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ABSTRACT
A function f : {0, 1}n → {0, 1} is called an approximate AND-

homomorphism if choosing x, y ∈ {0, 1}n uniformly at random,

we have that f (x ∧ y) = f (x) ∧ f (y) with probability at least

1 − ε , where x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn ). We prove that if

f : {0, 1}n → {0, 1} is an approximate AND-homomorphism, then

f is δ -close to either a constant function or an AND function, where

δ (ε) → 0 as ε → 0. This improves on a result of Nehama, who

proved a similar statement in which δ depends on n.
Our theorem implies a strong result on judgement aggregation

in computational social choice. In the language of social choice, our

result shows that if f is ε-close to satisfying judgement aggregation,

then it is δ (ε)-close to an oligarchy (the name for the AND function

in social choice theory). This improves on Nehama’s result, in which

δ decays polynomially with n.
Our result follows from a more general one, in which we charac-

terize approximate solutions to the eigenvalue equation Tf = λд,
where T is the downwards noise operator Tf (x) = Ey[f (x ∧ y)],
f is [0, 1]-valued, and д is {0, 1}-valued. We identify all exact solu-

tions to this equation, and show that any approximate solution in

which Tf and λд are close is close to an exact solution.
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1 INTRODUCTION
Which functions f : {0, 1}n → {0, 1} satisfy

f (x ∧ y) = f (x) ∧ f (y) w.p. 1 − ε,

where x, y are chosen uniformly at random?

If ε = 0, it is not hard to check that f is either constant or an

AND of a subset of the coordinates. Nehama [40] showed that when

ε > 0, f must be O((nε)1/3)-close to a constant function or to an

AND (in other words, Pr[f , д] = O((nε)1/3), where д is constant
or an AND). The main result in this paper implies, as a corollary,

a similar statement, in which the distance between f ,д vanishes

with ε , without any dependence on n.

Theorem 1.1. For each δ > 0 there is ε > 0 such that if a function
f : {0, 1}n → {0, 1} satisfies

Pr

x,y
[f (x ∧ y) = f (x) ∧ f (y)] > 1 − ε,

then f is δ -close to a constant or an AND.

Our technique is in fact more general, and allows us to study the

multi-function version of this problem, inwhichwe are interested in

triples of functions f ,д,h : {0, 1}n → {0, 1} that satisfy f (x ∧ y) =
д(x) ∧ h(y) with probability at least 1 − ε . Quantitatively, we get a
quasi-polynomial relationship between ε and δ , and more precisely

ε = exp(−Θ(log2(1/δ ))), but we expect the correct dependency to

be a polynomial.

Theorem 1.1 gives shows that the natural test above is a one-

sided error tester for the property of being an AND function. This

question was first considered in [43], wherein the authors propose

this test; being unable to analyze it the authors consider a more

complicated tester and analyze it, but it comes at the cost of being

less natural and having more queries as well as two sided error.

If we replace ∧ with ⊕ in the above problem, then the result

corresponding to Theorem 1.1 is the well-known soundness of the

Blum–Luby–Rubinfeld linearity test [7], that plays an important

role in the construction of PCPs [1, 2, 24]. By now, many proofs for

the soundness of this test are known: self-correction [7], Fourier
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analysis [6, 24], induction [12]. Unfortunately, all of these proofs

rely on ⊕ being a group operation (either directly or via Fourier

analysis), and hence do not extend to our setting.

Our approach recasts the problem as determining the approxi-

mate eigenfunctions of a one-sided noise operator. Define the op-

erator T acting on functions f : {0, 1}n → {0, 1} in the following

way:

(Tf )(x) = E
y
[f (x ∧ y)].

Using this operator, the premise of Theorem 1.1 implies that f
is an approximate eigenfunction of this operator, i.e. Tf ≈ λ f ,
where λ = E[f ] is the average of f . Here, by approximate solution

we mean that the L1 distance between the two functions is small:

Ex[|Tf (x) − λ f (x)|] 6 ε .
If we replace T with the usual two-sided noise operator Tρ ,

then a short spectral argument shows that if f is an approximate

eigenfunction then it must be close to an exact eigenfunction of

Tρ . Unfortunately, the spectral argument relies on orthogonal-

ity of eigenspaces of Tρ , a property which T doesn’t satisfy (its

eigenspaces are spanned by ANDs, which aren’t orthogonal). In-

deed, T has approximate eigenfunctions beyond ANDs, and below

we give two examples f1 and f2.

f1(x) =

{
x1 ∨ x2 if |x | > n/3,

x1 ⊕ x2 if |x | < n/3
f2(x) =

{
1 if |x | > n/3,

Ber(λ) if |x | < n/3

In f2, we stress that the function is defined probabilistically: for

each x such that |x | < n/3 independently, we take f2(x) = 1 with

probability λ < 1. It is easy to verify by case analysis that we have

that Tf1 ≈
1

2
f1, Tf2 ≈ λ f2. Note however, that these functions are

not counter-examples to the AND-test above, since both of them

pass the test with some constant probability bounded away from 1.

Note that each one of the functions f1, f2 is essentially composed

of two, completely different “sub-functions”: one defined on high

Hamming-weight inputs, and another defined on low Hamming-

weight inputs. This suggests decoupling the two functions, and

considering the generalized eigenvalue problem

Tf = λд, where f : {0, 1}n → [0, 1] and д : {0, 1}n → {0, 1}.

Here f represents the low-weight part, and д represents the high-
weight part. We represent the probabilistic aspect of the low-weight

part by allowing f to take on values in the interval [0, 1].

The two examples above corresponds to exact solutions of this
generalized problem: T(x1 ⊕ x2) =

1

2
(x1 ∨x2) and Tλ = λ · 1. There-

fore, as a prerequisite to characterizing approximate eigenfunctions

of T, we must first study exact solutions to the more general two-

function version. We show:

Theorem 1.2. If f : {0, 1}n → [0, 1] and д : {0, 1}n → {0, 1}

satisfy Tf = λд then either f = д = 0 or there exist disjoint subsets
S1, . . . , Sm ⊆ [n], wherem 6 log

2
(1/λ), such that

f (x) =
m∧
i=1

⊕
j ∈Si

xi , д(x) =
m∧
i=1

∨
j ∈Si

xi .

Moreover, if f is monotone then д is an AND and f = д.

Thus if Tf = λд then д is an “AND-OR” and f is the correspond-

ing “AND-XOR” (or f = д = 0). When f is monotone, д must be an

AND, and so f = д. Using Theorem 1.2, we can then actually solve

the more general problem of characterizing approximate solutions

to the equation Tf = λд.

Theorem 1.3. If f : {0, 1}n → [0, 1] and д : {0, 1}n → {0, 1}

satisfy Tf ≈ λд then either f ≈ д ≈ 0 or д is close to an AND-OR
and f is close to an AND-XOR.

Moreover, if f is monotone then f ,д are both close to a constant or
to an AND.

We also show how to deduce Theorem 1.1 from Theorem 1.3.

We remark that Theorem 1.3 is stated in a somewhat informal way:

the closeness of the function f to an AND-XOR function has to be

stated in a more subtle way (since otherwise it is false), and we defer

this point to the formal statement of the theorems in Section 2.

1.1 Other Variants
Other noise rates. Nehama [40] also considers the more general

equation

f (x1 ∧ · · · ∧ xm) ≈ f (x1) ∧ · · · ∧ f (xm),

where each one of x1, . . . , xm is sampled uniformly and indepen-

dently from {0, 1}n . We can reduce this problem, in a similar man-

ner, to an eigenfunction of an appropriate operator T
(m)

, defined

by

T
(m) f (x) = E

y1, ...,ym−1
f (x ∧ y1 ∧ . . . ∧ ym−1).

Our techniques also apply to such operators (and in fact to a slightly

richer family of noise operators), and we prove variants of Theo-

rem 1.2 and Theorem 1.3 in this case as well:

Theorem 1.4. Letm > 2. If f : {0, 1}n → [0, 1] and д : {0, 1}n →

{0, 1} satisfy T
(m) f = λд then either f = д = 0 or f = д is an AND.

Furthermore, if T(m) f ≈ λд then either f ≈ д ≈ 0 or f ,д are close
to an AND.

One-sided error version. Finally, we consider the one-sided error ver-
sion of the equation Tf = λд. That is, suppose we have a bounded
function f : {0, 1}n → [0, 1], and a Boolean function д, such that

with probability 1− ε over x: (a) if д(x) = 1, then f (x∧ y) > λ with
constant probability over y, and (b) if д(x) = 0 then f (x ∧ y) 6 ε
with probability 1 − ε over y.

We note that this condition is a relaxation of the approximate

eigenvalue condition. In this case, we prove a weaker structural

result than in Theorem 1.3, namely that д is close to a monotone

junta.

Theorem 1.5. Suppose that the functions f : {0, 1}n → [0, 1] and
д : {0, 1}n → {0, 1} satisfy the following condition: when д = 0, Tf
is typically small; and when д = 1, Tf is typically at least λ.1 Then д
is close to a monotone Boolean junta.2

We remark that while the structural result in this case is weaker,

it is for a good reason: for any monotone junta f , choosing д = f
yields an approximate, one-sided error solution.

1
In contrast, in Theorem 1.3 we ask that Tf be typically close to λ.

2
A junta is a function depending on a constant number of coordinates.
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1.2 Social Choice Interpretations of
Approximate Eigenfunctions

The seminal work of Kornhauser and Sager [32] discusses a situa-

tion where three cases A,B,C are considered in court, and by law,

one should rule against C if and only if there is a ruling against

both A and B. When several judges are involved, their opinions

should be aggregated using a function f that preserves this law,

that is, satisfies f (x ∧ y) = f (x) ∧ f (y); we say that f is an AND-
homomorphism. List and Pettit [34, 35] showed that the only non-

constant aggregation functions that are AND-homomorphisms are

the AND functions, known in the social choice literature as oli-
garchies.

Let the individual opinions of the judges be x1, . . . , xn on A,
y1, . . . ,yn on B, and x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn on C . The char-
acterization of robust judgement aggregation that we prove in this

paper (Theorem 1.1) states that if typically f (x ∧ y) = f (x) ∧ f (y),
then f is close to an oligarchy.

The characterization in terms of approximate eigenfunctions

(Theorem 1.3) actually shows more. Suppose that opinions are

aggregated according to a monotone function f which satisfies the

following two conditions:

• There is rarely a ruling against C unless there is a ruling

against A and a ruling against B.
• Suppose that there is a ruling against A. If there is also a

ruling against B, then with probability roughly q, there is a
ruling against C .
(Formally, for typical x such that f (x) = 1, we have Pr[f (x ∧
y) = 1 | f (y) = 1] ≈ q.)

Then f must be close to an oligarchy or to a constant function, and

q ≈ 1.

In fact, the second condition can be weakened significantly:

• Suppose that there is a ruling against A. Then with probabil-

ity roughly λ, there is a ruling against C .

Theorem 1.3 implies that f must be close to an oligarchy or to a

constant function, and λ ≈ E[f ].
Similarly, Theorem 1.5 shows that f has to be close to amonotone

junta if the second condition above is replaced with either of the

following two conditions:

• Suppose that there is a ruling against A. If there is also a

ruling against B, then with probability at least q, there is a
ruling against C .

• Suppose that there is a ruling against A. Then with probabil-

ity at least λ, there is a ruling against C .

Thus our results do not only strengthen robust judgement ag-

gregation in a quantitative way, but also in a qualitative way.

1.3 Our Techniques
Our main result, Theorem 1.1, easily follows from Theorem 1.3,

which is our main technical result. Below we sketch the proof idea

of Theorem 1.3 (the proofs of Theorem 1.4 and Theorem 1.5 follow

similar lines).

Suppose f ,д are functions as in Theorem 1.3 that satisfy Tf ≈ λд.
The first step of the proof is to show that the function д is close

to a junta h, i.e. to a function depending only on constantly many

variables. To get some intuition for that, note that if T was the

standard noise operator, then the function Tf has exponentially

decreasing tail and hence it is very concentrated on its low Fourier

levels. When the operator T is the one-sided noise operator, one

can actually use similar reasoning to claim that д again has an

exponentially decaying tail (as observed by Lifshitz [33]). Since д
is Boolean and д ≈ 1

λTf , this observation would then allow us to

use structure theorems on Boolean functions (more specifically, a

result of Bourgain [8] or of Kindler and Safra [31]) to conclude that

д is (close to) a junta.

Thus, ignoring some (important) technical details, one can think

of д as a function of a constant number of variables, and since the

proximity parameter between Tf and д can be taken to be very

small (even in comparison to the number of variables д depends

on), one may as well think of it as being 0. In other words, the

problem essentially boils down to studying exact solutions to the

equation Tf = д when n is constant, which is where Theorem 1.2

enters the picture. Using it, we prove the structural result on д;
getting the structural result on f then amounts to averaging f over

coordinates that д does not depend on (since those could be thought
of as a “source of randomness” as in the example of f2(x) above),
and then inverting the operator T acting on functions of a constant

number of variables.

This ends the informal description of our techniques. We re-

mark that actually composing the two components, namely the

approximation by junta and the solution to the exact equation, is

more subtle and requires some care. We also remark that in the

case of one-sided error (Theorem 1.5), the Fourier-analytic argu-

ment alluded to above, which implies that д is close to a junta, does
not seem to be applicable. We thus present an alternative, more

combinatorial argument that captures this case as well.

1.4 Related Work
1.4.1 Quantitative social choice theory. Social choice theory studies
how to aggregate the opinion of a number of agents. Already in the

18th century, Condorcet [11] noted that natural aggregation rules

often result in paradoxes. A large body of work has been developed

in economics since the middle of the 20th century, in which it was

shown that natural aggregation tasks have no good aggregation

functions. The two most famous results in this area are Arrow’s

impossibility theorem [3, 4] and the Gibbard–Satterthwaite (GS)

manipulation theorem [21, 45]. The questions of aggregation re-

emerged in the context of multi-agent systems in computer science,

where the hope was that either the probability of paradoxical out-

come is small, or there is computational difficulty in arriving at a

paradoxical outcome, see e.g. [5] and the survey [18]. A sequence of

results showed that this is not the case by proving strong and gen-

eral quantitative versions of both Arrow’s Theorem [28, 29, 37, 38]

and the GS Theorem [19, 20, 27, 39], as well as results interpolating

the two theorems [17].

The main motivation for the problem discussed in this paper is

Judgement Aggregation. This problem is considered in a fascinating

paper in the Yale Law Review by Kornhauser and Sager [32]. In

particular, toward the end of the paper, the authors considered legal

cases, where the judgement aggregation function f should satisfy

f (x ∧y) = f (x) ∧ f (y). They observe that this does not hold when

f is the majority vote on three opinions.
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The failure of Majority, which mirrors the failure of Majority in

ranking that was observed by Condorcet, led to work by List and

Pettit [34, 35], who characterized exactly the functions f that are

AND-homomorphisms, i.e., oligarchies. The question of judgement

aggregation has attracted much attention in philosophy, social

epistemology, and artificial intelligence [44]. In the context of multi-

agent systems, when the number of agents is large, it makes sense

to ask if it is possible to achieve approximate judgment aggregation.

Our results show that this can only be achieved in the obvious way,

i.e., by almost-oligarchies.

We note that the study of judgement aggregation extends well

beyond AND-homomorphisms, to other types of homomorphisms,

and indeed such a theory of polymorphisms is well-developed [13–

16, 41, 46]. We leave if for future work to investigate robust versions

of these results.

1.4.2 Property testing. The work of Blum, Luby and Rubinfeld [7]

has been extended to more general settings by various authors.

For example, Moore and Russell [36] and Gowers and Hatami [23]

considered approximate representations of finite groups. Other

authors had considered infinite groups, see for example the survey

of Hyers and Rassias [26]. Theorem 1.1 generalizes Blum–Luby–

Rubinfeld in a different direction, to approximate polymorphisms,

where there is no group structure.

We remark that Theorem 1.1 implies that the soundness of a

property testing algorithm of Parnas, Ron and Samorodnitsky [43],

whose goal is to test whether the input function is a dictatorship or

more generally an AND function. I.e., the tester should accept with

high probability (preferably 1) if the function if an AND function,

and reject with probability at least
2

3
if the function is ε-far from all

AND functions. The authors proposed the following natural tester,

which they were unable to analyze: test that f has expectation

1/2 and satisfies f (x ∧ y) = f (x) ∧ f (y). Instead, they proposed a

somewhat less natural tester. Our results imply that their original

tester also works.

We remark that can design a tester that only queries f on points

distributed according to µ
1/2 at the cost of introducing an additional

query. The tester samples x, y, z,w ∼ µ
1/2 conditioned on x∧y = z∧

w, and checks that f (x)∧ f (y) = f (z)∧ f (w). The soundness of this

tester follows immediately from the soundness of the current tester

by redefining for a ∼ µ
1/4 the value of f (a) to be the prominent

value of f (x)∧ f (y)where x, y ∼ µ
1/2 are sampled so that x∧y = a.

It is interesting to explore if there is a relationship between our

results and different notions of approximate polymorphisms that

appear in the literature [9, 10], which were used to prove hardness

of approximation results.

Organization. We formally state our results in Section 2. After

some preliminaries in Section 3, we prove the various results in

Sections 4, deferring the proof of the rest of the results to the full

version of the paper. We close the paper by stating some open

questions in Section 5.

2 MAIN RESULTS
Let µp denote the p-biased measure on {0, 1}n . Let L2({0, 1}

n, µp )
be the space of real-valued functions on {0, 1}n equipped with the

inner product ⟨f ,д⟩ = Ex∼µp [f (x)д(x)].

Definition 2.1. For q 6 p, the distribution (y, x) ∼ D(q,p)
over {0, 1}n × {0, 1}n is the distribution in which for each i ∈ [n]
independently, we have Pr [yi = 1] = q and Pr [xi = 1] = p, and
always yi 6 xi .

One way to generate inputs (y, x) ∼ D(q,p) that will be useful
for us is as follows. Sample x ∼ µp and z ∼ µq/p independently,

and output (x ∧ z, x). (Here ∧ refers to the coordinatewise AND

operation, i.e. for each i ∈ [n] we have (x ∧ z)i = xi ∧ zi .)
For ρ ∈ (0, 1), define the one-sided operator T

↓
p,ρp as follows.

For any function f : ({0, 1}n, µρp ) → {0, 1} , we define the function

T
↓
p,ρp f : ({0, 1}

n, µp ) → {0, 1} by

T
↓
p,ρp f (x) = E(y,v)∼D(ρp,p) [f (y) | v = x].

Equivalently, we have T
↓
p,ρp f (x) = Ez∼µρ [f (x ∧ z)].

Next, we shall discuss the spectrum (eigenvectors and eigenval-

ues) of the operator T
↓
p,ρp . We remark that throughout this section,

the parameters p and ρ should be thought of as constants bounded

away from 0, 1.

For each S ⊆ [n], the function ANDS : {0, 1}
n → {0, 1} defined

by ANDS (x) =
∧
i ∈S xi is an eigenvector of T

↓
p,ρp with eigenvalue

ρ |S | (we omit the easy proof). Moreover, these are the only eigen-

vectors of T
↓
p,ρp that are Boolean valued.

3
Our goal in this paper

is to find a robust version of this characterization of the Boolean

eigenvectors of T
↓
p,ρp .

We say that a function f is an η-approximate eigenvector with

eigenvalue λ, if ∥T
↓
p,ρp f − λ f ∥1 6 η (here and throughout the

paper we will consider the ℓ1 norm with respect to the µp measure).

What can be said about the structure of Boolean, approximate

eigenvectors of T
↓
p,ρp? A natural conjecture would be that any

such function has to be close to an exact eigenvector, which by

Booleanity would have to be an AND-function over ≈ logρ (λ)

variables. However, this conjecture turns out to be false, as the

following example demonstrates.

Set p = ρ = 1

2
, and consider the function f defined by f (x) =

x1 ∨ x2 for inputs whose hamming weight is n/2 ±
√
n logn, and

by x1 ⊕ x2 for the rest of the inputs. It is easy to see that f is far

from any AND function on the µ
1/2 measure, and we argue that

∥T
↓

1/2,1/4
f − 1

2
f ∥ = o(1). By definition, for each x , T

↓

1/2,1/4
f (x) is

the probability that picking z ∼ µ
1/2, we have f (x ∧ z) = 1. Except

with probability o(1), the hamming weight of x, x ∧ z is roughly
n/2,n/4 respectively, and we focus only on this event. We now

consider two cases depending on the value f (x), and analyze each

one of them separately. In case f (x) = 0, we get by definition that

x1 = x2 = 0 so that (x ∧z)1 = (x ∧z)2 = 0 for any choice of z and in
particular f (x ∧ z) = 0. Otherwise, if f (x) = 1 then (x1, x2) , (0, 0),

and by definition f (x ∧ z) = x1z1 ⊕ x2z2, so that for each fixed

x such that (x1, x2) , (0, 0), this is a uniform unbiased bit, and in

particular Ez [f (x ∧ z)] = 1

2
.

3
To see that, note that any function f can be written as a linear combination of AND

functions, and if f is an eigenvector then all of these ANDs are of the same size, say

with coefficients α1, . . . , αm . Considering the value of f on the minterms of these

ANDs, one concludes that all of the α ’s must be 1, and considering the value of f on

the all-1 string, one concludes thatm = 1.
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Remark 2.2. It is worth noting that for any constant λ > 0, there
are approximate eigenvectors of T↓

1/2,1/4
with eigenvalue λ (not only

for λ = 2
−k ). Indeed, the function f that is constantly 1 on inputs

with Hamming weight n/2 ±
√
n logn, and on each other point x in-

dependently, we take f (x) = 1 with probability λ, is (with probability
1 − o(1)) an approximate eigenvector with eigenvalue λ.

2.1 The Basic Two-Function Version
Since the previous example is essentially composed of two different

functions (one around the middle slice and the other around then/4-
slice), it makes sense to consider the two-function version of the

approximate eigenvector problem. Namely, let f : ({0, 1}n, µpρ ) →

{0, 1} ,д : ({0, 1}n, µp ) → {0, 1} , and λ ∈ (0, 1) be such that ∥T
↓
p,ρp f −

д∥1 6 η. What can we say about f and д? We note that in this case,

even the exact version of the problem, i.e. determining which func-

tions can satisfy T
↓
p,ρp f = д, is already unclear (and in fact, as it

turns out, understanding solutions to the exact problem is a key

step in solving the approximate problem).

The version of the problem we will consider is actually more

general and allows the function f to take values in [0, 1]. It turns

out that the structure of the solutions heavily depends on ρ, and we
consider three different regimes: 0 < ρ < 1

2
, ρ = 1

2
and

1

2
< ρ < 1.

We remark that all of the results apply in particular for the original

approximate eigenvector problem, i.e. the case f = д.
The first range, 0 < ρ < 1

2
, is the simplest, and we have the

following result.

Theorem 2.3. For any ζ > 0 there is J ∈ N such that for any
ε > 0 there is η > 0 such that the following holds. Let p ∈ [ζ , 1 − ζ ],
ρ ∈ [ζ , 1

2
− ζ ] and λ ∈ [ζ , 1], and let f : {0, 1}n → [0, 1] and

д : {0, 1}n → {0, 1} satisfy ∥T
↓
p,ρp f − λд∥1 6 η. Then either f ,д

are ε-close to the zero function, or there is a setT ⊆ [n] of size at most
J such that:

• д is ε-close to ANDT .
• After averaging outsideT , f is ε-close to ρ−|T |λ ·ANDT . More
precisely, the function ˜f : {0, 1}T → [0, 1] given by ˜f (x) =

Ey∼µ [n]\Tρp
[f (y, x)] is ε-close to ρ−|T |λ · ANDT .

(This range corresponds to the operators T
(m)

mentioned in Theo-

rem 1.4.)

In the second range, ρ = 1/2, the structure of f and д may be

more complicated (we have already seen an example in this range

where д = ORT and f = XORT for T of size 2).

Definition 2.4. A functionд : {0, 1}n → {0, 1} is called an AND-
OR function of widthm if there are disjoint setsA1, . . . ,Am such that
д(x) =

∧
i ∈[m]

∨
j ∈Ai x j .

Definition 2.5. A functionд : {0, 1}n → {0, 1} is called an AND-
XOR function of widthm if there are disjoint sets A1, . . . ,Am such
that д(x) =

∧
i ∈[m]

⊕
j ∈Ai x j .

Theorem 2.6. For any ζ > 0 there ism ∈ N such that for any
ε > 0 there are η > 0, J ∈ N such that the following holds for all
p ∈ [ζ , 1−ζ ] and λ ∈ [ζ , 1]. If f : {0, 1}n → [0, 1] and д : {0, 1}n →

{0, 1} satisfy ∥T
↓

p,p/2 f − λд∥1 6 η. Then there is a set T ⊆ [n] of

size at most J , and a partitionT = A1 ∪ · · · ∪Ar for r 6m such that
either f ,д are ε-close to the zero function, or:

• д is ε-close to
∧
i ∈[r ]

∨
j ∈Ai x j (i.e. to an AND-OR function of

width at mostm).
• After averaging, f is close to a multiple of

∧
i ∈[r ]

⊕
j ∈Ai x j .

More precisely, the function ˜f : {0, 1}T → [0, 1] given by
˜f (x) = Ey∼µ [n]\Tp/2

[f (y, x)] is ε-close to 2r λ ·
∧
i ∈[r ]

⊕
j ∈Ai x j .

Both Theorem 2.3 and Theorem 2.6 can be shown to be quali-

tatively tight. For Theorem 2.6, for example, any pair of functions

f ,д where д is an AND-OR function and f is the corresponding

AND-XOR function is an exact solution. To see that some averaging

is needed to get a structure for f , note that given a pair of approxi-

mate solutions f ,д, one may sub-sample f , i.e. change the value
on each x such that f (x) = 1 with probability 1/2, to get a new

approximate solution with λ/2, and f has no apparent structure

(other than being a multiple of AND-XOR after averaging).

Quantitatively, the dependence of η on ε in Theorem 2.3 is quasi-

polynomial η = exp(−Θζ (log
2(1/ε))). The dependence in Theo-

rem 2.6 is exponentially worse, i.e. η = exp(− exp(Θζ (log
2(1/ε)))).

The source of this difference is that in the case of Theorem 2.3 (and

also in Theorem 2.7 and Theorem 2.8) we are able to prove stronger

approximation by junta results than in Theorem 2.6. Namely, we

show that there is J (ζ ) (independent of the proximity to junta pa-

rameter ε), such that if η is a sufficiently small function of ε , then
д is ε-close to a J -junta. In the case of Theorem 2.6, we are forced

to allow the size of the junta J to also depend on ε . As far as we
know, in both cases the dependence of η on ε could be much better,

perhaps even polynomial.

In the third range of parameters,
1

2
< ρ < 1, the solutions to the

problem have a richer structure. It can be shown, for example, that

there are ρ ∈ ( 1
2
, 1), λ ∈ (0, 1) and a function f : {0, 1}n → [0, 1]

such that f and д(x) = Maj(x1, x2, x3) are an exact solution to

T
↓

1/2,ρ/2 f = λд. In this case we only show a relatively weak struc-

ture, namely that д is close to a monotone junta (see Theorem 2.11).

We remark that in order to get a stronger structure, one would only

need to classify all exact solutions to the equation T
↓
p,ρp f = λд for

ρ > 1/2.

2.2 Special Cases
We next present our result for a few special cases of interest, in

which we are able to prove a stronger structure. The first result is

concerned with the case when the approximate eigenvalue is large:

Theorem 2.7. For every ζ , ε > 0 there isη > 0 such that the follow-
ing holds for any ρ,p ∈ [ζ , 1−ζ ] and λ > ρ+ζ . If f : ({0, 1}n, µρp ) →

[0, 1] andд : ({0, 1}n, µp ) → {0, 1} satisfy ∥T↓p,ρp f −λд∥1 6 η, then
д is ε-close to a constant function Γ ∈ {0, 1}, and the average of f
according to µρp is close to λΓ, i.e.

���Ex∼µρp [f (x)] − λΓ��� 6 ε .

Next, we consider the case in which f is a monotone function. In

this case (and actually for a more relaxed case in which f is “almost

monotone”), we show that д must be an AND function and f must

be a multiple of that AND function after averaging. We also get

quantitatively stronger relation between ε and η.
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Theorem 2.8. For every ζ > 0, ε > 0 there exists η > 0 such
that the following holds for all p, ρ ∈ [ζ , 1 − ζ ] and λ ∈ [ζ , 1]. If
f : ({0, 1}n, µρp ) → [0, 1] is monotone andд : ({0, 1}n, µp ) → {0, 1}

satisfies ∥T↓p,ρp f − λд∥1 6 η, then:
• There exists T ⊆ [n] of size at most ⌈log(2/λ)⌉ and a function
h that is either constant (in which case T = ∅) or ANDT , such
that ∥д − h∥1 6 ε .

• ˜f : {0, 1}T → [0, 1] given by ˜f (x) = Ey∼µρp [f (x, y)] is ε-
close in L∞-norm to ρ−|T |λ · h.

The monotonicity condition in Theorem 2.8 can be relaxed to

“almost monotonicity”, in the sense that flipping any coordinate

from 0 to 1 cannot decrease the value of the function too much. To

define this relaxation more precisely we need the notion of negative

influences:

Definition 2.9. Let f : ({0, 1}n, µp ) → [0, 1] and let i ∈ [n].
The negative influence of a variable i on f , denoted by I−i [f ], is
defined to be Ex∼µp [max(0, f (x−i , xi = 0) − f (x−i , xi = 1)], where
(x−i , xi = b) denoted the pointsy that agrees with x on all coordinates
j , i , and has value b on coordinate j.

(Note that whereas Ii [f ] is the average of squared differences, I−i [f ]
is an average of differences.)

With this definition, Theorem 2.8 also holds when we relax

the condition of monotonicity of f to the condition that all of its

individual negative influences are small, i.e. I−i [f ] 6 η for all i ∈ [n]
(the proof of Theorem 2.8 in the full version achieves this stronger

statement). One benefit of this relaxation is that it is able to capture

the case of “judgement aggregation” as an immediate consequence.

Theorem 2.10. For all ζ , ε > 0 there is η > 0 such that the follow-
ing holds for all p, ρ ∈ [ζ , 1 − ζ ]. If f : ({0, 1}n, µρp ) → {0, 1} ,
д : ({0, 1}n, µp ) → {0, 1} and h : ({0, 1}n, µρ ) → {0, 1} satisfy
Prx∼µp ,y∼µρ [f (x ∧ y) = д(x) ∧ h(y)] > 1 − η, then one of the fol-
lowing cases must happen.

(1) f and at least one of the functions д or h are ε-close to the
constant 0 function.

(2) There is a setT ⊆ [n] such that f ,д,h are all ε-close to ANDT
(each with respect to their input distribution).

2.3 One-Sided Error
Finally, we consider a more relaxed version of approximate solu-

tions to T
↓
p,ρp f = д. We say functions f : {0, 1}n → [0, 1] and

д : {0, 1}n → {0, 1} are one-sided error solutions with λ > 0 and

error η if the following two conditions occur:

(1) T
↓
p,ρp f is very small on typical inputs x such that д(x) = 0:

E
x∼µp

[
(1 − д(x)) · T↓p,ρp f (x)

]
6 η.

(2) T
↓
p,ρp f is bounded away from 0 on typical inputs x such

that д(x) = 1:

Pr

x∼µp

[
д(x) = 1,T

↓
p,ρp f (x) 6 λ

]
6 η.

Theorem 2.11. For any ε, ζ > 0 there are η > 0 and J ∈ N such
that the following holds for any p, ρ ∈ [ζ , 1 − ζ ] and λ ∈ [ζ , 1].
If f : {0, 1}n → [0, 1] and д : {0, 1}n → {0, 1} are one-sided error

solutions with λ and error η, then д is ε-close to a monotone, Boolean
J -junta.

We remark that any monotone junta д is a one-sided error approx-

imate solution (by taking f = д), so Theorem 2.11 is tight with

respect to the structure of д.

Organization. The proof of Theorem 2.6 is given in Section 4.

The proofs of the rest of the results are deferred to the full version

of the paper.

3 PRELIMINARIES
For any p ∈ (0, 1), we consider functions f : ({0, 1}n, µp ) → R
equipped with the inner product ⟨f ,д⟩ = Ex∼µp [f (x)д(x)]. We

will use the Fourier–Walsh orthonormal basis

{
χ
p
S

}
S ⊆[n]

, where

for each S ⊆ [n] we define χ
p
S : {0, 1}

n → R by

χ
p
S (x) =

∏
i ∈S

[
(xi − p)/

√
p(1 − p)

]
.

Thus, wemaywrite the Fourier expansion of a function f : {0, 1}n →

R by

f (x) =
∑
S ⊆[n]

f̂p (S)χ
p
S (x), where f̂p (S) = ⟨f , χ

p
S ⟩.

Since

{
χ
p
S

}
S ⊆[n]

is an orthonormal basis, we have Parseval’s

identity ∥ f ∥2
2
=

∑
S ⊆[n]

f̂p (S)
2
. We will need a few more notions and

results from Fourier analysis, such as the Junta Theorems of [8, 31]

and the Sensitivity Conjecture proved recently by [25], which we

present below.

3.1 Influences
For a function f : ({0, 1}n, µp ) → R and a coordinate i ∈ [n], we
define the p-biased influence of variable i to be

I
p
i [f ] = E

x∼µp

[
(f (x) − f (x ⊕ ei ))

2
]
.

When the bias parameter is clear from context, we often write Ii [f ].
We will also use the notion of negative influences as given in

Definition 2.9. We have the following simple fact, stating that aver-

aging may only decrease negative influences. The proof is deferred

to the full version of the paper.

Fact 3.1. Let f : ({0, 1}n, µp ) → R be a function, and let i ∈ [n].
Consider the function д : ({0, 1}n−1, µp ) → R defined by д(z) =
Ex∼µp

[
f (x)

�� x[n]\{i } = z
]
(i.e. averaging f over the coordinate i).

Then I−j [д] 6 I−j [f ] for any j ∈ [n] \ {i}.

We also need the following fact that relates negative influences

and distance from monotonicity.

Fact 3.2. For all p ∈ (0, 1), n ∈ N and τ > 0, if the function
f : ({0, 1}n, µp ) → R satisfies I−i [f ] 6 τ for all i ∈ [n], then there
is a monotone function h : ({0, 1}n, µp ) → R such that ∥ f − h∥1 6
((1 − p)p)−nnτ .

We remark that the above fact is inspired by [22], wherein a

similar statement was proved for Boolean functions for p = 1/2,

with a better bound (nτ ). The proof is deferred to the full version

of the paper.
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3.2 Junta Theorems
We will use Bourgain’s Theorem [8]; the sharp version below is

proved in [30]. For k ∈ N, the Fourier tailW>k [f ] is defined to be∑
|S |>k

f̂p (S)
2
.

Theorem 3.3. For any ζ > 0 there is a constantC(ζ ) > 0 such that
for any k ∈ N, ε > 0 there are τ = (k/ε)−C ·k , J = (k/ε)C ·k such that
the following holds for all p ∈ [ζ , 1 − ζ ]. If f : ({0, 1}n, µp ) → {0, 1}

satisfiesW>k [f ] 6
ε

C
√
k log

1.5(k )
, then f is ε-close to a J -junta h.

Furthermore, h only depends on variables i such that Ii [д] > τ .

We also need the following result of Kindler and Safra. While

being quantitatively weaker in some regards, it has an important

feature that will be important for us and is missing from Theo-

rem 3.3. The size of the junta in the result of Kindler and Safra only

depends on the parameter k , as opposed to also on the closeness

parameter ε as in Theorem 3.3.

Theorem 3.4 ([31]). For any ζ > 0,m ∈ N there exists J (m, ζ ) ∈
N,C(m, ζ ) > 0 such that the following holds for all p ∈ [ζ , 1− ζ ]. For
any ε > 0 there exists δ = C(m, ζ ) · ε such that if f : ({0, 1}n, µp ) →
{0, 1} is a function such thatW>m [f ] 6 δ , then f is ε-close to a
junta of size J (m, ζ ).

3.3 Degree and Sensitivity
For any f : {0, 1}n → {0, 1} and x ∈ {0, 1}n , the sensitivity of f at

x is equal to the number of coordinates i ∈ [n] such that f (x) ,
f (x⊕ei ). The max-sensitivity of a function f is s(f ) = maxx s(f , x).
The degree of a function deg(f ) is the maximal size of S such that

f̂p (S) , 0 (we remark that this is easily seen to be independent of

p).
We will use the following recent result of Huang [25] (formerly

known as the sensitivity conjecture [42]) in our proof. We remark

that quantitatively weaker results that were known earlier (such as

the bound s(f ) > Ω(log(deg(f )))) would have been enough for us,

but yield to a loss in several parameters.

Theorem 3.5 ([25]). For any f : {0, 1}n → {0, 1} we have that
s(f ) >

√
deg(f ).

4 PROOF OF THEOREM 2.6
In this section, we prove Theorem 2.6. Since we will always consider

the downwards noise operator T
↓

p,p/2, we denote it succinctly by T.

4.1 Main Lemma
Lemma 4.1. For any ζ > 0 and n ∈ N there exists η0 > 0 such that

the following holds for all p ∈ [ζ , 1 − ζ ], λ ∈ [ζ , 1] and η ∈ [0,η0]. If
∥T

↓

p,p/2 f − λд∥∞ 6 η then:

• д is an AND-OR function of width r , where r 6 ⌈log(2/ζ )⌉.
• Let ϕ be the corresponding AND-XOR function. Then ∥ f −2r λ ·
ϕ∥∞ 6 3

nη.

This section is devoted to the proof of this lemma, and the proof

is divided into several claims. It will be convenient for us to identify

vectors in {0, 1}n with subsets of [n] by identifying a vector with

its support, and consequently think of the inputs of functions as

subsets of [n]. The definition of the operator T to these language is

immediate: Tf (B) = EC⊆B [f (C)] = 2
−|B | ∑

C⊆B
f (C).

Fix ζ ,n, and choose η = ζ 4−n
2−4n−4

. Let f ,д be functions as in
the statement of the lemma.

Claim 4.2. д is monotone.

Proof. Suppose д is not monotone. Then there is an edge (A,B)
of the hypercube where A ( B such that д(A) = 1, д(B) = 0. We

have that Tf (B) 6 λд(B) + η = η, which by definition of T implies

that EC⊆B [f (C)] 6 η. Denote {i} = B \ A, and note that with

probability 1/2 we have i < C, in which case C ⊆ A. Thus, the non-
negativity of f implies that EC⊆A [f (C)] 6 2EC⊆B [f (C)] 6 2η, i.e.
Tf (A) 6 2η. This is in contradiction to Tf (A) > λд(A) − η = λ − η
(by the choice of η). �

Since д is monotone, one can discuss its minterms, i.e. setsM ⊆

[n] such that д(M) = 1 but for all A ( M , д(A) = 0. The following

lemma asserts that the value of f on any minterm ofд is determined

(up to a small error).

Claim 4.3. IfM is a minterm of д, then
���f (M) − λ2 |M |

��� 6 4
|M |η.

Proof. Since д(M) = 1, we have that |Tf (M) − λ | 6 η, and by

definition of T we have Tf (M) = 2
−|M | ∑

A⊆M
f (A), so by the trian-

gle inequality it follows that

���f (M) − 2
|M |λ

��� 6 2
|M |η +

∑
A(M

f (A)

, and to finish the proof, we upper bound the last sum. Note that

for every A ( M , choosing B ( M randomly of size |M | − 1, we

have that A ⊆ B with probability at least 1/|M |, hence by the non-

negativity of f there is B of size |M | − 1 such that

∑
A(M

f (A) 6

|M |
∑

A⊆B
f (A), and we fix such B.4 Since B ( M andM is a minterm

of д, we have that д(B) = 0, and therefore Tf (B) 6 η or equiva-

lently

∑
A⊆B

f (A) 6 2
|B |η. Plugging that in we get that

∑
A(M

f (A) 6

|M | 2 |M |−1η and the claim follows. �

We next wish to argue all minterms of д are of the same size,

and towards this end (and also in other places in the argument) the

following proposition will be useful.

Proposition 4.4. Let B,Z ⊆ [n] be disjoint such that д(B) = 1.
Then �����∑

A⊆B
f (A ∪ Z ) − 2

|B |λ

����� 6 2
|B |

3
|Z |η.

Proof. Note that |Tf (B ∪W ) − λд(B ∪W )| 6 η for anyW ⊆ Z .
Since д is monotone and д(B) = 1, we must have д(B ∪ Y ) = 1 and

we get that������ ∑
A⊆B,Y ⊆W

f (A ∪ Y ) − 2
|B∪W |λ

������ 6 2
|B∪W |η.

4
Alternatively, note that

∑
A(M f (A) 6

∑
|B |=m−1

∑
A⊆B f (A), and take B maxi-

mizing

∑
A⊆B f (A).
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Note that for any Y ⊆ Z ,
∑

W : Y ⊆W ⊆Z
(−1) |Z \W | = 0 unless Y = Z ,

in which case the sum is 1, and so we get that∑
A⊆B

f (A ∪ Z ) =
∑

A⊆B,Y ⊆Z
W : Y ⊆W ⊆Z

(−1) |Z \W | f (A ∪ Y )

=
∑
W ⊆Z

(−1) |Z \W |
∑

A⊆B,Y ⊆W
f (A ∪ Y ).

Therefore the triangle inequality implies that�����∑
A⊆B

f (A ∪ Z ) − λ
∑
W ⊆Z

(−1) |Z \W |
2
|B∪W |

�����
6

∑
W ⊆Z

������ ∑
A⊆B,Y ⊆W

f (A ∪ Y ) − 2
|B∪W |λ

������
6

∑
W ⊆Z

2
|B∪W |η,

which is equal to 2
|B |

3
|Z |η. To complete the proof, we observe that

by the binomial formula∑
W ⊆Z

(−1) |Z \W |
2
|B∪W | = 2

|B |
∑
W ⊆Z

2
|W |(−1) |Z |− |W |

= 2
|B |(2 − 1) |Z | = 2

|B | . �

We now show two consequences of the above proposition. First,

we show that all minterms of д have the same size.

Claim 4.5. For any two mintermsM,M ′ of д we have |M | = |M ′ |.

Proof. Let Z = M ′ \M . By Proposition 4.4 we have∑
A⊆M

f (A ∪ Z ) 6 2
|M |λ + 2 |M |

3
|Z |η.

By the non-negativity of f the left-hand side is at least the value of

f for A = M ∩M ′
, i.e. on A ∪ Z = M ′

; furthermore, by Claim 4.3

we have f (M ′) > λ2 |M
′ | − 4

|M ′ |η, so combining we get

λ2 |M
′ | 6 2

|M |λ + η(2 |M |
3
|Z | + 4 |M

′ |) 6 2
|M |λ + λ/2,

where the last inequality is by the choice of η. This implies that

|M ′ | 6 |M |. The second inequality is proved analogously. �

Denote the size of a minterm of д by m, and note that m 6
⌈log(2/λ)⌉. Indeed, lettingM be any minterm of д, by Claim 4.3 we

get that λ2m 6 f (M) + 4mη 6 2.

We next show that the value of f in a point B must be either

close to 0 or close to 2
mλ.

Claim 4.6. For any B ∈ {0, 1}n , it holds that either f (B) 6 4
|B |2η

or | f (B) − 2
mλ | 6 4

|B |η.

Proof. If д(B) = 0, the claim is immediate since 2
−|B | f (B) 6

Tf (B) 6 λд(B) + η = η, so we assume that д(B) = 1. We prove the

claim by induction on |B |. If |B | =m, then B is a minterm and the

claim follows from Claim 4.3. Assume the claim holds for all |B | 6 i ,
and let B be of size i + 1. Since д(B) = 1 we get that there must be a

mintermM ⊆ B of д. Let Z = B \M , then by Proposition 4.4,����� ∑
A⊆M

f (A ∪ Z ) − 2
mλ

����� 6 2
m
3
|Z |η.

For each A ( M , by the induction hypothesis f (A ∪ Z ) is either

close to 0 (i.e. at most 4
|A∪Z |2η) or close to 2mλ (more precisely, up

to ±4 |A∪Z |η).

• If there is A⋆ ( M that falls into the second case, then by

non-negativity of f we get that f (B) is equal to

f (M ∪ Z ) 6
∑
A⊆M

f (A ∪ Z ) − f (A⋆ ∪ Z )

6

����� ∑
A⊆M

f (A ∪ Z ) − 2
mλ

����� + ��f (A⋆ ∪ Z ) − 2
mλ

��
6 2

m
3
|Z |η + 4|A

⋆∪Z |η 6 4
|B |η,

where in the last inequality we used

��A⋆
�� 6m − 1, and the

claim is proved for B.
• Otherwise, by the triangle inequality��f (M ∪ Z ) − 2

mλ
�� 6 ������ ∑A(M

f (A ∪ Z )

������ +
����� ∑
A⊆M

f (A ∪ Z ) − 2
mλ

�����
6

∑
A(M

4
|A∪Z |2 + 2m3

|Z |η

6
(
4
(m+ |Z |−1)2+m + 3m+ |Z |

)
η,

which is at most 4
(m+ |Z |)2η = 4

|B |2η. Hence the claim is

proved for B (as B = M ∪ Z ). �

We are now able to restate Proposition 4.4 in a more convenient

form. For each pair of disjoint sets B,Z ⊆ [n] such that д(B) = 1,

denote X (B,Z ) = {A ∪ Z | A ⊆ B}.

Corollary 4.7. Suppose B,Z ⊆ [n] are disjoint and д(B) = 1.
Then there is a unique A⋆ ⊆ B such that:

•
��f (A⋆ ∪ Z ) − 2

mλ
�� 6 4

nη.
• For any other A ⊂ B we have that f (A ∪ Z ) 6 4

n2

η.
• д(A⋆ ∪ Z ) = 1 and for any A ( A⋆ we have д(A ∪ Z ) = 0.

Proof. For the first item, if for allA ⊆ B it holds that f (A∪Z ) 6

4
n2

η, then by Proposition 4.4 we have 2mλ 6
∑

A⊆B
f (A ∪ Z )+6nη 6

4
n2+3nη, which contradicts the choice of η. Therefore, by Claim 4.6

there is A⋆ ⊆ B such that

��f (A⋆ ∪ y) − 2
mλ

�� 6 4
nη.

For the second item, assume towards contradiction there are two

such A1,A2. By Proposition 4.4 we have

2 · (2mλ − 4
nη) 6 f (A1 ∪ Z ) + f (A2 ∪ Z ) 6

∑
A⊆B

f (A ∪ Z )

6 2
mλ + 6nη,

and therefore 2
mλ 6 6

n+1η, which is a contradiction to the choice

of η.
For the third item, note that

д(A⋆ ∪ Z ) > Tf (A⋆ ∪ Z ) − η > 2
−|A⋆∪Z | f (A⋆ ∪ Z ) − η

> 2
−nλ − (4n + 1)η > 0,

and since д is Boolean-valued it follows that д(A⋆ ∪ Z ) = 1. Also,

for any A ( A⋆
we have

д(A ∪ Z ) 6 Tf (A ∪ Z ) + η 6 4
n2

η + η < 1,
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where in the second inequality we used the definition of T and the

second item. Since д is Boolean we get that д(A ∪ Z ) = 0. �

To simplify notation, for the rest of the section we often say “the

value of f (S) is close to 2
mλ” to express that | f (S) − 2

mλ | 6 4
nη

and “the value of f (S) is close to 0” to express that f (S) 6 4
n2

η.

Consider them-uniform hypergraph H = ([n], E) whose edges
are the minterms of д. In the remainder of this section we show

that H is a completem-partite hypergraph, which is easily seen to

be equivalent to д being an ANR-OR function of widthm. Towards

this end, we will define a coloring χ : [n] → [m] and show that (a)

each edge e ∈ E is rainbow colored (i.e. no two vertices in it are

colored in the same color), and (b) any rainbow colored set A ⊆ [n]
is an edge.

Fix a minterm B ⊆ [n], and write B = {b1, . . . ,bm }, where

b1, . . . ,bm ∈ [n]. We define χ (bi ) = i . We now define χ (v) for any
v ∈ [n] \ B. Fix v ∈ [n] \ B, and consider the set X (B, {v}); by
Corollary 4.7 there exists a unique A ⊆ B such that f (A ∪ {v}) is
close to 2

mλ, and its д-value is 1. Since д(A ∪ {v}) = 1, we must

have |A ∪ {v}| >m, and there are two options:

• If |A ∪ {v}| =m + 1, i.e. A = B, define χ (v) = ⊥.

• Otherwise, there is i ∈ [m] such that A = B \ {bi }, and we

define χ (v) = χ (bi ) = i .

We first show that each minterm of д is colored using only

elements from [m] (as opposed to ⊥).

Claim 4.8. LetM ∈ E be a minterm of д. Then for each v ∈ M we
have χ (v) , ⊥.

Proof. Assume towards contradiction that this is not the case,

and let v ∈ M be such that χ (v) = ⊥. Then by definition of χ this

means that f (B ∪ {v}) is close to 2
mλ, and since B is a minterm

of д we also know, by Claim 4.3, that f (B) is close to 2
mλ. This

gives us two points in X (M,B \M) whose f -value is close to 2
mλ,

in contradiction to Corollary 4.7. �

Next, we show that each minterm of д is rainbow colored by χ .

Claim 4.9. Let M ∈ E be a minterm of д. Then M is rainbow
colored.

Proof. Write M = {v1, . . . ,vm }, and assume towards contra-

diction the statement is false. Then there are vi ,vj that are as-

signed the same color by χ , and without loss of generality we

may assume χ (v1) = χ (v2) =m. By definition of χ it follows that

f ({v1}∪(B \ {bm })) and f ({v2}∪(B \ {bm })) are both close to 2mλ.
However, note that these are two distinct points inX (M,B \M), and

thus we get a contradiction to the second item in Corollary 4.7. �

Note that the definition of the coloring χ may depend on the

minterm B chosen initially to define it. The following claim shows

that this is actually not the case — and more precisely that if we

use a different minterm B′
to define a coloring χ ′, then there is a

permutation π on [m] such that χ ′ = π ◦ χ .

Claim 4.10. Let B′ =
{
b ′
1
, . . . ,b ′m

}
be any minterm of д, and let

χ ′ be a coloring defined as above using B′ in place of B. Then there
exists π ∈ Sm such that χ = π ◦ χ ′.

Proof. Since B is a minterm of д, it follows by Claim 4.9 that

it is rainbow colored by both χ and χ ′, so we define π ∈ Sm by

π (χ ′(bi )) = χ (bi ). We define χ̃ = π ◦ χ ′ and show that χ = χ̃ .
Letv < B, and assume without loss of generality χ (v) =m. Then

by definition of χ we must have that {b1, . . . ,bm−1,v} is a minterm

of д, and hence by Claim 4.9 it must be rainbow colored by χ̃ . Since
χ̃ agrees with χ on b1, . . . ,bm−1, we must have χ̃ (v) =m, and we

are done. �

Lastly, we show that each rainbow colored set of size m is a

minterm of д.

Claim 4.11. For any minterm B of д and a coloring χ defined by
it, the following holds. IfM ⊆ [n] of sizem is rainbow colored by χ ,
then д(M) = 1. Consequently,M is a minterm of д.

Proof. We prove the statement for all B, χ,M by induction on

|B ∩M |.

WriteM = {v1, . . . ,vm }, B = {b1, . . . ,bm }, and assume without

loss of generality that χ (vi ) = χ (bi ). The base case is |B ∩M | =m,

in which caseM = B and the claim is obvious.

Let k 6m−1, assume the statement is true whenever |B ∩M | >
k+1, and letM be such that |B ∩M | = k . Without loss of generality

we may assume that vi = bi for all 1 6 i 6 k . Since χ (vk+1) =
χ (bk+1) we get that B

′ = (B \ {bk+1}) ∪ {vk+1} is a minterm of

д. Let χ ′ be the coloring defined by B′
. By Claim 4.9 we get that

χ ′ = π ◦ χ for some π ∈ Sm , and in particular as M is rainbow

colored by χ it is also rainbow colored by χ ′. Since |B′ ∩M | = k +1
we may apply the induction hypotehsis on B′

with the coloring χ ′

to conclude thatM is a minterm of д, as required. �

It follows that the function д is the function

∧
i ∈[m]

∨
j ∈Ai x j

where Ai = χ
−1(i). To complete the proof of Lemma 4.1 we must

establish the structural result for f , which we do by inverting f .

Claim 4.12. The operatorT has an inverseT−1 given byT−1h(B) =∑
A⊆B

(−1) |B\A |
2
|A |h(A).

Proof. Let h be in the image of T, i.e. h(B) = T
˜h(B) for some

˜h.

We prove by induction on B that
˜h(B) =

∑
A⊆B

(−1) |B\A |
2
|A |h(A).

The base case |B | = 0 is clear. Assume the statement holds for

all B such that |B | 6 k , and let B be of size k + 1. By definition of

h we have that 2
|B |h(B) =

∑
A(B

˜h(A) + ˜h(B). Using the induction

hypothesis on each A ( B we get that∑
A(B

˜h(A) =
∑
A(B

∑
C⊆A

(−1) |A\C |
2
|C | ˜h(C)

=
∑
C

2
|C | ˜h(C)

∑
A :

C⊆A(B

(−1) |A\C |

=
∑
C

2
|C | ˜h(C)(−1) |B\C |+1,

where in the last equality we used the fact that adding the summand

corresponding toA = B, the sum would be 0. Plugging that into the

previous equality and rearranging finishes the inductive step. �

Defineψ = λ
∑

A⊆B
(−1) |B\A |

2
|A |д(B). By Claim 4.12 we have that

λд = Tψ .
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Claim 4.13. ∥ f −ψ ∥∞ 6 3
nη.

Proof. Let h = Tf . Using the formula for h from Claim 4.12 and

the definition ofψ we have that for all B ⊆ [n],

| f (B) −ψ (B)| 6
∑
A⊆B

2
|A | |h(A) − λд(A)| 6

∑
A⊆B

2
|A |η = 3

|B |η. �

Let ϕ =
∧m
i=1

(⊕
j ∈Ai x j

)
. We show that Tϕ = 2

−mд. Since T is

invertible by Claim 4.12 and Tψ = λд, we getψ = 2
mλϕ, and hence

Claim 4.13 implies that f is 3
nη-close to 2

mλϕ in L∞, as required.

Claim 4.14. Let A1, . . . ,Am be disjoint, non-empty sets, and let
ϕ =

∧m
i=1

⊕
j ∈Ai x j , д =

∧m
i=1

∨
j ∈Ai x j . Then Tϕ = 2

−mд.

Proof. Fix B ⊆ [n], and let Bi = B ∩Ai for each i .
If д(B) = 0, then Bi = ∅ for some i , without loss of generality

i = 1. Thus, for any C ⊆ B we have that C ∩ A1 = ∅, and hence

ϕ(C) = 0, so Tϕ(B) = 0.

If д(B) = 1, then Bi , ∅ for all i . Let C ⊆ B be chosen uniformly

at random, and denote Ci = C ∩Ai . Note that the distribution of

C1, . . . ,Cm is of independent uniform subsets of B1, . . . ,Bm , and as

such the parity of the size of each Ci is a uniform and independent

bit. Thus,

Tϕ(B) = Pr

C⊆B
[ϕ(C) = 1]

= Pr

C⊆B
[|Ci | ≡ 1 (mod 2) for all i ∈ [m]] = 2

−m . �

This completes the proof of Lemma 4.1. �

4.2 Deducing Theorem 2.6
In this section we use Lemma 4.1 to deduce Theorem 2.6, and we

first sketch the argument. Given an approximate solution f ,д, we
first observe that the function д is noise insensitive — that is, has

a small Fourier tail — and hence deduce from Theorem 3.3 that it

is close to a junta. We then show that for almost all restrictions β
outside the junta variables, we can associate a bounded function

˜fβ such that
˜fβ ,дβ are a solution to the equation in L∞, and we

may deduce some structure for дβ and
˜fβ . Using the fact that the

restricted variables barely affect the function д (since it is junta)

one can thus deduce the necessary AND-OR structure from д. To
get the structural result for the function f , slightly more work is

needed. We show that eliminating ORs that are too wide from the

дβ ’s, almost all of them become the same function, and we show

that after averaging over the removed variables, f is close to a

multiple of the corresponding AND-XOR function.

We first give several statements that will be useful for us in

the proof. The following lemma from [33] shows the effect of the

operator T
↓
p,pρ on the Fourier expansion of a function.

Lemma 4.15. If f =
∑
S
ˆf (S)χ

(ρp)
S then

T
↓
p,ρp f =

∑
S

(
(1 − p)ρ

1 − ρp

) |S |/2
ˆf (S)χ

(p)
S .

Using the previous lemma we may show that if f ,д are approxi-

mate solutions, then д has an exponentially small tail.

Lemma 4.16. Let f : ({0, 1}n, µρp ) → [0, 1], д : ({0, 1}n, µp ) →

{0, 1} be functions such that ∥T↓p,ρp f −λд∥ 6 η. Then for any k ∈ N

we have thatW>k [д] 6 2λ−2(η + ρk ).

Proof. Since f ,д are bounded between 0 and 1, Tf − λд is

bounded between −1, 1 at each point and therefore we get that

∥Tf − λд∥2
2
6 ∥Tf − λд∥1 6 η. Using Parseval’s inequality (and

Lemma 4.15 to get the Fourier coefficients of Tf on µp ), we get that,

denoting ρ2 =
(1−p)ρ
1−ρp 6 ρ, we have∑
S
(ρ

|S |/2
2

f̂pρ (S) − λд̂p (S))
2 6 η.

Therefore, using (a + b)2 6 2(a2 + b2) we get that

λ2
∑
|S |>k

д̂p (S)
2 6 2η + 2

∑
|S |>k

(ρ
|S |/2
2

f̂pρ (S))
2

6 2η + 2 · ρk
2

∑
|S |>k

f̂pρ (S)
2

6 2η + 2 · ρk ,

where in the last inequality we used Parseval to bound the sum of

Fourier coefficients of f by 1 and ρ2 6 ρ. �

Second, the following will be useful for us in the pruning process

of the wide ORs.

Lemma 4.17. Suppose that д1,д2 are AND-OR functions of width
at most d that are ε-close with respect to µp , and let γ = 2p−dε . Let
ψ1,ψ2 be the truncations of д1,д2 respectively resulting by removing
all ORs containing more than log

1/(1−p)(1/γ ) variables.
Thenψ1 = ψ2, and furthermore this function is dγ -close to д1.

Proof. We say an OR of д1 is small if the number of variables

in it is at most log
1/(1−p)(1/γ ), and let A1 be a small OR of д1. We

claim that there is a small OR of д2, which will be denoted by A2,

that contains A1. Assume towards contradiction that this is not

the case. Thus, restricting A1-variables to 0, the restricted function

(д2)A1→0 does not become identically 0 and it is still an AND-OR

function of width at most d , and therefore it gets the value 1 with

probability at least pd . Since the probability that all of the variables

in A1 get the value 0 is at least (1 − p)log1/(1−p)(1/γ ) = γ , we get that

Prx
[
ORA1

(x) = 0,д2(x) = 1

]
> γ · pd . However, note that on any

such x we have д1(x) = 0 and д2(x) = 1, and by assumption the

probability mass on such x ’s is at most ε , so we get that ε > γpd

and contradiction.

Therefore, for each small OR of д1 there is a small OR in д2
containing it and vice versa. As the ORs in each function are disjoint

in variables, it follows that each small OR of д1 appears in д2 and
vice versa, so in other wordsψ1 = ψ2.

Finally, since д1 and ψ1 may differ only when there is an OR

of size at least log
1/(1−p)(1/γ ) in д1 that evaluates to 0, and there

are at most d such clauses, it follows from the union bound that

Prx [д1(x) , ψ1(x)] 6 dγ . �

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Fix ζ , ε > 0 from Theorem 2.6 (we as-

sume ε > 0 is small enough) and choose m = ⌈log(2/ζ )⌉. Let
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C = C(ζ ) be from Theorem 3.3, choose η1 = ζ
2ε2/(4C log(1/ε)), and

pick τ , J from Theorem 3.3 for ε and k = ⌈log(1/η1)⌉. Later in the

proof we will also define η2 and subsequently take η = min(η1,η2).
Let f ,д be functions as in the statement of Theorem 2.6, and

set k = ⌈log(1/η1)⌉. From Lemma 4.16 we have thatW>k [д] 6

λ−2(η + 2
−k ) 6 ε/(Ck), and Theorem 3.3 implies that there is

T ⊆ [n] of size J such that д is ε2-close to a T -junta.
Takeη4.1 from Lemma 4.1 for ζ andn = J , and setη2 = 6

−Jη4.1ε
2
.

We write points x ∈ {0, 1}n as (α, β) where α ∈ {0, 1}T and β ∈

{0, 1}[n]\T . For each β ∈ {0, 1}[n]\T , define ˜fβ : {0, 1}
T → [0, 1]

and дβ : {0, 1}
T → {0, 1} by

˜fβ (α) = E
β ′6β

[
f (α, β ′)

]
, дβ (α) = д(α, β),

and let B =
{
β ∈ {0, 1}[n]\T

��� ∥ ˜fβ − λдβ ∥∞ 6 3
−J εη4.1

}
. Since for

any α, β we have T
˜fβ (α) = Tf (α, β), it follows that

E
β

[
∥T ˜fβ − λдβ ∥1

]
= ∥Tf − λд∥1 6 η2.

Therefore Markov’s inequality implies that with probability at least

1− ε over β ∼ µp we have ∥T ˜fβ −λдβ ∥1 6 6
−J εη4.1, in which case

β ∈ B. In particular, we conclude that

Pr

β∼µ [n]\Tp

[β ∈ B] > 1 − ε .

For each β ∈ B, Lemma 4.1 implies that дβ is an AND-OR

function of width r (β) which is at mostm(ζ ) = O(log(1/ζ )), and

that
˜fβ is ε-close to 2

r λ · AND-XOR in L∞ for the corresponding

AND-XOR function; we will use that only later when we establish

the structure for f . Since д is ε2-close to a T -junta, if we choose
β, β ′ ∈ B independently (according to µp ) then on average дβ and

дβ ′ are δ -close, where δ 6 2ε2/Pr[B] 6 2ε2. Thus there is β⋆ ∈ B

such that Eβ ∈B

[
∥дβ − дβ⋆ ∥1

]
6 2ε2, so by Markov’s inequality,

defining B′ ⊆ B by B′ =
{
β ∈ B

��� ∥дβ − дβ⋆ ∥1 6 ε
}
we have that

Pr
β∼µ [n]\Tp

[β ∈ B′] > 1 − 2ε
Pr[B] > 1 − 4ε . We may already argue

that д is close to the AND-OR function дβ⋆ , however that will not

be strong enough to establish the structural result for f and hence

we prove a stronger statement. Namely, we show that if we truncate

дβ by removing the wide ORs, then almost all of them will produce

the same AND-OR functionψ .

Proving the structural result for д. For each β ∈ B′
, let ψβ be

the AND-OR function дβ where we remove from it all ORs whose

width exceeds log
1/(1−p)(1/(2p

−mε)). From Lemma 4.17 we get that

there is an AND-OR function ψ (namely, ψβ⋆ ) such that ψβ = ψ
and ∥дβ −ψ ∥1 6 2mp−mε = Oζ (ε) for each β ∈ B′

. Therefore, it

follows that

Pr

α ,β
[д(α , β) , ψ (α )]

6 Pr

β

[
β < B′

]
+ Pr

α ,β

[
д(α , β) , ψ (α )

�� β ∈ B′
]

= Oζ (ε),

i.e. д is close to the AND-OR function ψ . Let T ′ ⊆ T be the set of

variables that appear in ψ , and write α ∈ {0, 1}T as α = (α1,α2),

where α1 ∈ {0, 1}T
′

and α2 ∈ {0, 1}T \T
′

.

Proving the structural result for f . We show that averaging out-

side T ′
makes f close to a multiple of ϕ, where ϕ is the AND-XOR

function corresponding toψ . For each β ∈ B′
we denote by ϕβ the

AND-XOR function corresponding to дβ .

For each β ∈ B′
, define Aβ (α1) = Eα ′

2∼µ
T \T ′

pρ

[
˜fβ (α1,α

′
2)
]
, and

A : {0, 1}T → [0, 1] by A(α1) = Eβ∼µ [n]\Tp

[
Aβ (α1)

]
. For each β ∈

B′
, Lemma 4.1 implies that

˜fβ is ε-close to 2r (β )λ · ϕβ in L∞, hence

by averaging over α2 we conclude that Aβ (α1) is ε-close to 2
r (β )λ ·

E
α2∼µ

T \T ′

pρ

[
ϕβ (α1,α2)

]
= c(β) · ϕ(α1), where c(β) 6 2

m
.

Set K = Eβ

[
c(β)1β ∈B′

]
. Then

∥A − Kϕ∥1 6 2
m
Pr

β

[
β < B′

]
+ E

β

[
∥Aβ − c(β) · ϕ∥11β ∈B′

]
6 2

m
Pr

β

[
β < B′

]
+ 3Jη

6 2
mO(ε) + ε = Oζ (ε).

Since A(α1) = Eα2,β ′∼µpρ [f (α1,α2, β ′)], this shows that after av-
eraging outside T ′

, the function f is Oζ (ε)-close to Kϕ, and we

next show that one may replace K by λ2r , where r is the width of

ϕ, and retain this closeness.

If ψ = 0 then ϕ = 0 so the value of K does not matter, so

we assume henceforth that ψ , 0, in which case we clearly have

∥ψ ∥1 > pm . Since T is a contraction, ∥TA−K ·Tϕ∥1 6 ∥A−Kϕ∥1 =
Oζ (ε). Since by Claim 4.14 we have Tϕ = 2

−rψ , it follows that
∥λд − K · 2−rψ ∥1 = Oζ (ε). Since д is Oζ (ε)-close to ψ , this gives
|λ − K2−r | ∥ψ ∥1 = Oζ (ε), and so |λ − K2−r | = O(p−mε) = Oζ (ε),
implying that |K − 2

r λ | = Oζ (2
r ε) = Oζ (ε). Thus, K · ϕ is Oζ (ε)-

close to 2
r λ · ϕ, and by the triangle inequality we conclude that

∥A − 2
r λ · ϕ∥1 6 Oζ (ε), finishing the proof. �

5 OPEN QUESTIONS
Our work raises many open questions. Perhaps the most obvious is

the quantitative aspect of our results:

Open Question 1. What is the optimal dependence between ε
and δ in Theorem 1.1?

We can ask a similar question about the various results listed in

Section 2.

Nehama [40] showed that if we allow ε to depend on n, then we

can choose ε = Θ(δ3/n). Theorem 1.1 eliminates the dependence

on n in return for an exponential dependence on δ . We conjecture

that Theorem 1.5 holds for ε = δΘ(1).
Nehama situates Theorem 1.1 in the larger context of approxi-

mate judgement aggregation, or equivalently, approximate poly-

morphisms. He considers not only functions satisfying

f (x1 ∧ · · · ∧ xm) ≈ f (x1) ∧ · · · ∧ f (xm),

but also functions satisfying

f (x1 ⊕ · · · ⊕ xm) ≈ f (x1) ⊕ · · · ⊕ f (xm),
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showing (using linearity testing) that the latter must be close to

XORs.More generally, we can replace∧, ⊕with an arbitrary Boolean

function (or even a function on a larger domain):

OpenQuestion 2. Fixϕ : {0, 1}m → {0, 1}. Suppose f : {0, 1}n →

{0, 1} satisfies

f (ϕ(x1, . . . , xm)) ≈ ϕ(f (x1), . . . , f (xm))

for random x1, . . . , xm ∈ {0, 1}n , where ϕ(x1, . . . , xm ) signifies ele-
mentwise application.
What can we say about f ?

Dokow and Holzman [13] showed (essentially) that when ϕ is a

non-trivial function which is not an AND or an XOR, then the only

exact solutions are dictatorships. We conjecture that when ϕ is such

that the only exact solutions are dictatorships, then approximate

solutions are approximate dictatorships.

Finally, let us mention the following tantalizing question:

OpenQuestion 3. What can be said about functions f : {0, 1}n →

{0, 1} satisfying

Pr[f (x ∧ y) = f (x) ∧ f (y)] >
3

4

+ ε?

We remark that the
3

4
bound on the right hand side is natural in light

of semi-random functions f : {0, 1}n → {0, 1} , chosen by taking

f (x) to be a uniform bit when |x | ≈ 1

2
n, and f (x) = 0 otherwise.
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