦ gn) = PNP(q)[1]dt(f) · Ω(log n).

6.1 Technical preliminaries

The high-level idea is to convert a PNP(q)[1]cc protocol for f ◦ gn into a PNP(q)[1]dt decision tree for f by using
the P lifting theorem of Raz and McKenzie [RM99, GPW18a] to handle the deterministic phase, followed
by our NP(q) lifting theorem to handle the single NP(q) oracle query. To get these components to mesh, we
need to review some technical concepts from the deterministic lifting theorem.

We say that A ⊆ [m]n is δ-thick if A is nonempty and for every i ∈ [n] and every α1 · · ·αi−1αi+1 · · ·αn ∈
[m][n]r{i}, if there is at least one value of αi ∈ [m] for which the combined tuple α is in A, then there are at
least mδ many such values of αi. Recall that for A ⊆ [m]n, B ⊆ ({0, 1}m)n, and I ⊆ [n], AI := {xI : x ∈ A}
and BI := {yI : y ∈ B} are the projections onto the coordinates of I. Also recall that the deficiency of
B is D∞(B) := mn − log |B|. For a partial assignment ρ ∈ {0, 1, ∗}n, let free(ρ) := ρ−1(∗) ⊆ [n] denote
its free coordinates and fixed(ρ) := [n] r free(ρ) denote its fixed coordinates. The rectangle A× B is called
ρ-consistent if every assignment in gn(A×B) is consistent with ρ.

The deterministic lifting theorem of [RM99, GPW18a] proves the following result.

Lemma 24. For every deterministic communication protocol Πdet of cost k (with the same input domain
as gn where g is the index gadget with m := n20), there exists a deterministic decision tree Tdet of cost
≤ 40k/ logm (with input domain {0, 1}n) such that the following holds: For every leaf of Tdet, letting
ρ ∈ {0, 1, ∗}n be the partial assignment recording the results of the queries on the path to this leaf (so
|fixed(ρ)| ≤ 40k/ logm), there exists a rectangle A×B ⊆ [m]n × ({0, 1}m)n such that:

• A×B is contained within one of the leaf rectangles of Πdet.

• A×B is ρ-consistent.

• Afree(ρ) is 0.85-thick.

• D∞(Bfree(ρ)) ≤ n2 (relative to ({0, 1}m)free(ρ)).

The idea is to apply Lemma 24 to the deterministic phase of the PNP(q)[1]cc protocol, and then apply
Lemma 23 to each of the leaves of the resulting deterministic decision tree. In order to do so, we need the
following claim, which observes that 0.85-thickness implies 0.85-density.

Claim 25. If X ⊆ [m]n is δ-thick then X is δ-dense.

Proof. Let x be the uniform random variable over X. The basic intuition is that thickness tells us that
for any single coordinate i, the probability that xi takes on a particular value, given that all of the other
coordinates are fixed, is at most m−δ. This implies that the probability that xi takes on a particular value,
conditioned on setting any subset of the other coordinates to some values, is still bounded by m−δ. Therefore,
we can simply apply the chain rule to prove that thickness implies density.

Assume for notational simplicity that I is the first k coordinates, so I = {1, . . . , k}. Let α = α1 · · ·αk ∈
[m]I be an assignment to the coordinates of I. By the chain rule,

Pr[xI = α1 · · ·αk] = Pr[x1 = α1] · Pr[x2 = α2 | x1 = α1] · . . . · Pr[xk = αk | xIr{k} = α1 · · ·αk−1]

and each conditioning is valid, assuming Pr[xI = α] > 0.
Thickness of X tells us that for any coordinate i ∈ I, any αi ∈ [m], and any β ∈ [m][n]r{i}, we have

Pr[xi = αi | x[n]r{i} = β] ≤ m−δ if the conditioning is valid. Thus for any I ′ ⊆ [n]r{i}, and any assignment

β′ to the coordinates of I ′, Pr[xi = αi | xI′ = β′] ≤ m−δ if the conditioning is valid. Therefore, each term
in the chain rule expansion is at most m−δ. This gives Pr[xI = α] ≤ (m−δ)k = 2−δ|I| logm, which implies
H∞(xI) ≥ δ|I| logm since α was arbitrary. Since this holds for all nonempty subsets I ⊆ [n], this means
that X is δ-dense.
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6.2 The simulation

Let Π be a PNP(q)[1]cc protocol for f ◦ gn with cost k. We construct a PNP(q)[1]dt decision tree T for f with
cost O(k/ log n).

If k = Ω(n log n), we can construct a deterministic decision tree for f with cost n that simply queries

every bit in the input. This is a PNP(q)[1]dt decision tree for f (with a trivial NP(q)dt phase) with cost
O(k/ log n). In the following, assume that k = o(n log n).

Let Πdet be the deterministic phase of Π. Each leaf v of Πdet has an associated rectangle Rv and NP(q)cc

protocol Πv of cost ≤ k that computes either f ◦ gn or its complement on inputs in Rv. Applying Lemma 24
to Πdet, which has communication cost ≤ k, yields a deterministic decision tree Tdet having query cost
≤ 40k/ logm = O(k/ log n), which will form the deterministic phase of T . Henceforth consider any leaf of
Tdet, say corresponding to partial assignment ρ, and from Lemma 24 let v be the associated leaf of Πdet and
A×B ⊆ Rv be the associated rectangle. Assume without loss of generality that Πv computes f ◦ gn on Rv
and hence on A×B (a symmetric argument handles the case where Πv computes f ◦ gn on Rv). Abbreviate
free(ρ) as J , and let n′ := |J |. Since |fixed(ρ)| ≤ 40k/ logm ≤ n/2 (as we are assuming k = o(n log n)), we
have n′ ≥ n/2.

Since A×B is ρ-consistent, if we modify Πv by intersecting each rectangle with A×B and then projecting
to J , this yields an NP(q)cc protocol that correctly computes fρ ◦ gJ on AJ ×BJ , where fρ : {0, 1}J → {0, 1}
is the restriction of f to ρ. After converting this protocol to a q-alternating rectangle decision list of cost
O(k) by Lemma 13, we may apply Lemma 23 by substituting fρ for f , n′ for n, AJ for X (since AJ is
0.85-thick), and BJ for Y (since D∞(BJ) ≤ n2 ≤ (n′)3),1 to get a q-alternating conjunction decision list for
fρ of cost O(k/ log n′) = O(k/ log n). By Lemma 13 again, there is an NP(q)dt decision tree Tv with cost
O(k/ log n) that correctly computes fρ. Therefore, we can complete T by having our arbitrary leaf of Tdet

use Tv as its oracle query and output the same answer. Thus T computes f and has total cost O(k/ log n).
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A Proofs from Section 2

In this appendix we prove the technical lemmas from Section 2, which provide alternative characterizations
of the classes in the Nondeterministic and Randomized Boolean Hierarchies.

A.1 Decision list vs. parity

Restatement of Lemma 8. For C ∈ {NP,RP}, if the definitions of C(q)cc and C(q)dt are changed to
use ⊕q in place of ∆q, it only affects the complexity measures C(q)cc(F ) and C(q)dt(f) by a constant factor
(depending on q).

Wagner [Wag88] showed that these alternative characterizations are equivalent for the classical Nonde-
terministic Boolean Hierarchy, and Halstenberg and Reischuk [HR90] observed the same (up to a constant
factor) in communication complexity. This latter proof uses only the property that NPcc is closed under
intersection and union; that is, if NPcc(F1),NPcc(F2) ≤ k, then NPcc(F1 ∧ F2) and NPcc(F1 ∨ F2) are both
O(k). We observe that since this property also holds for RPcc, NPdt, and RPdt, their proof works for these
models of computation as well. In fact, in all of these models, the cost of the intersection or union of i cost-k
computations is at most ik.

Proof of Lemma 8. We prove this using the language of communication complexity. The query complexity
proof is completely analogous.

Given a protocol Π = ∆q(Π1, . . . ,Πq) of cost k, we can transform it into an equivalent protocol Π′ =
⊕q(Π′1, . . . ,Π′q) by having Π′i compute “does there exist a j ≥ i for which Πj outputs 1?” This works because
if i is the greatest index such that Πi outputs 1, then Π outputs ⊕(i) and Π′ also outputs ⊕(i) since there
are exactly i many values of j such that Π′j outputs 1, namely 1, . . . , i. For the implementation of Π′i: If
C = NP then a witness for Π′i can specify a j ≥ i together with a witness for Πj , incurring a cost of O(k);
thus the cost of Π′ is O(qk) = O(k). If C = RP then Π′i can run Πj for every j ≥ i, each amplified to have
error probability ≤ 1/2q, and see whether at least one of them outputs 1, incurring a cost of O(k log q); thus
the cost of Π′ is O(qk log q) = O(k).

Conversely, given a protocol Π = ⊕q(Π1, . . . ,Πq) of cost k, we can transform it into an equivalent protocol
Π′ = ∆q(Π

′
1, . . . ,Π

′
q) by having Π′i compute “are there at least i many values of j for which Πj outputs 1?”

This works because if there are exactly i values of j for which Πj outputs 1, then Π outputs ⊕(i) and Π′ also
outputs ⊕(i) since i is the greatest index such that Π′i outputs 1. For the implementation of Π′i: If C = NP
then a witness for Π′i can specify a set of i values of j together with a witness for each of those Πj , incurring
a cost of O(k); thus the cost of Π′ is O(qk) = O(k). If C = RP then Π′i can run every Πj , each amplified to
have error probability ≤ 1/2q, and see whether at least i of them output 1, incurring a cost of O(k log q);
thus the cost of Π′ is O(qk log q) = O(k).

A.2 Boolean Hierarchy vs. decision list

Restatement of Lemma 13. DL(q)cc(F ) = Θ(NP(q)cc(F )) and DL(q)dt(f) = Θ(NP(q)dt(f)) for every
constant q. Thus, DL(q)cc = NP(q)cc and DL(q)dt = NP(q)dt for partial functions.

Proof. To see that DL(q)cc(F ) ≤ NP(q)cc(F ), consider any NP(q)cc protocol for F with cost k, say Π =
(R1, . . . ,Rq) where each Ri is a nonempty set of rectangles. To form a q-alternating rectangle decision list,
let level q be the rectangles of Rq in any order, then level q−1 be the rectangles of Rq−1 in any order, and so
on, and finally let level 0 be the rectangle containing all inputs. This has the same output as Π, so it correctly
computes F . Assuming Ri has cost ki, the length of the list is

∑
i |Ri| + 1 ≤

∏
i(|Ri| + 1) ≤

∏
i 2ki = 2k,

so the cost is at most k.
To see that NP(q)cc(F ) = O(DL(q)cc(F )), consider any q-alternating rectangle decision list LR for F with

cost k. To form an NP(q)cc protocol Π = (R1, . . . ,Rq), for each i let Ri be the set of rectangles at level i in
LR. This has the same output as LR, so it correctly computes F . Since |Ri| ≤ 2k − 1 for each i, the cost of
Π is at most

∑
i k = qk.

To see that DL(q)dt(f) ≤ NP(q)dt(f), consider any NP(q)dt decision tree for f with cost k, say T =
(Φ1, . . . ,Φq) where each Φi is a DNF. To form a q-alternating conjunction decision list, let level q be the
conjunctions of Φq in any order, then level q − 1 be the conjunctions of Φq−1 in any order, and so on, and
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finally let level 0 be the conjunction that accepts all inputs. This has the same output as T , so it correctly
computes f . Since every Φi has maximum width at most k, the list also has cost at most k.

To see that NP(q)dt(f) = O(DL(q)dt(f)), consider any q-alternating conjunction decision list LC for f
with cost k. To form an NP(q)dt decision tree T = (Φ1, . . . ,Φq), for each i let Φi be the disjunction of all
conjunctions at level i in LC. This has the same output as LC, so it correctly computes f . Since each Φi
has maximum width at most k, the cost of T is at most

∑
i k = qk.

A.3 Leaves with parallel queries

Restatement of Lemma 16. For C ∈ {NP,RP}, we have P
C[q]cc
‖ (F ) = Θ(PC(q)[1]cc(F )) and P

C[q]dt
‖ (f) =

Θ(PC(q)[1]dt(f)) for every constant q.

Proof. It is trivial that P
C[q]cc
‖ (F ) ≤ PC(q)[1]cc(F ) and P

C[q]dt
‖ (f) ≤ PC(q)[1]dt(f) since one “C(q) oracle query”

can be expressed with q nonadaptive “C oracle queries”. For the other direction, we just show the argument
for NPcc, but essentially the same argument works for RPcc, NPdt, and RPdt.

Consider a P
NP[q]cc
‖ protocol Π for F of cost k. We convert it to a PNP(q)[1]cc protocol for F of cost O(k).

The deterministic phase Πdet stays the same. Henceforth fix any leaf of Πdet and its associated output
function out : {0, 1}q → {0, 1} and q nonempty sets of rectangles R1, . . . ,Rq. Also fix any input (x, y) that
reaches this leaf, and define w ∈ {0, 1}q by wi = Ri(x, y) for each i ∈ [q], so that out(w) = Π(x, y) = F (x, y).

For u, v ∈ {0, 1}q we say u ≤ v iff ui ≤ vi for each index i ∈ [q]. Consider the q-dimensional Hamming cube
DAG : this is the graph where the set of nodes is {0, 1}q and there is a directed edge from u to v iff u ≤ v and
u and v only differ by one index. Each node v has a corresponding output value out(v), and on any directed
path v1 → v2 → · · · → vj , we say there is a mind-change on the path at node vi iff out(vi) 6= out(vi−1).
For any directed path in the Hamming cube DAG from 0q to v, the number of mind-changes on the path
is even if out(v) = out(0q) and odd if out(v) 6= out(0q). Thus, letting mmc(v) be the maximum number of
mind-changes on any directed path from 0q to v, we have ⊕(mmc(v)) is the indicator for out(v) 6= out(0q).

Since out(0q) is fixed at the leaf, it is sufficient for Alice and Bob to determine ⊕(mmc(w)) in order to
compute out(w) = F (x, y).

Claim 26. For fixed i ∈ [q], the cost of an NPcc protocol that determines “is mmc(w) ≥ i?” (given input
(x, y) that reaches the leaf) is at most q + k.

Before we prove Claim 26, we use it to finish the proof of Lemma 16. At the leaf, for each i ∈ [q] we
form an NPcc protocol of cost ≤ q + k for determining if mmc(w) ≥ i, and we use these to form a single
NP(q)cc oracle query. We output the same answer as the oracle if out(0q) = 0, and the opposite answer if
out(0q) = 1; this is correct because mmc(w) is the maximum value of i for which the ith NPcc protocol would
output 1, and thus the oracle query returns ⊕(mmc(w)), which is the indicator for out(w) 6= out(0q). The

NP(q)cc oracle query has cost ≤ q(q + k) = O(k). Thus the overall PNP(q)[1]cc protocol for F has cost O(k),
and this concludes the proof of Lemma 16.

Proof of Claim 26. The idea is to find some (possibly not proper) prefix of a directed path from 0q to w in
the Hamming cube DAG, where this prefix has i mind-changes. If we can find such a prefix, it confirms that
some 0q-to-w directed path has at least i mind-changes, and therefore mmc(w) ≥ i.

The witness itself is some v ∈ {0, 1}q, along with witnesses of Rj(x, y) = 1 for every j where vj = 1.
This can be represented by simply giving a rectangle R′ such that (x, y) ∈ R′ and R′ is the intersection of
(Hamming weight of v many) rectangles, one from each Rj with vj = 1. The number of possibilities for R′

is at most
∏
j |Rj | ≤ 2k, so R′ contributes ≤ k to the cost of the NPcc protocol. Alice and Bob can verify

the witness by checking that there exists a 0q-to-v path with i mind-changes (this does not depend on the
input) and that (x, y) ∈ R′ and thus v ≤ w.
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