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Abstract. We study the algorithmic problem of multiplying large matrices that are
rectangular. We prove that the method that has been used to construct the fastest
algorithms for rectangular matrix multiplication cannot give optimal algorithms. In
fact, we prove a precise numerical barrier for this method. Our barrier improves the
previously known barriers, both in the numerical sense, as well as in its generality.
We prove our result using the asymptotic spectrum of tensors. More precisely, we
crucially make use of two families of real tensor parameters with special algebraic
properties: the quantum functionals and the support functionals. In particular, we
prove that any lower bound on the dual exponent of matrix multiplication α via
the big Coppersmith–Winograd tensors cannot exceed 0.625.

1. Introduction

Given two large matrices, how many arithmetic operations, plus and times, are
required to compute their matrix product?

The high school algorithm for multiplying two square matrices of shape n× n
costs roughly 2n3 arithmetic operations. On the other hand, we know that at
least n2 operations are required. Denoting by ω the optimal exponent of n in the
number of operations required by any arithmetic algorithm, we thus have 2 ≤ ω ≤ 3.
What is the value of ω? Since Strassen published his matrix multiplication algorithm
in 1969 we know that ω ≤ 2.81 [Str69]. Over the years, more constructions of
faster matrix multiplication algorithms, relying on insights involving direct sum
algorithms, approximative algorithms and asymptotic induced matchings, lead to
the current upper bound ω ≤ 2.3728639 [CW90, Sto10, Wil12, LG14].

In applications the matrices to be multiplied are often very rectangular instead
of square; see the examples in [LU18]. For any nonnegative real p, given an n×dnpe
matrix and an dnpe × n matrix, how many arithmetic operations are required?
Denoting, similarly as in the square case, by ω(p) the optimal exponent of n in the
number of operations required by any arithmetic algorithm, we a priori have the
bounds max(2, 1+ p) ≤ ω(p) ≤ 2+ p. (Formally speaking, ω(p) is the infimum over
all real numbers b so that the product of any n× dnpe matrix and any dnpe × n
matrix can be computed in O(nb) arithmetic operations. Of course, ω = ω(1), and
if ω = 2, then ω(p) = max(2, 1 + p).) What is the value of ω(p)? Parallel to the
developments in upper bounding ω, the upper bound 2+p was improved drastically
over the years for the several regimes of p [HP98, KZHP08, LG12, LU18]. The
best lower bound on ω(p), however, has remained max(2, 1 + p).
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So the matrix multiplication exponent ω characterises the complexity of square
matrix multiplication and, for every nonnegative real p, the rectangular matrix
multiplication exponent ω(p) characterises the complexity of rectangular matrix
multiplication. Coppersmith proved that there exists a value 0 < p < 1 such
that ω(p) = 2 [Cop82]. The largest p such that ω(p) = 2 is denoted by α. We will
refer to α as the dual matrix multiplication exponent. The algorithms constructed
in [LU18] give the currently best bound α > 0.31389. If α = 1, then of course
ω = 2. In fact, ω + ω

2
α ≤ 3 (Remark 3.20). Thus we study ω(p) not only to

understand rectangular matrix multiplication, but also as a means to prove ω = 2.
The value of α appears explicitly in various applications, for example in the recent
work on solving linear programs [CLS19] and empirical risk minimization [LSZ19].

The goal of this paper is to understand why current techniques have not closed
the gap between the best lower bound on ω(p) and the best upper bound on ω(p),
and to thus understand where to find faster rectangular matrix multiplication
algorithms. We prove a barrier for current techniques to give much better upper
bounds than the current ones. Our work gives a very precise picture of the
limitations of current techniques used to obtain the best upper bounds on ω(p)
and the best lower bounds on α.

Our ideas apply as well to n × dnpe by dnpe × dnqe matrix multiplication for
different p and q. We focus on p = q for simplicity.

1.1. How are algorithms constructed?

To understand what are the current techniques that we prove barriers for, we
explain how the fastest algorithms for matrix multiplication are constructed, on
a high level. An algorithm for matrix multiplication should be thought of as a
reduction of the “matrix multiplication problem” to the natural “unit problem” that
corresponds to multiplying numbers,

matrix multiplication problem ≤ unit problem.

Mathematically, problems correspond to families of tensors. Several different
notions of reduction are used in this context. We will discuss tensors and reductions
in more detail later.

In practice, the fastest matrix multiplication algorithms, for square or rectangular
matrices, are obtained by a reduction of the matrix multiplication problem to some
intermediate problem and a reduction of the intermediate problem to the unit
problem,

matrix multiplication problem ≤ intermediate problem ≤ unit problem.

The intermediate problems that have been used so far to obtain the best upper
bounds on ω(p) correspond to the so-called small and big Coppersmith–Winograd
tensors cwq and CWq.

Depending on the intermediate problem and the notion of reduction, we prove a
barrier on the best upper bound on ω(p) that can be obtained in the above way.
Before we say something about our new barrier, we discuss the history of barriers
for matrix multiplication.
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1.2. History of matrix multiplication barriers

We call a lower bound for all upper bounds on ω or ω(p) that can be obtained by
some method, a barrier for that method. We give a high-level historical account of
barriers for square and rectangular matrix multiplication.

Ambainis, Filmus and Le Gall [AFLG15] were the first to prove a barrier in the
context of matrix multiplication. They proved that a variety of methods applied
to the Coppersmith–Winograd intermediate tensors (which gave the best upper
bounds on ω) cannot give ω = 2 and in fact cannot give ω ≤ 2.3.

Alman and Vassilevska Williams [AW18a, AW18b] proved barriers for a notion
of reduction called monomial degeneration, extending the realm of barriers beyond
the scope of the Ambainis et al. paper. They prove that some collections of
intermediate tensors, including the Coppersmith–Winograd intermediate tensors,
cannot be used to prove ω = 2. Their analysis is based on studying the so-
called asymptotic independence number of the intermediate problem (also called
monomial asymptotic subrank). This paper also for the first time studies barriers
for rectangular matrix multiplication, for 0 ≤ p ≤ 1 and monomial degeneration.
For example, they prove that the intermediate tensor CW6 can only give α ≤ 0.87.

Blasiak et al. [BCC+17a, BCC+17b] did a study of barriers for square matrix
multiplication algorithms obtained with a subset of the group-theoretic method,
which is a monomial degeneration applied to certain group algebra tensors.

Christandl, Vrana and Zuiddam [CVZ19] proved barriers that apply more
generally than the previous one, namely for a type of reduction called degeneration.
Their barrier is given in terms of the irreversibility of the intermediate tensor.
Irreversibility can be thought of as an asymptotic measure of the failure of Gaussian
elimination to bring tensors into diagonal form. To compute irreversibility, they
used the asymptotic spectrum of tensors and in particular two families of real tensor
parameters with special algebraic properties: the quantum functionals [CVZ18]
and support functionals [Str91], although one can equivalently use asymptotic slice
rank to compute the barriers for the Coppersmith–Winograd intermediate tensors.

Alman [Alm19] simultaneously and independently obtained the same barrier,
relying on a study of asymptotic slice rank.

1.3. New barriers for rectangular matrix multiplication

We prove new barriers for rectangular matrix multiplication using the quantum
functionals and support functionals.

We first set up a general barrier framework that encompasses all previously used
notions of reductions and then numerically compute barriers for the degeneration
notion of reduction and the Coppersmith–Winograd intermediate problems. We
also discuss barriers for “mixed” intermediate problems, which covers a method
used by, for example, Coppersmith [Cop97].

We will explain our barrier in more detail in the language of tensors, but first
we will give a numerical illustration of the barriers.
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1.3.1. Numerical illustration of the barriers

For the popular intermediate tensor CW6 our barrier to get upper bounds on ω(p)
via degeneration looks as follows. In Fig. 1, the horizontal axis goes over all p ∈ [0, 2].
The blue line is the upper bound on ω(p) obtained via CW6 as in [LG12]. The
yellow line is the barrier and the red line is the best lower bound max{2, 1 + p}
on ω(p). (In [LG12] the best upper bounds on ω(p) are obtained using CWq

with q = 5 for p ≤ 0.81, q = 6 for 0.81 < p ≤ 3.5 and q = 7 for p > 3.5.)
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Figure 1. The blue line is the upper bound on ω(p) obtained via CW6 as in [LG12] where p ∈ [0, 2]
in on the horizontal axis; the yellow line is our barrier for upper bounds on ω(p) via
degeneration and the intermediate tensor CW6; the red line is the lower bound on ω(p).

How about the barrier for CWq for other values of q? To see what happens
there, we give in Fig. 2 the barrier for several values of q in terms of the dual
matrix multiplication exponent α. (We recall that α is the largest value of p such
that ω(p) = 2.) For q = 6 this barrier corresponds to the smallest value of p in
Fig. 1 where the yellow line goes above 2.
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Figure 2. The blue points are the lower bound on α obtained via CWq as in [LG12] for all
q ∈ {2, . . . , 8}, the yellow points are our barrier for the best lower bound on α obtainable
via degeneration and the intermediate tensor CWq, and the red points are the best
upper bounds on α, namely 1. The best lower bound α > 0.3029 is attained at q = 5.
Any lower bound on α using degeneration and CWq for any q, cannot exceed 0.625,
the highest yellow point.
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Our results give that the best lower bound on α obtainable with degenerations via
CWq for any q, cannot exceed 0.625. (This value corresponds to the highest yellow
point in Fig. 2.) Recall that the currently best lower bound is α > 0.31389 [LU18].

Compared to [AW18a] our barriers are more general, numerically higher and
apply not only for 0 ≤ p ≤ 1 but also for p ≥ 1. For example, [AW18a] proves that
monomial degeneration via CW6 can only give 0.871 ≤ α whereas we get that the
stronger degenerations via CW6 can only give 0.543 ≤ α.

1.3.2. The barrier in tensor language

Let us continue the discussion that we started in Section 1.1 of how algorithms are
constructed, but now in the language of tensors. The goal is to explain our barrier
in more detail.

As we mentioned, algorithms correspond to reductions from the matrix multi-
plication problem to some natural unit problem and the problems correspond to
tensors. Let F be our base field. (The value of ω(p) may in fact depend on the
characteristic of the base field.) A tensor is a trilinear map Fn1 × Fn2 × Fn3 → F.
The problem of multiplying an `×m matrix and an m× n matrix corresponds to
the matrix multiplication tensor

〈`,m, n〉 =
∑̀
i=1

m∑
j=1

n∑
k=1

xijyjkzki.

The unit problem corresponds to the family of diagonal tensors

〈n〉 =
n∑
i=1

xiyizi.

There are several notions of reduction that one can consider, but the following is
the most natural one. For two tensors S and T we say S is a restriction of T and
write S ≤ T if there are three linear maps A,B,C of appropriate formats such that S
is obtained from T by precomposing with A, B and C, that is, S = T ◦ (A,B,C).

A very important observation (see, e.g., [BCS97] or [Blä13]) is that any matrix
multiplication algorithm corresponds to an inequality

〈`,m, n〉 ≤ 〈r〉.

Square matrix multiplication algorithms look like

〈n, n, n〉 ≤ 〈r〉

and rectangular matrix multiplication, of the form that we study, look like

〈n, n, dnpe〉 ≤ 〈r〉.

In general, faster algorithms correspond to having smaller r on the right-hand side.
In fact, if

〈n, n, n〉 ≤ 〈nc+o(1)〉
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then ω ≤ c, and similarly for any p ≥ 0, if

〈n, n, dnpe〉 ≤ 〈nc+o(1)〉

then ω(p) ≤ c. For example, if

〈n, n, n2〉 ≤ 〈nc+o(1)〉

then ω(2) ≤ c.
Next we utilise a natural product structure on matrix multiplication tensors

which is well known as the fact that block matrices can be multiplied block-wise.
For tensors S and T one naturally defines a Kronecker product S ⊗ T generalizing
the matrix Kronecker product. Then the matrix multiplication tensors multiply like
〈n1, n2, n3〉⊗〈m1,m2,m3〉 = 〈n1m1, n2m2, n3m3〉 and the diagonal tensors multiply
like 〈n〉 ⊗ 〈m〉 = 〈nm〉.

We can thus say: if

〈2, 2, 22〉⊗n ≤ 〈2〉⊗cn+o(n)

then ω(2) ≤ c. We now think of our problem as the problem of determining the
optimal asymptotic rate of transformation from 〈2〉 to 〈2, 2, 22〉. Of course we can
do similarly for values of p other than p = 2, if we deal carefully with p that are
non-integer. For clarity we will in this section stick to p = 2.

In practice, as mentioned before, algorithms are obtained by reductions via
intermediate problems. This works as follows. Let T be any tensor, the intermediate
tensor. Then clearly, if

〈2, 2, 22〉⊗n ≤ T⊗an+o(n) ≤ 〈2〉⊗abn+o(n), (1)

then ω(2) ≤ ab. The barrier we prove is a lower bound on ab depending on T and
the notion of reduction used in the inequality 〈2, 2, 22〉⊗n ≤ T⊗an+o(n), which in
this section we take to be restriction.

We obtain the barrier as follows. Imagine that F is a map from the set of
tensors to the nonnegative real numbers that is ≤-monotone, ⊗-multiplicative and
〈n〉-normalised, meaning that for any tensors S and T the following holds: if S ≤ T
then F (S) ≤ F (T ); F (S ⊗ T ) = F (S)F (T ) and F (〈n〉) = n. We apply F to both
sides of the first inequality to get

F (〈2, 2, 22〉) ≤ F (T )a

and so

logF (〈2, 2, 22〉)
logF (T )

≤ a

Let G be another map from tensors to reals that is ≤-monotone, ⊗-multiplicative
and 〈n〉-normalised. We apply G to both sides of the second inequality to get

G(T ) ≤ 2b
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and so

logG(T ) ≤ b.

We conclude that

logF (〈2, 2, 22〉)
logF (T )

logG(T ) ≤ ab.

Our barrier is thus

max
F,G

logF (〈2, 2, 22〉)
logF (T )

logG(T ) ≤ ab.

where the maximisation is over the≤-monotone, ⊗-multiplicative and 〈n〉-normalised
maps from tensors to reals.

For tensors over the complex numbers, we know a family of ≤-monotone,
⊗-multiplicative and 〈n〉-normalised maps from tensors to reals, the quantum func-
tionals. For tensors over other fields, we know a family of maps with slightly weaker
properties, that are still sufficient to prove the barrier, the support functionals.

Theorem. Upper bounds on ω(p) obtained via the intermediate tensor T are at
least

max
F,G

log(F (〈2, 1, 1〉)F (〈1, 2, 1〉)F (〈1, 1, 2〉)p)
logF (T )

logG(T )

where the maximisation is over all support functionals, or all quantum functionals.

See Theorem 3.13 for the precise statement of the result and Section 1.3.1 for
illustrations.

1.3.3. Catalyticity

We discussed that, in practice, the best upper bound on, say, ω(2) is obtained by a
chain of inequalities of the form

〈2, 2, 22〉⊗n ≤ T⊗an+o(n) ≤ 〈2〉⊗abn+o(n). (2)

We utilised this structure to obtain the barrier. A closer look reveals that the
methods used in practice have even more structure. Namely, they give an inequality
that also has diagonal tensors on the left-hand side:

〈2〉⊗cn ⊗ 〈2, 2, 22〉⊗n ≤ T⊗an+o(n) ≤ 〈2〉⊗abn+o(n). (3)

Part of the tensor 〈2〉⊗abn+o(n) on the far right-hand side acts as a catalyst
since 〈2〉⊗cn is returned on the far left-hand side. We obtain better barriers when
we have a handle on the amount of catalyticity c that is used in the method (see
the schematic Fig. 3), again by applying maps F and G to both sides of the two
inequalities and deducing a lower bound on ab. The precise statement appears in
Theorem 3.13.
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Figure 3. This is the graph from Fig. 1 with arrows that indicate the influence of catalyticity.
Roughly speaking, the barrier for CW6 (the yellow line) moves upwards when more
catalyticity is used.

1.4. Overview of the next sections

In Section 2 we discuss in more detail the methods that are used to construct
rectangular matrix multiplication algorithms and the different notions of reduction.

In Section 3 we introduce and prove our barriers in the form of a general
framework, dealing formally with non-integer p. We also discuss how to analyse
“mixed” intermediate tensors.

In Section 4 we discuss how to compute the barriers explicitly using the support
functionals and we compute them for the Coppersmith–Winograd tensors CWq.

2. Algorithms

At the core of the methods that give the best upper bounds on ω(p) lies the
following theorem, which can be proven using the asymptotic sum inequality for
rectangular matrix multiplication [LR83] and the monotonicity of ω(p).

Theorem 2.1. Let m ≥ np. If ˜R(〈n, n,m〉⊕s) ≤ r, then s nω(p) ≤ r.

Here ⊕ denotes the naturally defined direct sum for tensors. The rank R(T )
of a tensor T is the smallest number n such that T ≤ 〈n〉, or equivalently, the
smallest number n such that T (x, y, z) =

∑n
i=1 ui(x)vi(y)wi(z) where ui, vi, wi are

linear. The asymptotic rank ˜R(T ) is defined as the limit limn→∞R(T⊗n)1/n, which
equals the infimum infnR(T

⊗n)1/n since tensor rank is submultiplicative under ⊗
and bounded.

Equivalently, phrased in the language of the introduction, for m ≥ np, if

〈s〉⊗k ⊗ 〈n, n,m〉⊗k ≤ 〈r〉⊗k+o(k) (4)

then snω(p) < r. In practice, the upper bound ˜R(〈n, n,m〉⊕s) ≤ r is obtained from
a restriction 〈s〉⊗k ⊗ 〈n, n,m〉⊗k ≤ T⊗ak+o(k) for some intermediate tensor T and
an upper bound on ˜R(T ). The restriction in 〈s〉⊗k ⊗ 〈n, n,m〉⊗k ≤ T ak+o(k) may
be replaced by other types of reductions that we will discuss below.
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Reductions. We say S is a monomial restriction of T and write S ≤M T if S
can be obtained from T by setting some variables to zero. We say S is a monomial
degeneration of T and write S EM T if S can be obtained from T by multiplying
the variables by integer powers of ε so that S appears in the lowest ε-degree.
Strassen’s application of the laser method uses monomial degenerations and the
modification of Coppersmith and Winograd [CW90] uses combinatorial restrictions
where the variables zeroed out are chosen using a certain combinatorial gadget (a
Salem–Spencer set). Degeneration is a very general reduction that generalises the
above reductions. We say S is a degeneration of T and write S E T if S appears in
the lowest ε-degree in T (A(ε)x,B(ε)y, C(ε)z) for some linear maps A(ε), B(ε), C(ε)
whose matrices have coefficients that are Laurent polynomials in ε. Restriction ≤
is the special case of degeneration where the Laurent polynomials are constant.

Coppersmith–Winograd intermediate tensors. All improvements on ω(p)
since Coppersmith and Winograd use the Coppersmith–Winograd tensors CWq

defined by CWq(x, y, z) = x0y0zq+1 + x0yq+1z0 + xq+1y0z0 +
∑q

i=1(x0yizi + xiy0zi +
x0yizi) as intermediate tensors. Degeneration methods give ˜R(CWq) = q + 2.

Mixed Coppersmith–Winograd tensors. Coppersmith [Cop97] combines CWq

tensors with different q’s to upper bound ω(p). We show how to use the barrier in
this situation in the full version. The best upper bounds in [LG12, LU18] do not
mix q’s.

3. Barriers

Let ≤ denote restriction on tensors as defined in the introduction. We remark that
everything we discuss in this section also holds if ≤ is replaced with degeneration
or monomial degeneration or monomial restriction.

Let F : {tensors} → R≥0 be a map from all tensors to the reals. The statements
we prove in this section hold for F with certain special properties. Two families
that satisfy the properties are the quantum functionals (which we will not explicitly
use in this paper — we refer to [CVZ18] for the definition) and the (upper) support
functionals. For concreteness, we will think of F as the support functionals. We
will define the support functionals in the next section. For now, we will use the
following properties.

Lemma 3.1 (Strassen [Str91]). Any support functional F is

(i) ≤-monotone,

(ii) ⊗-submultiplicative,

(iii) mamu-⊗-multiplicative: F is ⊗-multiplicative for any two matrix multiplication
tensors,

(iv) ⊕-additive,

9



(v) at most ˜R.
More is known about the support functionals than Lemma 3.1. For example,

they are multiplicative not only on the matrix multiplication tensors, but also on a
larger family of tensors called oblique tensors.

Remark 3.2. The statements in this section can be proven more generally for
certain preorders ≤ (including degeneration, monomial degeneration and monomial
restriction) and certain maps F : {tensors} → R≥0. Here for concreteness we
discuss everything in terms of restriction and the support functionals. A precise
discussion will appear in the full version.

3.1. Non-integer p

Recall that p is a nonnegative real number. To deal with p that are not integer we
will define a notational shorthand. We first observe the following.

Lemma 3.3. Let m ≥ np. Suppose that a ≥ 1 is an integer such that ap is integer.
Then

F (〈n, n,m〉) ≥ F (〈a, a, ap〉)loga n.

Proof. For every rational number s
t
< loga n we have

F (〈n, n,m〉) = F (〈n, n,m〉⊗t)
1
t = F (

〈
nt, nt,mt

〉
)
1
t ≥

F (〈as, as, aps〉)
1
t = F (〈a, a, ap〉)

s
t .

From Lemma 3.3 follows that loga F (〈a, a, ap〉) is the same for any a with integer
power ap. We introduce a notation for dealing with this value without referring to
the set of possible values of a

Definition 3.4. We introduce a formal symbol 〈2, 2, 2p〉 for each real p ≥ 0, which
we call a quasitensor. If p = loga b for integers a and b, then we define

F (〈2, 2, 2p〉) = 2loga F (〈a,a,ap〉).

Otherwise, we define

F (〈2, 2, 2p〉) = inf{F (〈2, 2, 2P 〉) : P ≥ p, P = loga b}.

If p is integer, then the value of F on 〈2, 2, 2p〉 as a tensor and as a quasitensor
coincide. Thus we identify the quasitensor 〈2, 2, 2p〉 with the tensor 〈2, 2, 2p〉 when
the latter exists.

Using this notation, Lemma 3.3 can be rephrased as follows.

Lemma 3.5. If m ≥ np, then F (〈n, n,m〉) ≥ F (〈2, 2, 2p〉)logn.

Lemma 3.6. F (〈2, 2, 2p〉) = F (〈2, 1, 1〉)F (〈1, 2, 1〉)F (〈1, 1, 2〉)p.

10



Proof. We have F (〈a, 1, 1〉) = F (〈2, 1, 1〉)log a because if log a ≤ b
c
, then ac ≤ 2b

and F (〈a, 1, 1〉)c ≤ F (〈2, 1, 1〉)b, and if log a ≥ b
c
, then F (〈a, 1, 1〉)c ≥ F (〈2, 1, 1〉)b.

Analogous results hold for 〈1, a, 1〉 and 〈1, 1, a〉.
Suppose p = loga b. Then

logF (〈2, 2, 2p〉) = loga F (〈a, a, b〉) = loga
[
F (〈a, 1, 1〉)F (〈1, a, 1〉)F (〈1, 1, b〉)

]
= logF (〈2, 1, 1〉) + logF (〈1, 2, 1〉) + p logF (〈1, 1, 2〉).

For arbitrary p the result follows by a continuity argument.

Lemma 3.7. If m = np+o(1), then logn F (〈n, n,m〉) = logF (〈2, 2, 2p〉) + o(1).

Proof. We have

F (〈n, n,m〉) = F (〈n, 1, 1〉)F (〈1, n, 1〉)F (〈1, 1,m〉)

and so

logn F (〈n, n,m〉) = logF (〈2, 1, 1〉) + logF (〈1, 2, 1〉) + logn(m) logF (〈1, 1, 2〉)
= logF (〈2, 2, 2p〉) + o(1)F (〈1, 1, 2〉).

3.2. T-method

For any tensor T we define the notion of a T -method for upper bounds on ω(p) as
follows.

Definition 3.8 (T -method). Suppose ˜R(T ) ≤ r. Suppose we are given a collection
of inequalities 〈n, n,m〉⊕s ≤ T⊗k with np ≤ m. Then Theorem 2.1 gives the upper
bound ω(p) ≤ ω̂(p) where ω̂(p) = inf{k logn r− logn s} where the infimum is taken
over all k, n, s appearing in the collection of inequalities. We then say ω̂(p) is
obtained by a T -method.

We say that the T -method is κ-catalytic if the set of values of n is unbounded,
the bound ω̂(p) is not attained on any one reduction of the method (so ω̂(p) =
lim inf{k logn r − logn s}), and in any reduction we have s ≥ Cnκ for some con-
stant C.

Theorem 3.9. Any upper bound ω̂(p) on ω(p) obtained by a T -method satisfies

ω̂(p) ≥ logF (〈2, 2, 2p〉) log ˜R(T )
logF (T )

.

Moreover, if the method is κ-catalytic, then

ω̂(p) ≥ logF (〈2, 2, 2p〉) log ˜R(T )
logF (T )

+ κ

(
log ˜R(T )
logF (T )

− 1

)
.

Proof. It is enough to prove the inequality for one reduction T⊗k ≥ 〈n, n,m〉⊕s
with m ≥ np, which gives an upper bound ω̂(p) = k logn ˜R(T )− logn s.
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Using Lemma 3.5 and superadditivity of F , we have

F (〈n, n,m〉⊕s) ≥ sF (〈n, n,m〉) ≥ sF (〈2, 2, 2p〉)logn.

Therefore k logn F (T ) ≥ logn F (T
⊗k) ≥ logF (〈2, 2, 2p〉) + logn s. For ω̂(p) we get

ω̂(p) + logn s

logF (〈2, 2, 2p〉) + logn s
≥ k logn ˜R(T )
k logn F (T )

=
log ˜R(T )
logF (T )

.

Since F (T ) ≤ ˜R(T ), we have ω̂(p) + logn s ≥ logF (〈2, 2, 2p〉) + logn s and therefore

ω̂(p)

logF (〈2, 2, 2p〉)
≥ ω̂(p) + logn s

logF (〈2, 2, 2p〉) + logn s
.

If the method is κ-catalytic, then logn s ≥ κ+O( 1
logn

), and as n→∞ we have

ω̂(p) + κ

logF (〈2, 2, 2p〉) + κ
≥ log ˜R(T )

logF (T )
.

This concludes the proof.

3.3. Asymptotic T-method

To cover the method that are used in practice we need the following notion.

Definition 3.10 (Asymptotic T -method.). Let T be a tensor. Suppose ˜R(T ) ≤ r.
Suppose we are given a collection of inequalities 〈n, n,m〉⊕s ≤ T⊗k where the values
of n are unbounded and m ≥ f(n) for some function f(n) = np+o(1). Then ω(p) is
at most ω̂(p) where ω̂(p) = lim inf{k logn r − logn s} where the limit is taken over
all k, n, s appearing in the collection of inequalities as n → ∞. We say ω̂(p) is
obtained by an asymptotic T -method.

We say that the asymptotic T -method is κ-catalytic if in any inequality we
have s ≥ Cnκ for some constant C.

Remark 3.11. This class of methods works because each reduction T⊗k ≥
〈n, n,m〉⊕s gives an upper bound ω(q) ≤ k logn r − logn s where q = logm ≥
log f(n)→ p. As the function ω(p) is continuous [LR83], we get the required bound
on ω(p) in the limit.

Remark 3.12. The usual descriptions of the laser method applied to rectangular
matrix multiplication result in an asymptotic method because the construction
involves an approximation of a certain probability distribution by a rational proba-
bility distribution. As a result of this approximation, the matrix multiplication
tensor constructed may have format slightly smaller than 〈n, n, np〉.

Theorem 3.13. Any upper bound ω̂(p) obtained by an asymptotic T -method satis-
fies

ω̂(p) ≥ logF (〈2, 2, 2p〉) log ˜R(T )
logF (T )

12



and for κ-catalytic methods,

ω̂(p) ≥ logF (〈2, 2, 2p〉) log ˜R(T )
logF (T )

+ κ

(
log ˜R(T )
logF (T )

− 1

)
.

Proof. Suppose T k ≥ 〈n, n,m〉⊕s. Then ω̂k,s,n,m = k logn ˜R(T )− logn s is an upper
bound on ω(p+ o(1)). Then, as in Theorem 3.9, we have

ω̂k,s,n,m + logn s

logn F (〈n, n,m〉) + logn s
≥ log ˜R(T )

logF (T )
.

Because F (T ) ≤ ˜R(T ), both fractions are greater than 1 and for 0 ≤ A ≤ logn s it
is true that

ω̂k,s,n,m + A

logn F (〈n, n,m〉) + A
≥ ω̂(p)k,s,n,m + logn s

logn F (〈n, n,m〉) + logn s
.

As n→∞, we have logn F (〈n, n,m〉) ≥ logF (〈2, 2, 2p〉) + o(1) and, if the method
is κ-catalytic, then logn s ≥ κ+ o(1). The upper bound ω̂(p) given by the method
is the limit lim inf ω̂k,s,n,m. Taking n→∞, we get the required inequalities.

3.4. Mixed method

Coppersmith [Cop97] uses a combination of Coppersmith–Winograd tensors of
different format to get an upper bound on the rectangular matrix multiplication ex-
ponent. More specifically, he considers a sequence of tensors CW⊗9n

7 ⊗CW
⊗8b0.6425nc
6 .

Our analysis applies to tensor sequences of this kind because their asymptotic
behaviour is similar to sequence of the form T⊗n in the sense of the following two
lemmas.

Lemma 3.14. Let S1 and S2 be some tensors. Given functions f1, f2 : N→ N such
that fi(n) = ain+ o(n) for some positive real numbers a1, a2, define a sequence of
tensors Tn = S

⊗f1(n)
1 ⊗ S⊗f2(n)2 . Then for each F the sequence n

√
F (Tn) is bounded

from above.

Proof. We have

n
√
F (Tn) =

n

√
F (S

⊗f1(n)
1 ⊗ S⊗f2(n)2 ) ≤ F (S1)

f1(n)
n F (S2)

f2(n)
n .

The right-hand side converges to F (S1)
a2F (S2)

a2 and, therefore, is bounded.

Lemma 3.15. Let S1 and S2 be some tensors. Given functions f1, f2 : N→ N such
that fi(n) = ain+ o(n) for some positive real numbers a1, a2, define a sequence of
tensors Tn = S

⊗f1(n)
1 ⊗ S⊗f2(n)2 . Then the sequence n

√˜R(Tn) converges.
Proof. For this, we need Strassen’s spectral characterization of the asymptotic
rank [Str88]. Strassen defines the asymptotic spectrum of tensors X as the set
of all ≤-monotone, ⊗-multiplicative, ⊕-additive maps ξ from tensors to positive
reals such that ξ(u⊗ v ⊗ w) = 1. Then X can be made into a compact Hausdorff
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topological space such that the evaluation map ξ 7→ ξ(T ) is continuous for all T ,
and

˜R(T ) = max
ξ∈X

ξ(T ),

For ξ ∈ X we have

n
√
ξ(Tn) =

n

√
ξ(S

⊗f1(n)
1 ⊗ S⊗f2(n)2 ) = ξ(S1)

f1(n)
n ξ(S2)

f2(n)
n → ξ(S1)

a1ξ(S2)
a2 .

Because of compactness of X this convergence is uniform in ξ. Therefore

n
√˜R(Tn) = n

√
max
ξ∈X

ξ(Tn)→ max
ξ∈X

ξ(S1)
a1ξ(S2)

a2 .

Definition 3.16. A sequence of tensors {Tn} is called almost exponential if the
sequences n

√˜R(Tn) converges and n
√
F (Tn) is bounded for each F . Abusing the

notation, we write ˜R({Tn}) := lim n
√˜R(Tn) and F ({Tn}) := lim sup n

√
F (Tn).

Definition 3.17 (Asymptotic mixed method). Let {Tn} be an almost exponential
sequence of tensors with ˜R({Tn}) ≤ r. Suppose we are given a collection of
inequalities 〈n, n,m〉⊕s ≤ Tk where the values of n are unbounded and m ≥ f(n)
for some f(n) = np+o(1). Then ω(p) is at most ω̂(p) = lim inf{k logn r − logn s}
where the limit is taken over all k, n, s appearing in the collection of inequalities as
n→∞. We say that ω̂(p) is obtained by an asymptotic mixed {Tn}-method.

We say that the asymptotic mixed {Tn}-method is κ-catalytic if in each inequality
we have s ≥ Cnκ for some constant C.

Lemma 3.18. Asymptotic mixed methods give true upper bounds on ω(p).

Proof. Note that for a fixed tensor Tk there are only a finite number of restrictions
〈n, n,m〉⊕s ≤ Tk possible as the left tensor is of format sn2 × snm× snm, which
should be no greater than the format of Tk. Thus, because in an asymptotic mixed
method the set of values of n is unbounded, so is the set of values of k.

For one restriction 〈n, n,m〉⊕s ≤ Tk we have the inequality snω(lognm) ≤ ˜R(Tk),that is, ω(lognm) ≤ logn ˜R(Tk) − logn s. Since lognm = p + o(1) and ω is a
continuous function and ˜R(Tk) = (˜R({Tk})+o(1))k, we get in the limit the required
inequality.

Theorem 3.19. Any upper bound ω̂(p) obtained by an asymptotic mixed {Tn}-
method satisfies

ω̂(p) ≥ logF (〈2, 2, 2p〉) log ˜R({Tn})
logF ({Tn})

and for κ-catalytic methods,

ω̂(p) ≥ logF (〈2, 2, 2p〉) log ˜R({Tn})
logF ({Tn})

+ κ

(
log ˜R({Tn})
logF ({Tn})

− 1

)
.
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Proof. Recall that for a fixed Tk the number of possible restrictions 〈n, n,m〉⊕s ≤ Tk
is finite, as the left-hand side tensor has format sn2 × snm× snm, which should
be no greater than that of Tk. Therefore, as n tends to infinity, so does k.

Consider now one restriction 〈n, n,m〉⊕s ≤ Tk. It gives the upper bound
ω̂k,s,n,m := logn ˜R(Tk)− logn s on ω(p+ o(1)). As in previous theorems, we have

ω̂k,s,n,m + logn s

logn F (〈n, n,m〉) + logn s
≥ log ˜R(Tk)

logF (Tk)

and

ω̂k,s,n,m + A

logn F (〈n, n,m〉) + A
≥ ω̂(p)k,s,n,m + logn s

logn F (〈n, n,m〉) + logn s

for any A such that 0 ≤ A ≤ logn s.
Consider the behaviour of the involved quantities as n and k tend to infinity.

Since m ≥ np+o(1), logn F (〈n, n,m〉) ≥ logF (〈2, 2, 2p〉) + o(1). For a catalytic
method, we can choose A = κ+ o(1) such that logn s ≥ A, and in general, we set
A = 0. Since k

√˜R(Tk) = ˜R({Tk}) + o(1) and k
√
F (Tk) ≤ F ({Tk}) + o(1), we have

log ˜R(Tk)
logF (Tk)

≥ log ˜R({Tk})
logF ({Tk})

+ o(1).

And finally, lim inf ω̂k,s,n,m is ω̂(p). In the limit, we get the required inequalities.

3.5. Barriers on α

The barriers for the lower bounds on the dual matrix multiplication exponent α
follow from the barriers for upper bounds on ω(p). A method can prove the lower
bound α ≥ α̂ on α if it can prove ω(α̂) = 2. For our barrier this means that

logF (〈2, 2, 2α̂〉) log ˜R(T )
logF (T )

≤ 2

for all F . Using Lemma 3.6, we get that any lower bound α̂ obtained by an
asymptotic T -method satisfies

α̂ ≤ 2 logF (T )

log ˜R(T ) logF (〈1, 1, 2〉) −
logF (〈2, 2, 1〉)
logF (〈1, 1, 2〉)

for all F such that logF (〈1, 1, 2〉) 6= 0.

Remark 3.20. We note in passing that the matrix multiplication exponent ω
and the dual exponent α are related via the inequality ω + ω

2
α ≤ 3. Namely,

from 〈dnαe, n, n〉 ≤ 〈n2+o(1)〉, 〈n, dnαe, n〉 ≤ 〈n2+o(1)〉 and 〈n, n, dnαe〉 ≤ 〈n2+o(1)〉
it follows that 〈n2+α, n2+α, n2+α〉 ≤ 〈n6+o(1)〉. Therefore, ω ≤ 6/(2 + α), and the
claim follows.
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4. Numerical computation of barriers

We will in this section show how to numerically evaluate the barrier of Theorem 3.13.
We will compute explicit values for the Coppersmith–Winograd tensors.

4.1. Upper support functionals

Our main tool is a family of maps called the upper support functionals, introduced
by Strassen in [Str91]. To define them, we will use the following notation. For
n ∈ N let [n] := {1, 2, . . . , n}. For any finite set A let P(A) be the set of probability
vectors on A. For finite sets A1, A2, A3 and P ∈ P(A1 × A2 × A3) let Pi ∈ P(Ai)
be the ith marginal of P for i ∈ [3]. Let H(P ) denote the Shannon entropy of P .

Let Fn×n×n be the set of 3-tensors of dimension n×n×n, viewed as 3-dimensional
arrays. For T ∈ Fn×n×n let supp(T ) ⊆ [n]3 be the support of T .

Let T ∈ Fn×n×n. Let θ = (θ1, θ2, θ3) ∈ P([3]). Define

ζθ(T ) = min
S∼=T

max
P∈P(supp(S))

2
∑

i∈[3] θiH(Pi) (5)

where S goes over all tensors that can be obtained from T by a basis transformation,
that is, S = T ◦ (A,B,C) where A,B,C are invertible linear maps. The map ζθ is
called the upper support functional.

4.2. Rectangular matrix multiplication

Lemma 4.1. ζθ(〈a, b, c〉) = aθ1+θ3bθ1+θ2cθ2+θ3

Proof. One verifies this by a direct computation. See also [Str91].

We obtain from Theorem 3.13 and Lemma 3.6 that any upper bound ω̂(p)
on ω(p) obtained by asymptotic T -methods must satisfy

ω̂(p) ≥ log ζθ(〈2, 2, 2p〉)
log ζθ(T )

log ˜R(T ),
which gives

ω̂(p) ≥ max
θ

2θ1 + θ3 + θ2 + p(θ2 + θ3)

log2 ζ
θ(T )

log2 ˜R(T ). (6)

4.3. Symmetry in the convex program

Before we talk about computations for CWq we briefly discuss the standard way to
make use of symmetry in the optimisation problems that we need to solve. We will
be interested in computing

max
P∈P(supp(CWq))

3∑
i=1

θiH(Pi). (7)
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Recall that the support of CWq is

supp(CWq) = {(i, i, 0), (i, 0, i), (0, i, i) : i ∈ [q]}
∪ {(0, 0, q + 1), (0, q + 1, 0), (q + 1, 0, 0)}.

The symmetric group Sq acts naturally on the support of CWq by permuting the
label set [q]. Suppose P is feasible for (7). Then π · P for any π ∈ Sq is feasible as
well and has the same value. Thus

1

|Sq|
∑
π∈Sq

π · P (8)

is feasible and has at least the same value or better, by concavity of H. We may
thus assume that P is constant on the six orbits of supp(CWq) under the action
of Sq, which are the sets {(i, i, 0) : i ∈ [q]}, {(i, 0, i) : i ∈ [q]}, {(0, i, i) : i ∈ [q]},
{(0, 0, q + 1)}, {(0, q + 1, 0)}, and {(q + 1, 0, 0)}. The same reasoning applies
when CWq is replaced by any tensor with symmetry.

4.4. Barriers for CWq

Taking into account the symmetry derived in Section 4.3, let P be the probability dis-
tribution that gives probability p1 to (0, i, i), probability p2 to (i, 0, i), probability p3
to (i, i, 0) and probability r1 to (q+1, 0, 0), probability r2 to (0, q+1, 0) and probabil-
ity r3 to (0, 0, q+1) where p1, p2, p3, r1, r2, r3 ≥ 0 and qp1+qp2+qp3+r1+r2+r3 = 1.
The marginal probability vectors are

P1 = (qp1 + r2 + r3, p2 + p3, . . . , p2 + p3, r1) (9)
P2 = (qp2 + r1 + r3, p1 + p3, . . . , p1 + p3, r2) (10)
P3 = (qp3 + r1 + r2, p1 + p2, . . . , p1 + p2, r3). (11)

By the grouping property of Shannon entropy, we have

H(P1) = (1− qp1 − r2 − r3)(log2(q) + h(r1)) + h(qp1 + r2 + r3) (12)
H(P2) = (1− qp2 − r1 − r3)(log2(q) + h(r2)) + h(qp2 + r1 + r3) (13)
H(P3) = (1− qp3 − r1 − r2)(log2(q) + h(r3)) + h(qp3 + r1 + r2) (14)

and

log2 ζ
θ(CWq) ≤ max

pj ,rj

3∑
i=1

θiH(Pi) (15)

where p1, p2, p3, r1, r2, r3 ≥ 0 and qp1 + qp2 + qp3 + r1 + r2 + r3 = 1. We know that

˜R(CWq) = q + 2.
The barrier we get for CWq is

ω̂(p) ≥ max
θ

2θ1 + (p+ 1)(θ2 + θ3)

log2 ζ
θ(CWq)

log2 ˜R(CWq) (16)

≥ max
θ

2θ1 + (p+ 1)(θ2 + θ3)

maxpj ,rj
∑3

i=1 θiH(Pi)
log2(q + 2), (17)
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which is easy to evaluate numerically.
As an illustration, we give in Table 1 the barriers for upper bounds on ω(2) via

asymptotic CWq-methods for small q by numerical optimisation. Optimal values
were obtained for θ with θ2 = θ3.

q barrier θ1 θ2 = θ3

1 3.0551 0.09 0.455
2 3.0625 0.1 0.45
3 3.0725 0.11 0.445
4 3.0831 0.12 0.44
5 3.0936 0.13 0.435
6 3.1038 0.14 0.43
7 3.1137 0.14 0.43
8 3.1232 0.15 0.425
9 3.1322 0.16 0.42
10 3.1408 0.17 0.415
11 3.1491 0.17 0.415
12 3.1568 0.18 0.41
13 3.1643 0.18 0.41
14 3.1713 0.18 0.41

Table 1. Barriers for upper bounds on ω(2) via asymptotic CWq-methods for small q.
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