
The Surprising Power of Constant Depth Algebraic
Proofs

Russell Impagliazzo

Department of Computer Science and

Engineering

UC San Diego

russell@cs.ucsd.edu

Sasank Mouli

Department of Electrical and

Computer Engineering

UC San Diego

sasankm@ucsd.edu

Toniann Pitassi

Department of Computer Science

University of Toronto

toni@cs.toronto.edu

Abstract
A major open problem in proof complexity is to prove su-

perpolynomial lower bounds for AC0 [p]-Frege proofs. This
system is the analog of AC0 [p], the class of bounded depth

circuits with prime modular counting gates. Despite strong

lower bounds for this class dating back thirty years ([28, 30]),

there are no significant lower bounds for AC0 [p]-Frege. Sig-
nificant and extensive degree lower bounds have been ob-

tained for a variety of subsystems of AC0 [p]-Frege, includ-
ing Nullstellensatz ([3]), Polynomial Calculus ([9]), and SOS

([14]). However to date there has been no progress on AC0 [p]-
Frege lower bounds.

In this paper we study constant-depth extensions of the

Polynomial Calculus [13]. We show that these extensions are

much more powerful than was previously known. Our main

result is that small depth (≤ 43) Polynomial Calculus (over a

sufficiently large field) can polynomially effectively simulate

all of the well-studied semialgebraic proof systems: Cut-

ting Planes, Sherali-Adams, Sum-of-Squares (SOS), and Posi-

tivstellensatz Calculus (Dynamic SOS). Additionally, they can

also quasi-polynomially effectively simulate AC0 [q]-Frege
for any prime 𝑞 independent of the characteristic of the un-

derlying field. They can also effectively simulate TC0-Frege
if the depth is allowed to grow proportionally. Thus, prov-

ing strong lower bounds for constant-depth extensions of

Polynomial Calculus would not only give lower bounds for

AC0 [p]-Frege, but also for systems as strong as TC0-Frege.

CCS Concepts: • Theory of computation→ Proof the-
ory; Proof complexity; Complexity theory and logic.

Keywords: Proof Complexity, Polynomial Calculus, Alge-

braic proofs, AC0 [p]-Frege, bounded depth

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00

https://doi.org/10.1145/3373718.3394754

ACM Reference Format:
Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi . 2020. The

Surprising Power of Constant Depth Algebraic Proofs. In Proceed-
ings of the 35th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS ’20), July 8–11, 2020, Saarbrücken, Germany.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3373718.
3394754

1 Introduction
Proof complexity has evolved in parallel to circuit complexity,

typically with circuit lower bound techniques being eventu-

ally used to show lower bounds for analogous proof systems.

One stubborn exception is the analogous proof system for

AC0 [p], the class of bounded depth circuits with prime mod-

ular counting gates. Despite strong lower bounds for this

class dating back thirty years ([28, 30]), there are no signif-

icant lower bounds for AC0 [p]-Frege. Since the only lower

bounds for circuits with modular operations are via repre-

sentations of functions by polynomials ([28, 30]), it seems

natural to use algebraic proof systems (e.g, Nullstellensatz

([3]), Polynomial Calculus (PC) ([9]), Positivstellensatz aka

Sum-of-Squares (SOS) ([14]), ideal proofs ([15])) to extend

these bounds to the proof complexity case. However, despite

progress on these proof systems, a super-polynomial lower

bound for AC0 [p]-Frege remains open. This paper offers one

explanation for this failure: small modifications of these alge-

braic proof systems to handle constant depth overshoot and

allow reasoning far beyond that possible by AC0 [p] circuits.
Since lower bounds for Polynomial Calculus itself do not

imply lower bounds for AC0 [p]-Frege systems, various re-

searchers have suggested ways to strengthen PC to cre-

ate algebraic systems which do 𝑝-simulate AC0 [p]-Frege
([8, 13, 23]). Unfortunately, it is not clear how to extend lower

bound techniques for PC to these systems. As an illustra-

tion of how small extensions can increase the power of these

proof systems, consider Polynomial Calculus where we allow

changes of bases. Many strong lower bounds are known for

the size of PC proofs for tautologies like the Pigeonhole Prin-

ciple [29], [19] and Tseitin tautologies [5]. All of the above

lower bounds use a degree-size connection, which roughly

states that a linear lower bound on the degree of any refuta-

tion translates to an exponential lower bound on its size. But

this connection is highly basis dependent. The connection

only holds true over the {0, 1} basis, and even allowing a

https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1145/3373718.3394754

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

change to the {−1, 1} basis immediately gives a polynomial

sized proof for the𝑚𝑜𝑑 2 Tseitin tautologies. Grigoriev and

Hirsch [13] noted the above and in addition showed that

allowing for introduction of new variables which are linear

transformations of the original variables gives a short proof

of the Pigeonhole principle as well. They also generalized

the notion of a linear transformation by considering trans-

formations obtained by applying constant depth arithmetic

circuits and arithmetic formulas to the original variables.

The resulting systems turn out to be quite powerful, and it

is shown in [13] that the latter simulates Frege systems, and

the former simulates depth 𝑑 AC0 [p]-Frege proofs by using

arithmetic circuits of depth𝑑 ′ = Θ(𝑑). Raz and Tzameret [27]

defined a proof system along similar lines where the trans-

formations are restricted such that each line of the proof is a

multilinear formula in the original variables. It was shown

that even under these restrictions, linear transformations

allow small proofs of the functional Pigeonhole principle and

Tseitin tautologies. They also showed in [26] that Polyno-

mial Calculus with added linear transformations simulates

the system 𝑅(𝐶𝑃∗) of Krajicek [20], which is stronger than

Cutting Planes with bounded coefficients.

1.1 Our Work
Here, we show that these extensions to PC are even more

powerful than previously known. Over a sufficiently large

field of characteristic 𝑝 , the same extensions that allow PC

to simulate depth 𝑑 AC0 [p] proofs also allows it to simulate

much stronger proof systems. So to prove a lower bound

on AC0 [p] proofs via such systems would seem to require

proving lower bounds for systems as strong as TC0-Frege.
More precisely, consider the following additions to PC. In

an additive extension, we introduce a new variable 𝑦 and

a new defining equation 𝑦 =
∑
𝑎𝑖𝑥𝑖 + 𝑏 where 𝑎𝑖 , 𝑏 ∈ F.

In a multiplicative extension, we introduce a new variable

𝑦 and a new defining equation 𝑦 = 𝑏
∏(𝑥𝑖)𝑒𝑖 . Depth-𝑑-PC

allows the usual (syntactic) reasoning of Polynomial Calculus

using these extension variables (i.e. multiplying a line by the

variable 𝑦 is allowed), with each line having up to 𝑑 − 2

alternating layers of additive and multiplicative extensions.

(The new variables in a depth 𝑑-PC proof are equivalent to

depth 𝑑 − 2 algebraic circuits, and polynomials in terms of

these variables are depth 𝑑 algebraic circuits.)

A note regarding the notion of simulation. All our
simulation results below use the notion of effective simu-
lation from [25] (see Definition 4). For the rest of the paper,

"simulate" refers to an effective simulation. This is an impor-

tant distinction, since Alekseev et. al. [1] show that assuming

the Shub-Smale hypothesis, even very strong algebraic sys-

tems like the Ideal Proof System [16] cannot simulate (in the

usual sense – see Definition 3) weak semi-algebraic systems

like SOS.

We remove the restriction of polynomially bounded co-

efficients from the result of [26] and show how to perform

arithmetic with large coefficients, and as a result effectively

simulate Cutting Planes with unbounded coefficients and the

Sum-of-Squares (SOS) proof system. (Our theorem works for

the stronger system Positivstellensatz Calculus [14]).

Theorem 1. Depth-43-PC can effectively p-simulate Cutting
Planes and Positivstellensatz Calculus over F𝑝𝑚 for any prime
𝑝 , where𝑚 is logarithmic in the maximum number of mono-
mials in any proof line.

Clote and Kranakis [10] mention a proof, due to Krajíček,

of Cutting Planes being simulated by the bounded-depth

threshold logic system PTK of Buss and Clote [7]. Since we

simulate a modified version of PTK to show Theorem 2 be-

low, it already follows that our system simulates Cutting

Planes. However, the above proof by Krajíček is non-explicit

and does not provide a value of the depth at which the simu-

lation happens. Determining this value is posed as an open

problem in [10]. Theorem 1 provides an upper bound of

𝑑 ≤ 43 through an explicit simulation. The following is a

brief outline. Given a polynomial 𝑃 , to assert that it is non-

negative using a set of low depth polynomial equations, we

introduce a signed bit representation for 𝑃 by representing

the coefficient of each monomial using the bit vector of its

two’s complement representation, and performing bitwise

addition over these bit vectors to obtain a bit vector repre-

senting 𝑃 . The method of carrying out bitwise addition is

carefully chosen so that not only is the resultant vector of

low depth, but the correctness of this process can also be

proved in low depth, which is crucial to carrying out the

simulation. With this representation in hand, the line 𝑃 ≥ 0

is represented by 𝑠𝑖𝑔𝑛(𝑃) = 0 where 𝑠𝑖𝑔𝑛 indicates the sign

bit (which is zero if and only if the number being represented

is non-negative). The simulation of the semi-algebraic proof

system is then carried out step by step, where a derivation

of 𝑃2 ≥ 0 from 𝑃1 ≥ 0 is mimicked by deriving 𝑠𝑖𝑔𝑛(𝑃2) = 0

from 𝑠𝑖𝑔𝑛(𝑃1) = 0. Finally, since a semi-algebraic refutation

can be assumed to end with the line −1 ≥ 0, our simulation

gives us the line 𝑠𝑖𝑔𝑛(−1) = 0, which is simply the line 1 = 0,

a contradiction. The constant of 43 is obtained since the con-

struction we use for low depth bitwise addition is of depth

about 10, but proving its correctness requires stacking up

four layers of it. We have not tried to optimize this constant,

and this is just a rough estimate. Theorem 1 is proved in

section 4.4.

We improve the results of Grigoriev and Hirsch in the

constant depth case in two ways. We show that AC0 [p]-Frege
can be simulated with a fixed constant depth, but with a

quasipolynomial blowup. Significantly, this simulation also

simulates modular gates of different characteristic than the

field we are working over.

Theorem 2. Let 𝑝 be an arbitrary prime and 𝑛 be a positive
integer. For some𝑚 = 𝑂 (poly(log(n))), depth-9-PC over F𝑝𝑚

The Surprising Power of Constant Depth Algebraic Proofs LICS ’20, July 8–11, 2020, Saarbrücken, Germany

can effectively quasipolynomially simulate AC0 [q]-Frege over
𝑛 variables for any prime 𝑞.

Buss et al. [6] showed that an AC0 [p]-Frege proof of depth
𝑑 can be collapsed to a depth 3 AC0 [p]-Frege proof with a

quasipolynomial blowup. In conjunction with [13], this im-

plies the above theorem for the case of 𝑞 = 𝑝 . Thus, apart

from being more general, our result also provides an alter-

native and perhaps simpler proof of the case of 𝑞 = 𝑝 . We

prove Theorem 2 in sections 4.2.1 and 4.2.2.

We also show that allowing for arbitrarily large but con-

stant depth transformations enables the simulation of TC0-
Frege.

Theorem 3. A TC0-Frege proof of depth 𝑑 can be effectively
p-simulated by depth-𝑑 ′-PC over F𝑝𝑚 , where 𝑑 ′ = 𝑂 (𝑑) and
𝑚 is logarithmic in the size of the largest threshold gate, for
any prime 𝑝 .

The proof of Theorem 3 is shown in section 4.3.

We also improve the results of Raz and Tzameret [26] to

show that Polynomial Calculus with linear transformations

can simulate semantic Cutting Planes with small coefficients.

Theorem 4. Depth-3-PC can effectively p-simulate semantic
CP* over Q.

Theorem 4 is proved in sections 3.1 and 3.2.

1.2 Related Work
Pitassi [23, 24] introduced powerful generalizations of the

Polynomial Calculus that operate directly on formulas. Gro-

chow and Pitassi [16] introduced the more general IPS proof

system, and proved that superpolynomial lower bounds for

IPS would imply the longstanding problem of separating VP
from VNP. However, these algebraic systems are not Cook-

Reckhow proof systems since proofs are not known to be

checkable in polynomial time (but rather in randomized

polynomial-time.)

In 2003, Grigoriev and Hirsch [13] introduced a Cook-

Reckhow style algebraic proof system for formulas, with

derivation rules corresponding to the ring axioms. Motivated

by understanding how many basic ring identities are needed

to verify polynomial identities, Hrubes and Tzameret [17]

introduced a very closely related equational proof system

for proving polynomial identities over a ring. Even earlier,

[8] study essentially the same proof system but where the

focus is over finite fields. Finally, Raz and Tzameret [26]

introduced the 𝑅𝑒𝑠 (𝑙𝑖𝑛) proof system, which generalizes Res-

olution using extension variables given by linear forms, in

a similar way to our generalization of PC using extension

variables. They also showed that 𝑅𝑒𝑠 (𝑙𝑖𝑛) simulates the sys-

tem 𝑅(𝐶𝑃∗) (defined in [20]) and Polynomial Calculus over

depth 3 formulas can simulate 𝑅𝑒𝑠 (𝑙𝑖𝑛). Alekseev et. al. [1]
also considered generalized versions of Nullstellensatz and

Sum-of-Squares over algebraic circuits of arbitrary depth.

Conditioned on the assumption that a certain subset sum

principle has a small IPS proof, they make use of bitwise

arithmetic to show that these systems are equivalent to IPS.

Although we also use bitwise arithmetic to prove Theorem 1,

our work vastly differs from theirs in the following aspects.

Firstly, the proof systems considered by them are not Cook-

Reckhow systems, i.e. it is not known whether the proofs in

these systems can be verified in deterministic polynomial

time. These systems are hence much more powerful than the

ones we consider here, and in particular they are not con-

cerned with performing bitwise arithmetic in constant depth,

which is the main focus of our simulations. Secondly, while

we use the notion of effectively 𝑝-simulation [25] for all our

results, they chiefly focus on the more conventional notion of

𝑝-simulation. Effective simulation allows for a formula in the

simulated system to be “pre-processed" in a truth-preserving

way before it is represented in the simulating system, while

𝑝-simulation is only defined for two proof systems which

can express the same set of formulae.

1.3 Organization of the paper
The rest of the paper is organized as follows. In section 2.1,

we discuss some basic definitions and notations. In section

2.2, we define the notions from proof complexity and proof

systems used in this paper. In section 2.3, we formalize the

system of bounded depth Polynomial Calculus. In section

3.1, we sketch the simulation of syntactic Cutting Planes

with bounded coefficients from [26], since it is essential for

a significant part of the subsequent discussion. In section

3.2, we extend the simulation to the semantic case, proving

Theorem 4. In section 4.1, we prove an analog of the results

in section 3.1 over a large enough finite field extension, for

use in subsequent sections. In sections 4.2.1, 4.2.2, 4.3, we

use techniques from this analog to prove Theorems 2 and 3.

Finally in section 4.4, we prove Theorem 1. Technical details

of simulations from each of the above sections are contained

in the full version [18].

2 Preliminaries and Generalizations of
Polynomial Calculus

2.1 Preliminaries
2.1.1 Notation. Integers are represented by letters 𝑎, 𝑏,

𝑐 . For an integer 𝑎, let 𝑎+ = 𝑎 if 𝑎 > 0 and 0 otherwise.

Define |𝑎 | to be the length in binary of 𝑎. Sets of integers are

represented by letters 𝐴, 𝐵,𝐶 . Indices to sets are represented

by letters 𝑖 , 𝑗 , 𝑘 , ℓ .

Variables are represented by 𝑥 , 𝑦, 𝑧, 𝑤 where 𝑥 usually

represents the original variables and the others represent the

extension variables. Monomials are represented by upper

case letters 𝑋 , 𝑌 , 𝑍 . Polynomials are represented by 𝑃 , 𝑄 , 𝑅.

Boolean formulae are represented by 𝜑 .

We treat all the above as one dimensional objects. Multi-

dimensional objects, or vectors, are represented in boldface.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

Constant vectors are represented by a, b, c. Vectors whose
components may be variables or polynomials are represented

by y, z, w.

Calligraphic letters R, S are used for special expressions

which are contextual.

Definition 1 (Straight Line Program (SLP)). A SLP 𝑆 over
variables {𝑥1, . . . , 𝑥𝑛} and a field F is a sequence of compu-
tations (𝑦1, . . . , 𝑦𝑘) such that each 𝑦 𝑗 is equal to one of the
following, where 𝐶 𝑗 ⊆ {1, . . . , 𝑗 − 1}

𝑥𝑖 for some 𝑖 ∈ {1 · · ·𝑛}∑
ℓ∈𝐶 𝑗

𝛼ℓ𝑦ℓ for some constants 𝛼ℓ ∈ F∏
ℓ∈𝐶 𝑗

𝑦ℓ

We view a SLP as a directed acyclic graph where internal
nodes are labelled with either Product or Plus gates and the
leaf nodes are labelled with a variable 𝑥𝑖 . The size of a SLP is
therefore the number of nodes in the corresponding directed
acyclic graph, and the depth is the maximum number of nodes
on a root to leaf path in the directed acyclic graph.

2.2 Propositional proof systems
Definition 2 (Cook-Reckhow proof system). For a language
𝐿 ⊆ {0, 1}∗, a Cook-Reckhow proof system is a polynomial
time deterministic verifier 𝑉 such that

- If 𝑥 ∈ 𝐿, there exists a proof 𝜋 such that𝑉 (𝑥, 𝜋) accepts.
- If 𝑥 ∉ 𝐿, for all proofs 𝜋 , 𝑉 (𝑥, 𝜋) rejects.

Definition 3 (p-simulation). For two proof systems 𝑉1 and
𝑉2 defined over the same language 𝐿, 𝑉2 is said to 𝑝-simulate
𝑉1 if there exists a polynomial time computable function 𝑓

such that for every 𝑥 ∈ 𝐿, if 𝜋1 is a proof of 𝑥 for 𝑉1, 𝑓 (𝜋1) is
a proof of 𝑥 for 𝑉2.

Definition 4 (Effectively p-simulation [25]). For two proof
systems𝑉1 and𝑉2 over languages 𝐿1 and 𝐿2,𝑉2 is said to effec-
tively 𝑝-simulate𝑉1 if there exist polynomial time computable
functions 𝑓 , 𝑔 such that 𝑥1 ∈ 𝐿1 if and only if 𝑔(𝑥1) ∈ 𝐿2 and
if 𝜋1 is a proof of 𝑥1 for 𝑉1, 𝑓 (𝜋1) is a proof of 𝑔(𝑥1) for 𝑉2.

In this paper, we are only concerned with effective simu-

lations. The propositional proof systems we will work with

are defined below.

Definition 5 (Cutting Planes). Let Δ = {𝐴1, . . . , 𝐴𝑚} be a set
of unsatisfiable integer linear inequalities in boolean variables
𝑥1, . . . , 𝑥𝑛 of the form 𝐴 𝑗 ≡

∑
𝑖 𝑎𝑖 𝑗𝑥𝑖 ≥ 𝑏𝑖 where 𝑎𝑖 𝑗 and 𝑏𝑖

are integers. A Cutting Planes refutation of Δ is a sequence of
lines 𝐵1, . . . , 𝐵𝑠 such that 𝐵𝑠 is the inequality 0 ≥ 1 and for
every ℓ ∈ {1, . . . , 𝑠} 𝐵ℓ ∈ Δ or is obtained through one of the
following derivation rules for 𝑗, 𝑘 < ℓ

Addition. From𝐵 𝑗 ≡
∑

𝑖 𝑐𝑖 𝑗𝑥𝑖 ≥ 𝑑 𝑗 and𝐵𝑘 ≡
∑

𝑖 𝑐𝑖𝑘𝑥𝑖 ≥ 𝑑𝑘 ,
derive ∑

𝑖

(𝑐𝑖 𝑗 + 𝑐𝑖𝑘)𝑥𝑖 ≥ 𝑑 𝑗 + 𝑑𝑘

Multiplication by a constant. From 𝐵 𝑗 ≡
∑

𝑖 𝑐𝑖 𝑗𝑥𝑖 ≥ 𝑑 𝑗 ,
derive

𝑐
∑
𝑖

𝑐𝑖 𝑗𝑥𝑖 ≥ 𝑐𝑑 𝑗

for an integer 𝑐 ≥ 0.

Division by anonzero constant. From𝐵 𝑗 ≡
∑

𝑖 𝑐𝑖 𝑗𝑥𝑖 ≥ 𝑑 𝑗

and an integer 𝑐 > 0 such that 𝑐 divides 𝑐𝑖 𝑗 for all 𝑖 , derive∑
𝑖

𝑐𝑖 𝑗

𝑐
𝑥𝑖 ≥ ⌈𝑑 𝑗/𝑐⌉

The semantic version of the system also has the following
rule

Semantic inference. If𝐵 𝑗 ≡
∑

𝑖 𝑐𝑖 𝑗𝑥𝑖 ≥ 𝑑 𝑗 ,𝐵𝑘 ≡
∑

𝑖 𝑐𝑖𝑘𝑥𝑖 ≥ 𝑑 𝑗

and 𝐵ℓ ≡
∑

𝑖 𝑐𝑖ℓ𝑥𝑖 ≥ 𝑑 𝑗 are inequalities such that every assign-
ment to 𝑥1, . . . , 𝑥𝑛 that satisfies 𝐵 𝑗 and 𝐵𝑘 also satisfies 𝐵ℓ ,
then from lines 𝐵 𝑗 and 𝐵𝑘 , derive 𝐵ℓ .

The size of a line is the size of its bit representation. The size
of a proof is the sum of sizes of each line. The length of a Cutting
Planes proof is equal to the number of lines in the proof. We
define the coefficient size of a Cutting Planes proof to be equal
to the maximum of the absolute values of all the constants
that appear in the proof. CP∗ is a subsystem of Cutting Planes
where the coefficient size is bounded by a polynomial in the
number of variables. Without loss of generality, the coefficient
size can be bounded by 2

poly(ℓ) where ℓ is the length of the
proof due to [11].

Definition 6 (Polynomial Calculus (PC)). Let Γ = {𝑃1, . . . , 𝑃𝑚}
be a set of polynomials in variables {𝑥1, . . . , 𝑥𝑛} over a field F
such that the system of equations 𝑃1 = 0, . . . , 𝑃𝑚 = 0 has no
solution. A Polynomial Calculus refutation of Γ is a sequence
of polynomials 𝑅1, . . . , 𝑅𝑠 where 𝑅𝑠 = 1 and for every ℓ in
{1, . . . , 𝑠}, 𝑅ℓ ∈ Γ or is obtained through one of the following
derivation rules for 𝑗, 𝑘 < ℓ

𝑅ℓ = 𝛼𝑅 𝑗 + 𝛽𝑅𝑘 for 𝛼 , 𝛽 ∈ F
𝑅ℓ = 𝑥𝑖𝑅𝑘 for some 𝑖 ∈ {1, . . . , 𝑛}

The size of the refutation is
∑𝑠

ℓ=1 |𝑅ℓ |, where |𝑅ℓ | is the num-
ber of monomials in the polynomial 𝑅ℓ . The degree of the
refutation is maxℓ 𝑑𝑒𝑔(𝑅ℓ).

The following system is known to simulate PC, SOS and

Sherali-Adams.

Definition 7 (Positivstellensatz Calculus/Dynamic SOS [14]

). Let Γ = {𝑃1, . . . , 𝑃𝑚} and Δ = {𝑄1, . . . , 𝑄𝑟 } be two sets of
polynomials over R such that the system of equations 𝑃1 =

0, · · · , 𝑃𝑚 = 0, 𝑄1 ≥ 0, · · · , 𝑄𝑟 ≥ 0 is unsatisfiable. A Dy-
namic SOS refutation of Γ,Δ is a sequence of inequalities
𝑅1 ≥ 0, . . . , 𝑅𝑠 ≥ 0 where 𝑅𝑠 = −1 and for every ℓ in {1, . . . , 𝑠},
𝑅ℓ ∈ Γ ∪ Δ or is obtained through one of the following deriva-
tion rules for 𝑗, 𝑘 < ℓ

1. From 𝑅 𝑗 = 0 and 𝑅𝑘 = 0 derive 𝛼𝑅 𝑗 + 𝛽𝑅𝑘 = 0 for 𝛼 , 𝛽
∈ R

2. From 𝑅𝑘 = 0 derive 𝑥𝑖𝑅𝑘 = 0 for some 𝑖 ∈ {1, . . . , 𝑛}

The Surprising Power of Constant Depth Algebraic Proofs LICS ’20, July 8–11, 2020, Saarbrücken, Germany

3. From 𝑅 𝑗 ≥ 0 and 𝑅𝑘 ≥ 0 derive 𝛼𝑅 𝑗 +𝛽𝑅𝑘 ≥ 0 for 𝛼 ≥ 0,
𝛽 ≥ 0 ∈ R

4. From 𝑅 𝑗 ≥ 0 and 𝑅𝑘 ≥ 0 derive 𝑅 𝑗𝑅𝑘 ≥ 0

5. Derive 𝑅2 ≥ 0 for some polynomial 𝑅 ∈ R[𝑥1, . . . , 𝑥𝑛]
The size of a line is the size of its bit representation. The size
of a Dynamic SOS refutation is the sum of sizes of each line of
the refutation.

2.3 Generalizations of Polynomial Calculus
We now define a variant of Polynomial Calculus, ΣΠΣ-PC
where the proof system is additionally allowed to introduce

new variables𝑦 𝑗 corresponding to affine forms in the original

variables 𝑥𝑖 . Thus, each line of the proof is represented by a

ΣΠΣ algebraic circuit.

Definition 8 (ΣΠΣ-PC). Let Γ = {𝑃1, . . . , 𝑃𝑚} be a set of
polynomials in variables {𝑥1, . . . , 𝑥𝑛} over a field F such that
the system of equations 𝑃1 = 0, . . . , 𝑃𝑚 = 0 has no solution. A
ΣΠΣ-PC refutation of Γ is a Polynomial Calculus refutation of a
set
Γ′ = {𝑃1, . . . , 𝑃𝑚, 𝑄1, . . . , 𝑄𝑘 } of polynomials over variables
{𝑥1, . . . , 𝑥𝑛} and {𝑦1, . . . , 𝑦𝑘 } where 𝑄1, . . . , 𝑄𝑘 are polynomi-
als of the form 𝑄 𝑗 = 𝑦 𝑗 − (𝑎 𝑗0 +

∑
𝑖 𝑎𝑖 𝑗𝑥𝑖) for some constants

𝑎𝑖 𝑗 ∈ F.
The size of a ΣΠΣ-PC refutation is equal to the size of the

Polynomial Calculus refutation of Γ′.

We would now like to generalize the above proof system

to an arbitrary depth 𝑑 .

Definition 9 (Depth-𝑑-PC). Let 𝑑 > 2 be an integer. Let Γ =

{𝑃1, . . . , 𝑃𝑚} be a set of polynomials in variables {𝑥1, . . . , 𝑥𝑛}
over a fieldF such that the system of equations 𝑃1 = 0, . . . , 𝑃𝑚 =

0 has no solution. Let 𝑆 = (𝑦1, . . . , 𝑦𝑘) be a SLP over {𝑥1, . . . , 𝑥𝑛}
andF of depth𝑑−2 defined by𝑦 𝑗 = 𝑄 𝑗 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦 𝑗−1).
A depth-𝑑-PC refutation of Γ is a Polynomial Calculus refu-
tation of the set Γ′ = {𝑃1, . . . , 𝑃𝑚, 𝑦1 − 𝑄1, . . . , 𝑦𝑘 − 𝑄𝑘 } of
polynomials over {𝑥1, . . . , 𝑥𝑛} and {𝑦1, . . . , 𝑦𝑘 }.

The size of a depth-𝑑-PC refutation is the size of the Polyno-
mial Calculus refutation of Γ′

Viewing a refutation in depth-𝑑-PC as a depth 𝑑 algebraic

circuit in the original variables {𝑥1, . . . , 𝑥𝑛} (with each line

of the refutation being a gate in the circuit), it is easy to see

that the above definition of size for a refutation coincides

with the usual notion of size for an algebraic circuit up to

polynomial factors.

Although we define the size of a proof in depth-𝑑-PC in

terms of the number of monomials, we will be using the

number of lines as a measure of the size, since in our simu-

lations no line contains more than a polynomial number of

monomials.

To conclude this section, we state the following result

from [26], which is the starting point of our work.

Theorem 0. [26] ΣΠΣ-PC over Q can simulate syntactic
Cutting Planes with size polynomial in 𝑛 and the coefficient
size.

3 Simulations over Q
In this section we outline how we translate inequalities into

polynomials over Q, and simulate proofs involving these

inequalities into Polynomial Calculus derivations over their

translations.

Consider a line 𝐴 𝑗 ≡
∑

𝑖 𝑎𝑖 𝑗𝑥𝑖 ≥ 𝑏 𝑗 in a CP* proof, where

|𝑎𝑖 |, |𝑏 | are bounded logarithmically in 𝑛. We define its trans-

lation over Q as the following

Definition 10 (Translation from CP* to ΣΠΣ-PC). For a
line 𝐴 𝑗 ≡

∑
𝑖 𝑎𝑖 𝑗𝑥𝑖 ≥ 𝑏 𝑗 its translation in ΣΠΣ-PC is defined

to be the following pair of lines∑
𝑖 𝑎
+
𝑖 𝑗−𝑏 𝑗∏

𝑏=0

(𝑦 𝑗 − 𝑏) = 0

𝑦 𝑗 =
∑
𝑖

𝑎𝑖 𝑗𝑥𝑖 − 𝑏 𝑗

In addition, for all 𝑖 , the equations 𝑥𝑖 (𝑥𝑖−1) = 0 are included
in the translation.

That is, we introduce a variable 𝑦 𝑗 =
∑

𝑖 𝑎𝑖 𝑗𝑥𝑖 − 𝑏 𝑗 and

indicate the range of values it can take which satisfy the

constraint

∑
𝑖 𝑎𝑖 𝑗𝑥𝑖 ≥ 𝑏 𝑗 . For convenience, we will denote by

𝑧 ∈ 𝐴 the equation

∏
𝑎∈𝐴 (𝑧 − 𝑎) = 0.

The key idea is to note that given two equations 𝑧 ∈ 𝐴 and

𝑧 ∈ 𝐵, we can derive in ΣΠΣ-PC the equation 𝑧 ∈ 𝐴 ∩ 𝐵. We

call this the Intersection lemma. A formal proof is provided

in the full version [18].

3.1 Simulating syntactic CP*
We now sketch how all the derivations rules of syntactic CP*

can be simulated with the help of the Intersection lemma,

concluding Theorem 0 (originally proved in [26]). For in-

stance, given equations 𝑦1 ∈ 𝐴 and 𝑦2 ∈ 𝐵, we derive the

range of values a variable 𝑧 = 𝑦1 + 𝑦2 takes as follows. For
every 𝑎1 ∈ 𝐴, we derive an equation which states 𝑧 ∈ 𝑎1 + 𝐵
OR 𝑦1 ∈ 𝐴 \ {𝑎1} where 𝑎1 + 𝐵 = {𝑎1 + 𝑏 | 𝑏 ∈ 𝐵}. This
equation is formally represented as∏

𝑐∈𝑎1+𝐵
(𝑧 − 𝑐)

∏
𝑎∈𝐴\{𝑎1 }

(𝑦1 − 𝑎) = 0

We can multiply each of these equations by appropriate

variables, so that the part about 𝑧 is the same in all of them.

We would now like to eliminate the part about 𝑦1 from these

equations. Noting that∩𝑖𝐴\{𝑎𝑖 } = ∅, we use the Intersection
lemma inductively to eliminate 𝑦1.

For simulating division by an integer 𝑐 given a variable

𝑧 =
∑

𝑖 𝑐𝑖𝑥𝑖 and an equation 𝑧 ∈ 𝐶 such that 𝑐 divides every

element of 𝐶 , we first derive 𝑧 ∈ 𝐼 , where 𝐼 is all possible

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

integer values of the expression

∑
𝑖 𝑐𝑖𝑥𝑖 , by using our simu-

lation of addition. We then introduce a variable 𝑧 ′ = 𝑧/𝑐 and
from the former equation, we get a set of integer values for

𝑧 ′ and from the latter, we get a set of rational values. Using

the Intersection lemma now gives the right range for the

variable 𝑧 ′ = 𝑧/𝑐 .
For a formal proof, see the full version of the paper [18].

3.2 Simulating semantic CP*
In this section we extend the above simulation to include

semantic CP*, hence completing the proof of Theorem 4.

Let 𝐿1 ≡
∑

𝑖 𝑎𝑖𝑥𝑖 ≥ 𝑑1, 𝐿2 ≡
∑

𝑖 𝑏𝑖𝑥𝑖 ≥ 𝑑2 be two lines in a

Cutting Planes proof and let 𝐿3 ≡
∑

𝑖 𝑐𝑖𝑥𝑖 ≥ 𝑑3 be a seman-

tic consequence of 𝐿1 and 𝐿2. Let 𝑦 =
∑

𝑖 𝑎𝑖𝑥𝑖 , 𝑧 =
∑

𝑖 𝑏𝑖𝑥𝑖
and 𝑤 =

∑
𝑖 𝑐𝑖𝑥𝑖 . Let 𝐴 = {0, . . . ,∑𝑖 𝑎

+
𝑖 }, 𝐵 = {0, . . . ,∑𝑖 𝑏

+
𝑖 }

and 𝐶 = {0, . . . ,∑𝑖 𝑐
+
𝑖 }. Using the simulation of addition in

syntactic CP*, we can derive the equations∏
𝑎∈𝐴
(𝑦 − 𝑎) = 0∏

𝑏∈𝐵
(𝑧 − 𝑏) = 0∏

𝑐∈𝐶
(𝑤 − 𝑐) = 0

This restricts the values that can be taken by the tuple

(𝑦, 𝑧,𝑤) to the three dimensional grid 𝐴 × 𝐵 ×𝐶 . Let a point
(𝑖, 𝑗, 𝑘) in the grid be infeasible if the tuple (𝑦, 𝑧,𝑤) never
evaluates to it for any assignment to {𝑥𝑖 }. Our first step is

to derive infeasibility equations of the form∏
𝑎∈𝐴
𝑎≠𝑖

(𝑦 − 𝑎)
∏
𝑏∈𝐵
𝑏≠𝑗

(𝑧 − 𝑏)
∏
𝑐∈𝐶
𝑐≠𝑘

(𝑤 − 𝑐) = 0

which for (𝑖, 𝑗, 𝑘) ∈ 𝐴×𝐵×𝐶 tells us that the point (𝑖, 𝑗, 𝑘)
in the grid is infeasible for the tuple (𝑦, 𝑧,𝑤).

Lemma 1. For every infeasible point (𝑖, 𝑗, 𝑘) ∈ 𝐴 × 𝐵 × 𝐶 ,
ΣΠΣ-PC can derive an infeasibility equation of the above form
in 𝑂 ((∑𝑖 𝑎

+
𝑖)2 (

∑
𝑖 𝑏
+
𝑖)2 (

∑
𝑖 𝑐
+
𝑖)2) lines

The proof of this lemma is left to the full version [18].

The next step is to use the ranges of 𝑦 and 𝑧 specified in

lines 𝐿1 and 𝐿2 to narrow down the possible values that can

be taken by 𝑤 . Our goal will be to get an equation of the

form ∏
𝑐∈𝐶′
(𝑤 − 𝑐) = 0

such that each 𝑐 in𝐶 ′ is feasible for𝑤 under the constraints

𝐿1 and 𝐿2 on 𝑦 and 𝑧 respectively.

Let 𝑃𝑖 be the translation of 𝐿𝑖 in ΣΠΣ-PC, for 𝑖 = 1, 2, 3.

Let I𝑎,𝑏 denote the set of all infeasibility equations for points
of the form (𝑎, 𝑏, 𝑘) for some 𝑘 ∈ 𝐶 . For an equation 𝑃 of the

form

∏
𝑎∈𝐴1

(𝑦 − 𝑎)∏𝑏∈𝐵1

(𝑧 − 𝑎)∏𝑐∈𝐶1

(𝑤 − 𝑎) = 0, denote

by R𝑦 (𝑃) the set 𝐴1, that is the range of values specified

by the equation for the variable 𝑦. R𝑧 and R𝑤 are defined

analogously. We describe how to obtain the set 𝐶 ′ by the

algorithm𝑤-feasible which operates on the range sets.

procedure 𝑤-feasible(𝑃1,𝑃2)

𝐶 ′← ∅
for (𝑎, 𝑏) ∈ R𝑦 (𝑃1) × R𝑧 (𝑃2) do

𝑆 ← 𝐶

for 𝐼 ∈ I𝑎,𝑏 do
𝑆 ← 𝑆 ∩ R𝑤 (𝐼)

end for
𝐶 ′← 𝐶 ′ ∪ 𝑆

end for
return 𝐶 ′

end procedure

Consider a pair (𝑎, 𝑏) ∈ R𝑦 (𝑃1)×R𝑧 (𝑃2). For any equation
𝐼 ∈ I𝑎,𝑏 , R𝑤 (𝐼) gives a list of possible values the variable
𝑤 can take when (𝑦, 𝑧) = (𝑎, 𝑏). By Lemma 1, (𝑦, 𝑧,𝑤) =
(𝑎, 𝑏, 𝑐) is infeasible if and only if there is an equation 𝐼 ∈ I𝑎,𝑏
such that 𝑐 ∉ R𝑤 (𝐼). Therefore,

⋂
𝐼 ∈I𝑎,𝑏

R𝑤 (𝐼) is precisely the

feasible set of values for 𝑤 , given (𝑦, 𝑧) = (𝑎, 𝑏). 𝐶 ′ is the
union of such sets over all possible pairs (𝑎, 𝑏) ∈ R𝑦 (𝑃1) ×
R𝑧 (𝑃2) and hence is the set of all feasible values of𝑤 .

This algorithm over range sets can be easily translated

to a proof of

∏
𝑐∈𝐶′ (𝑤 − 𝑐) = 0 from 𝑃1 and 𝑃2 in ΣΠΣ-PC

as follows. To simulate the inner for loop, we use the In-

tersection lemma inductively over all equations in I𝑎,𝑏 to

get equations 𝐽𝑎,𝑏 such that R𝑤 (𝐽𝑎,𝑏) =
⋂

𝐼 ∈I𝑎,𝑏
R𝑤 (𝐼). Note

that R𝑦 (𝐽𝑎,𝑏) = 𝐴 \ {𝑎} and R𝑧 (𝐽𝑎,𝑏) = 𝐵 \ {𝑏}. Thus us-
ing the Intersection lemma again inductively over the set

{𝐽𝑎,𝑏} (analogous to simulation of addition in syntactic CP*)

would give an equation free of 𝑦 and 𝑧, where𝑤 ranges over⋃
(𝑎,𝑏)
R𝑤 (𝐽𝑎,𝑏). Any semantic consequence 𝑃3 must be such

that R𝑤 (𝑃3) ⊇ 𝐶 ′ and hence is easily derived.

4 Simulations over F𝑝𝑚
4.1 Simulating syntactic CP*
We now carry out the simulation from [26] in Section 3.1

in depth-𝑑-PC over a large enough field extension 𝐹𝑝𝑚 of a

finite field 𝐹𝑝 . This will be of use in the next section, where

we simulate 𝐴𝐶0 [𝑝]-Frege in depth-𝑑-PC over 𝐹𝑝𝑚 . For the

following discussion, we set 𝑑 = 5.

To represent large integers over F𝑝𝑚 , we choose a primi-

tive element 𝛼 and for each of the original variables 𝑥𝑖 per-

form the linear transformation 𝑦𝑖 = 1 + (𝛼 − 1)𝑥𝑖 . Since 𝑥𝑖 is
boolean,𝑦𝑖 is essentially equivalent to the mapping 𝑥𝑖 ↦→ 𝛼𝑥𝑖

.

The expression

∑
𝑖 𝑎𝑖𝑥𝑖 is thus represented as 𝛼

∑
𝑖 𝑎𝑖𝑥𝑖 . The

goal here is to show that all the steps of the simulation in

section 3.1 can still be performed after this transformation.

Theorem5. Depth-𝑑-PC over 𝐹𝑝𝑚 can simulate syntactic Cut-
ting Planes with the number of lines polynomial in 𝑛 and the

The Surprising Power of Constant Depth Algebraic Proofs LICS ’20, July 8–11, 2020, Saarbrücken, Germany

coefficient size, where𝑚 is logarithmic in 𝑛 and the coefficient
size.

Let 𝑠1 be the coefficient size of the Cutting Planes proof.

Define 𝑠 = 𝑛𝑠1. Choose𝑚 to be the smallest integer such that

2𝑠2 < 𝑝𝑚 − 1. Let 𝛼 be an arbitrary primitive element of F𝑝𝑚 .

Definition 11 (Translation of Cutting Planes to depth-𝑑-PC

over F𝑝𝑚). The translation of
∑

𝑖 𝑎𝑖𝑥𝑖 ≥ 𝑏𝑖 is defined as fol-
lows, where 𝑦𝑖 and 𝑦 are new variables.

𝑦𝑖 = (𝛼𝑎𝑖 − 1)𝑥𝑖 + 1

𝑦 =
∏
𝑖

𝑦𝑖

(𝑦 − 𝛼𝑏𝑖) (𝑦 − 𝛼𝑏𝑖+1) · · · (𝑦 − 𝛼
∑

𝑖 𝑎
+
𝑖) = 0

An integer 𝑐 such that 0 ≤ 𝑐 ≤ 𝑠 is represented as 𝛼𝑐 ,

whereas for −𝑠 ≤ 𝑐 < 0we represent it as 𝛼−|𝑐 | ≡ 𝛼 (𝑝
𝑚−1)−|𝑐 |

.

Since 2𝑠 ≤ 2𝑠2 < 𝑝𝑚 − 1, these representations are unique.
The technical details of the simulating the rules of CP are

largely similar to that over Q and are hence left to the full

version [18].

4.2 Simulating AC0 [q]-Frege
4.2.1 Case of 𝑞 = 𝑝. For the purpose of this section, we
set 𝑑 = 9. We will use the simulation of AC0 [p]-Frege in

[21] to show that the same can be carried out in depth-𝑑-

PC over F𝑝𝑚 . We fix 𝑚 to be a large enough integer such

that𝑚 = 𝑂 (poly(log(n))), so that the field we are working

over is quasipolynomial sized. Below we describe the proof

system of [21] and their simulation of AC0 [p]-Frege.

The Proof System of Maciel and Pitassi. Maciel and

Pitassi [21] define a proof system with mod 𝑝 , negation,

AND, OR and threshold connectives, based on the system

PTK by Buss and Clote [7] which we describe below.

Connectives Let 𝑥1 · · · 𝑥𝑛 be boolean variables. For 0 ≤ 𝑗 < 𝑝 ,

let ⊕𝑝
𝑗
(𝑥1 · · · 𝑥𝑛) denote the connective which is 1 if and

only if

∑
𝑖 𝑥𝑖 = 𝑗 mod 𝑝 . For any integer 𝑡 , let𝑇ℎ𝑡 (𝑥1 · · · 𝑥𝑛)

denote the connective which is 1 if and only if

∑
𝑖 𝑥𝑖 ≥ 𝑡 . Let

∧(𝑥1 · · · 𝑥𝑛), ∨(𝑥1 · · · 𝑥𝑛) denote AND and OR connectives

of arity 𝑛 and ¬ denote the NOT gate.

The proof system of Maciel and Pitassi [21]

initial sequents.
1. 𝜑 → 𝜑 for any formula 𝜑

2.→ ∧() ; ∨() →
3. ⊕𝑝

𝑗
() → for 1 ≤ 𝑗 < 𝑝 ;→ ⊕𝑝

0
()

4. 𝑇ℎ𝑡 () →
5.→ 𝑇ℎ0 (𝜑1 · · ·𝜑𝑘) for any 𝑘 ≥ 0

structural rules.

weakening:

Γ,Δ→ Γ′

Γ, 𝜑,Δ→ Γ′
Γ → Γ′,Δ′

Γ → Γ′, 𝜑,Δ′

contract:

Γ, 𝜑, 𝜑,Δ→ Γ′

Γ, 𝜑,Δ→ Γ′
Γ → Γ′, 𝜑, 𝜑,Δ′

Γ → Γ′, 𝜑,Δ′

permute:

Γ, 𝜑1, 𝜑2,Δ→ Γ′

Γ, 𝜑2, 𝜑1,Δ→ Γ′
Γ → Γ′, 𝜑1, 𝜑2,Δ

′

Γ → Γ′, 𝜑2, 𝜑1,Δ
′

cut rule.
Γ, 𝜑 → Δ Γ′→ 𝜑,Δ′

Γ, Γ′→ Δ,Δ′

logical rules.

¬ :

Γ → 𝜑,Δ

¬𝜑, Γ → Δ

𝜑, Γ → Δ

Γ → ¬𝜑,Δ

∧-left: 𝜑1,∧(𝜑2 · · ·𝜑𝑘), Γ → Δ

∧(𝜑1 · · ·𝜑𝑘), Γ → Δ

∧-right: Γ → 𝜑1,Δ Γ → ∧(𝜑2 · · ·𝜑𝑘),Δ
Γ → ∧(𝜑1, 𝜑2 · · ·𝜑𝑘),Δ

∨-left: 𝜑1, Γ → Δ ∨(𝜑2 · · ·𝜑𝑘), Γ → Δ

∨(𝜑1, 𝜑2 · · ·𝜑𝑘), Γ → Δ

∨-right: Γ → 𝜑1,∨(𝜑2 · · ·𝜑𝑘),Δ
Γ → ∨(𝜑1 · · ·𝜑𝑘),Δ

⊕𝑖 -left:
𝜑1, ⊕𝑝𝑖−1 (𝜑2 · · ·𝜑𝑘), Γ → Δ ⊕𝑝

𝑖
(𝜑2 · · ·𝜑𝑘), Γ → 𝜑1,Δ

⊕𝑝
𝑖
(𝜑1, 𝜑2 · · ·𝜑𝑘), Γ → Δ

⊕𝑖 -right:
𝜑1, Γ → ⊕𝑝𝑖−1 (𝜑2 · · ·𝜑𝑘),Δ Γ → 𝜑1, ⊕𝑝𝑖 (𝜑2 · · ·𝜑𝑘),Δ

Γ → ⊕𝑝
𝑖
(𝜑1, 𝜑2 · · ·𝜑𝑘),Δ

𝑇ℎ𝑡 -left:
𝑇ℎ𝑡 (𝜑2 · · ·𝜑𝑘), Γ → Δ 𝜑1,𝑇ℎ𝑡−1 (𝜑2 · · ·𝜑𝑘), Γ → Δ

𝑇ℎ𝑡 (𝜑1, 𝜑2 · · ·𝜑𝑘), Γ → Δ

𝑇ℎ𝑡 -right:
Γ → 𝜑1,𝑇ℎ𝑡 (𝜑2 · · ·𝜑𝑘),Δ Γ → 𝑇ℎ𝑡−1 (𝜑2 · · ·𝜑𝑘),Δ

Γ → 𝑇ℎ𝑡 (𝜑1, 𝜑2 · · ·𝜑𝑘),Δ

Formulas. A formula is recursively defined as follows. Input

variables 𝑥1 · · · 𝑥𝑛 are formulas of size 1 and depth 1. A for-

mula 𝜑 is an expression of the form 𝑔(𝜑1 · · ·𝜑𝑘), where 𝑔

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

is any of the connectives described above and 𝜑1 · · ·𝜑𝑘 are

formulas. The 𝑑𝑒𝑝𝑡ℎ(𝜑) is defined as∑𝑘
𝑖=1 𝑑𝑒𝑝𝑡ℎ(𝜑𝑖) +1. The

𝑠𝑖𝑧𝑒 (𝜑) is defined as∑𝑘
𝑖=1 𝑠𝑖𝑧𝑒 (𝜑𝑖) + 𝑘 + 1 if 𝑔 is not a thresh-

old connective, and it is defined as

∑𝑘
𝑖=1 𝑠𝑖𝑧𝑒 (𝜑𝑖) + 𝑡 + 𝑘 + 1

if 𝑔 is a threshold connective of the form 𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘).
Cedents and Sequents. A cedent Γ is defined as a sequence of

formulas𝜑1 · · ·𝜑𝑘 . We will use capital Greek letters to denote

cedents. A sequent is an expression of the form Γ → Δ,
where Γ and Δ are cedents. The interpretation of a sequent

is that the AND of all the formulas in Γ implies the OR of

all the formulas in Δ. The size and depth of a cedent are

respectively the sum of sizes and the maximum of depths

of all the formulas in it. The size of a sequent is the sum of

sizes of both cedents, and the depth is the maximum of the

depths of both cedents.

Definition of a Proof. A proof in this system is defined as a

sequence of sequents S1 · · · S𝑚 such that each S𝑖 is either
an initial sequent, or is derived from sequents S𝑗 for 𝑗 < 𝑖

through one of the rules listed below. The size and depth of

a proof are respectively the sum of sizes and the maximum

of depths of all sequents in it.

The initial sequents and the derivation rules are listed

below.

Translating lines. We will now define translations of

lines in the above proof system. For a formula 𝜑 , we denote

its translation in depth-𝑑-PC by 𝑡𝑟 (𝜑). Let 𝑥1 · · · 𝑥𝑛 be the

variables of the original proof. Below we list the translations

for a formula built with each connective. The interpretation

is that for any formula 𝜑 , 𝑡𝑟 (𝜑) = 0 if and only if 𝜑 is true.

𝑡𝑟 (𝑥𝑖) = 1 − 𝑥𝑖
𝑡𝑟 (∨(𝜑1 · · ·𝜑𝑘)) =

∏
𝑖 (𝑡𝑟 (𝜑𝑖))

𝑡𝑟 (∧(𝜑1 · · ·𝜑𝑘)) = 1 −∏𝑖 𝑡𝑟 (¬𝜑𝑖)
𝑡𝑟 (⊕𝑝

𝑖
(𝜑1 · · ·𝜑𝑘)) = (

∑𝑘
𝑗=1 𝑡𝑟 (𝜑 𝑗) − 𝑖)𝑝−1 for 0 ≤ 𝑖 < 𝑝

𝑡𝑟 (𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)) = (𝑦 − 𝛼𝑡) · · · (𝑦 − 𝛼𝑘)
where 𝑦 =

∏
𝑖 ((𝛼 − 1)𝑡𝑟 (¬𝜑𝑖) + 1)

𝑡𝑟 (¬𝜑) = 1− 𝑡𝑟 (𝜑) if 𝜑 does not contain a𝑇ℎ𝑡 connec-

tive

𝑡𝑟 (¬𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)) = (𝑦 − 1) · · · (𝑦 − 𝛼𝑡−1)
where 𝑦 =

∏
𝑖 ((𝛼 − 1)𝑡𝑟 (¬𝜑𝑖) + 1), for 𝑡 ≥ 1

The translation 𝑡𝑟 (S) of a sequent S of the form

𝜑1 · · ·𝜑𝑘 → 𝜑 ′
1
· · ·𝜑 ′

𝑘′ is given by the equation

𝑘∏
𝑖=1

𝑡𝑟 (¬𝜑𝑖)
𝑘′∏
𝑗=1

𝑡𝑟 (𝜑 ′𝑗) = 0

Note that the translations of all the connectives except

the threshold connective take only boolean values over

F𝑝𝑚 .

Simulating proofs. We now describe the connection be-

tween AC0 [p]-Frege and the proof system of Maciel and

Pitassi. By the following theorem of Allender [2], any AC0 [p]
circuit can converted to a depth three circuit of a special

form.

Theorem 6 ([2]). Any AC0 [p] circuit can be converted to a
quasipolynomial sized depth three circuit with an unweighted
threshold gate at the top, MOD𝑝 gates of quasipolynomial fan-
in in the middle and ∧ gates of polylogarithmic fan-in at the
bottom

Depth three circuits with an unweighted threshold, ∧ or

∨ gate at the top, MOD𝑝 gates in the middle and ∧ gates

of polylogarithmic fan-in in the size of the circuit at the

bottom are referred to as flat circuits by [21]. For an AC0 [p]
circuit 𝜑 , its flattening 𝑓 𝑙 (𝜑) is defined as the flat circuit

given by the above theorem. Proofs in AC0 [p]-Frege can be

thought of as a list of sequents such that every formula that

appears in each of them is an AC0 [p] circuit. For a sequent
𝜑1 · · ·𝜑𝑘 → 𝜑 ′

1
· · ·𝜑 ′

𝑘′ that appears in a AC0 [p]-Frege proof,
we can define a flattening of the sequent 𝑓 𝑙 (𝜑1) · · · 𝑓 𝑙 (𝜑𝑘) →
𝑓 𝑙 (𝜑 ′

1
) · · · 𝑓 𝑙 (𝜑 ′

𝑘′) in the proof system of Maciel and Pitassi.

A flat proof of such a sequent is such that every formula that

appears in the proof is a flat circuit. The simulation theorem

of [21] states the following

Theorem 7 ([21]). Let S be a sequent which has a depth 𝑑
proof in AC0 [p]-Frege. Then its flattening 𝑓 𝑙 (S) has a flat proof
of size 2(log𝑛)

𝑂 (𝑑)
in the proof system of Maciel and Pitassi.

We will show that flat proofs can be simulated in depth-𝑑-

PC by showing the following

Theorem 8. Let S be a sequent which has a flat proof of size
𝑠 in the proof system of Maciel and Pitassi. Then there is a
proof of the equation 𝑡𝑟 (S) in depth-𝑑-PC from the equations
𝑥𝑖 (𝑥𝑖 − 1) = 0 with 𝑝𝑜𝑙𝑦 (𝑠) lines.

To prove the above theorem, it is sufficient to show that

for each rule that derives a sequent S3 from sequents S1
and S2, there is a derivation of the equation 𝑡𝑟 (S3) from the

equations 𝑡𝑟 (S1), 𝑡𝑟 (S2) and 𝑥𝑖 (𝑥𝑖 − 1) = 0 in depth-𝑑-PC.

The details of how each such rule can be simulated are left

to the full version [18].

4.2.2 Case of 𝑞 ≠ 𝑝. We now extend the simulation of the

previous section to show that AC0 [q]-Frege can be simulated

in depth-𝑑-PC over 𝐹𝑝𝑚 , for distinct primes 𝑝 and 𝑞, hence

proving Theorem 2. Using the theorem of Maciel and Pitassi

(Theorem 7 above) for AC0 [q]-Frege, we obtain a flat proof

with ⊕𝑞
𝑖
connectives. To simulate it, we can reuse the lemmas

of the previous section, except for the ⊕𝑞
𝑖
connectives. To

define their translation, choose𝑚 such that 𝑞 | 𝑝𝑚 − 1 and
let 𝑟 = (𝑝𝑚 − 1)/𝑞. The translation is now defined as

𝑡𝑟 (⊕𝑞
𝑖
(𝜑1 · · ·𝜑𝑘)) =

(
(𝑦 − 𝛼𝑖𝑟)

)𝑝𝑚−1
where𝑦 =

∏
𝑖 ((𝛼𝑟−1)𝑡𝑟 (¬𝜑𝑖)+1) and 𝑡𝑟 (¬⊕

𝑞

𝑖
(𝜑1 · · ·𝜑𝑘)) =

1 − 𝑡𝑟 (⊕𝑞
𝑖
(𝜑1 · · ·𝜑𝑘))

Simulating the rules is similar to the previous section. See

the full version [18] for more details.

The Surprising Power of Constant Depth Algebraic Proofs LICS ’20, July 8–11, 2020, Saarbrücken, Germany

4.3 Simulating TC0-Frege
In this section, we show that a TC0-Frege proof of depth 𝑑0
can be transformed into a depth-𝑑-PC proof over F𝑝𝑚 , where
𝑑 = 𝑂 (𝑑0), proving Theorem 3. In the previous section we

translated 𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘) as

𝑡𝑟 (𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)) = (𝑦 − 𝛼𝑡) · · · (𝑦 − 𝛼𝑘)

𝑡𝑟 (¬𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)) = (𝑦 − 1) · · · (𝑦 − 𝛼𝑡−1)
where 𝑦 =

∏
𝑖 ((𝛼 − 1)𝑡𝑟 (¬𝜑𝑖) + 1). Clearly this translation

requires 𝑡𝑟 (𝜑𝑖) to be boolean and can itself take non-boolean

values. Since there is only one top threshold gate in a flat

circuit, the formulae 𝜑𝑖 were threshold free and thus 𝑡𝑟 (𝜑𝑖)
only took on boolean values. But in a TC0-Frege proof, the
formulae 𝜑𝑖 can themselves contain threshold gates and thus

𝑡𝑟 (𝜑𝑖) may be non-boolean. To fix this problem, we rede-

fine the translation of a threshold gate to be the following,

essentially forcing it to be boolean.

𝑡𝑟 (𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)) =
(
(𝑦 − 𝛼𝑡) · · · (𝑦 − 𝛼𝑘)

)𝑝𝑚−1
where𝑦 =

∏
𝑖 ((𝛼−1)𝑡𝑟 (¬𝜑𝑖)+1) and 𝑡𝑟 (¬𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)) =

1 − 𝑡𝑟 (𝑇ℎ𝑡 (𝜑1 · · ·𝜑𝑘)).
It is easy to derive the fact that the above translation only

takes boolean values. Now, note that any rule other than

the 𝑇ℎ𝑡 is unaffected by this new translation since it only

assumes that its arguments are boolean and hence we can

use the lemmas of the previous section directly. However,

simulation of the 𝑇ℎ𝑡 rule relies on the old translation. To

bridge the gap, we only need to show that the old and new

translations of 𝑇ℎ𝑡 and ¬𝑇ℎ𝑡 are interchangeable within the

proof system. The following lemmas are proved in the full

version [18].

Lemma 2. Given the equation(
(𝑦 − 𝛼𝑡) · · · (𝑦 − 𝛼𝑘)

)𝑝𝑚−1
= 0

we can derive

(𝑦 − 𝛼𝑡) · · · (𝑦 − 𝛼𝑘) = 0

and vice versa.

Lemma 3. Given the equation

1 −
(
(𝑦 − 𝛼𝑡) · · · (𝑦 − 𝛼𝑘)

)𝑝𝑚−1
= 0

we can derive

(𝑦 − 1) · · · (𝑦 − 𝛼𝑡−1) = 0

and vice versa.

4.3.1 Existence of Feasible Interpolation. Bonet, Pitassi
and Raz [4] have shown that TC0-Frege does not have fea-
sible interpolation unless Blum integers can be factored by

polynomial sized circuits. By the above simulation, we can

state the following

Theorem 9. Depth-𝑑-PC does not have feasible interpolation
unless Blum integers can be factored by polynomial sized cir-
cuits

4.4 Dealing with large coefficients – Simulating CP
and Dynamic SOS

In this section, we work over a field F𝑝𝑚 for an arbitrary

prime 𝑝 , where 𝑝𝑚 is greater than square of the number of

monomials we wish to represent in any CP/SOS proof line

(See Definition 17).

It is well-known that arbitrary threshold gates can be

simulated by simple majority gates of higher depth. In par-

ticular, a tight simulation was proven by Goldmann, Hastad

and Razborov [12] who show that depth 𝑑 + 1 TC0 circuits
are equivalent to depth 𝑑 threshold circuits with arbitrary

weights. However, the analogous result has not been proven

in the propositional proof setting. In order to simulate ar-

bitrary weighted thresholds in our low depth extension of

PC, we will we use a different simulation of high weight

thresholds by low weight ones.

The basic idea will be to use simple, shallow formulas that

compute the iterated addition of 𝑛 binary numbers, each

with b = poly(n) bits [22]. Let a1, a2, . . . , an be the set of

𝑛 binary numbers, each of length b = poly(n), where ai =
𝑎𝑖,b , · · · , 𝑎𝑖,1. We will break up the b coordinates into b/log b
blocks, each of size log b ; let 𝐿 𝑗 (ai) denote the 𝑗𝑡ℎ block of ai.
The high level idea is to compute the sum by first computing

the sum within each block, and then to combine using carry-

save-addition.

In more detail, let aoi denote the “odd" blocks of ai – so aoi
consists of b/log b blocks, where for 𝑗 odd, the 𝑗𝑡ℎ block is

𝐿 𝑗 (ai), and for 𝑗 even, the 𝑗𝑡ℎ block is all zeroes (and similarly,

aei denotes the even blocks of ai). Let 𝑆𝑜 be equal to
∑

𝑖∈[𝑛] aoi ,
and similarly let 𝑆𝑒 be equal to

∑
𝑖∈[𝑛] aei . We will give a SLP

for computing the bits of 𝑆𝑜 and 𝑆𝑒 and then our desired sum,

𝑆𝑜 +𝑆𝑒 , is obtained using the usual carry-save addition which
can be computed by a depth-2 SLP. The main point is that we

have padded aoi and a
e
i with zeroes in every other block; this

enables us to compute 𝑆𝑜 (and similarly 𝑆𝑒) blockwise (on the

odd blocks for 𝑆𝑜 and on the even blocks for 𝑆𝑒), because no

carries will spill over to the next nonzero block. Then since

the blocks are very small (log b bits), the sum within each

block can be carried out by brute-force.

Our construction below generalizes this to the case where

the ai’s are not large coefficients, but instead they are the

product of a monomial and a large coefficient. After formally

describing this low-depth representation, it remains to show

how to efficiently reason about these low-depth represen-

tations in order to carry out the rule-by-rule simulation of

general Cutting Planes and SOS. We outline the main steps

below, with technical details left to the full version [18].

4.4.1 Bit vector representations ofCP/SOSproof lines.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

Definition 12 (Derivations in depth-𝑑-PC). To indicate that
a new extension variable 𝑦𝑖 is being introduced and set to a
value 𝑎𝑖 , we write

𝑦𝑖 := 𝑎𝑖

To indicate that a line 𝑃 = 0 in depth-𝑑-PC can be derived from
𝑃1 = 0, 𝑃2 = 0, · · · ,𝑃𝑘 = 0, we write

𝑃1, 𝑃2, · · · , 𝑃𝑘 ⊢ 𝑃
To indicate that a line 𝑃 = 0 can be derived just from the
axioms of the form 𝑥2𝑖 = 𝑥𝑖 for all boolean variables 𝑥𝑖 , we
write

⊢ 𝑃

Below we formally define the representation of binary

numbers as bit vectors.

Definition 13 (Bit vectors). We represent an integer using
its bit representation by introducing a variable for each of
its bits. Let 𝑎 be an integer with bits 𝑎b · · ·𝑎1. A bit vector
a = [𝑎b · · ·𝑎1] representing the integer 𝑎 in our system is a
set of auxiliary variables 𝑦b · · ·𝑦1 such that 𝑦𝑖 := 𝑎𝑖 . Define
a(𝑖) = 𝑦𝑖 = 𝑎𝑖 . Integers which are represented as vectors are
written in boldface.
Let b0 be an upper limit on the number of monomials in

any polynomial we wish to represent and let b1 be an up-
per limit on any coefficient we wish to represent. Set b =

10⌈𝑙𝑜𝑔(b0) + 𝑙𝑜𝑔(b1)⌉. The bit vectors in this simulation will
all be of dimension b , i.e. all integers we represent will be of at
most b bits. Any vector of dimension > b generated in any op-
eration is automatically truncated to dimension b by dropping
the higher order bits.
The bit representation chosen is two’s complement. That is,

a positive integer is represented in binary in the usual way. Let
𝑏 be a positive integer represented by b. Let b1 be the vector
obtained by flipping all the bits in b. Then we define the vector
−b as b1 ⊕ 1, where ⊕ operation on vectors, defined below,
simulates the usual bitwise addition operation and 1 is the
vector representation of the integer 1. 0, the all zeros vector,
represents the integer 0. For any vector a, a(b) is the sign bit
of a. a is said to be negative if the sign bit is one.

In order to make correct computation using the above

Two’s complement representation of binary numbers, we

need to ensure that the bit length of all numbers represented

is bounded. We therefore define the length of a vector in our

simulation, and later show that such vectors are of bounded

length.

Definition 14 (Length of a vector). The length of a non-
negative vector a is the highest index 𝑖 such that a(𝑖) ≠ 0 and
zero if such an 𝑖 does not exist. The length of a negative vector
b is the highest index 𝑖 such that b(𝑖) ≠ 1. Equivalently, the
length of a vector a is the highest index 𝑖 such that a(𝑖) ≠ a(b).

We now define the usual addition operation for binary

numbers, over their vector representations. Since we work

in a low depth setting, we need to use Carry-Save addition
to represent the sum and carry bits.

4.4.2 Operations on bit vectors.

Definition 15 (The Bitwise Addition operation ⊕). We de-
fine below the operator on vectors corresponding to the usual
carry-save addition. For two bits 𝑦 and 𝑧, let 𝑦 ⊕ 𝑧 represent
the XOR of the bits. Given two bit vectors y = [𝑦b · · ·𝑦1] and
z = [𝑧b · · · 𝑧1], the bitwise addition operation y ⊕ z produces
a vector [𝑤b+1 · · ·𝑤1] such that

𝑤𝑖 := 𝑦𝑖 ⊕ 𝑧𝑖 ⊕ 𝑐𝑖
for 𝑖 ≤ b and𝑤b+1 := 𝑐b where

𝑐𝑖 := ∨𝑗<𝑖 (𝑦 𝑗 ∧ 𝑧 𝑗 ∧𝑗<𝑘<𝑖 (𝑦𝑘 ⊕ 𝑧𝑘))
for 1 < 𝑖 ≤ b and 𝑐1 := 0.
𝑐𝑖 are referred to as the carry bits in y ⊕ z

Monomial terms 𝑎1𝑋1 in our system are represented by

a “scalar multiplication" of 𝑋1 with the vector a1, which we

define below.

Definition 16 (Scalar multiplication). For a bit 𝑧 and a vector
y, let 𝑧y = y𝑧 represent the vector obtained by multiplying
every bit of y by 𝑧.

In order to represent a line 𝑎1𝑋1 + · · · + 𝑎𝑛𝑋𝑛 − 𝑎0 ≥ 0 in

Cutting Planes, we define an operation S over the vectors

a1𝑋1, · · · , a𝑛𝑋𝑛 such that the resultant vector is a representa-

tion of𝑎1𝑋1+· · ·+𝑎𝑛𝑋𝑛−𝑎0 and has a low depth in𝑋1, · · · , 𝑋𝑛 .

This uses the idea of representing high weight thresholds

using low depth majority gates described earlier.

Definition 17 (The Set Addition operation S(.)). We will
now define the representation of the bitwise addition of vec-
tors a1𝑋1, · · · , a𝑡𝑋𝑡 , where a1, · · · , a𝑡 are integer constants and
𝑋1, · · · , 𝑋𝑡 are monomials.

Let b2 = ⌈b/log(b0)⌉. For a constant a, partition the bits of
a into b2 blocks of length at most log(b0). Let 𝐿 𝑗 (a), 𝑗 ∈ [b2]
denote the 𝑗𝑡ℎ block of bits, so that the bits of a can be obtained
by a concatenation of the bits 𝐿b2 (a)...𝐿1 (a). Since 𝐿 𝑗 (a) is
only log(b0) bits long, its magnitude is at most b0. Let [𝐿 𝑗 (a)]
refer to the integer represented by the vector 𝐿 𝑗 (a). Define a𝑜
to be the vector obtained by replacing all even numbered blocks
of a with zeroes. a𝑒 is analogously defined by zeroing out the
odd numbered blocks. For monomials 𝑋1 · · ·𝑋𝑡 and 𝑡 < b0,
we would like to define bit vectors S𝑜 (a1𝑋1, · · · , a𝑡𝑋𝑡) and
S𝑒 (a1𝑋1, · · · , a𝑛𝑋𝑡) to be the bit representations of the poly-
nomials

∑𝑡
𝑖=1 𝑎

𝑜
𝑖 𝑋𝑖 and

∑𝑡
𝑖=1 𝑎

𝑒
𝑖𝑋𝑖 . We accomplish this using

constant depth SLPs as follows.
We define a constant depth SLP to compute the 𝑘𝑡ℎ bit of

the 𝑗𝑡ℎ block of S𝑜 , represented by 𝐿 𝑗𝑘 (S𝑜). The important
observation is that we can compute S𝑜 two blocks at a time

The Surprising Power of Constant Depth Algebraic Proofs LICS ’20, July 8–11, 2020, Saarbrücken, Germany

since for odd 𝑗 ,
∑

𝑖 [𝐿 𝑗 (a𝑜𝑖)]𝑋𝑖 is at most b2
0
and thus can be

represented by 2 log(b0) bits or exactly two blocks. Let 𝐶ℓ be
the set of integers in [b2

0
] such that the ℓ𝑡ℎ bit of their binary

representation is one. Then for odd 𝑗 , 𝐿 𝑗𝑘 (S𝑜) is one if and
only if ∏

𝛽∈𝐶𝑘

(∑
𝑖

[𝐿 𝑗 (a𝑜𝑖)]𝑋𝑖 − 𝛽
)
= 0

and for even 𝑗 , 𝐿 𝑗𝑘 (S𝑜) is one if and only if∏
𝛽∈𝐶

log(b
0
)+𝑘

(∑
𝑖

[𝐿 𝑗−1 (a𝑜𝑖)]𝑋𝑖 − 𝛽
)
= 0

Therefore, the bit 𝐿 𝑗𝑘 (S𝑜) can be represented as a constant
depth SLP of size 𝑂 (b0) by representing the left hand side
of the above equations as a SLP over a finite field extension
larger than b2

0
, similar to the simulation of CP* in the earlier

sections, and then raising the result of that SLP to the order of
the multiplicative group that we are working in. The bits of S𝑒
are represented analogously.

The operation S over vectors a1𝑋1, · · · , a𝑡𝑋𝑡 is now defined
as S𝑜 (a1𝑋1, · · · , a𝑡𝑋𝑡) ⊕ S𝑒 (a1𝑋1, · · · , a𝑛𝑋𝑡).
4.4.3 Representing a line fromCP/SOS in depth-𝑑-PC.
Wenow define the translation of a line𝑎1𝑋1+· · ·+𝑎𝑛𝑋𝑘−𝑎0 ≥
0 in Cutting Planes/SOS, where 𝑋1 . . . 𝑋𝑘 are monomials.

Definition 18 (Representing an inequality). Let 𝑃 = 𝑎1𝑋1 +
· · · + 𝑎𝑘𝑋𝑘 be a polynomial where the 𝑋𝑖 are monomials. Then
the line 𝑃 ≥ 0 is represented as

S(a1𝑋1, · · · , a𝑘𝑋𝑘) (b) = 0

and 𝑃 = 0 is represented as

S(a1𝑋1, · · · , a𝑘𝑋𝑘) = 0

Let R(𝑃) denote the vector S(a1𝑋1, · · · , a𝑘𝑋𝑘).
4.4.4 Simulating Cutting Planes.

Addition. Before we prove the simulation for addition,

we need the following key properties of the vector represen-

tation. They are proved in the full version [18].

The lemma below states that our system can prove the

associativity of the operation ⊕ over vectors.

Lemma 4. For any three bit vectors y, z and w

⊢ (y ⊕ z) ⊕ w − y ⊕ (z ⊕ w)
We then need to be able to interchangeably use the opera-

tions S and ⊕ for vector addition

Lemma 5. ⊢ S(y1, · · · , y𝑖) − S(y1, · · · , y𝑖−1) ⊕ y𝑖

We then extend this to show that the vector representation

of the sum of two lines is the ⊕ of the vector representations

of each line.

Lemma 6. Let 𝑃 and𝑄 be two polynomials. Then R(𝑃 +𝑄) =
R(𝑃) ⊕ R(𝑄).

Finally, we need to show that the as long as 𝑃 and 𝑄 have

coefficients not exceeding bit length b , we can derive from

R(𝑃) (b) = 0 and R(𝑄) (b) = 0 the lines R(𝑃 +𝑄) (b) = 0. It is

an easy observation that if the bit lengths of the coefficients

in 𝑃 and𝑄 are bounded, then the vectors R(𝑃) and R(𝑄) are
of bounded length. Thus it suffices to show the following.

Lemma 7. For any two vectors a and b of length at most
ℓ < b − 1

a(b), b(b) ⊢ (a ⊕ b) (b)

This concludes simulation of the addition rule.

Multiplication by a constant. In order to simulate mul-

tiplication by a power of two, we left-shift bits of the corre-

sponding bit vector by the required amount, and add zero

bits at the end. Multiplication by any constant can then be

simulated by the above in combination with the Addition

rule.

Division by a constant. To simulate the division rule in

Cutting Planes we use the following lemma.

Lemma 8. Let 𝑃 = 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 − 𝑎0 where 𝑎𝑖 are non-
negative, 𝑎1 · · ·𝑎𝑛 are even and 𝑎0 is odd. Then we can derive

R(𝑃) (b) ⊢ R(𝑃 − 1) (b)

Proof. It is easy to derive

a0 (1) − 1 ⊢ (−a0) (1) − 1

Since we have ⊢ R(𝑃) −
(
S(a1𝑥1, · · · , a𝑛𝑥𝑛) ⊕ (−a0)

)
by

Lemma 5, and 𝑎1 · · ·𝑎𝑛 are even, we derive

⊢ R(𝑃) (1) − 1

Since −1 is represented by the all ones vector, for every

carry bit 𝑐𝑖 in the sum R(𝑃) ⊕ (−1) it is easy to derive from

the definition of 𝑐𝑖

⊢ 𝑐𝑖 − 1

Now using the definition (R(𝑃) ⊕ (−1)) (b) = R(𝑃) (b) ⊕
1 ⊕ 𝑐b and Lemma 5 we derive

R(𝑃) (b) ⊢ R(𝑃 − 1) (b)

□

We can now simulate the division rule by using the above

lemma and then dropping the last bit of the vector R(𝑃 − 1)
(which would be zero).

4.4.5 Simulating Dynamic SOS. Rules 1, 2 and 3 of Defi-
nition 7 follow from the above simulation of Cutting Planes.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

Multiplication of two lines. To simulate the multiplica-

tion rule of SOS, we need to define an operation which, given

the vectors a1 and b1, produces a vector that is equivalent to
the representation of 𝑎1𝑏1. We define it as a shifted sum based

on the grade school algorithm for binary multiplication.

Definition 19 (Shifted sum). For a vector y, let 2𝑘y denote
the vector obtained by shifting the bits of y to the left by 𝑘

positions, and padding the least significant 𝑘 positions with
zeros. Given two vectors y and z = [𝑧b−1 · · · 𝑧0] , the shifted
sum of y and z is defined as the vector

SS(y, z) = S(𝑧0y, · · · , 𝑧b−12b−1y)

We then show that our system can prove that the vector

obtained by using this operation is indeed what we want.

Lemma 9. Let 𝑃 and 𝑄 be two polynomials, represented by
bit vectors y0 and z = [𝑧b−1 · · · 𝑧0], with at most b0 monomials
and coefficients bounded by b1 in absolute value. Then,

⊢ R(𝑃𝑄) − SS(y0, z)

We now extend Lemma 7 to show that we can derive

𝑃𝑄 ≥ 0 from 𝑃 ≥ 0 and 𝑄 ≥ 0, i.e. R(𝑃𝑄) (b) = 0 from

R(𝑃) (b) = 0 and R(𝑄) (b) = 0.

Lemma 10. Let y and z be two non-negative vectors of length
ℓ such that 3ℓ < b − 1. Then

y(b), z(b) ⊢ SS(y, z) (b)

This completes the simulation of the rule which takes the

product of two lines in SOS.

Squaring rule. To simulate the rule in SOS which intro-

duces a line 𝑃2 ≥ 0 for any polynomial 𝑃 , we need the

following lemmas.

The lemma below states that if the sign bit of y is one,

then the sign bit of −y is zero.

Lemma 11. For any vector y of length ℓ < b − 1,

y(b) − 1 ⊢ (−y) (b)

The following lemma shows that for a vector representing

a polynomial 𝑃 , the negation of it represents the polynomial

−𝑃 .

Lemma 12. Let 𝑃 be a polynomial represented by a vector y.
Then ⊢ R(−𝑃) − (−y).

The rule which derives 𝑃2 ≥ 0 can now be easily simulated

by branching on the sign bit of the vector R(𝑃). Assuming

it to be zero, we can use Lemma 10 to derive R(𝑃2) (b) = 0.

In the other case, we can use Lemma 11 and Lemma 12 to

derive that the sign bit of R(−𝑃) is zero. We can now use

Lemma 10 again to derive R(𝑃2) (b) = 0.

4.4.6 Concluding the simulation. By simulating any refu-

tation in Cutting Planes/SOS rule by rule using the above

lemmas, we end up with the representation of the line−1 ≥ 0

i.e.

R(−1) (b) = 0

Since −1 is represented by the all ones vector, this gives a

contradiction.

Open Problems
The obvious open problem is to prove a lower bound for

AC0 [p]-Frege systems, whether using algebraic proofs or

not.

As stepping stones towards this goal, we think it would

be interesting to:

1. Find any technique for proving lower bounds on the

sizes of Polynomial Calculus proofs that doesn’t go

through degrees.More precisely, prove size lower bounds

for PC proofs where we view variables as taking values

1,−1, and replace the axioms 𝑥2 − 𝑥 with 𝑥2 − 1.
2. Prove lower bounds for the system Trinomial-ΠΣ-PC.
3. Our simulations require a sufficiently large extension

field. Can we either 𝑝-simulate Polynomial Calculus

over a large extension field with Polynomial Calculus

over the base field, or prove that no simulation exists?

Acknowledgements
The authors would like to thank Paul Beame, Lijie Chen,

Srikanth Srinivasan and Iddo Tzameret for helpful discus-

sions. Part of this research took place at the Simons Institute

at UC Berkeley, and we are thankful for their support.

References
[1] Yaroslav Alekseev, Dima Grigoriev, Edward A Hirsch, and Iddo Tza-

meret. 2019. Semi-Algebraic Proofs, IPS Lower Bounds and the 𝜏-

Conjecture: Can a Natural Number be Negative? arXiv preprint
arXiv:1911.06738 (2019).

[2] Eric Allender. 1989. A note on the power of threshold circuits. In

Foundations of Computer Science, 1989., 30th Annual Symposium on.
IEEE, 580–584.

[3] Paul Beame, Russell Impagliazzo, Jan Krajícek, Toniann Pitassi, and

Pavel Pudlák. 1994. Lower bounds on Hilbert’s Nullstellensatz and

propositional proofs. In Proceedings 35th Annual Symposium on Foun-
dations of Computer Science. IEEE, 794–806.

[4] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. 2000. On interpo-

lation and automatization for Frege systems. SIAM J. Comput. 29, 6
(2000), 1939–1967.

[5] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.

2001. Linear gaps between degrees for the polynomial calculus modulo

distinct primes. J. Comput. System Sci. 62, 2 (2001), 267–289.
[6] Samuel Buss, Leszek Kołodziejczyk, and Konrad Zdanowski. 2015.

Collapsing modular counting in bounded arithmetic and constant

depth propositional proofs. Trans. Amer. Math. Soc. 367, 11 (2015),

7517–7563.

[7] Samuel R Buss and Peter Clote. 1996. Cutting planes, connectivity, and

threshold logic. Archive for Mathematical Logic 35, 1 (1996), 33–62.

The Surprising Power of Constant Depth Algebraic Proofs LICS ’20, July 8–11, 2020, Saarbrücken, Germany

[8] Samuel R. Buss, Russell Impagliazzo, Jan Krajícek, Pavel Pudlák,

Alexander A. Razborov, and Jirí Sgall. 1997. Proof Complexity in

Algebraic Systems and Bounded Depth Frege Systems with Modular

Counting. Computational Complexity 6, 3 (1997), 256–298.

[9] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. 1996. Us-

ing the Groebner basis algorithm to find proofs of unsatisfiability. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing. ACM, 174–183.

[10] Peter Clote and Evangelos Kranakis. 2013. Boolean functions and
computation models. Springer Science & Business Media.

[11] William Cook, Collette R Coullard, and Gy Turán. 1987. On the com-

plexity of cutting-plane proofs. Discrete Applied Mathematics 18, 1
(1987), 25–38.

[12] Mikael Goldmann, Johan Håstad, and Alexander A. Razborov. 1992.

Majority Gates VS. General Weighted Threshold Gates. Computational
Complexity 2 (1992), 277–300.

[13] Dima Grigoriev and Edward A Hirsch. 2003. Algebraic proof systems

over formulas. Theoretical Computer Science 303, 1 (2003), 83–102.
[14] Dima Grigoriev and Nicolai Vorobjov. 2001. Complexity of Null-and

Positivstellensatz proofs. Annals of Pure and Applied Logic 113, 1-3
(2001), 153–160.

[15] Joshua A Grochow and Toniann Pitassi. 2014. Circuit complexity, proof

complexity, and polynomial identity testing. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science. IEEE, 110–119.

[16] Joshua A. Grochow and Toniann Pitassi. 2018. Circuit Complexity,

Proof Complexity, and Polynomial Identity Testing: The Ideal Proof

System. J. ACM 65, 6 (2018), 37:1–37:59.

[17] Pavel Hrubes and Iddo Tzameret. 2009. The Proof Complexity of

Polynomial Identities. In Proceedings of the 24th Annual IEEE Conference
on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009.
41–51.

[18] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. 2019. The

Surprising Power of Constant Depth Algebraic Proofs.. In Electronic
Colloquium on Computational Complexity (ECCC), Vol. 26. 1–4.

[19] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. 1999. Lower bounds

for the polynomial calculus and the Gröbner basis algorithm. Compu-
tational Complexity 8, 2 (1999), 127–144.

[20] Jan Krajíček. 1998. Discretely ordered modules as a first-order exten-

sion of the cutting planes proof system. The Journal of Symbolic Logic
63, 4 (1998), 1582–1596.

[21] Alexis Maciel and Toniann Pitassi. 1998. Towards lower bounds for

bounded-depth Frege proofs with modular connectives. Proof com-
plexity and feasible arithmetics 39 (1998), 195–227.

[22] Alexis Maciel and Denis Thérien. 1998. Threshold Circuits of Small

Majority-Depth. Inf. Comput. 146, 1 (1998), 55–83.
[23] Toniann Pitassi. 1996. Algebraic Propositional Proof Systems. In De-

scriptive Complexity and Finite Models, Proceedings of a DIMACS Work-
shop 1996, Princeton, New Jersey, USA, January 14-17, 1996. 215–244.

[24] Toniann Pitassi. 1998. Unsolvable systems of equations and proof com-

plexity. In Proceedings of the International Congress of Mathemeticians,
Volume III, Berlin. 451–460.

[25] Toniann Pitassi and Rahul Santhanam. 2010. Effectively Polynomial

Simulations.. In ICS. 370–382.
[26] Ran Raz and Iddo Tzameret. 2008. Resolution over linear equations

and multilinear proofs. Ann. Pure Appl. Logic 155, 3 (2008), 194–224.
[27] Ran Raz and Iddo Tzameret. 2008. The strength of multilinear proofs.

computational complexity 17, 3 (2008), 407–457.

[28] Alexander A Razborov. 1987. Lower bounds on the size of bounded

depth circuits over a complete basis with logical addition.Mathematical
Notes 41, 4 (1987), 333–338.

[29] Alexander A Razborov. 1998. Lower bounds for the polynomial calcu-

lus. computational complexity 7, 4 (1998), 291–324.

[30] Roman Smolensky. 1987. Algebraic methods in the theory of lower

bounds for Boolean circuit complexity. In Proceedings of the nineteenth

annual ACM symposium on Theory of computing. ACM, 77–82.

	Abstract
	1 Introduction
	1.1 Our Work
	1.2 Related Work
	1.3 Organization of the paper

	2 Preliminaries and Generalizations of Polynomial Calculus
	2.1 Preliminaries
	2.2 Propositional proof systems
	2.3 Generalizations of Polynomial Calculus

	3 Simulations over Q
	3.1 Simulating syntactic CP*
	3.2 Simulating semantic CP*

	4 Simulations over Fpm
	4.1 Simulating syntactic CP*
	4.2 Simulating AC0[q]-Frege
	4.3 Simulating TC0-Frege
	4.4 Dealing with large coefficients – Simulating CP and Dynamic SOS

	References

