
A Time-Space Lower Bound for a Large Class of
Learning Problems

Ran Raz∗

Abstract

We prove a general time-space lower bound that applies for a large class of learning
problems and shows that for every problem in that class, any learning algorithm
requires either a memory of quadratic size or an exponential number of samples.

Our result is stated in terms of the norm of the matrix that corresponds to the
learning problem. Let X, A be two finite sets. Let M : A×X → {−1, 1} be a matrix.
The matrix M corresponds to the following learning problem: An unknown element
x ∈ X was chosen uniformly at random. A learner tries to learn x from a stream of
samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen uniformly at random
and bi = M(ai, x).

Let σmax be the largest singular value of M and note that always σmax ≤ |A|
1
2 ·|X|

1
2 .

We show that if σmax ≤ |A|
1
2 ·|X|

1
2−ε, then any learning algorithm for the corresponding

learning problem requires either a memory of size at least Ω
(
(εn)2

)
or at least 2Ω(εn)

samples, where n = log2 |X|.
As a special case, this gives a new proof for the time-space lower bound for parity

learning [R16].

1 Introduction

Several recent works studied the resources needed for learning, under memory constraints.
The study was initiated by [S14, SVW16], followed by several additional works (see
in particular [R16, VV16, KRT16, MM17]). While the main motivation for studying
this problem comes from learning theory, the problem is also relevant to computational
complexity and cryptography [R16, VV16, KRT16].

Steinhardt, Valiant and Wager conjectured that any algorithm for learning parities of
size n requires either a memory of size Ω(n2) or an exponential number of samples. The
conjecture was proven in [R16]. In particular, this shows for the first time a learning
problem that is infeasible under super-linear memory constraints. Building on [R16],
it was proved in [KRT16] that even if the parity is known to be of sparsity `, parity
learning remains infeasible under memory constraints that are super-linear in n, as long as

∗Department of Computer Science, Princeton University. Research supported by the Simons
Collaboration on Algorithms and Geometry. Email: ran.raz.mail@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 20 (2017)

` ≥ ω(log n/ log log n). Consequently, learning linear-size DNF Formulas, linear-size Decision
Trees and logarithmic-size Juntas were all proved to be infeasible under super-linear memory
constraints [KRT16].

The techniques presented in [R16, KRT16] are very specific for learning parities. (The
results for learning DNF Formulas, Decision Trees and Juntas are proved by reductions from
learning sparse parities). Indeed, the results in [R16, KRT16] are proved by first considering
“linear” algorithms that are only allowed to store linear equations in their memory and the
general case is proved by a reduction to the linear case.

Our Results

In this work, we present a new technique for proving infeasibility of learning under super-
linear memory constraints. The technique seems very general. In particular, our main result
applies for a large class of learning problems and shows that for every problem in that class,
any learning algorithm requires either a memory of quadratic size or an exponential number
of samples.

Let X, A be two finite sets of size larger than 1 (where X represents the concept-class
that we are trying to learn and A represents the set of possible samples).

Let M : A×X → {−1, 1} be a matrix. The matrix M represents the following learning
problem: An unknown element x ∈ X was chosen uniformly at random. A learner tries to
learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen
uniformly at random and bi = M(ai, x).

Denote by σmax(M) the largest singular value of M . Since the entries of M are in {−1, 1},
it is always the case that

σmax(M) ≤ |A|
1
2 · |X|

1
2 .

Our main result, restated as Theorem 1, shows that if

σmax(M) ≤ |A|
1
2 · |X|

1
2
−ε

(where ε > 0 is not necessarily a constant), then any learning algorithm for the learning
problem represented by M requires either a memory of size at least Ω ((εn)2) or at least
2Ω(εn) samples, where n = log2 |X|.

For example, in the problem of parity learning, |A| = |X| = 2n, and M = H is Hadamard
matrix. Hadamard matrix satisfies

σmax(H) = |A|
1
2 ≤ |A|

1
2 · |X|

1
2
−ε,

where ε = 1
2
. Thus, as a special case of our main result, we obtain a new proof for the

memory-samples lower bound for parity learning [R16] (with a completely different set of
techniques and slightly better constants).

Related Work

Independently of our work, Moshkovitz and Moshkovitz have recently considered the graph
that corresponds to a learning problem (which is similar to our matrix M , except that it is
viewed as a bipartite graph with 1 representing an edge and −1 representing a none-edge).

2

They proved that if that graph has a (sufficiently strong) mixing property then any
learning algorithm for the corresponding learning problem requires either a memory of size
at least 1.25 · n or at least 2Ω(n) samples [MM17].

2 Preliminaries

Denote by UX : X → R+ the uniform distribution over X.
For a random variable Z and an event E, we denote by PZ the distribution of the random

variables Z, and we denote by PZ|E the distribution of the random variable Z conditioned
on the event E.

Viewing a Learning Problem as a Matrix

Let X, A be two finite sets of size larger than 1. Let n = log2 |X|.
Let M : A × X → {−1, 1} be a matrix. The matrix M corresponds to the following

learning problem: There is an unknown element x ∈ X that was chosen uniformly at random.
A learner tries to learn x from samples (a, b), where a ∈ A is chosen uniformly at random and
b = M(a, x). That is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2) . . .,
where each at is uniformly distributed and for every t, bt = M(at, x).

Norms

For a function f : X → R, denote by ‖f‖2 the `2 norm of f , with respect to the uniform
distribution over X, that is:

‖f‖2 =

(
E

x∈RX

[
f(x)2

])1/2

.

For a function f : A→ R, denote by ‖f‖2 the `2 norm of f , with respect to the uniform
distribution over A, that is:

‖f‖2 =

(
E

a∈RA

[
f(a)2

])1/2

.

The induced matrix norm on M : A×X → {−1, 1} is defined by

‖M‖2 = sup
f 6=0

‖Mf‖2

‖f‖2

.

We note that

‖M‖2 =
√
|X|
|A| · σmax(M),

where σmax(M) denotes the largest singular value of M , and the factor
√
|X|
|A| comes because

in our definition of the `2 norm of functions f : X → R and f : A → R we use expectation
rather than (the more common) sum.

While ‖M‖2 and σmax(M) are equal, up to a normalization factor, it will be more
convenient for us to work with ‖M‖2.

3

Branching Program for a Learning Problem

In the following definition, we model the learner for the learning problem that corresponds
to the matrix M , by a branching program.

Definition 2.1. Branching Program for a Learning Problem: A branching program
of length m and width d, for learning, is a directed (multi) graph with vertices arranged in
m+1 layers containing at most d vertices each. In the first layer, that we think of as layer 0,
there is only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf. All
vertices in the last layer are leaves (but there may be additional leaves). Every non-leaf vertex
in the program has 2|A| outgoing edges, labeled by elements (a, b) ∈ A×{−1, 1}, with exactly
one edge labeled by each such (a, b), and all these edges going into vertices in the next layer.
Each leaf v in the program is labeled by an element x̃(v) ∈ X, that we think of as the output
of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A×{−1, 1} that are given as
input, define a computation-path in the branching program, by starting from the start vertex
and following at step t the edge labeled by (at, bt), until reaching a leaf. The program outputs
the label x̃(v) of the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that x̃ =
x, where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am
(where x is uniformly distributed over X and a1, . . . , am are uniformly distributed over A,
and for every t, bt = M(at, x)).

3 Overview of the Proof

Let B be a branching program for the learning problem that corresponds to the matrix M .
We define the truncated-path, T , to be the same as the computation-path of B, except that
it sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching a leaf
if certain “bad” events, that make the analysis difficult, occur. Nevertheless, we show that
the probability that T stops before reaching a leaf is negligible, so we can think of T as
almost identical to the computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. For
simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is
over x, a1, . . . , am), and we denote by Px|v = Px|Ev the distribution of the random variable x
conditioned on the event Ev. Similarly, for an edge e of the branching program B, let Ee be
the event that T traverses the edge e. Denote, Pr(e) = Pr(Ee), and Px|e = Px|Ee .

A vertex v of B is called significant if
∥∥Px|v∥∥2

is non-negligible. Roughly speaking, this
means that conditioning on the event that T reaches the vertex v, a non-negligible amount of
information is known about x. In order to guess x with a non-negligible success probability,
T must reach a significant vertex. Lemma 4.1 shows that the probability that T reaches any
significant vertex is negligible.

To prove Lemma 4.1, we show that for every fixed significant vertex s, the probability
that T reaches s is extremely small (smaller than one over the number of vertices in B).
Hence, we can use a union bound to prove the lemma.

4

The proof that the probability that T reaches s is extremely small is the main part of
our proof. To that end, we introduce the following functions to measure the progress made
by the branching program towards reaching s.

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of
edges e from layer-(i− 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉n,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉n,

where 〈·, ·〉 denotes inner product. We think of Zi,Z ′i as measuring the progress made by
the branching program, towards reaching a state with distribution similar to Px|s.

We show that each Zi may only be negligibly larger than Zi−1. Hence, Zi is negligible
for every i. On the other hand, if s is in layer-i then Zi is at least Pr(s) · 〈Px|s,Px|s〉n. Thus,
Pr(s) · 〈Px|s,Px|s〉n must be negligible. Since s is significant, 〈Px|s,Px|s〉 is non-negligible and
hence Pr(s) must be negligible.

The proof that Zi may only be negligibly larger than Zi−1 is done in two steps: Claim 4.12
shows by a simple convexity argument that Zi ≤ Z ′i. The hard part, that is done in
Claim 4.10 and Claim 4.11, is to prove that Z ′i may only be negligibly larger than Zi−1.

For this proof, we define for every vertex v, the set of edges Γout(v) that are going out
of v, such that Pr(e) > 0. Claim 4.10 shows that for every vertex v,∑

e∈Γout(v)

Pr(e) · 〈Px|e,Px|s〉n

may only be negligibly higher than

Pr(v) · 〈Px|v,Px|s〉n.

For the proof of Claim 4.10, which is the hardest proof in the paper, we consider the
function Px|v · Px|s. We first show how to bound

∥∥Px|v · Px|s∥∥2
. We then consider two cases:

If
∥∥Px|v · Px|s∥∥1

is negligible, then 〈Px|v,Px|s〉n is negligible and doesn’t contribute much, and
we show that for every e ∈ Γout(v), 〈Px|e,Px|s〉n is also negligible and doesn’t contribute
much. If

∥∥Px|v · Px|s∥∥1
is non-negligible, we use the bound on

∥∥Px|v · Px|s∥∥2
and the bound on

‖M‖2 to show that for almost all edges e ∈ Γout(v), we have that 〈Px|e,Px|s〉n is very close to
〈Px|v,Px|s〉n. Only an exponentially small fraction of edges are “bad” and give a significantly
larger 〈Px|e,Px|s〉n.

The reason that in the definitions of Zi and Z ′i we raised 〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 to
the power of n is that this is the largest power for which the contribution of the “bad” edges
is still small (as their fraction is exponentially small).

This outline oversimplifies many details. Let us briefly mention two of them. First, it is
not so easy to bound

∥∥Px|v · Px|s∥∥2
. We do that by bounding

∥∥Px|s∥∥2
and

∥∥Px|v∥∥∞. In order

to bound
∥∥Px|s∥∥2

, we force T to stop whenever it reaches a significant vertex (and thus we

are able to bound
∥∥Px|v∥∥2

for every vertex reached by T). In order to bound
∥∥Px|v∥∥∞, we

force T to stop whenever Px|v(x) is large, which allows us to consider only the “bounded”
part of Px|v. (This is related to the technique of flattening a distribution that was used

5

in [KR13]). Second, some edges are so “bad” that their contribution to Z ′i is huge so they
cannot be ignored. We force T to stop before traversing any such edge. (This is related to
an idea that was used in [KRT16] of analyzing separately paths that traverse “bad” edges).
We show that the total probability that T stops before reaching a leaf is negligible.

4 Main Result

Theorem 1. Let X, A be two finite sets. Let n = log2 |X|. Let M : A×X → {−1, 1} be a
matrix, such that ‖M‖2 ≤ 2γn (where γ < 1 is not necessarily a constant).

For any constant c′ < 1
3
, there exists a (sufficiently small) constant ε′ > 0, such that the

following holds: Let c = c′ · (1− γ)2, and let ε = ε′ · (1− γ). Let B be a branching program
of length at most 2εn and width at most 2cn

2
for the learning problem that corresponds to the

matrix M . Then, the success probability of B is at most O(2−εn).

Remark: We note that it is always the case that ‖M‖2 ≤ 2n, and that the condition

‖M‖2 ≤ 2γn is equivalent to σmax(M) ≤ |A|
1
2 · |X|

1
2
−ε, where ε = 1− γ.

Proof. Let 0 < δ′ < 1
3

and 0 < β′ < 2 be constants (to be optimized later on), such that,
β′ + 6δ′ < 2. Let ε′ > 0 be a sufficiently small constant (chosen to be sufficiently small after
δ′, β′ were chosen). In particular, we will assume that 10ε′ < 2− β′ − 6δ′. Let

δ = δ′ · (1− γ),

β = β′ · (1− γ),

ε = ε′ · (1− γ).

Thus,
10ε < 2 · (1− γ)− β − 6δ.

Let B be a branching program of length m = 2εn and width d = 2cn
2

for the learning
problem that corresponds to the matrix M . We will show that the success probability of B
is at most O(2−εn). We will assume that n is sufficiently large (chosen to be sufficiently large
after δ′, β′, ε′ were chosen). This is justified because we only need to prove that the success
probability of B is at most O(2−εn) (so n can be assumed to be sufficiently large because of
the big O).

4.1 The Truncated-Path and Additional Definitions and Notation

We will define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Formally, we define T , together with several
other definitions and notations, by induction on the layers of the branching program B.

Assume that we already defined the truncated-path T , until it reaches layer-i of B. For
a vertex v in layer-i of B, let Ev be the event that T reaches the vertex v. For simplicity, we
denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am),
and we denote by Px|v = Px|Ev the distribution of the random variable x conditioned on the
event Ev.

There will be three cases in which the truncated-path T stops on a non-leaf v:

6

1. If v is a, so called, significant vertex, where the `2 norm of Px|v is non-negligible.
(Intuitively, this means that conditioned on the event that T reaches v, a non-negligible
amount of information is known about x).

2. If Px|v(x) is non-negligible. (Intuitively, this means that conditioned on the event
that T reaches v, the correct element x could have been guessed with a non-negligible
probability).

3. If (M ·Px|v)(ai+1) is non-negligible. (Intuitively, this means that T is about to traverse
a “bad” edge, which is traversed with a non-negligibly higher or lower probability than
other edges).

Next, we describe these three cases more formally.

Significant Vertices

We say that a vertex v in layer-i of B is significant if∥∥Px|v∥∥2
> 2δn · 2−n.

Significant Values

Even if v is not significant, Px|v may have relatively large values. For a vertex v in layer-i
of B, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x′) > 22(δ+ε)·n · 2−n.

Bad Edges

For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,∣∣(M · Px|v)(α)
∣∣ ≥ 2(δ+γ+ε)·n · 2−n.

The Truncated-Path T

We define T by induction on the layers of the branching program B. Assume that we already
defined T until it reaches a vertex v in layer-i of B. The path T stops on v if (at least) one
of the following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

4. v is a leaf.

Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the
computational-path).

7

4.2 Proof of Theorem 1

Since T follows the computation-path of B, except that it sometimes stops before reaching
a leaf, the success probability of B is bounded (from above) by the probability that T stops
before reaching a leaf, plus the probability that T reaches a leaf v and x̃(v) = x.

The main lemma needed for the proof of Theorem 1 is Lemma 4.1 that shows that the
probability that T reaches a significant vertex is at most O(2−εn).

Lemma 4.1. The probability that T reaches a significant vertex is at most O(2−εn).

Lemma 4.1 is proved in Section 4.3. We will now show how the proof of Theorem 1
follows from that lemma.

Lemma 4.1 shows that the probability that T stops on a non-leaf vertex, because of the
first reason (i.e., that the vertex is significant), is small. The next two lemmas imply that
the probabilities that T stops on a non-leaf vertex, because of the second and third reasons,
are also small.

Claim 4.2. If v is a non-significant vertex of B then

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−2εn.

Proof. Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=
∑
x′∈X

[
Px|v(x′)2

]
= 2n · E

x′∈RX

[
Px|v(x′)2

]
≤ 22δn · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 22εn · 22δn · 2−n

]
≤ 2−2εn.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[x ∈ Sig(v) | Ev] = Pr
x

[(
Px|v(x) > 22εn · 22δn · 2−n

) ∣∣Ev] ≤ 2−2εn.

Claim 4.3. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−2εn.

Proof. Since v is not significant,

E
α∈RA

[
|(M · Px|v)(α)|2

]
=
∥∥M · Px|v∥∥2

2
≤ ‖M‖2

2 ·
∥∥Px|v∥∥2

2
≤ 22γn · 22δn · 2−2n.

Hence, by Markov’s inequality,

Pr
α∈RA

[α ∈ Bad(v)] = Pr
α∈RA

[∣∣(M · Px|v)(α)
∣∣ ≥ 2(δ+γ+ε)·n · 2−n

]
= Pr

α∈RA

[∣∣(M · Px|v)(α)
∣∣2 ≥ 22εn · 22γn · 22δn · 2−2n

]
≤ 2−2εn.

The claim follows since ai+1 is uniformly distributed over A.

8

We can now use Lemma 4.1, Claim 4.2 and Claim 4.3 to prove that the probability that T
stops before reaching a leaf is at most O(2−εn). Lemma 4.1 shows that the probability that T
reaches a significant vertex and hence stops because of the first reason, is at most O(2−εn).
Assuming that T doesn’t reach any significant vertex (in which case it would have stopped
because of the first reason), Claim 4.2 shows that in each step, the probability that T stops
because of the second reason, is at most 2−2εn. Taking a union bound over the m = 2εn

steps, the total probability that T stops because of the second reason, is at most 2−εn. In
the same way, assuming that T doesn’t reach any significant vertex (in which case it would
have stopped because of the first reason), Claim 4.3 shows that in each step, the probability
that T stops because of the third reason, is at most 2−2εn. Again, taking a union bound over
the 2εn steps, the total probability that T stops because of the third reason, is at most 2−εn.
Thus, the total probability that T stops (for any reason) before reaching a leaf is at most
O(2−εn).

Recall that if T doesn’t stop before reaching a leaf, it just follows the computation-path
of B. Recall also that by Lemma 4.1, the probability that T reaches a significant leaf is
at most O(2−εn). Thus, to bound (from above) the success probability of B by O(2−εn),
it remains to bound the probability that T reaches a non-significant leaf v and x̃(v) = x.
Claim 4.4 shows that for any non-significant leaf v, conditioned on the event that T reaches v,
the probability for x̃(v) = x is at most 2−εn, which completes the proof of Theorem 1.

Claim 4.4. If v is a non-significant leaf of B then

Pr[x̃(v) = x | Ev] ≤ 2−εn.

Proof. Since v is not significant,

E
x′∈RX

[
Px|v(x′)2

]
≤ 22δn · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | Ev] = Px|v(x′) ≤ 2δn · 2−n/2 = 2
−n·

(
1
2
−δ

)
< 2−εn

(since ε < 1
2
− δ). In particular,

Pr[x̃(v) = x | Ev] < 2−εn.

This completes the proof of Theorem 1.

4.3 Proof of Lemma 4.1

Proof. We need to prove that the probability that T reaches any significant vertex is at
most O(2−εn). Let s be a significant vertex of B. We will bound from above the probability
that T reaches s, and then use a union bound over all significant vertices of B. Interestingly,
the upper bound on the width of B is used only in the union bound.

9

The Distributions Px|v and Px|e

Recall that for a vertex v of B, we denote by Ev the event that T reaches the vertex v.
For simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is
over x, a1, . . . , am), and we denote by Px|v = Px|Ev the distribution of the random variable x
conditioned on the event Ev.

Similarly, for an edge e of the branching program B, let Ee be the event that T traverses
the edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over x, a1, . . . , am), and
Px|e = Px|Ee .

Claim 4.5. For any edge e = (v, u) of B, labeled by (a, b), such that Pr(e) > 0, for any
x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ Sig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ Sig(v) and M(a, x′) = b

where ce is a normalization factor that satisfies,

ce >
1
2
− 2 · 2−2εn.

Proof. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0. Since
Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Also, since Pr(e) > 0, we know that a 6∈ Bad(v) (as otherwise T never traverses e
and hence Pr(e) = 0).

If T reaches v, it traverses the edge e if and only if: x 6∈ Sig(v) (as otherwise T stops
on v) and M(a, x) = b and ai+1 = a. Therefore, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ Sig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ Sig(v) and M(a, x′) = b

where ce is a normalization factor, given by

ce =
∑

{x′ : x′ 6∈Sig(v) ∧M(a,x′)=b}
Px|v(x′) = Pr

x
[(x 6∈ Sig(v)) ∧ (M(a, x) = b) | Ev].

Since v is not significant, by Claim 4.2,

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−2εn.

Since a 6∈ Bad(v),∣∣∣Pr
x

[M(a, x) = 1 | Ev]− Pr
x

[M(a, x) = −1 | Ev]
∣∣∣ =

∣∣(M · Px|v)(a)
∣∣

≤ 2(δ+γ+ε)·n · 2−n.
and hence

Pr
x

[M(a, x) 6= b | Ev] ≤ 1
2

+ 2(δ+γ+ε)·n · 2−n.

Hence, by the union bound,

ce = Pr
x

[(x 6∈ Sig(v)) ∧ (M(a, x) = b) | Ev] ≥ 1
2
− 2(δ+γ+ε)·n · 2−n − 2−2εn > 1

2
− 2 · 2−2εn

(where the last inequality follows since 3ε < 1− δ − γ).

10

Bounding the Norm of Px|s

We will show that
∥∥Px|s∥∥2

cannot be too large. Towards this, we will first prove that for

every edge e of B that is traversed by T with probability larger than zero,
∥∥Px|e∥∥2

cannot
be too large.

Claim 4.6. For any edge e of B, such that Pr(e) > 0,∥∥Px|e∥∥2
≤ 4 · 2δn · 2−n.

Proof. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0. Since
Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Thus, ∥∥Px|v∥∥2

≤ 2δn · 2−n.
By Claim 4.5, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ Sig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ Sig(v) and M(a, x′) = b

where ce satisfies,
ce >

1
2
− 2 · 2−2εn > 1

4

(where the last inequality holds because we assume that n is sufficiently large).
Thus, ∥∥Px|e∥∥2

≤ c−1
e ·

∥∥Px|v∥∥2
≤ 4 · 2δn · 2−n

Claim 4.7. ∥∥Px|s∥∥2
≤ 4 · 2δn · 2−n.

Proof. Let Γin(s) be the set of all edges e of B, that are going into s, such that Pr(e) > 0.
Note that ∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s)
· Px|e(x′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s)
· Px|e(x′)2.

Summing over x′ ∈ X, we obtain,∥∥Px|s∥∥2

2
≤

∑
e∈Γin(s)

Pr(e)
Pr(s)
·
∥∥Px|e∥∥2

2
.

By Claim 4.6, for any e ∈ Γin(s),∥∥Px|e∥∥2

2
≤
(
4 · 2δn · 2−n

)2
.

Hence, ∥∥Px|s∥∥2

2
≤
(
4 · 2δn · 2−n

)2
.

11

Similarity to a Target Distribution

For two functions f, g : X → R+, define

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

Claim 4.8.
〈Px|s,Px|s〉 > 22δn · 2−2n.

Proof. Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s∥∥2

2
> 22δn · 2−2n.

Claim 4.9.
〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑
z∈X

Px|s(z) = 2−2n.

Measuring the Progress

For i ∈ {0, . . . ,m}, let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. For
i ∈ {1, . . . ,m}, let Γi be the set of edges e from layer-(i − 1) of B to layer-i of B, such
that Pr(e) > 0. Recall that β was fixed at the beginning of the proof of Theorem 1. For
i ∈ {0, . . . ,m}, let

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉βn.

For i ∈ {1, . . . ,m}, let

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉βn.

We think of Zi,Z ′i as measuring the progress made by the branching program, towards
reaching a state with distribution similar to Px|s.

For a vertex v of B, let Γout(v) be the set of all edges e of B, that are going out of v,
such that Pr(e) > 0. Note that ∑

e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v).
The next four claims show that the progress made by the branching program is slow.

12

Claim 4.10. For every vertex v of B, such that Pr(v) > 0,∑
e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉βn ≤ 〈Px|v,Px|s〉βn ·

(
1 + 2−1.9·εn)+

(
2−2n+2

)βn
.

Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty
and thus the left hand side is equal to zero and the right hand side is positive, so the claim
follows trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R+ as follows. For any x′ ∈ X,

P (x′) =

{
0 if x′ ∈ Sig(v)

Px|v(x′) if x′ 6∈ Sig(v)

Note that by the definition of Sig(v), for any x′ ∈ X,

P (x′) ≤ 22(δ+ε)·n · 2−n. (1)

Define f : X → R+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x′).

By Claim 4.7 and Equation (1),

‖f‖2 ≤ 22(δ+ε)·n · 2−n ·
∥∥Px|s∥∥2

≤ 22(δ+ε)·n · 2−n · 4 · 2δn · 2−n = 2(3δ+2ε)·n+2 · 2−2n. (2)

By Claim 4.5, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) =

{
0 if M(a, x′) 6= b

P (x′) · c−1
e if M(a, x′) = b

where ce satisfies,
ce >

1
2
− 2 · 2−2εn.

Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) · Px|s(x′) =

{
0 if M(a, x′) 6= b

f(x′) · c−1
e if M(a, x′) = b

and hence, denoting

F =
∑
x′∈X

f(x′),

we have
〈Px|e,Px|s〉 = E

x′∈RX
[Px|e(x′) · Px|s(x′)]

= c−1
e · 2−n ·

∑
{x′:M(a,x′)=b}

f(x′) = c−1
e · 2−n ·

F+b·(M ·f)(a)
2

≤ (2 · ce)−1 · 2−n · (F + |(M · f)(a)|) < 2−n · (F + |(M · f)(a)|) ·
(
1 + 2−2εn+3

)
(3)

(where the last inequality holds by the bound that we have on ce, because we assume that
n is sufficiently large).

We will now consider two cases:

13

Case I: F ≤ 2−n

In this case, we bound |(M · f)(a)| ≤ F (since f is non-negative and the entries of M are
in {−1, 1}) and (1 + 2−2εn+3) < 2 (since we assume that n is sufficiently large) and obtain
for any edge e ∈ Γout(v),

〈Px|e,Px|s〉 < 4 · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v)

≤ 1, Claim 4.10 follows, as the left hand side of the claim is smaller
than the second term on the right hand side.

Case II: F ≥ 2−n

For every a ∈ A, define

t(a) =

(
(M · f)(a)

F

)2

.

By Equation (3),

〈Px|e,Px|s〉βn <
(
2−n · F

)βn · (1 +
√
t(a)

)βn
·
(
1 + 2−2εn+3

)βn
. (4)

Note that by the definitions of P and f ,

2−n · F = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1),
and at most one edge e(a,−1) ∈ Γout(v), labeled by (a,−1), and we have

Pr(e(a,1))

Pr(v)
+

Pr(e(a,−1))

Pr(v)
≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing

over all e ∈ Γout(v), by Equation (4),∑
e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉βn < 〈Px|v,Px|s〉βn · E

a∈RA

[(
1 +

√
t(a)

)βn]
·
(
1 + 2−2εn+3

)βn
. (5)

It remains to bound

E
a∈RA

[(
1 +

√
t(a)

)βn]
, (6)

where for every a ∈ A, 0 ≤ t(a) ≤ 1, under the constraint

E
a∈RA

[t(a)] ≤ 2−(2−2γ−6δ−4ε)·n+4, (7)

which follows since, by Equation (2) and the assumption F ≥ 2−n, we have

E
a∈RA

[t(a)] = E
a∈RA

[(
(M · f)(a)

F

)2
]

=
‖M · f‖2

2

F 2

≤ ‖M‖
2
2 · ‖f‖

2
2

F 2
≤
(

2γn · 2(3δ+2ε)·n+2 · 2−2n

2−n

)2

= 2−(2−2γ−6δ−4ε)·n+4.

14

We will bound the expectation in Equation (6), by splitting the expectation into two
sums

E
a∈RA

[(
1 +

√
t(a)

)βn]
=

1
|A| ·

∑
a : t(a)≤ 1

(βn−2)2

(
1 +

√
t(a)

)βn
+ 1
|A| ·

∑
a : t(a)>

1
(βn−2)2

(
1 +

√
t(a)

)βn
. (8)

To bound the first sum in Equation (8), we note that in the range 0 ≤ t ≤ 1
(βn−2)2

, the

function g(t) =
(
1 +
√
t
)βn

is concave (since its second derivative is negative). Hence, by
Equation (7) and by the monotonicity of g,

1
|A| ·

∑
a : t(a)≤ 1

(βn−2)2

(
1 +

√
t(a)

)βn
≤
(

1 +
√

2−(2−2γ−6δ−4ε)·n+4
)βn

=
(
1 + 2−(1−γ−3δ−2ε)·n+2

)βn
< 1 + 2−(1−γ−3δ−3ε)·n < 1 + 2−2εn (9)

(where the last two inequalities hold because we assume that n is sufficiently large and
5ε < 1− γ − 3δ).

To bound the second sum in Equation (8), we note that by Equation (7) and Markov’s
inequality,

Pr
a∈RA

[
t(a) > 1

(βn−2)2

]
≤ 2−(2−2γ−6δ−4ε)·n+4 · (βn− 2)2 < 2−(2−2γ−6δ−5ε)·n

(where the last inequality holds because we assume that n is sufficiently large), and since for
every a ∈ A, we have t(a) ≤ 1,

1
|A| ·

∑
a : t(a)>

1
(βn−2)2

(
1 +

√
t(a)

)βn
< 2−(2−2γ−6δ−5ε)·n · 2βn = 2−(2−2γ−β−6δ−5ε)·n < 2−5εn (10)

(where the last inequality holds because 10ε < 2− 2γ − β − 6δ).
Substituting Equation (9) and Equation (10) into Equation (8) and substituting this into

Equation (5), we obtain∑
e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉βn < 〈Px|v,Px|s〉βn ·

(
1 + 2−2εn+3

)βn+1

< 〈Px|v,Px|s〉βn ·
(
1 + 2−1.9·εn)

(where the last inequality holds because we assume that n is sufficiently large).
This completes the proof of Claim 4.10.

Claim 4.11. For every i ∈ {1, . . . ,m},

Z ′i ≤ Zi−1 ·
(
1 + 2−1.9·εn)+

(
2−2n+2

)βn
.

15

Proof. By Claim 4.10,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉βn =
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉βn

≤
∑

v∈Li−1

Pr(v) ·
(
〈Px|v,Px|s〉βn ·

(
1 + 2−1.9·εn)+

(
2−2n+2

)βn)
= Zi−1 ·

(
1 + 2−1.9·εn)+

∑
v∈Li−1

Pr(v) ·
(
2−2n+2

)βn
≤ Zi−1 ·

(
1 + 2−1.9·εn)+

(
2−2n+2

)βn
Claim 4.12. For every i ∈ {1, . . . ,m},

Zi ≤ Z ′i.
Proof. For any v ∈ Li, let Γin(v) be the set of all edges e ∈ Γi, that are going into v. Note
that ∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ Li and every x′ ∈ X,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v)
· Px|e(x′),

and hence
〈Px|v,Px|s〉 =

∑
e∈Γin(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉.

Thus, by Jensen’s inequality,

〈Px|v,Px|s〉βn ≤
∑

e∈Γin(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉βn.

Summing over all v ∈ Li, we get

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉βn ≤
∑
v∈Li

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉βn

=
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉βn = Z ′i.

Claim 4.13. For every i ∈ {1, . . . ,m},
Zi ≤ 22(β+ε)n · 2−2βn2

.

Proof. By Claim 4.9, Z0 = (2−2n)βn. By Claim 4.11 and Claim 4.12, for every i ∈ {1, . . . ,m},
Zi ≤ Zi−1 ·

(
1 + 2−1.9·εn)+

(
2−2n+2

)βn
.

Hence, for every i ∈ {1, . . . ,m},
Zi ≤

(
2−2n+2

)βn ·m · (1 + 2−1.9·εn)m .
Since m = 2εn,

Zi ≤ 2−2βn2 · 22βn · 2εn · 2 ≤ 2−2βn2 · 22(β+ε)n.

16

Proof of Lemma 4.1

We can now complete the proof of Lemma 4.1. Assume that s is in layer-i of B. By Claim 4.8,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉βn > Pr(s) ·
(
22δn · 2−2n

)βn
= Pr(s) · 22δβn2 · 2−2βn2

.

On the other hand, by Claim 4.13,

Zi ≤ 22(β+ε)n · 2−2βn2

.

Thus,
Pr(s) ≤ 22(β+ε)n · 2−2δβn2

.

We will fix β′ to be any constant smaller than 1 and δ′ to be any constant smaller than 1
6

(note that the requirement β′ + 6δ′ < 2 is satisfied and recall that δ = δ′ · (1 − γ) and
β = β′ · (1− γ)), to obtain

Pr(s) ≤ 2−c̃·(1−γ)2·n2

,

for any constant c̃ < 1
3

(where we assumed that n is sufficiently large).

Taking a union bound over at most 2εn · 2cn2
significant vertices of B, we conclude that

the probability that T reaches any sifnificant vertex is at most 2−Ω(n2) (as c < c′ · (1− γ)2,
where c′ is a constant smaller than 1

3
). Since we assume that n is sufficiently large, 2−Ω(n2)

is certainly at most 2−εn.

References

[KR13] Gillat Kol, Ran Raz: Interactive channel capacity. STOC 2013: 715-724 6

[KRT16] Gillat Kol, Ran Raz, Avishay Tal: Time-Space Hardness of Learning Sparse
Parities. STOC 2017 (to appear) 1, 2, 6

[MM17] Dana Moshkovitz, Michal Moshkovitz: Mixing Implies Lower Bounds for Space
Bounded Learning. Electronic Colloquium on Computational Complexity (ECCC) 24:
17 (2017) 1, 3

[R16] Ran Raz: Fast Learning Requires Good Memory: A Time-Space Lower Bound for
Parity Learning. FOCS 2016: 266-275 1, 2

[S14] Ohad Shamir: Fundamental Limits of Online and Distributed Algorithms for
Statistical Learning and Estimation. NIPS 2014: 163-171 1

[SVW16] Jacob Steinhardt, Gregory Valiant, Stefan Wager: Memory, Communication, and
Statistical Queries. COLT 2016: 1490-1516 1

[VV16] Gregory Valiant, Paul Valiant: Information Theoretically Secure Databases.
Electronic Colloquium on Computational Complexity (ECCC) 23: 78 (2016) 1

17
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

