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Non-bipartite k-common graphs∗

Daniel Král’† Jonathan A. Noel‡ Sergey Norin§

Jan Volec¶ Fan Wei‖

Abstract

A graph H is k-common if the number of monochromatic copies of
H in a k-edge-coloring of Kn is asymptotically minimized by a random
coloring. For every k, we construct a connected non-bipartite k-common
graph. This resolves a problem raised by Jagger, Št’ov́ıček and Thomason
[Combinatorica 16 (1996), 123–141]. We also show that a graph H is k-
common for every k if and only if H is Sidorenko and that H is locally
k-common for every k if and only if H is locally Sidorenko.

1 Introduction

Ramsey’s Theorem states that for every graph H and integer k ≥ 2, there exists
a natural number Rk(H) such that if N ≥ Rk(H), then every k-edge-coloring
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E-mail: jan@ucw.cz.

‖School of Mathematics, Institute for Advanced Study, Princeton, US. E-mail:
fanwei@ias.edu.

1

http://arxiv.org/abs/2006.09422v1


of the complete graph KN with N vertices contains a monochromatic copy of
H . We study the natural quantitative extension of this question, which was first
considered by Goodman [15]: What is the minimum number of monochromatic

copies of H in a k-edge-coloring of KN for large N?

A prevailing theme in Ramsey Theory, dating back to an idea of Erdős [7] from
the 1940s, is that one of the best ways to avoid monochromatic substructures
is by coloring randomly. Therefore, it would be natural to expect the answer
to the above question to be the number of monochromatic copies of H in a
uniformly random k-edge-coloring of KN . Following [18], we say that a graph
H is k-common if the uniformly random k-edge-coloring of KN asymptotically
minimizes the number of monochromatic copies ofH . In other words, the number
of monochromatic (labelled) copies of H in every k-edge-coloring of KN is at least

(1− o(1))
N |H|

k‖H‖−1

where |H| and ‖H‖ denote the number of vertices and edges of H , respectively.
The most well-studied case is that of 2-common graphs, which are often referred to
as common graphs; however, we will always say 2-common to avoid any ambiguity.

Only a handful of graphs are known to be 2-common and even fewer are known
to be k-common for k ≥ 3. The well-known Goodman Bound [15] implies that K3

is 2-common; another proof was given by Lorden [20]. This result led Erdős [8]
to conjecture that every complete graph is 2-common and Burr and Rosta [1]
to extend the conjecture to all graphs. We now know that 2-common graphs
are far more scarce than Erdős, Burr and Rosta had anticipated. Sidorenko [28]
disproved the Burr–Rosta Conjecture by showing that a triangle with a pendant
edge is not 2-common. Around the same time, Thomason [32] showed that Kp

is not 2-common for any p ≥ 4, thereby disproving the original conjecture of
Erdős [8]. Additional constructions showing that Kp is not 2-common for p ≥ 4
have since been found [11, 12, 33]. Determining the asymptotics of the minimum
number of monochromatic copies of K4 in 2-edge-colorings of large complete
graphs continues to attract a good amount of attention [14,24,30] and remains one
of the most mysterious problems in extremal graph theory (with no conjectured
answer).

Jagger, Št’ov́ıček and Thomason [18, Theorem 12] extended the result from [32]
by showing that no graph containing a copy of K4 is 2-common. On the positive
side, Sidorenko [28] showed that all odd cycles are 2-common and Jagger, Št’ov́ıček
and Thomason [18, Theorem 8] that all even wheels are 2-common. Additional
examples of 2-common graphs can be obtained by certain gluing operations [18,
27]. However, these operations do not increase the chromatic number and, for a
long time, no examples of 2-common graphs with chromatic number greater than
three were known. Only in 2012, the 5-wheel, which has chromatic number four,
was shown to be 2-common [17] using Razborov’s flag algebra method [25]; this
result settled a problem of [18].
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Figure 1: Examples of graphs from the statement of Theorem 1 for n = 1, 2, 3.
The three graphs are denoted by K2,2,C5 , K4,4,C5 and K6,6,C5 in Section 3.

Much less is known about k-common graphs for k ≥ 3. Cummings and
Young [6] proved that every 3-common graph is triangle-free, which implies that
the same is true for k-common graphs for any k ≥ 3 (see Section 2 for details).
The only known examples of k-common graphs for k ≥ 3 are bipartite graphs
that are known to be Sidorenko. Jagger, St’ov́ıček and Thomason [18, Section 5]
asked about the existence of non-bipartite k-common graphs; no examples of such
graphs are known, even for k = 3. We resolve this by showing the following.

Theorem 1. For every k ≥ 2, there exists nk such that, for every n ≥ nk, the

graph obtained from K2n,2n by pasting a copy of C5 on every second vertex in one

of the two parts of K2n,2n is k-common.

Examples of graphs described in the statement of Theorem 1 can be found in
Figure 1. We remark that one of the key ingredients in the proof of Theorem 1
is establishing that such graphs are k-common in a certain “local” sense (see
Lemma 12), which is proved using spectral arguments.

As we have already mentioned, there is a close connection between k-common
graphs and Sidorenko graphs. We say that a graph H is Sidorenko if the number
of copies of H in a graph with edge density d is asymptotically minimized by
the random graph with edge density d. Sidorenko’s Conjecture [26, 29] famously
asserts that every bipartite graph H is Sidorenko; an equivalent conjecture was
made earlier by Erdős and Simonovits [9]. It is easy to show that every Sidorenko
graph is bipartite and k-common for every k ≥ 2. There are now many families
of bipartite graphs that are known to be Sidorenko, see, e.g., [2–5,16,19,31]; prior
to our work, these graphs were the only known examples of k-common graphs for
any fixed k ≥ 3.

The following simple construction of [18, Theorem 14] shows that, for every
non-bipartite graph H , there exists k ≥ 2 such that H is not k-common. Split
the vertices of KN into 2k−1 sets of roughly equal size, indexed by 0, . . . , 2k−1−1.
Color the edges between the i-th and j-th sets with the color corresponding to the
first bit on which i and j differ in their binary representations and color the edges
inside each set with the color k. SinceH is non-bipartite, the only monochromatic
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copies ofH are inside the sets and thus their number is (1+o(1))N |H|2−(k−1)(|H|−1).
Thus, if Sidorenko’s Conjecture is true, then Sidorenko graphs are precisely the
graphs that are k-common for every k ≥ 2. We prove this without the assumption
that Sidorenko’s Conjecture holds.

Theorem 2. A graph H is k-common for all k ≥ 2 if and only if it is Sidorenko.

We also establish the variant of Theorem 2 in the local setting, i.e., when
the edge-coloring is “close” to the random edge-coloring. The notion of locally
k-common graphs is formally defined in Section 2. Recall that the girth of a
graph is the length of its shortest cycle.

Theorem 3. The following holds for every k ≥ 3: if a graph H has odd girth,

then H is not locally k-common.

Since a theorem of Fox and the last author [10] asserts that all forests and
graphs of even girth are locally Sidorenko, Theorem 3 implies for every k ≥ 3
that a graph H is locally k-common if and only if H is locally Sidorenko. We
remark that Theorem 3 strengthens the result of Cummings and Young [6] that
no graph containing a triangle is 3-common by showing that such graphs are not
even locally 3-common.

2 Preliminaries

In this section, we fix the notation used throughout the paper and present basic
properties of k-common graphs. We also introduce the terminology of the theory
of graph limits. While, strictly speaking, everything in this paper can be phrased
in terms of finite graphs, the language of graph limits has the great advantage
that it allows us to eliminate almost all discussion of “small order” asymptotic
terms. Our notation and terminology mainly follows that of the monograph of
Lovász [22], and we refer the reader to [22] for a more thorough introduction.

We write N for the set of all positive integers and [k] for the set of the first k
positive integers, i.e., [k] = {1, . . . , k}. We work with the Borel measures on R

d

throughout the paper and if A ⊆ [0, 1]d is a measurable subset of Rd, we write
|A| for its measure. Graphs that we consider in this paper are finite and simple.
If G is a graph, then its vertex set is denoted by V (G) and its edge set by E(G);
the cardinalities of V (G) and E(G) are denoted by |G| and ‖G‖, respectively. A
homomorphism from a graph H to a graph G is a function f : V (H) → V (G)
such that f(u)f(v) ∈ E(G) whenever uv ∈ E(H). The homomorphism density

of H in G is the probability that a random function from V (H) to V (G) is a
homomorphism, i.e., it is the number of homomorphisms from H to G divided
by |G|‖H‖. We denote the homomorphism density of H in G by t(H,G).

A graphon is a measurable function W : [0, 1]2 → [0, 1] that is symmetric, i.e.,
W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2. Intuitively, a graphon can be thought
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of as a continuous variant of the adjacency matrix of a graph. The graphon that
is equal to p ∈ [0, 1] everywhere is called the p-constant graphon; when there will
be no confusion, we will just use p to denote such a graphon. A graphon W is
a step graphon if there exist a partition of [0, 1] into non-null subsets A1, . . . , Am

such that W is constant on each of the sets Ai × Aj , i, j ∈ [m]. The sets Ai,
i ∈ [m], are called parts of the step graphon W ; the sets Ai × Aj, i, j ∈ [m], are
tiles and those with i = j are diagonal tiles.

The notion of homomorphism density extends to graphons by setting

t(H,W ) :=

∫

[0,1]V (H)

∏

uv∈E(H)

W (xu, xv) dxV (H) (1)

for a graphH and graphonW . Define the density of a graphonW to be t(K2,W ).
The quantity t(H,W ) has a natural interpretation in terms of sampling a random
graph according to W : for an integer n, choose n independent uniform random
points x1, . . . , xn from the interval [0, 1] and create a graph with the vertex set [n]
by joining the vertices i and j with probability W (xi, xj). The graph constructed
in this way is called a W -random graph and denoted by Gn,W . If H = [n], then
t(H,W ) is precisely the probability that Gn,W is H . It can be shown that the
following holds for every graph H with probability one:

lim
n→∞

t(H,Gn,W ) = t(H,W ).

A sequence (Gi)i∈N of graphs is convergent if the sequence (t(H,Gi))i∈N con-
verges for every graph H . A simple diagonalization argument implies that every
sequence of graphs has a convergent subsequence. We say that a graphon W is a
limit of a convergent sequence (Gi)i∈N of graphs if

lim
i→∞

t(H,Gi) = t(H,W )

for every graph H . One of the crucial results in graph limits, due to Lovász and
Szegedy [23], is that every convergent sequence of graphs has a limit. Hence, a
graph H is Sidorenko if and only if t(H,W ) ≥ t(K2,W )‖H‖ for every graphon W .
Similarly, the property of being k-common translates to the language of graph
limits as follows. A graph H is k-common if

t(H,W1) + · · ·+ t(H,Wk) ≥
1

k‖H‖−1

for any graphons W1, . . . ,Wk such that W1 + · · ·+Wk = 1.
We pause the exposition of graph limit theory to demonstrate how the just

introduced notions are convenient for establishing some basic properties of k-
common graphs. Jagger, Št’ov́ıček and Thomason [18, Theorem 13] observed
that if H is not k-common, then H is not ℓ-common for any ℓ ≥ k. We now
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present their argument in the language of graph limits. Suppose that H is not
k-common, i.e., there exists graphons W1, . . . ,Wk such that W1 + · · ·+Wk = 1
and t(H,W1) + · · · + t(H,Wk) < k−‖H‖+1. Consider an integer ℓ > k. We set
W ′

i =
k
ℓ
Wi for i ∈ [k] and W ′

i = 1/ℓ for i ∈ [ℓ] \ [k]. Observe that

t(H,W ′
1) + · · ·+ t(H,W ′

ℓ) =

(
k

ℓ

)‖H‖

(t(H,W1) + · · ·+ t(H,Wk)) +
ℓ− k

ℓ‖H‖

<
k

ℓ‖H‖
+

ℓ− k

ℓ‖H‖
= ℓ−‖H‖+1,

which implies that H is not ℓ-common. Hence, we can define κ(H) to be the
smallest integer k such that H is not k-common; if no such integer exists, we
set κ(H) = ∞. That is, H is k-common if and only if 2 ≤ k < κ(H). In
particular, Theorem 2 asserts that H is Sidorenko if and only if κ(H) = ∞. In
Section 1, for any non-bipartite graph H , we exhibted a k-edge-coloring of KN

from [18] which has (1 + o(1))N |H|2−(k−1)(|H|−1) monochromatic copies of H . It
follows that H is not k-common for any k satisfying 2−(k−1)(|H|−1) < k−‖H‖+1. In
particular, if H is a non-bipartite connected graph with average degree d, then
κ(H) ≤ ⌈d log2 d⌉. If the chromatic number of H is larger than three, a better
upper bound on κ(H), where the base of the logarithm is replaced with χ(H)−1,
can be obtained by considering the edge-coloring obtained by splitting vertices
of KN to (χ(H)− 1)k−1 roughly equal parts and defining the edge-coloring based
on the base (χ(H)− 1) representations of the indices of the parts.

Let us return to our brief introduction to notions from the theory of graph
limits that we use in this paper. A graphon W can be thought of as an operator
on L2[0, 1] where the image of a function f ∈ L2[0, 1] is given by

∫ 1

0

W (x, y)f(y) dy.

Every such operator is compact and so its spectrum σ(W ) is either finite or
countably infinite, the only accumulation point of σ(W ) can be zero and every
non-zero element of σ(W ) is an eigenvalue of W [22, Section 7.5]. In addition,
all elements of σ(W ) are real and the largest is at least the density of W . We
define σ̂(W ) to be the multiset containing all non-zero elements λ of σ(W ), with
multiplicity equal to the dimension of the kernel of (W − λ), which is finite.
In the graph case, the trace of the n-th power of the adjacency matrix of a
graph G, which is equal to the sum of the n-th powers of the eigenvalues of the
matrix, is the number of homomorphisms from Cn to G, i.e., it is t(Cn, G)|G|n [22,
Equation (5.31)]. We will need the analogous statement for graphons, which we
now state as a proposition.

Proposition 4 (Lovász [22, Equation (7.22)]). Let W be a graphon. It holds for

every n ≥ 3:

t(Cn,W ) =
∑

λ∈σ̂(W )

λn.
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There are several useful metrics on graphons. One of the most important from
the perspective of graph limit theory is the metric induced by the cut norm. A
kernel is a bounded symmetric measurable function from [0, 1]2 to R; a kernel can
be thought of as a continuous variant of the adjacency matrix of an edge-weighted
graph. We define the cut norm of a kernel U to be

‖U‖� := sup
S,T⊆[0,1]

∣∣∣∣
∫

S×T

U(x, y) dx dy

∣∣∣∣

where the supremum is over all measurable subsets S and T of [0, 1]. The cut

distance of graphons W and W ′ is the cut norm ‖W −W ′‖� of their difference.
If two graphons have small cut distance, then their homomorphism densities do
not differ substantially, as the next lemma shows.

Lemma 5 (Lovász [22, Lemma 10.23]). Let W and W ′ be two graphons and H
a graph. It holds that |t(H,W )− t(H,W ′)| ≤ ‖H‖ · ‖W −W ′‖�.

Lemma 5 asserts that two graphons which are close in the cut distance have
similar homomorphism densities. The next lemma allows us to find a step graphon
of bounded complexity that is close in cut distance to any graphon.

Lemma 6 (Frieze and Kannan [13]; see also [22, Lemma 9.3]). For every ε > 0,
there exists an integer M ∈ N such that for every graphon W , there exists a step

graphon W ′ with at most M parts, all of equal sizes, such that the densities of W
and W ′ are the same and ‖W −W ′‖� ≤ ε.

The homomorphism density function extends naturally to kernels U by also
setting t(H,U) to be the integral in (1) with W replaced by U . A graphon W
which is close to the p-constant graphon is naturally reparameterized as p + εU
for some kernel U and small ε > 0. The following proposition provides a useful
expansion for expressions of the form t(H, p + εU), which implicitly appeared
in [21, 28]; we use the formulation from the proof of Proposition 16.27 in [22].

Proposition 7. Let U be a kernel, H a graph and p ∈ [0, 1]. It holds that

t(H, p+ εU) =
∑

F⊆E(H)

t(H [F ], U)p‖H‖−|F |ε|F |

where H [F ] is the spanning subgraph of H with the edge set F .

A natural weakening of Sidorenko’s Conjecture is to ask whether it holds
locally, which has been considered in [21] and in [22, Chapter 16]. Here, we
consider a stronger notion discussed in [10]: a graph H is locally Sidorenko if
there exists ε0 > 0 such that for every graphon W with density p such that
‖W −p‖� ≤ ε0p and ‖W −p‖∞ ≤ p, it holds that t(H,W ) ≥ p‖H‖. The following
theorem characterized locally Sidorenko graphs.
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Theorem 8 (Fox and Wei, see [10]). A graph H is locally Sidorenko if and only

if H is forest or its girth is even.

Similarly, we say that a graph H is locally k-common if for every k ≥ 2, there
exists ε0 > 0 such that

t(H,W1) + · · ·+ t(H,Wk) ≥ k−‖H‖+1

for all graphons W1, . . . ,Wk such that W1 + · · ·+Wk = 1, ‖Wi − 1/k‖� ≤ ε0/k
and ‖Wi − 1/k‖∞ ≤ 1/k for all i ∈ [k].

We next define a notion of a subgraphon which is somewhat more involved
that just restricting a graphon to a measurable subset of [0, 1] and rescaling. This
will be used in the proof of Theorem 1 to apply induction on k within a “sparse”
part of one of the graphons W1,W2, . . . ,Wk. Fix a graphon W and a real δ > 0
and consider the set A(W, δ) of all measurable functions h : [0, 1] → [0, 1] such
that ∫

[0,1]2
h(x)W (x, y)h(y) dx dy ≤ δ‖h‖21.

Intuitively, for ‖h‖1 > 0, one can think of h as a weight function on [0, 1] with
the property that, if x and y are chosen independently at random according to
the probability measure induced by h/‖h‖1, then the expected value of W (x, y)
is at most δ. We define the δ-independence ratio of W to be

αδ(W ) := sup
h∈A(W,δ)

‖h‖1.

Let h : [0, 1] → [0, 1] be a measurable function such that ‖h‖1 > 0 and let
f : [0, ‖h‖1] → [0, 1] be a measurable function defined by

f(z) := inf

{
t ∈ [0, 1],

∫

[0,t]

h(x) dx ≥ z

}
.

Observe that ∫

A

h(x) dx = |f−1(A)|

for every measurable subset A of [0, 1]. The subgraphon of W induced by h,
which is denoted by W [h], is the graphon defined by

W [h](x, y) := W (f(x · ‖h‖1), f(y · ‖h‖1))

for every (x, y) ∈ [0, 1]2. One way to think of the graphon W [h] is as follows.
Choose n points independently at random according to the probability measure
induced by h/‖h‖1 and form a graphGn,W,h with vertex set [n] by joining vertices i
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and j with probabilityW (xi, xj). ThenW [h] is a limit of the sequence (Gn,W,h)n∈N
with probability one. The definition of W [h] implies that

t(H,W [h]) =
1

‖h‖
|H|
1

∫

[0,1]V (H)

∏

u∈V (H)

h(u)
∏

uv∈E(H)

W (xu, xv) dxV (H) (2)

for every graph H . In particular, t(H,W ) is at least ‖h‖
|H|
1 · t(H,W [h]).

We conclude this section by relating certain “reflection operations” to ho-
momorphism densities. The arguments of this kind are standard in the area;
however, we have decided to provide a self-contained exposition for complete-
ness. Let H be a graph and let U ⊆ V (H) be an independent set of vertices of
H . For a graphon W , we define a function tHW : [0, 1]U → R as follows:

tHW (xU) =

∫

[0,1]V (H)\U

∏

vv′∈E(H)

W (xv, xv′) dxV (H)\U ;

note that the function tHW depends on the choice of the set U , however, the choice
of the set U will always be made clear and so we have decided not to include
the set U to keep the notation simple. Informally speaking, the function tHW (xU)
counts the number of homomorphic copies of H rooted at xU . Observe that

t(H,W ) =

∫

[0,1]U
tHW (xU ) dxU .

We now state a proposition, which gives a lower bound on the homomorphism
density of a graph obtained by reflecting H along the set U .

Proposition 9. Let H be a graph, n ∈ N and U ⊆ V (H) an independent set

of its vertices. Further, let Hn be the graph obtained by taking n copies of H
and identifying the corresponding vertices of the set U , i.e., the graph Hn has

n|H| − (n− 1)|U | vertices. The following holds for every graphon W :

t(Hn,W ) ≥ t(H,W )n.

Proof. Fix a graphon W . We consider both graphs H and Hn with the set U
and note that tH

n

W (xU) = tHW (xU)
n for every xU ∈ [0, 1]U . Hence, it follows that

t(Hn,W ) =

∫

[0,1]U
tH

n

W (xU) dxU ≥

(∫

[0,1]U
tHW (xU) dxU

)n

= t(H,W )n

by Jensen’s Inequality.

The same argument translates to the rooted setting, which we formulate here
for future reference but omit the proof as it is completely analogous to the proof
of Proposition 9.
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Proposition 10. Let H be a graph, n ∈ N, U ⊆ V (H) an independent set of

its vertices and U ′ ⊆ V (H) an independent set that is a superset of U . Further,

let Hn be the graph obtained from H taking n copies of H and identifying the

corresponding vertices of the set U ′. The following holds for every graphon W
and every xU ∈ [0, 1]U :

tH
n

W (xU) ≥ tHW (xU)
n.

The following is a particularly simple application of Proposition 9.

Proposition 11. The following holds for every graphon W and every n ∈ N:

t(K2n,2n,W ) ≥ t(K2,2,W )n
2

.

Proof. For any positive integers a, b and m, the graph obtained by taking m
copies of Ka,b and identifying the vertices in the part of the bipartition of cardi-
nality a is precisely Ka,mb. Thus, the proposition follows from two applications
of Proposition 9: firstly, with H = K2,2 and U being any part of the bipartition
and secondly with H = K2,2n and U being the largest part of the bipartition.

3 Non-bipartite k-common graphs

This section is devoted to the proof of Theorem 1. For a, b ≥ 1, we let K2a,2b,C5 be
the graph obtained from K2a,2b by adding b disjoint copies of C5 and identifying
one vertex of each of these copies with a vertex in the part of K2a,2b containing
2b vertices, where all of these vertices are distinct. In particular, K2n,2n,C5 is the
graph from the statement of Theorem 1. We start with proving that K2n,2,C5 is
locally Sidorenko in a certain strong sense; note that the assumptions here are
weaker than in the local Sidorenko property discussed in Section 2 since we do
not require any bound on ‖W − p‖∞. Moreover, we establish that the same cut
distance threshold holds for all values of n, which does not automatically follow
from Theorem 8.

Lemma 12. For every p0 ∈ (0, 1), there exist ε0 ∈ (0, 1) such that the following

holds. If W is a graphon with density p ≥ p0 such that t(K2,2,W ) ≤ p4+ ε0, then
t(K2n,2,C5 ,W )) ≥ p4n+5 for all n ∈ N.

Proof. We show that the statement of the lemma holds for ε0 = p70/16. Through-
out the proof, fix a graphon W with density p ≥ p0 such that t(K2,2,W )− p4 =
ε ≤ ε0. If the set σ̂(W ) is finite, then set I = [|σ̂(W )|] and set I = N otherwise.
Let λi, i ∈ I, be the elements of σ̂(W ) listed in the decreasing order of their
absolute value and if there are positive and negative eigenvalues with the same
absolute value, then the positive ones are listed first. Further, let gi : [0, 1] → R

be an eigenfunction corresponding to λi. Without loss of generality, we assume
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that ‖gi‖2 = 1 for all i ∈ I and that the eigenfunctions are orthogonal to one
another, i.e., ∫

[0,1]

gi(x)gi′(x) dx = 0

for any two distinct i and i′ from I. Since it holds that

λ1 = max
f∈L2[0,1]
‖f‖2=1

∫

[0,1]2
f(x)W (x, y)f(y) dx dy,

it follows λ1 ≥ p. In particular, λ1 ≥ p0.
For every x ∈ [0, 1], we define a measurable function fx : [0, 1] → [0, 1] by

setting fx(y) = W (x, y) for all y ∈ [0, 1], i.e., fx describes the “neighborhood” of
x in the graphon W . We next define functions αi such that αi(x) would be the
coordinate of fx with respect to gi, i ∈ I, for an orthonormal basis extending gi,
i ∈ I, i.e.,

αi(x) =

∫

[0,1]

gi(y)fx(y) dy.

Since the L2-norm of fx is at most one and the functions gi, i ∈ I, are orthogonal
and have L2-norm one, we obtain that

∑

i∈I

αi(x)
2 ≤ 1 (3)

for every x ∈ [0, 1]. Next consider a cycle Ck and let U consist of any single
vertex of Ck. Using the facts that the functions gi, i ∈ I, are orthogonal, have
L2-norm equal to one and are eigenfunctions for W , we get that

tCk

W (x) =

∫

[0,1]k−1

fx(y1)W (y1, y2)W (y2, y3) · · ·W (yk−2, yk−1)fx(yk−1) dy1 · · · yk−1

=
∑

i∈I

λk−2
i αi(x)

2 (4)

holds for every k ≥ 3 and x ∈ [0, 1]. It follows that

t(Ck,W ) =

∫

[0,1]

tCk

W (x) dx =
∑

i∈I

λk−2
i

∫

[0,1]

αi(x)
2 dx. (5)

On the other hand, Proposition 4 tells us that

t(Ck,W ) =
∑

i∈I

λk
i . (6)

In particular, we obtain for k = 4 that

ε = t(K2,2,W )− p4 =
∑

i∈I

λ4
i − p4 ≥

∑

i∈I\{1}

λ4
i ,

11



which implies that |λi| ≤ ε1/4 for every i ∈ I \ {1}. In particular, λ1 has multi-
plicity one.

In order for the right side of (5) to equal the right side of (6) for every k ≥ 3
simultaneously, it must hold that, for every λ ∈ σ(W ):

∑

i∈I
λi=λ

∫

[0,1]

αi(x)
2 dx = |{i ∈ I, λi = λ}| · λ2.

Since λ1 has multiplicity one, we obtain that

∫

[0,1]

α1(x)
2 dx = λ2

1. (7)

Our aim is to estimate t
K2n,2,C5
W (x) where U is the set consisting of the vertex

shared by K2n,2 and C5. Observe that

t
K2n,2,C5
W (x) = t

K2n,2

W (x) · tC5
W (x) (8)

where U is the set consisting of one of the vertices of the 2-vertex part in the case
of K2n,2. We start by rewriting the identity (4) for k = 4 and k = 5:

tC4
W (x) = λ2

1α
2
1(x) +

∑

i∈I\{1}

λ2
iα

2
i (x) (9)

tC5
W (x) = λ3

1α
2
1(x) +

∑

i∈I\{1}

λ3
iα

2
i (x). (10)

Note that all of the terms on the right sides of these two expressions are non-
negative, except for possibly the summation in (10). By Proposition 10 and
(9),

t
K2n,2

W (x) ≥ tC4
W (x)n

=


λ2

1α
2
1(x) +

∑

i∈I\{1}

λ2
iα

2
i (x)




n

≥ λ2n
1 α2n

1 (x) + λ2n−2
1 α2n−2

1 (x)
∑

i∈I\{1}

λ2
iα

2
i (x) (11)

Our next goal is to show that, unless fx is almost completely orthogonal to g1,
the homomorphism density of K2n,2,C5 rooted at x is at least its expected average
value. Specifically, we will set π = p20/2 and show that if α2

1(x) ≥ π, then

t
K2n,2,C5
W (x) ≥ λ2n+3

1 α2n+2
1 (x). (12)
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To this end, we substitute (10) and (11) into (8) to obtain

t
K2n,2,C5
W (x) ≥


λ2n

1 α2n
1 (x) + λ2n−2

1 α2n−2
1 (x)

∑

i∈I\{1}

λ2
iα

2
i (x)




×


λ3

1α
2
1(x) +

∑

i∈I\{1}

λ3
iα

2
i (x)


 .

Multiplying out, we obtain four terms. One of them is the right side of (12) and
the remaining three terms are as follows:

λ2n+1
1 α2n

1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)


 ,

λ2n
1 α2n

1 (x)


 ∑

i∈I\{1}

λ3
iα

2
i (x)


 and

λ2n−2
1 α2n−2

1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)





 ∑

i∈I\{1}

λ3
iα

2
i (x)


 .

So, to establish (12), we need to show that the sum of these three terms is non-
negative. We first consider the sum of half of the first term and the whole of the
second term. Since p0 ≤ λ1 and λi ≤ ε1/4 for all i ∈ I \ {1}, we get

1

2
λ2n+1
1 α2n

1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)


+ λ2n

1 α2n
1 (x)


 ∑

i∈I\{1}

λ3
iα

2
i (x)




≥
(p0
2

− ε1/4
) (

λ2n
1 α2n

1 (x)
)

 ∑

i∈I\{1}

λ2
iα

2
i (x)


 ≥ 0.
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Next, we estimate the sum of half of the first term and the third term as follows:

1

2
λ2n+1
1 α2n

1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)




+ λ2n−2
1 α2n−2

1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)





 ∑

i∈I\{1}

λ3
iα

2
i (x)




≥


1

2
λ3
1α

2
1(x)−

∑

i∈I\{1}

|λi|
3α2

i (x)


λ2n−2

1 α2n−2
1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)




≥


p3π

2
− ε3/4

∑

i∈I\{1}

α2
i (x)


λ2n−2

1 α2n−2
1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)




≥

(
p50
4

− ε3/4
)
λ2n−2
1 α2n−2

1 (x)


 ∑

i∈I\{1}

λ2
iα

2
i (x)


 .

The last inequality follows from (3). The final expression is non-negative (with
room to spare) by the choice of ε0.

The statement would now follow from (7), (12) and a convexity argument if
α2
1(x) ≥ π held for almost all x ∈ [0, 1]. If this is not the case, then we show

that the “neighborhoods” of x ∈ [0, 1] differ substantially and the homomorphism
density of C4 (and so K2n,2) rooted at each x ∈ [0, 1] with α2

1(x) ≥ π must be
significantly higher than expected. We now quantify this intuition. Let X1 be
the set of x ∈ [0, 1] such that α2

1(x) ≥ π and let δ = 1− |X1|. By (7), we have
∫

X1

α2
1(x) dx =

∫

[0,1]

α2
1(x) dx−

∫

[0,1]\X1

α2
1(x) dx ≥ λ2

1 − δπ.

The right side of this expression is positive which, in particular, implies that
|X1| = 1− δ > 0. Using Jensen’s Inequality, we have

∫

X1

α2n+2
1 (x) dx ≥

(λ2
1 − δπ)n+1

(1− δ)n

=

(
λ2
1 − δπ

1− δ

)n−1

·
λ4
1 − 2δπλ2

1 + δ2π2

1− δ

≥ λ2n−2
1 ·

λ4
1 − 2δπλ2

1 + δ2π2

1− δ

= λ2n−2
1 ·

(
λ4
1 +

δλ4
1 − 2δπλ2

1 + δ2π2

1− δ

)

≥ λ2n+2
1 + λ2n−2

1 ·
δλ2

1(λ
2
1 − 2π)

1− δ
≥ λ2n+2

1 .
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In the step between the second and third lines and in the last line, we used the
fact that 2π = p20 ≤ p2 ≤ λ2

1. Since the estimate (12) holds for every x ∈ X1, we
obtain that

t(K2n,2,C5 ,W ) ≥

∫

X1

t
K2n,2,C5
W (x) dx ≥

∫

X1

λ2n+3
1 α2n+2

1 (x) dx > λ4n+5
1 ≥ p4n+5.

This concludes the proof of the lemma.

The next lemma follows from Lemma 12 using Proposition 10 for the graph
H = K2n,2,C5 and the set U being the part of K2n,2 with 2n vertices.

Lemma 13. For every p0 ∈ (0, 1), there exists ε0 > 0 such that the following

holds. If W is a graphon with density p ≥ p0 such that t(K2,2,W ) ≤ p4+ ε0, then
t(K2n,2n,C5 ,W )) ≥ p4n

2+5n for all n ∈ N.

The second ingredient in the proof of Theorem 1 is the following lemma,
which, informally speaking, says that if the cut distance of W from the p-constant
graphon is large, then the homomorphism density of K2n,2n,C5 is at least as in the
p-constant graphon unless the graphon W contains a large sparse part.

Lemma 14. For every p0 ∈ (0, 1) and every ε0 ∈ (0, 1), there exist n0 ∈ N and

δ0 > 0 such that the following holds for every graphon W with density p ≥ p0
such that t(K2,2,W ) ≥ p4 + ε0:

• t(K2n,2n,C5,W ) ≥ p4n
2+5n for every n ≥ n0, or

• αp0(W ) ≥ δ0.

Proof. Set δ0 := p0ε0/16 and set d0 := δ0. The reason that we let δ0 and d0 to
represent the same quantity is that they play different roles in the proof; δ0 is
the lower bound on the p0-independence ratio in the statement of the theorem
whereas d0 is the threshold for considering a point x ∈ [0, 1] to have “small
degree” in a graphon W . Choose n0 to be large enough so that

(1 + ε0/2)
n0 d40p

3
0 ≥ 1.

Fix a graphon W with density p ≥ p0 such that t(K2,2,W ) ≥ p4 + ε0. We
iteratively define sets Ai, i ∈ N, such that Ai is the set of all x ∈ [0, 1] with “small
degree” when disregarding neighbours in Ai−1. Formally, we let A0 = ∅ and let
Ai, i ∈ N, be the set of all x ∈ [0, 1] such that

∫

[0,1]\Ai−1

W (x, y) dy ≤ d0.

Note that Ai−1 ⊆ Ai for every i ∈ N. Let A be the union of all sets Ai, i ∈ N,
and observe that, for every x ∈ [0, 1] \ A,

∫

[0,1]\A

W (x, y) dy = lim
i→∞

∫

[0,1]\Ai−1

W (x, y) dy.

15



In particular, it holds that
∫

[0,1]\A

W (x, y) dy ≥ d0

for every x ∈ [0, 1] \ A.
We divide the proof into cases depending on the measure of A. Consider first

the case that |A| ≥ ε0/2. The integral
∫
A2 W (x, y) dx dy can be written as

∑

i∈N

∫

(Ai\Ai−1)2

W (x, y) dx dy + 2
∑

i∈N

∫

(Ai\Ai−1)×(A\Ai)

W (x, y) dx dy

≤
∑

i∈N

∫

(Ai\Ai−1)2

W (x, y) dx dy + 2
∑

i∈N

∫

(Ai\Ai−1)×([0,1]\Ai)

W (x, y) dx dy

≤ 2
∑

i∈N

∫

(Ai\Ai−1)×([0,1]\Ai−1)

W (x, y) dx dy

≤ 2
∑

i∈N

|Ai \ Ai−1| d0 ≤ 2|A|d0.

It follows that ∫
A2 W (x, y) dx dy

|A|2
≤

2d0
|A|

=
p0ε0
2|A|

≤ p0.

Thus, the characteristic function of A is a certificate for αp0(W ) ≥ ε0/2 ≥ δ0.
In the rest of the proof, we assume that |A| ≤ ε0/2. Roughly speaking, what

we aim to show is that the homomorphism density of K2n,2n,C5 is large enough
to obtain the first alternative in the theorem even if we disregard the points
contained in A. We next estimate the homomorphism density K2n,2n in W ′ using
Proposition 11 as follows:

t(K2n,2n,W
′) ≥ (t(K2,2),W

′))
n2

≥ (t(K2,2),W )− 4|A|)n
2

≥
(
p4 + ε0 − ε0/2

)n2

=
(
p4 + ε0/2

)n2

The goal now is to combine these copies of K2n,2n with copies of C5 rooted at
x ∈ [0, 1] \ A. Consider x ∈ [0, 1] \ A and let h(y) = W ′(x, y). Note that

∫

[0,1]

h(y) dy =

∫

[0,1]

W ′(x, y) dy =

∫

[0,1]\A

W (x, y) ≥ d0 = δ0.

Since h(y) = 0 for y ∈ A, we obtain that
∫

[0,1]2
h(y)W ′(y, z)h(z) dy dz =

∫

[0,1]2
h(y)W (y, z)h(z) dy dz. (13)
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If the integral in (13) is less than p0‖h‖
2
1, then αp0(W ) ≥ δ0, which is the second

conclusion of the lemma.
Hence, we can assume that the integral in (13) is at least p0‖h‖

2
1 for every

x ∈ [0, 1] \A. Since the 3-edge path P4 is Sidorenko, we conclude by considering
the graphon W [h], see (2), that

tC5

W ′(x) ≥ ‖h‖41 · t(P4,W [h]) ≥ p30 ≥ d40p
3
0

for every x ∈ [0, 1] \ A. It follows that

t(K2n,2n,C5 ,W ) ≥ t(K2n,2n,C5 ,W
′)

≥ t(K2n,2n,W
′) ·

(
d40p

3
0

)n

≥
(
p4 + ε0/2

)n2 (
d40p

3
0

)n

≥ p4n
2

(1 + ε0/2)
n2 (

d40p
3
0

)n

= p4n
2 (

(1 + ε0/2)
n0 d40p

3
0

)n
≥ p4n

2

≥ p4n
2+5n.

Hence, the first conclusion of the lemma holds.

We are now ready to prove the main theorem of this section, which implies
Theorem 1. In a certain sense, Theorem 15 is a variant of Theorem 1 where a very
small proportion of the edges can be left uncolored. This additional flexibility is
needed for an inductive argument which is used to obtain the result for all values
of k.

Theorem 15. For every k ∈ N, there exist nk ∈ N and δk > 0 with the following

property. If W1, . . . ,Wk are graphons such that t(K2,W1 + · · · + Wk) ≥ 1 − δk,
then ∑

i∈[k]

t(K2n,2n,C5 ,Wi) ≥
t(K2,W1 + · · ·+Wk)

4n2+5n

k4n2+5n−1

for every n ≥ nk.

Proof. We proceed by induction on k ∈ N. Suppose first that k = 1. Apply
Lemma 13 with p0 = 3/4 to get ε0 ∈ (0, 1]. We show that the statement of the
theorem is true for n1 = 1 and δ1 = ε0/4. Let W1 be a graphon with density
p ≥ 1− δ1; note δ1 ≤ 1/4 and so p ≥ 3/4. Observe that

t(K2,2,W )− p4 ≤ 1− p4 ≤ 1− (1− δ1)
4 ≤ 4δ1 = ε0.

Hence, Lemma 13 implies that

t(K2n,2n,C5,W1) ≥ p4n
2+5n.

This completes the proof in the base case k = 1.
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Now, suppose that we have already established the existence of n1, . . . , nk−1

and δ1, . . . , δk−1. Choose p0 = δk−1/4k and apply Lemma 13 to get ε0. We then

apply Lemma 14 with p0 and ε0 to obtain n0 and δ0. Set δk =
δk−1δ

2
0

4k
. Finally,

choose nk such that nk ≥ max{n0, nk−1} and

(
1

k
+

1

2k(k − 1)

)4nk

δ80 ≥
k

k − 1
.

The choice of nk yields that the following holds for all n ≥ nk:

(k − 1)

(
1

k
+

1

2k(k − 1)

)4n2+5n

δ8n0 ≥ k ≥ k

(
1

k

)4n2+5n

.

Let graphons W1, . . . ,Wk satisfying the assumption of the theorem be given
and let n ≥ nk. Further, let p = t(K2,W1 + · · · + Wk) be the density of the
graphon W1 + · · ·+Wk; note that p ≥ 1− δk.

We distinguish two cases. Roughly speaking, in the first case, we assume that
one of the graphons W1, . . . ,Wk contains a large sparse part. That is, suppose
that there exists i ∈ [k] such that αp0(Wi) ≥ δ0; note that this includes the
case that the density of Wi is at most p0. By symmetry, we can assume that
αp0(Wk) ≥ δ0. Let h : [0, 1] → [0, 1] be such that ‖h‖1 ≥ δ0 and

∫

[0,1]2
h(x)Wk(x, y)h(y) dx dy ≤ p0‖h‖

2
1.

Since it holds that

∑

i∈[k]

∫

[0,1]2
h(x)Wi(x, y)h(y) dx dy ≥ ‖h‖21 − δk,

we obtain that

∑

i∈[k−1]

∫

[0,1]2
h(x)Wi(x, y)h(y) dx dy ≥ ‖h‖21 − p0‖h‖

2
1 − δk

≥ ‖h‖21

(
1−

δk−1

2k

)

≥ ‖h‖21

(
1−

1

2k

)
.

Since it holds that

t(K2,W1[h] + · · ·+Wk−1[h]) ≥ 1−
δk−1

2k
≥ 1− δk−1,
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we can apply induction to W1[h], . . . ,Wk−1[h] and arrive at the following:

∑

i∈[k−1]

t(K2n,2n,C5 ,Wi) ≥ ‖h‖8n1
∑

i∈[k−1]

t(K2n,2n,C5,Wi[h])

≥ ‖h‖8n1 (k − 1)

(
1− 1/2k

k − 1

)4n2+5n

≥ δ8n0 (k − 1)

(
1

k
+

1

2k(k − 1)

)4n2+5n

≥ k

(
1

k

)4n2+5n

≥
p4n

2+5n

k4n2+5n−1
.

Hence, in the following, we assume that αp0(Wi) < δ0 for every i ∈ [k]. In
particular, we assume that t(K2,Wi) ≥ p0 for every i ∈ [k] and so we can apply
Lemmas 13 and 14 to each of W1, . . . ,Wk.

Based on whether it holds that t(K2,2,Wi) ≤ t(K2,Wi)
4+ε0 or not, Lemma 13

or Lemma 14, respectively, implies

t(K2n,2n,C5,Wi) ≥ t(K2,Wi)
4n2+5n

for every i ∈ [k]. Therefore, we obtain that

∑

i∈[k]

t(K2n,2n,C5,Wi) ≥
∑

i∈[k]

t(K2,Wi)
4n2+5n

which is at least k
(
p
k

)4n2+5n
by convexity. This concludes the proof of the theo-

rem.

4 Sidorenko and locally Sidorenko graphs

In this section, we prove that a graph is k-common for all k ≥ 2 if and only if it
is Sidorenko and that no graph of odd girth is locally k-common for any k ≥ 3.
Note that forests and graphs with even girth are locally k-common for every k
by Theorem 8. We start with the former statement.

Proof of Theorem 2. We first show that if a graph H is Sidorenko, then it is k-
common for every k ∈ N. Fix a Sidorenko graph H and an integer k ≥ 2. Let
W1, . . . ,Wk be graphons such that W1 + · · ·+Wk = 1 and let p1, . . . , pk be their
respective densities. Note that p1 + · · ·+ pk = 1. Since H is Sidorenko,

t(H,W1)+ · · ·+ t(H,Wk) ≥ p
‖H‖
1 + · · ·+p

‖H‖
k ≥ k

(
p1 + · · ·+ pk

k

)‖H‖

= k−‖H‖+1.

Therefore, H is k-common.
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To complete the proof, we need to show that if a graph H is not Sidorenko,
then there exists k ≥ 2 such that H is not k-common. Fix a graph H that is not
Sidorenko and let W be a graphon with density p such that t(H,W ) < p‖H‖. Set
ε = p‖H‖ − t(H,W ). By Lemma 6, there exists a step graphon W ′ with density
p such that the cut distance between W and W ′ is at most ε/(2‖H‖). Lemma 5
implies that

t(H,W ′) ≤ t(H,W ) + ε/2 = p‖H‖ − ε/2.

By splitting each of the parts of W ′ into the same number of equal size smaller
parts, we can assume that the number m of parts of W ′ satisfies

4‖H‖ ≤ mε and p‖H‖ − ε/4 < (p− 1/m)‖H‖.

Let A1, . . . , Am be the parts of W ′ and let dij, i, j ∈ [m] be the value of W ′ on
the tile Ai × Aj . Further, let δ be the average of dij taken over all pairs i and j
such that 1 ≤ i < j ≤ m and let W ′′ be the step graphon with the same m parts
as W ′ obtained from W ′ by making each of the m diagonal tiles to be equal to
δ. Note that the density of the whole graphon W ′′ is δ and δ ≥ p− 1/m. Since
the cut distance between W ′ and W ′′ is at most m/m2 = 1/m, Lemma 5 implies
that

t(H,W ′′) ≤ t(H,W ′) + ‖H‖ · ‖W −W ′‖�

≤ t(H,W ′) + ε/4

≤ p‖H‖ − ε/4 < (p− 1/m)‖H‖ ≤ δ‖H‖.

Next choose an integer ℓ ∈ N such that 1 ≤ δℓm! and set k = ℓm!. We next
define k graphons that witness that H is not k-common; the k graphons will be
indexed by pairs consisting of a permutation σ ∈ Sm of order m and an integer
s ∈ [ℓ]. The graphonWσ,s for σ ∈ Sm and s ∈ [ℓ] is the step graphon with m parts
A1, . . . , Am such that the graphon Wσ,s on a tile Ai × Aj , i, j ∈ [m], is equal to

1/k if i = j and is equal to
dσ(i)σ(j)

kδ
if i 6= j (note that

dσ(i)σ(j)

kδ
≤ 1). Note that the

density of each of the graphons Wσ,s is
1
k
. Moreover, the average value of all the k

graphons on any of the tiles is 1
k
. Consequently, the k graphons Wσ,s, σ ∈ Sm and

s ∈ [ℓ], sum to the 1-constant graphon. Since the homomorphism density of H in
each of the graphonWσ,s, σ ∈ Sm and s ∈ [ℓ], is equal to 1

(kδ)‖H‖ t(H,W ′′) < k−‖H‖,

it follows that H is not k-common.

We next show that locally k-common graphs for any k ≥ 3 are precisely locally
Sidorenko graphs (cf. Theorem 8).

Proof of Theorem 3. Fix an integer k ≥ 3 for the proof, and a graph H with
girth ℓ where ℓ is odd.

Let A1, . . . , A2ℓ be any partition of the interval [0, 1] to 2ℓ disjoint measurable
sets, each of measure (2ℓ)−1. Consider a kernel U defined as follows (also see
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Figure 2: The kernel U used in the proof of Theorem 3 for ℓ = 5.

Figure 2):

U(x, y) =





+1 if x ∈ Ai, y ∈ Aj, ⌈i/ℓ⌉ = ⌈j/ℓ⌉ and i = (j ± 1) mod ℓ,

−1 if x ∈ Ai, y ∈ Aj, ⌈i/ℓ⌉ 6= ⌈j/ℓ⌉ and i = (j ± 1) mod ℓ,

0 otherwise.

Let G be a graph that has a vertex v of degree one and let v′ be the neighbor of
v. Note that

t(G,U) =

∫

[0,1]V (G)

∏

uu′∈E(G)

U(xu, xu′) dxV (G)

=

∫

[0,1]V (G)\{v}

∏

uu′∈E(G)
uu′ 6=vv′

U(xu, xu′) ·

(∫

[0,1]

U(xv′ , xv) dxv

)
dxV (G)\{v}

=

∫

[0,1]V (G)\{v}

∏

uu′∈E(G)
uu′ 6=vv′

U(xu, xu′) · 0 dxV (G)\{v} = 0

We conclude that t(G,U) = 0 for every graph G with a vertex of degree one.
We next compute t(Cℓ, U). Observe that the product

∏
i∈[ℓ] U(xi, x(i+1) mod ℓ)

is non-zero for x1, . . . , xℓ ∈ [0, 1] if and only if there exists j ∈ [ℓ] such that
either xi ∈ A(i+j) mod ℓ ∪ A(i+j) mod ℓ+ℓ for every i ∈ [ℓ] or xi ∈ A(ℓ−i+j) mod ℓ ∪
A(ℓ−i+j) mod ℓ+ℓ for every i ∈ [ℓ]; if it is non-zero, then it is equal to one. Hence,
it follows that

t(Cℓ, U) =

∫

[0,1]ℓ

∏

i∈[ℓ]

U(xi, x(i+1) mod ℓ) dx[ℓ] = 2ℓ ·
∏

i∈[ℓ]

|Ai ∪ Ai+ℓ| =
2

ℓℓ−1
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We next consider the following graphons: W1 = W2 = 1/k + εU , W3 =
1/k − 2εU and W4 = · · · = Wk = 1/k. We will estimate the homomorphism
density of H in W1, . . . ,Wk using Proposition 7. Note that if F is a subset of
edges of H such that 1 ≤ |F | ≤ ℓ, then H [F ] contains a vertex of degree one
unless H [F ] is a union of a cycle of length ℓ and isolated vertices. In particular,
t(H [F ], U) = 0 for such a set F unless F is the edge set of a cycle of length ℓ.
Using Proposition 7, we obtain that

t(H,W1) + · · ·+ t(H,Wk) = 2t(H, 1/k + εU) + t(H, 1/k − 2εU)

+ (k − 3)t(H, 1/k)

= k−‖H‖+1 + 2 ·
2mℓ

ℓℓ−1
εℓ −

2ℓ+1mℓ

ℓℓ−1
εℓ +O(εℓ+1)

= k−‖H‖+1 −
(2ℓ+1 − 4)mℓ

ℓℓ−1
εℓ +O(εℓ+1)

where mℓ is the number of cycles of length ℓ in H . Since 2ℓ+1 − 4 > 0, there
exists ε0 > 0 such that

t(H,W1) + · · ·+ t(H,Wk) < k−‖H‖+1

for every ε ∈ (0, ε0). We conclude that H is not locally k-common, which com-
pletes the proof of the theorem.

5 Open problems

We conclude with two open problems. Theorem 1 provides an example of a non-
bipartite k-common graph for every k ≥ 2. A natural next question is whether
there exist k-common graphs of arbitrary large chromatic number. Currently,
the only known example of a 2-common graph of chromatic number greater than
three is the 5-wheel [17] and so this question is interesting even in the case k = 2
and ℓ ≥ 5.

Problem 1. For every k ≥ 2 and ℓ ≥ 4, construct a k-common ℓ-chromatic

graph.

The second problem stems from Theorem 3 which characterizes locally k-
common graphs for k ≥ 3. Interestingly, we do not have a similar characterization
of locally 2-common graphs.

Problem 2. Characterize graphs that are locally 2-common.

Locally 2-common graphs include forests, all graphs with even girth, the tri-
angle and the 5-wheel in particular, since these are graphs are locally Sidorenko or
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2-common. On the other hand, a construction of Franek and Rödl [12] of asymp-
totically n/2-regular n-vertex graphs with density of K4 and their complement
less than 0.987314× 1/32, yields the existence of a kernel U such that

t(K4, 1/2 + U) + t(K4, 1/2− U) ≤ 0.987314×
1

32
and

∫

[0,1]

U(x, y) dy = 0

for every x ∈ [0, 1]. We use this construction to show that K4 is not locally
2-common. For z ∈ (0, 1], define a kernel Uz as

Uz(x, y) =

{
U(x/z, y/z) if (x, y) ∈ [0, z]2,

0 otherwise.

Since the cut norm of Uz is at most z2 and t(K4, 1/2+Uz)+t(K4, 1/2−Uz) < 1/32
(here, we use that the kernel Uz is “0-regular”), it follows that K4 is not locally
2-common.
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London Math. Soc. (2) 39 (1989), 246–255.

[33] A. Thomason: Graph products and monochromatic multiplicities, Combina-
torica 17 (1997), 125–134.

25


	1 Introduction
	2 Preliminaries
	3 Non-bipartite k-common graphs
	4 Sidorenko and locally Sidorenko graphs
	5 Open problems

