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MAXIMAL DEGREES IN SUBGRAPHS OF KNESER GRAPHS

PETER FRANKL AND ANDREY KUPAVSKII

Abstract. In this paper, we study the maximum degree in non-empty induced subgraphs of the
Kneser graph KG(n, k). One of the main results asserts that, for k > k0 and n > 64k2, whenever a

non-empty subgraph has m ≥ k
(

n−2

k−2

)

vertices, its maximum degree is at least 1

2
(1− k

2

n
)m−

(

n−2

k−2

)

≥

0.49m. This bound is essentially best possible. One of the intermediate steps is to obtain structural
results on non-empty subgraphs with small maximum degree.

1. Introduction

Let n ≥ 2k > 1 be positive integers and let [n] denote the standard n-element set {1, . . . , n}. Set
([n]
k

)

:= {F ⊂ [n] : |F | = k}. Let KG(n, k) denote the famous Kneser graph. Its vertex set is
([n]
k

)

,

and two vertices F,G ∈
([n]
k

)

form an edge iff F ∩G = ∅.
The interest in Kneser graphs goes back to 1955 when Kneser [9] formulated the conjecture that

the chromatic number χ(KG(n, k)) equals n− 2k+2. This conjecture was settled in an influential
paper of Lovász [10] some twenty years later.

In the meantime, Erdős, Ko and Rado [4] determined the independence number α(KG(n, k)).

Note that a family F ⊂
([n]
k

)

is an independent set in KG(n, k) iff F ∩ G 6= ∅ for all F,G ∈
([n]
k

)

.
In extremal set theory such an F is called intersecting.

Theorem 1 ([4]). For n ≥ 2k > 0,

α(KG(n, k)) =

(

n− 1

k − 1

)

. (1)

Equality in (1) is attained for the star Sx := {S ∈
([n]
k

)

: x ∈ S}. Hilton and Milner [6]

proved that for n > 2k no other independent set (intersecting family) attains the size
(

n−1
k−1

)

. More
specifically, they showed that if no element is contained in all sets of an intersecting family, then it

is at most as large as H(x, F ), where for x /∈ F ∈
([n]
k

)

we define

H(x, F ) := {F} ∪ {A ∈
(

[n]

k

)

: x ∈ A,A ∩ F 6= ∅}.

Definition 2. For a family F ⊂
([n]
k

)

, let KG(F) denote the induced subgraph of KG(n, k) on the
vertex set F . Let e(F) (d(F)) denote the number of edges (maximum degree) of KG(F).

In view of (1), for |F| >
(n−1
k−1

)

both e(F) and d(F) are positive. Defining S+ := Sx∪{T}, where
x /∈ T ∈

([n]
k

)

, one easily verifies

e(S+) = d(S+) =

(

n− k − 1

k − 1

)

.

Katona, Katona, and Katona [8] proved

e(F) ≥
(

n− k − 1

k − 1

)

(2)

1
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for all F ⊂
([n]
k

)

with |F| =
(

n−1
k−1

)

+ 1. This result was extended to the case |F| ≤
(

n−1
k−1

)

+
n−2k
n

(n−k−1
k−1

)

by Balogh et. al. [2] (see Theorem 4 below).

Very recently, Friedgut (personal communication) raised the problem of determining the mini-

mum of d(F) for |F| =
(

n−1
k−1

)

+1. One of the motivations for this question is a recent breakthrough

result of Huang [7], who showed that in any subset of the hypercube {0, 1}n of size 2n−1 + 1 the
maximum degree of a vertex (in the standard hypercube graph) is at least

√
n. This settled an old

problem from Theoretical Computer Science, known as the Sensitivity Conjecture.
Getting back to Kneser graphs, let us state this problem in a more general form.

Problem 1. Define

d(m,n, k) := min
{

d(F) : F ⊂
(

[n]

k

)

, |F| = m and F is not intersecting
}

.

Determine or estimate d(m,n, k).

We should note that KG(2k, k) is a perfect matching. Thus d(m, 2k, k) = 1 identically for

2 ≤ m ≤
(2k
k

)

.
Example. Consider the family D := H(x, F ) ∪ {F ′}, where F ′ contains x and is disjoint from

F . Obviously, |D| =
(n−1
k−1

)

−
(n−k−1

k−1

)

+ 2, e(D) = d(D) = 1. This example shows that the problem

of estimating d(m,n, k) is only interesting for m >
(n−1
k−1

)

−
(n−k−1

k−1

)

+ 2. Note that, for k ≥ 4, we

have |D| ≥ k
(n−k
k−2

)

.

Definition 3. The lexicographic order A <L B is defined for distinct A,B ∈
([n]
k

)

by A <L B
iff min{x : x ∈ A \ B} < min{y : y ∈ B \ A}. let L(m) := L(m, [n], k) denote the family of the

first m members in
([n]
k

)

in the lexicographic order. Note that if 1 ≤ ℓ ≤ n − k is an integer then

L(
(

n
k

)

−
(

n−ℓ
k

)

) = {A ∈
([n]
k

)

: A ∩ [ℓ] 6= ∅}.
For a wide range of the values of the parameters Das, Gan, and Sudakov [3] proved that e(F) ≥

e(L(|F|). Later, their results were extended to another range by Balogh et. al. [2].

Theorem 4 ([3], [2]). Suppose that m,n, k, ℓ are positive integers, m ≤
(n
k

)

−
(m−ℓ

k

)

and n ≥
108ℓk2(k + ℓ) ([3]) or n ≥ Ck2ℓ3 with some absolute C ([2]). Then

e(F) ≥ e(L(m)) for all F ⊂
(

[n]

k

)

satisfying |F| = m. (3)

The same holds for any n > 2k and |F| ≤
(n−1
k−1

)

+ n−2k
n

(n−k−1
k−1

)

([2]).

More generally, the number of pairs of sets with intersection at most t was studied in [5].

Note the obvious relationship
d(F) ≥ 2e(F)/|F|.

For 1 ≤ i < k and a set P ∈
([n]

i

)

, we use the standard notation F(P ) := {F \ P : P ⊂ F ∈ F}
and F(P̄ ) := {F ∈ F : F ∩ P = ∅}.

With this notation, d(F) = max{|F(F̄ )| : F ∈ F}. Recall that, for a family F , its covering
number τ(F) is the minimum size of S ⊂ [n] such that F(S̄) = ∅.

The structure of the extremal examples that minimize d(F), although related to the families
L(m), appears to be significantly more complicated. Our first two results are structural and apply
in a more general setting.
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Theorem 5. Fix an integer t ≥ 2 and let k0 be sufficiently large. If k ≥ k0 and n ≥ 16t2k2 then

the following holds. Let F ⊂
([n]
k

)

satisfy |F| ≥ |D|. Then either d(F) ≥
(

1 − 1
t

)

|F| or there

exists a set S of size at most t such that |F(S̄)| ≤
(

n−4
k−4

)

. Moreover, for each x in S, we have

|F(x)| ≥ k−1/2|F|.

Remark. It is sufficient to take k0 such that (10t log k0)
7 ≤ k0. Here and in what follows, all

log’s are base 2.

For somewhat large F , we can get rid of F(S̄) completely.

Theorem 6. Fix and integer t ≥ 2 and let k0 be sufficiently large. Let further k ≥ k0 and

n ≥ 16t2k2. If F ⊂
([n]
k

)

and |F| ≥ 2t2k
(

n−2
k−2

)

, then d(F) ≥
(

1 − 1
t

)

|F| unless F(S̄) = ∅, where S

is as in Theorem 5. In particular, if d(F) <
(

1− 1
t

)

|F| then τ(F) ≤ t.

Proof. Assume that d(F) <
(

1 − 1
t

)

|F|. In view of Theorem 5, we can choose a set S, |S| ≤ t,

satisfying |F(S̄)| ≤
(

n−4
k−4

)

. If F(S̄) = ∅ then we are done. Otherwise fixe some U ∈ F(S̄).

Consider an arbitrary set F ∈ F \ F(Ū ). Then either F ∈ F(S̄), or F ∩ U 6= ∅ and F ∩ S 6= ∅
hold simultaneously. Thus |F| − d(F) ≤ |F \ F(Ū)| ≤

(n−4
k−4

)

+ tk
(n−2
k−2

)

< 1
t |F|, a contradiction.

Therefore, |F(S̄)| = ∅ must hold. �

The next theorem focuses on the case t = 2 and the application to the maximum degree question
for non-intersecting families. It gives a more precise structural information depending on the size of
F . The situation turns out to be quite complicated for small values of |F|. Consider the following
examples:

Ei :=
{

F ∈
(

[n]

k

)

: 1 ∈ F,F ∩ [2, k + i+ 1] 6= ∅
}

∪
(

[2, k + i+ 1]

k

)

.

Note that, for i < k and n > k2 ≥ 100,

d(Ei) = |Ei([2, k + 1])| =
(

n− k − 1

k − 1

)

−
(

n− k − i− 1

k − 1

)

. (4)

Theorem 7. Suppose that k ≥ k0 and n ≥ 64k2. Let F ⊂
([n]
k

)

satisfy d(F) = d(|F|, n, k). Then
there exists S as in Theorem 5 such that the following holds.

(1) If, for some integer 1 ≤ i ≤ k
2 ,

|D| ≤ |F| ≤
(

n− 1

k − 1

)

−
(

n− k − i− 1

k − 1

)

+

(

k + i

k

)

, (5)

then S = {x} for some x ∈ [n] and F(x̄) ⊂
(

Y
k

)

for some set Y of size k + i, x /∈ Y . In

particular, |F(x̄)| ≤
(k+i

k

)

. Moreover, if equality holds in (5) then F is isomorphic to Ei.
(2) If |F| ≥ 2|D| then |S| = 2.
(3) If |F| ≥ 4|D| then F(S̄) = ∅.

Case 2 of the theorem is necessary since, while the example for the tightness of case 3 is expected
to be of the following type:

Wℓ :=
{

F ∈
(

[n]

k

)

: {1, 2} ⊂ F
}

∪
{

F ∈
(

[n]

k

)

: |F ∩ [1, 2]| = 1, F ∩ [3, ℓ+ 2] 6= ∅
}



4 PETER FRANKL AND ANDREY KUPAVSKII

(or, more generally, L(m)-type on [3, n]), for small ℓ these examples may be ‘improved’ by adding
the following family:

W ′
ℓ′ :=

{

F ∈
(

[n]

k

)

: |F ∩ [3, ℓ+ 2]| ≥ ℓ′
}

.

Indeed, if ℓ′, say, satisfies ℓ′ > 2
3ℓ >

3k
4 , then Wℓ∪W ′

ℓ′ beats families with |S| = 1 and has the same
maximum degree as Wℓ since the elements from W ′

ℓ′ have low degree.

Our next result gives a concrete numerical implication of Theorems 5.

Theorem 8. In the conditions of Theorem 7 (3), we have

d(F) ≥
|F|−(n−2

k−2)
2

(n−k−1
k−1

)

(n−2
k−1

) −
(

n− k − 2

k − 2

)

≥ 1

2

(

1− k2

n

)

|F| − 3

2

(

n− k − 2

k − 2

)

. (6)

Tightness. Although the bound (6) may appear somewhat arbitrary, it is actually optimal up
to some lower order terms. See Section 6 for details.

2. Simple bounds

In this section, we present proofs of several weaker bounds which are, however, less technical.
The aim is to convey a feeling of the problem to the reader. Moreover, the methods used here are
different and may be interesting in their own right.

Throughout this section, we fix a family F ⊂
([n]
k

)

, |F| >
(n−1
k−1

)

. Note that, due to the Erdős–
Ko–Rado theorem, F is not intersecting. Our goal is to present several relatively simple cases in
which d(F) > 0.49|F| and approaches to prove such a bound.

For 1 ≤ i < k, define c(i) = c(i,F) =
(

n−i
k−i

)−1
max

{

|F(P )| : P ∈
(

[n]
i

)}

.

Lemma 9. Define γ := |F|/
(n−1
k−1

)

. Then

d(F) ≥ 1

2

(

1− c(2)k3

γn

)

|F|. (7)

Proof. Since F is not intersecting, we may choose G,H ∈ F , G ∩H = ∅. If F ∈ F intersects both
G and H then it contains at least one of the k2 pairs (x, y) with x ∈ G, y ∈ H. This allows at most

k2c(2)
(n−2
k−2

)

such sets. Note that
(

n− 2

k − 2

)

<
k

n

(

n− 1

k − 1

)

=
k

γn
|F|.

Now (7) follows from the fact that each of the remaining F ∈ F are disjoint to either G or H (or
both). �

This result immediately implies the following corollary.

Corollary 10. If n ≥ 50k3 then d(F) > 0.49|F|.
Proof. Then we can apply Lemma 9 and use γ > 1, c(2) ≤ 1. �

For k ≥ 50 we can prove something stronger.

Theorem 11. If n ≥ 4k3 and k ≥ 50 then d(F) > 0.49|F|.
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Proof. For two families G ⊂
(

[n]
g

)

, H ⊂
([n]
h

)

, let e(G,H) denote the number of disjoint pairs G,H,

where G ∈ G, H ∈ H. In the caseH = {H} consists of one member, we define e(G,H) := e(G, {H}).
The following simple lemma will be essential for the proof.

Lemma 12. Suppose that 1 ≤ i < k, P ∈
(

[n]
i

)

and |F(P )| = c(i)
(

n−i
k−i

)

. then

e(F(P ),H) ≥|F(P )| − c(i+ 1)k

(

n− i− 1

k − i− 1

)

for all H ∈ F(P̄ ), (8)

e(F(P ),F(P̄ )) ≥
(

1− c(i+ 1)k2

c(i)n

)

|F(P )||F(P̄ )|. (9)

Proof. Fixing H ∈ F(P̄ ), G ∩H 6= ∅ for some G ∈ F(P ) is equivalent to G ∪ P ∈ F containing at

least one of the k sets P ∪{x}, x ∈ H. This allows for less than c(i+1)k
(

n−i−1
k−i−1

)

such sets, implying

(8).

To deduce (9), simply sum (8) over all H ∈ F(P̄ ) and use |F(P )| = c(i)
(

n−i
k−i

)

together with
(n−i−1
k−i−1

)

= k−i
n−i

(n−i
k−i

)

< k
n

(n−i
k−i

)

. �

Corollary 13.

d(F) ≥ max
{1

2
, 1− c(1)

}

·
(

1− c(2)k2

c(1)n

)

|F|. (10)

Proof. Note |F| = |F(x)| + |F(x̄)|. This implies max{|F(x)|, |F(x̄|)} ≥ 1
2 |F|. Moreover, |F(x̄)| ≥

|F| − c(1)
(

n−1
k−1

)

> (1− c(1))|F|. Applying (9) with i = 1 and averaging yields (10). �

Lemma 14. If d(F) < 1
2 |F| then we have

c(1) >
|F|

2k
(

n−1
k−1

) >
1

2k
. (11)

Proof. Let F ∈ F be arbitrary. In view of our assumption, |F(F̄ )| < 1
2 |F|. Equivalently, |F \

F(F̄ )| > 1
2 |F|. On the other hand, |F \ F(F̄ )| ≤ ∑

x∈F |F(x)| ≤ kc(1)
(

n−1
k−1

)

. Comparing these two
inequalities, the claim follows. �

Let us continue with the proof of Theorem 11. In view of the lemma above, we may assume that
c(1) > 1

2k . If c(1) ≥ 1
2 then (10) combined with n ≥ 100k2 implies d(F) ≥ 0.49|F|. If 1

2k ≤ c(1) < 1
2

then the right hand side of (10) is at least (1 − c(1))
(

1 − 1
4c(1)k

)

|F| due to n ≥ 4k3. It is an easy

calculation that the minimum of this expression is attained for c(1) = 1
2k or 1

2 and the expression
is at least 0.49|F| in both cases. �

Next, we add one more idea and prove the same statement in a yet wider range.

Theorem 15. If n ≥ 100k2 then d(F) ≥ 0.49|F|.

Proof. Assume that c(2)/c(1) ≤ 5. If c(1) ≤ 1
2 then (10) gives d(F) ≥ (1 − c(1))(1 − c(2)k2

c(1)n )|F| ≥
(1 − c(1))(1 − c(2)

100c(1) )|F|. Given the assumption, it is not difficult to see that this expression is

minimized for c(1) = 1
2 , in which case we have d(F) ≥ 1

2 (1 −
c(2)
50 )|F| ≥ 0.49|F|. If c(1) ≥ 1

2 then
c(2)
c(1) ≤ 2 and (10) implies d(F) ≥ 1

2 (1− 2k2

n )|F| ≥ 0.49|F|.
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Assume that c(2)/c(1) ≥ 5. Define q to be the smallest integer satisfying 2q ≥ 1
c(2) . Since c(i) ≥ 1

for all 1 ≤ i ≤ k we have
c(3)

c(2)
· c(4)
c(3)

· . . . · c(q + 2)

c(q + 1)
≤ 1

c(2)
≤ 2q.

Consequently we can fix 2 ≤ i ≤ q + 1 such that

c(i+ 1)

c(i)
≤ 2.

By definition, c(2) < 2−(q−1). Noting that 2q ≥ q + 1 for all q ≥ 0, ic(2) ≤ (q + 1)c(2) <

(q + 1)2−(q−1) ≤ 2 follows.

Take P , |P | = i, such that |F(P )| = c(i)
(n−i
k−i

)

. Note that i ≤ j = 1 + ⌈log2 1
c(2)⌉ ≤ 2

c(2) , and

so we have |F(P̄ )| ≥ |F| − ic(1)
(n−1
k−1

)

≥ |F| − ic(2)
5

(n−1
k−1

)

≥ |F| − 2
5

(n−1
k−1

)

≥ 0.6|F|. Using (9) and
averaging, we get that

d(F) ≥
(

1− 2k2

n

)

|F(P̄ )| ≥ 0.98 · 0.6|F| > 1

2
|F|.

�

3. Proof of Theorem 5

The proof is a combination of Lemmas 16, 19, and 22.

Lemma 16. For any c ∈ N there exists k0 such that for any k ≥ k0, n ≥ k2 + k and a family

G ⊂
([n]
k

)

of size at least
(n−c
k−c

)

, we can find a collection G′ ⊂ G of kc sets such that |G1∩G2| ≤ log k

for any G1, G2 ∈ G′.

Proof. The proof is a simple probabilistic argument. Form a family G′ ⊂ G by including each set
from G into G′ independently with probability p := 2kc

|G| . It is an easy calculation to see that the

number of sets in G′ is at least kc

|G| with probability at least 1/2.

Now let us calculate the expected number of pairs A,B ∈ G′ that intersect in at least 1 + log k
elements. The number of such pairs in G is at most |G| ·D, where

D :=

k
∑

i=1+log k

(

k

i

)(

n− k

k − i

)

≤
(

k

log k

)(

n− k

k − log k

)

≤ klog k

(log k)!
· klog k−c

(n− k)log k−c

(

n− c

k − c

)

≤ kc

(log k)!

(

n− c

k − c

)

.

Remark that (log k)! ≫ kC for any constant C, provided k is large enough. Thus, the expected
number of pairs of pairs A,B as above is at most

p2|G|D ≤ 4k3c

(log k)!
<

1

2
,

provided k is large enough. Thus, by Markov’s inequality, with probability strictly greater than 1/2,
there are no such pairs in G′. Fix such a choice of G′ that satisfies both properties simultaneously. �

Using a bit of algebra, we can get a stronger statement. We do not require it for the proof since
it would improve the bounds on k only slightly, but decided to keep it for the interested reader.

Lemma 17. For any c ∈ N there exists k0 such that for any k ≥ k0, n ≥ 2k2 and a family G ⊂
([n]
k

)

of size at least
(n−c
k−c

)

, we can find a collection G′ ⊂ G of kc sets such that |G1 ∩ G2| ≤ 4c for any

G1, G2 ∈ G′.
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Proof. Fix integer d > 0. Take the largest prime power q that satisfies k ≤ q < n
k . Consider GF (q)

and take some set U ⊂ GF (q) of size k. Consider the graphs of all polynomials of degree at most
d in U ×GF (q):

G(f) := {(x, f(x)) : x ∈ U} ⊂ U ×GF (q).

For f ′ 6= f , |G(f) ∩ G(f ′)| ≤ d is obvious. Consider the family G(d) of all such G(f). Then
|G(d)| = qd+1. Next, consider a random injection φ : U × GF (q) → [n]. This defines the family
φ(G(d)) := {φ(G) : G ∈ G(d)}. By linearity of expectation,

E[|φ(G(d)) ∩ G|] = |G|qd+1

(n
k

) =: y.

Note that y ∼ kcqd+1

nc and that q ∼ n
k for large k. Thus, clearly y ≥ kc for d ≥ 4c. We get that

there is a choice of φ that gives at least kc images of sets from G(d) in G. Then G′ := φ(G(d)) is
the desired subfamily. �

We need the following easy claim for the next lemma.

Claim 18. Fix positive integers n, k, s and let n ≥ k2. Assume that F1, . . . , Fs are pairwise disjoint
sets of size at most k. Then the proportion of k-element sets intersecting each of F1, . . . , Fs is at

most
(

k2

n

)s
.

Proof. There are at most ks transversal sets T with |T | = s, |T ∩Fi| = 1 for all i. Each transversal

T is contained in
(n−s
k−s

)

<
(n
k

)

·
(

k
n

)s
sets from

([n]
k

)

. �

Lemma 19. In the requirements of Theorem 5, assume that there exists S such that |F(S̄)| ≥
(n−4
k−4

)

and, moreover, for any i ∈ [n] \ S we have |F(i)| ≤ |F|
100(t log k)3

. Then there is a set F ∈ F(S̄) that

is disjoint with more than (t−1)|F|
t sets from F .

Proof. Apply Lemma 16 and get a family G′ ⊂ F(S̄) of 10t log k sets with pairwise intersections
of size at most log k. Then the set I =

⋃

A 6=B∈G′ A ∩ B has size at most 50t2 log3 k. Given the

condition on |F(i)| for each i ∈ [n] \ S, at most 50t2 log3 k
100(t log k)3 |F| = 1

2t |F| sets from F intersect I.

Let us next bound the total number of sets in
([n]
k

)

intersecting at least 5 log k sets from G′. For

a fixed choice of ℓ ≥ 5 log k sets, Claim 18 asserts that the proportion of such sets in
([n]
k

)

is at most
(

k2

n

)ℓ
. At the same time, there are

(

10t log k
ℓ

)

≤
(

10et log k
ℓ

)ℓ
≤ (2et)ℓ possible subsets of G′, and so

we can bound the number of all such sets in
([n]
k

)

by

(

n

k

)

·
10t log k
∑

ℓ=5 log k

(2etk2

n

)ℓ
≤

(

n

k

)

·
{

2−5 log k = k−5, if n ≤ k2.2

n−4 otherwise.
(12)

Note that we used the condition n ≥ 16tk2 in the first case. It is evident that in both cases the
number of such sets is much smaller than

(n−4
k−4

)

.

Thus, the majority (at least (1 − 1
2t)-proportion, excluding those intersecting I) of sets from F

intersect at most 1
2t -proportion of the sets from G′. Via simple double counting, it is clear that one

of the sets from G′ intersects at most a 1
t -fraction of sets from F . �

Claim 20. In the assumptions of Theorem 5, there are fewer than (10t log k)3 elements i ∈ [n]

such that |F(i)| ≥ |F|
100(t log k)3

.
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Proof. Assume that there is a set S of such elements of size (10t log k)3. By the inclusion-exclusion
principle,

|F| ≥
∑

i∈S

|F(i)| −
∑

i 6=j∈S

|F({i, j}| ≥ 10|F| − |S|2
(

n− 2

k − 2

)

.

Note that |S|2 = (10t log k)6 is less than k, on the other hand, applying Claim 18 to D we infer

|F| > |D| > k
2

(n−2
k−2

)

. This shows that the right hand side of the displayed inequality is more than

8|F| +
(

2|F| − k
(n−2
k−2

))

> 8|F|, giving the contradiction |F| > 8|F|. �

Combining Claim 20 and Lemma 19, we immediately get the following corollary.

Corollary 21. If F satisfies the requirements of Theorem 5 and minimizes d(F) for fixed |F| then
there exists a set S of size at most (10t log k)3 such that |F(S̄)| ≤

(n−4
k−4

)

.

Lemma 22. If F , S are as in Corollary 21 then |S| ≤ t.

Proof. Indeed, assume that |S| > t and take i ∈ S such that

3

3t+ 2
|F| ≥ |F(S̄′)| ≥

(

n− 2

k − 2

)

, (13)

where S′ := S \ {i}. It is easy to see that the right inequality is satisfied for any i ∈ S, while the
left one is satisfied for i such that |F(i)| is minimal over i ∈ S, provided |S| ≥ 3. (Both inequalities
are obtained using inclusion-exclusion principle in a similar way as used in the proof of Claim 20.)

Next, we apply an argument very similar to the one given in the proof of Lemma 19. We find
a family G′ ⊂ F(S̄′) of 10t2 log k sets with pairwise intersections of size at most log k. The set
I =

⋃

A 6=B∈G′ A ∩B satisfies |I| ≤ 50t4 log3 k. The number of sets from F \ F(S̄′) intersecting I is
at most

|I||S′|
(

n− 2

k − 2

)

≤ 50t4 log3 k · (10t log k)3
(

n− 2

k − 2

)

≤ 1

20t
|F|, (14)

where the last inequality holds provided k is large enough.
Next, we estimate the number of sets intersecting at least 5 log k sets from G′. We do virtually

the same calculation as in Lemma 19 and get that there are at most

(

n

k

)

·
10t2 log k
∑

ℓ=5 log k

(2et2k2

n

)ℓ
≤

(

n

k

)

·
{

2−5 log k = k−5, if n ≤ t2k3

n−5 otherwise

sets in
([n]
k

)

with this property. This number is at most
(n−2
k−2

)

≤ 1
20t |F| in any case.

We conclude that at least 1− 3
3t+2− 1

10t ≥ 1− 2
2t+1 of the sets from F intersect at most 1

2t2
-fraction

of sets from G′. (Note that we had to exclude F(i) itself, which made the biggest contribution to
the complement.) Since

(

1− 2
2t+1

)(

1− 1
2t2

) > 1 − 1
t , we again get by simple double-counting that

there is a set in G′ that intersects fewer than 1
t -fraction of sets from F , which is a contradiction. �

Finally, it is not difficult to see that the condition (10t log k)7 ≤ k is sufficient for the argument
to go through. (And is only used in Claim 20 and Lemma 22.)



MAXIMAL DEGREES IN SUBGRAPHS OF KNESER GRAPHS 9

4. Proof of Theorem 7

Let us first analyze the two possible cases: |S| = 1 and |S| = 2. Assume that S = {1} in the first
case and S = {1, 2} in the second case. We assume that F minimizes d(F) for fixed |F| in either
case.

Assume that |S| = 1 and |F| ≤
(n−1
k−1

)

+ 1. Then F(1̄) contains at least one set U , while

|F(1)| ≥ |F|−
(n−4
k−4

)

due to Theorem 5. At the same time, the number of sets from F(1) intersecting

U is at most |H(1, U)|. Thus,

|F| − |H(1, U)| −
(

n− 4

k − 4

)

≤ d(F). (15)

We can bound d(|F|, n, k) from above using the following construction: take H(1, U) together with
some other sets containing 1 (so that we have |F| sets in total). This gives

d(F) ≤ |F| − |H(1, U)|. (16)

Next, assume that |S| = 2. To analyze d(F), we shall apply the following proposition.

Proposition 23. [1, Corollary 9.2.5] Let G = (V,E) be a D-regular N -vertex graph. Let λ = λ(G)
be the second largest absolute value of an eigenvalue of G. Then for any subsets B,C ⊂ V , where
|B| = bN , |C| = cN , we have

|e(B,C)− cbDN | ≤ λ
√
bcN.

Let F1,F2 be defined as follows: Fi := {U \ {i} : U ∈ F , U ∩ [2] = i}. Both F1,F2 can be seen
as subsets of KG(n − 2, k − 1) (on vertex set [3, n]). We note that KG(n − 2, k − 1) is regular of

degree
(

n−k−1
k−1

)

, and λ = λ(KG(n − 2, k − 1)) =
(

n−k−2
k−2

)

. Let δi be the average degree of a vertex
in Fi. Applied to our situation, the proposition above implies the following.

Proposition 24. Assume that {i, j} = {1, 2}. Then

δi ≥
|Fj |

(n−k−1
k−1

)

(n−2
k−1

) −
(

n− k − 2

k − 2

)

√

|Fj |
|Fi|

. (17)

Moreover,

d(F) ≥
|F1|+|F2|

2

(n−k−1
k−1

)

(

n−2
k−1

) −
(

n− k − 2

k − 2

)

. (18)

Proof. The first part is just an application of Proposition 23. Next, assume that |F1| ≥ |F2|. It is
not difficult to see that, for fixed |F1| + |F2|, the bound on δ2 is the smallest when |F1| = |F2|.
Indeed, recall that |F| ≥ |D|, and thus |F1|, |F2| ≥ 1

3 |D| ≥
√
k
(

n−k−2
k−2

)

by Theorem 5. The first

term on the right hand side of (17) is essentially C|F1|, where C > 1
2 , while the absolute value of

the second term grows slower than c|F1| with c ≤
(n−k−2

k−2

)

/|F2| ≤ k−0.5. Thus, we get (17). �

We note that
(

n− 2

k − 2

)

·
(

n− k − 1

k − 1

)

/

(

n− 2

k − 1

)

=
k − 1

n− k

(

n− k − 1

k − 1

)

<

(

n− k − 2

k − 2

)

. (19)
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Knowing that |F(S)| ≤
(n−2
k−2

)

and |F(S̄)| ≤
(n−4
k−4

)

, from (18) and (19) we derive that

d(F) ≥ 1

2

(|F| − |F(S̄)| − |F(S)|)
(

n−k−1
k−1

)

(

n−2
k−1

) −
(

n− k − 2

k − 2

)

≥ 1

2

|F|
(

n−k−1
k−1

)

(

n−2
k−1

) − 3

2

(

n− k − 2

k − 2

)

− 1

2

(

n− 4

k − 4

)

≥ 0.4|F|. (20)

We go on to the proof of different parts of Theorem 7.

1. We first note that |S| = 1. Indeed, (15) implies that d(Ei) < 1
3 |Ei| in this range, while (20)

gives d(F) ≥ 0.4|F|.
Next, assume that there are at least k + i + 1 elements y ∈ [2, n] such that |F({1, y})| ≥

(n−2
k−2

)

−
(n−4
k−4

)

. Then |F| ≥
(n−1
k−1

)

−
(n−k−i−2

k−1

)

− (k + i + 1)
(n−4
k−4

)

>
(n−1
k−1

)

−
(n−k−i−1

k−1

)

+
(n−4
k−4

)

, a
contradiction with the assumption on the size of F . Consequently, there are at most k + i such
elements.

In particular, if |⋃U∈F(1̄)U | > k + i, then there is a set U ∈ F(1̄) such that one of its elements,

say, y, is contained in less than
(n−2
k−2

)

−
(n−4
k−4

)

sets containing 1. Then the degree of this set is

at least |F| −
(n−1
k−1

)

+
(n−k−1

k−1

)

+
(n−4
k−4

)

− |F(1̄)| ≥ |F| −
(n−1
k−1

)

+
(n−k−1

k−1

)

. This is more than the

maximum degree in a family of size |F| having just one set U not containing 1 and containing all
sets containing 1 and passing through U .

Finally, assume that |F| = |Ei|. If |F(1̄)| <
(k+i

k

)

then, for any U ∈ F(1̄), the number of sets not

intersecting it is at least |Ei|−
(

n−1
k−1

)

+
(

n−k−1
k−1

)

−
(

k+i
k

)

+1, which is bigger than the right hand side

in (4). Thus, |F(1̄)| =
(

k+i
k

)

and, by the first part, must have the form
(

Y
k

)

for some Y ⊂ [2, n] of
size k + i.

2, 3. In the cases 2, 3 of Theorem 7, we have |S| = 2. Indeed, if |S| = 1 then (15) implies that
d(F) ≥ 1

2 |F|. Next, if we have |F| > 4|D| and F(∅̄) 6= ∅, then, for any set U ∈ F(S̄), there are at

most 2|D|−
(n−3
k−3

)

sets from F \F(S̄) intersecting it, and thus d(F) ≥ |F|− 2|D|+
(n−3
k−3

)

−
(n−4
k−4

)

>
1
2 |F|.

5. Proof of Theorem 8

Take a family F satisfying the restrictions of the theorem and such that d(F) = d(|F|, n, k).
The conclusion of Theorem 7 holds, i.e., we must have two elements, say, 1, 2 such that F( ¯[2]) = ∅.
We may w.l.o.g. assume that F([2]) =

([3,n]
k−2

)

. Next, for i = 1, 2 consider the families Fi :=

{F \ {i} : F ∈ F , F ∩ [2] = {i}}. Inequality (18) is valid in our situation, which, together with

|F1|+ |F2| = |F| −
(

n−2
k−2

)

, concludes the proof of the first part of (6).

To get to the second form of the bound in (6), we use the same calculations as in (20) together
with the fact that |F(S̄)| = 0, and get

d(F) ≥
|F|

(n−k−1
k−1

)

2
(

n−2
k−1

) − 3

2

(

n− k − 2

k − 2

)

.

Finally, we note that
(n−k−1

k−1 )
(n−2

k−1)
≥

(

n−2k
n−k

)k−1
= (1− k

n−k )
k−1 ≥ (1− k+1

n )k−1 ≥ 1− (k+1)(k−1)
n ≥ 1− k2

n .

We have used the fact that n ≥ k2 + k in the second inequality.
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6. Optimality of Theorem 8

Fix some s > 1000k and n > 10k3 and consider the following family G:

G :=
{

A ∈
(

[n]

k

)

: {1, 2} ⊂ A
}

∪
{

A ∈
(

[n]

k

)

: |A ∩ {1, 2}| = 1, |A ∩ [3, s + 2]| = 1
}

.

It is not difficult to see that |G| =
(n−2
k−2

)

+ 2s
(n−s−2

k−2

)

. Substituting this into the bound (6), we get
that

d(G) ≥
s
(

n−s−2
k−2

)(

n−k−1
k−1

)

(

n−2
k−1

) −
(

n− k − 2

k − 2

)

=
(s − 1)

(

n−s−2
k−2

)(

n−k−1
k−1

)

(

n−2
k−1

) −Θ
(

s

(

n− 3

k − 3

)

)

≥(s− 1)

(

n− s− k

k − 2

)

−Θ
(

s

(

n− 3

k − 3

)

)

, (21)

where Θ stands for a constant, independent of s, k, n. In the last transition, we have used the result
of the following calculation:

(

n−s−2

k−2

)(

n−k−1

k−1

)

(

n−2

k−1

) =

k−1
∏

i=1

n− k − i

n− 1− i

(

n− s− 2

k − 2

)

=

k−1
∏

i=1

n− k − i

n− 1− i

k−3
∏

j=0

n− s− 2− j

n− s− k − j

(

n− s− k

k − 2

)

≥
k−1
∏

i=1

n− k − i

n− 1− i

k−4
∏

j=0

n− s− 2− j

n− s− 1− k − j

(

n− s− k

k − 2

)

≥
2
∏

i=1

n− k − i

n− 1− i

(

n− s− k

k − 2

)

≥
(

1− 2k

n

)

(

n− s− k

k − 2

)

,

which implies
(n−s−2

k−2

)(n−k−1
k−1

)

(n−2
k−1

) −
(

n− s− k

k − 2

)

≥ −2k

n

(

n− s− k

k − 2

)

≥ −4

(

n− 3

k − 3

)

,

for k ≥ 4.
At the same time, it is easy to see that each set from G that intersects [2] in 1 element has the

same degree, namely (s − 1)
(

n−s−k
k−2

)

. This is the maximum degree of KG(G). Compare this with

(21). Note that s
(

n−3
k−3

)

≪
(

n−s−k
k−2

)

for s ≪ n/k.
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