
Almost Settling the Hardness of Noncommutative
Determinant∗

Steve Chien
†

Prahladh Harsha
‡

Alistair Sinclair
§

Srikanth Srinivasan
¶

ABSTRACT
In this paper, we study the complexity of computing the de-
terminant of a matrix over a noncommutative algebra. In
particular, we ask the question: “Over which algebras is the
determinant easier to compute than the permanent?” To-
wards resolving this question, we show the following results
for noncommutative determinant computation:

• [Hardness] Computing the determinant of an n×n ma-
trix whose entries are themselves 2 × 2 matrices over
any field of zero or odd characteristic is as hard as com-
puting the permanent over the field. This extends the
recent result of Arvind and Srinivasan, which required
the entries to be matrices of dimension linear in n.

• [Easiness] The determinant of an n × n matrix whose
entries are themselves d× d upper triangular matrices
can be computed in poly(nd) time.

Combining the above with the decomposition theorem for
finite dimensional algebras (and in particular exploiting the
simple structure of 2 × 2 matrix algebras), we can extend

∗A full version of this paper is available at http://arxiv.org/
abs/1101.1169
†Google Inc. 1600 Amphitheatre Parkway, Mountain View CA
94043, USA. email: schien@google.com. Work done primarily
while the author was at Microsoft Research, Silicon Valley.
‡Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400005, INDIA. email: prahladh@tifr.res.in. Part of
this work was done while the author was at Microsoft Research,
Silicon Valley and the MIT Computer Science and Artificial In-
telligence Laboratory (supported by NSF Grant CCF-0729011).
§Computer Science Division, University of California Berkeley,
CA 94720, USA. email: sinclair@cs.berkeley.edu. Supported
in part by NSF grants CCF-0635153 and CCF-1016896, and by
a UC Chancellor’s Professorship.
¶Institute for Advanced Study, Einstein Drive, Princeton NJ
08540, USA. email: srikanth@math.ias.edu. Supported by NSF
Grants CCF-0832797 and DMS-0835373. Part of this work was
done while the author was at Microsoft Research, Silicon Valley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

the above hardness and easiness statements to more general
algebras as follows. Let A be a finite dimensional algebra
over a finite field of odd characteristic with radical R(A).

• [Hardness] If the quotient A/R(A) is noncommutative,
then computing the determinant over the algebra A is
as hard as computing the permanent.

• [Easiness] If the quotient A/R(A) is commutative, and
furthermore R(A) has nilpotency index d (i.e., d is the
smallest integer such that R(A)d = 0), then there ex-
ists a poly(nd)-time algorithm that computes determi-
nants over the algebra A.

In particular, for any constant dimensional algebra A over a
finite field of odd characteristic, since the nilpotency index of
R(A) is at most a constant, we have the following dichotomy
theorem: if A/R(A) is commutative then efficient determi-
nant computation is possible, and otherwise determinant is
as hard as permanent.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

General Terms
Algorithms, Theory

Keywords
determinant, permanent, noncommutative algebras, compu-
tational algebra

1. INTRODUCTION
Given a matrix M = (mi,j), the determinant of M , de-

noted by det(M), is defined by the polynomial det(M) =P
σ∈Sn

sgn(σ)
Qn
i=1mi,σ(i), while the permanent of M , de-

noted by per(M), is defined by the polynomial per(M) =P
σ∈Sn

Qn
i=1mi,σ(i). Though deceptively similar in their def-

initions, the determinant and permanent behave very differ-
ently with respect to computational complexity. As is well
known, the determinant of a matrix over any field can be
efficiently computed using Gaussian elimination; in fact, de-
terminant continues to be easy even when the entries come
from some commutative algebra, not necessarily a field [18,
4, 7, 14]. On the other hand, computing the permanent of a
matrix over the rationals was famously shown by Valiant [19]
to be #P-complete, and therefore as hard as counting the

http://arxiv.org/abs/1101.1169
http://arxiv.org/abs/1101.1169

number of satisfying assignments to a Boolean formula, even
when the entries are restricted to 0 or 1. Given this state
of affairs, it is natural to ask precisely what it is that makes
the permanent hard while the determinant is easy. Under-
standing this distinction in computational complexity be-
tween determinant and permanent is a fundamental problem
in theoretical computer science.

Motivated by work of Winograd [20] and Hyafil [11], Nisan
pioneered the study of noncommutative lower bounds in
his groundbreaking 1991 paper [16]. In one of that pa-
per’s more important results, Nisan proves that any alge-
braic branching program (ABP) that computes the determi-
nant of a matrix M = {mi,j} over the noncommutative free
algebra F〈x1,1, . . . , xn,n〉 must have exponential size; this
then implies a similar lower bound for arithmetic formu-
las. This contrasts markedly with the many known efficient
algorithms for determinant in commutative settings, which
include polynomial-sized ABPs [14].

This problem takes on added significance in light of a con-
nection discovered by Godsil and Gutman [10], and devel-
oped by Karmarkar et al. [12], between computing determi-
nants and algorithms for approximating the permanent. The
full potential of this approach was demonstrated when Chien
et al. [5], expanding on work by Barvinok [3], showed that
if one can efficiently compute the determinant of an n × n
matrix M whose entries mi,j are themselves matrices of di-
mension O(n2), then there is a fully polynomial randomized
approximation scheme for the permanent of a 0-1 matrix1;
similar results were later proven by Moore and Russell [15].
Thus understanding the complexity of noncommutative de-
terminant is of both algorithmic and complexity-theoretic
importance.

Nisan’s results are rather limited in that they apply only
to the free algebra F〈xi,〉 and not to specific finite dimen-
sional algebras (such as those used to approximate the per-
manent), and because they do not apply to models of com-
putation beyond ABPs and arithmetic formulas. Address-
ing the first concern, Chien and Sinclair [6] significantly
strengthened Nisan’s original lower bounds to apply to a
wide range of other algebras by analyzing the polynomial
identities of those algebras. In particular, they showed that
Nisan’s ABP lower bound extends to the d×d upper-triang-
ular matrix algebra over a field of characteristic 0 for any
d > 1 (and hence to Md(F), the full d×d matrix algebra, as
well), the quaternion algebra, and several others.

Addressing the second concern, Arvind and Srinivasan [2]
recently showed (conditional) noncommutative determinant
lower bounds in much stronger models of computation. They
showed that unless there exist small circuits to compute
the permanent, there cannot exist small noncommutative
circuits for the noncommutative determinant. More dev-
astatingly from the algorithmic point of view, they show
that computing det(M) over matrix algebras of dimension
linear in n is at least as hard as (exactly) computing the
permanent. This result casts serious doubt on whether the
determinant-based approaches to approximating the perma-
nent are computationally feasible.

While these collections of results make substantial progress
in our understanding of when determinant can be computed
over a noncommutative algebra, they are still incomplete
in significant ways. First, we do not know whether Arvind

1The results in [5] are stated in the language of Clifford algebras.
This is an equivalent restatement.

and Srinivasan’s results rule out algorithms for determinants
over constant-dimensional matrix algebras, which are still of
use in approximating the permanent [5]. More expansively,
we still do not know the answer to what is perhaps the fun-
damental philosophical question underlying this line of work:

Is there any noncommutative algebra over which
one can compute determinants efficiently, or is
commutativity a necessary condition for such ef-
ficient algorithms?

1.1 Our results
In this paper, we fill in most of these remaining gaps. Our

first main result extends Arvind and Srinivasan’s results all
the way down to 2× 2 matrix algebras (see Theorem 3.5 for
a more formal statement).

Theorem 1.1. [informal] Let M2(F) be the algebra of
2× 2 matrices over a field F with zero or odd characteristic.
Then computing the determinant over M2(F) is as hard as
computing the permanent over F.

The proof of this theorem works by modifying Valiant’s orig-
inal reduction from #3SAT to permanent. One would not
expect to be able to modify the reduction to go from #3SAT
to determinant over a field F, as there are known polynomial
time algorithms in that setting. However, we show that
there is just enough noncommutative behavior in M2(F) to
allow Valiant’s reduction (slightly modified) to go through.

Given the central role of matrix algebras in ring theory,
this allows us to prove similar results for other large classes of
algebras. In particular, consider a finite-dimensional algebra
A over a finite field F. This algebra has a radical R(A),
which happens to be a nilpotent ideal of A (see Section 5 for
the exact definition of the radical). Combined with classical
results from algebra (in particular the simple structure of the
2 × 2 matrix algebras) the above theorem can be extended
as follows to yield our second main result (see Theorem 5.1
for a more formal statement).

Theorem 1.2. [informal] If A is a fixed2 finite dimen-
sional algebra over a finite field of odd characteristic such
that the quotient A/R(A) is noncommutative, then comput-
ing the determinant over A is as hard as computing the per-
manent.

In particular, if the algebra is semisimple (i.e, R(A) = 0),
then the commutativity of A itself fully characterizes the
complexity: if A is commutative, there is an efficient algo-
rithm for computing det over A; otherwise, it is at least as
hard as computing the permanent. The class of semisim-
ple algebras includes several well-known examples, such as
group algebras.

It may be tempting at this point to conjecture that com-
puting determinant over A for some algebra A is feasible if
and only if A is commutative. Perhaps surprisingly, we show
that this is not the case: in fact, there do exist noncommu-
tative algebras A over which determinant can be computed
in polynomial time. In our third main result, we show that
computing the determinant where the matrix entries are d×d
upper triangular matrices for constant d is easy. For reasons
that will soon be clear, we will state this result more gener-
ally, in the language of radicals.
2By fixed, we mean that the algebra is not part of the input;
we fix an algebra A and consider the problem of computing the
determinant of a given input matrix over A.

Theorem 1.3. Given a finite dimensional algebra A and
its radical R(A), let d be the smallest value for which R(A)d =
0 (i.e., any product of d elements of R(A) is 0). If A/R(A)
is commutative, there is an algorithm for computing det over
A in time poly(nd).

While this description of the class of algebras that allow
efficient determinant computation may seem somewhat ab-
struse, it does include several familiar algebras. Perhaps
most familiar is the algebra Ud(F) of d× d upper-triangular
matrices, for which R(Ud(F))d = 0. What the result estab-
lishes is that the key to whether determinant is computa-
tionally feasible is not commutativity alone. For noncom-
mutative algebras, it is still possible that determinant can
be efficiently computed, so long as all of the noncommuta-
tive elements belong to a nilpotent ideal and thus, in a sense,
have a limited “lifespan.”

Taken together, the above theorems yield a pleasing di-
chotomy for constant dimensional algebras over a finite field
of odd characteristic. Given any such algebra A of constant
dimension D, either A/R(A) is commutative or not. Fur-
thermore, if A/R(A) is commutative, we have that R(A) is
nilpotent with nilpotency index at most D, which is a con-
stant. We thus have the following dichotomy: if A/R(A)
is commutative then efficient determinant computation is
possible, else determinant is as hard as permanent.

Does this yield a complete characterization of algebras
over which the determinant can be efficiently computed?
Unfortunately, not quite. In particular, what if the dimen-
sion D is non-constant (i.e., the algebra is not fixed but
given as part of the input), or if the algebra is over a field of
characteristic 0? In these cases, the lower bound of Theo-
rem 1.2 and upper bound of Theorem 1.3 are arguably close,
but do not match. A complete characterization remains an
intriguing open problem.

Organization of the paper:.
After some preliminaries in Section 2, we first prove lower

and upper bounds in two concrete settings: in Section 3
we prove a lower bound for 2 × 2 matrix algebras, and in
Section 4 an upper bound for small-dimensional upper tri-
angular matrix algebras. The results on general algebras are
in Section 5, followed by some discussion in Section 6.

2. PRELIMINARIES
In this section we define terms and notation that will be

useful later.
An (associative) algebra A over a field F is a vector space

over F with a bilinear, associative multiplication operator
that distributes over addition. That is, we have a map · :
A × A → A that satisfies: (a) x · (y · z) = (x · y) · z for
any x, y, z ∈ A; (b) λ(x · y) = (λx) · y = x · (λy), for any
λ ∈ F and x, y ∈ A; and (c) x · (y + z) = x · y + x · z
and (y + z) · x = y · x + z · x for any x, y, z ∈ A. We will
assume that all our algebras are unital, i.e., they contain an
identity element. We will denote this element as 1. For more
background on algebras, see Curtis and Reiner’s book [8]. A
wide range of familiar mathematical objects are algebras; in
this paper we will be concerned mainly with the algebra of
d × d matrices over F, which we will denote Md(F), as well
as the algebra of d× d upper-triangular matrices over F, or
Ud(F). Other prominent examples are the free algebra F〈xi〉,

the algebra of polynomials F[xi], group algebras over a field,
or a field considered as an algebra over itself.

Given an n×n matrix M = (mi,j) whose elements belong
to an algebra A, the determinant of M , or det(M), is defined
as the polynomial det(M) =

P
σ∈Sn

sgn(σ)
Qn
i=1mi,σ(i).Note

that when A is noncommutative, the order of the multipli-
cation becomes important. When the order is by row, as
above, the resulting object is known as the “Cayley deter-
minant.” The permanent of the same matrix is per(M) =P
σ∈Sn

Qn
i=1mi,σ(i). We will denote by detA (and perA) the

determinant (and permanent) over an algebra A (i.e., the
matrix entries are elements of A).

We recall also the familiar recasting of the determinant
and permanent in terms of cycle covers on a graph. Suppose
M = (mi,j) is an n×n matrix over an algebra A. Let G(M)
denote the weighted directed graph on vertices 1, . . . , n that
has M as its adjacency matrix. A permutation π : [n]→ [n]
from the rows to the columns of M can be identified with
the set of edges (i, π(i)) in the graph G(M); it is easily
observed that these edges form a (directed) cycle cover of
G(M). Letting C(G) denote the collection of all cycle covers
of G(M), we can write

det(M) =
X

C∈C(G(M))

sgn(C)m1,C(1)m2,C(2) · · ·mn,C(n) (2.1)

per(M) =
X

C∈C(G(M))

m1,C(1)m2,C(2) · · ·mn,C(n),

where for a given cycle cover C, C(i) represents the successor
of vertex i in C, and sgn(C) is the sign of C. It is known
that sgn(C) = (−1)n−c, with c being the number of cycles
in C, and that this is also the sign of the corresponding
permutation. We will denote the weight of an edge e =
(x, y) as w(e) or w(x, y). Further, for a subset of edges B =
{(x1, y1), . . . , (x|B|, y|B|)} of a cycle cover C with xi < xi+1,

we can define the weight of B as w(B) =
Q|B|
i=1 w(xi, yi).

(Note that the product is in order by source vertex.) Thus
w(C) =

Q
imi,C(i) is the weight of the cycle cover, and the

product sgn(C)
Q
imi,C(i) is the signed weight of C.

We briefly recall the definitions of some complexity classes
(the Complexity Zoo3 is an excellent reference). A function
f : {0, 1}n → N is said to be in #P if there exists a poly-
nomial time nondeterministic Turing Machine M such that
f(x) equals the number of accepting paths of M on input x.
Given a fixed number m ∈ N, a function f : {0, 1}n → {0, 1}
is said to be in ModmP if there exists a polynomial time non-
deterministic Turing Machine M such that f(x) = 1 iff the
number of accepting paths of M on input x is not divisible
by m. It is well known that #3SAT, the problem of comput-
ing the number of satisfying assignments of a given 3-SAT
formula ϕ, is hard for #P, and the problem of counting the
number of satisfying assignments of ϕ modulo m is hard for
ModmP .

3. THE LOWER BOUND FOR 2 X 2 MA-
TRIX ALGEBRAS

In this section, we show our lower bound for 2× 2 matrix
algebras. Our proof is based on Valiant’s seminal reduc-
tion from #3SAT to permanent, as modified by Papadim-
itriou [17] and also described in the textbook of Arora and

3
http://qwiki.stanford.edu/index.php/Zooref

http://qwiki.stanford.edu/index.php/Zooref

Figure 1: Gadgets used in proving Valiant’s lower bound. All edges have weight 1 unless noted otherwise.
For the variable and clause gadgets, the solid (not dotted) edges are called (vertex) external edges or (clause)
external edges. Note that the number of external edges in a variable gadget is not fixed, and need not be the
same for the True and False halves of the gadget.

Barak [1]. We first give a self-contained description of this
reduction, before detailing our modifications of it.

3.1 Valiant’s lower bound for the permanent
Valiant’s reduction is from #3SAT to permanent; given

a #3SAT formula ϕ on n variables and m clauses, he con-
structs a weighted directed graph Gϕ on poly(n,m) vertices
such that the number of satisfying assignments of ϕ is equal
to constant × per(M(Gϕ)), where M(Gϕ) is the adjacency
matrix of Gϕ. The key components of Gϕ are the variable,
clause, and XOR gadgets shown in Figure 1.4 The idea is
that there will be a relation between satisfying assignments
of ϕ and cycle covers of Gϕ; moreover, for each satisfying as-
signment, the total weight of its corresponding cycle covers
will be the same.

Before defining Gϕ itself, we first work with a preliminary
graph G0

ϕ that contains n variable gadgets and m clause
gadgets, but no XOR gadgets; all of the gadgets are disjoint
from each other. For the moment, the number of external
edges in each of the variable gadgets is unimportant. In
analyzing G0

ϕ, we will use the following:

Lemma 3.1. The following hold for the gadgets in Fig-
ure 1: (a) A variable gadget has exactly two cycle covers.
Each cycle cover contains one long cycle using all of the ex-
ternal edges on one side of the gadget and the long middle
edge, as well as all the self-loops on the other side of the
gadget. (b) In a clause gadget, there is no cycle cover that
uses all three external edges. For every proper subset S of
the external edges in a clause gadget, there is exactly one
cycle cover that contains exactly the edges in S; this cycle
cover has weight 1.

As all n + m gadgets in G0
ϕ are disjoint, any cycle cover of

G0
ϕ will be a union of n + m smaller cycle covers—namely,

one for each gadget. The choice of cycle cover for each gad-
get defines the value of each variable and which literals are
satisfied in each clause.

More precisely, for a variable gadget, let the term True
cycle cover denote the cycle cover containing the external
4We follow a convention from [1] in allowing gadgets to some-
times have multiple edges between the same two vertices. While
technically prohibited in a graph defined by a matrix, this can be
fixed by adding an extra node in these edges.

edges on the True side of the gadget. Analogously, the False
cycle cover refers to the cycle cover containing the external
edges on the False side of the gadget. The idea is that a cycle
cover of G0

ϕ sets a variable to T or F by choosing either the
True or False cycle cover. Meanwhile, for clause gadgets, the
intention is that each external edge will correspond to one of
the three literals in the clause, and an external edge is used
in a cycle cover if and only if the corresponding literal is set
to F (i.e. the corresponding literal is not satisfied). Since no
cycle cover can contain all three external edges of a clause
gadget, in this interpretation at least one of the literals in
the clause must be satisfied.

We say a cycle cover C of G0
ϕ is consistent if (1) whenever

C contains the True cycle cover of the gadget for a variable
xk, it contains all clause external edges for instances of the
negative literal xk and no clause external edges for instances
of the positive literal xk, and (2) conversely, whenever C
contains the False cycle cover for xk, it contains all clause
external edges for instances of xk but no clause external
edges for instances of xk. A consistent cycle cover therefore
does not “cheat” by claiming to set xk to T (for example) in
a variable gadget but to F in a clause gadget. This is close
to what we want:

Lemma 3.2. The number of satisfying assignments of ϕ
is equal to the total weight of consistent cycle covers of G0

ϕ.

Proof. This follows by combining the natural bijection
between satisfying assignments and consistent cycle covers
and the fact from Lemma 3.1 that every cycle cover of a
clause gadget has weight 1.

Of course, nothing about G0
ϕ guarantees that a cycle cover

must be consistent, and in fact many inconsistent covers
exist. To fix this, we make crucial use of the XOR gadgets
to obtain the final graph Gϕ.

The graph Gϕ is constructed as shown in Figure 2 (left).
It has the same n variable gadgets and m clause gadgets as
G0
ϕ, with the gadget for each variable xk having as many

True external edges as there are instances of xk in ϕ, and as
many False external edges as there are instances of xk. Now,
however, for each appearance of a literal xk or xk in a given
clause, an XOR gadget is used to replace the corresponding
external edge in that clause gadget and a distinct external

Figure 2: Left: Subgraph of Gϕ corresponding to clause (x1 ∨ x2 ∨ x4), with the clause gadget in the center.
Three variable gadgets are connected to the clause gadget via XOR gadgets. Right: Examples of how gadgets
may have cycle covers of different sign.

edge on the appropriate side of the variable gadget for xk.
The role of the XOR gadgets is to neutralize the inconsistent
cycle covers of G0

ϕ while still maintaining the property that
each satisfying assignment of ϕ contributes the same to the
total weight of cycle covers. This leads to the description of
the final graph Gϕ itself.

We now state the important properties of the XOR gad-
get, the key component of Valiant’s proof.

Lemma 3.3. Suppose a graph G contains edges (u, u′) and
(v, v′), with all four vertices distinct. Suppose now that the
edges (u, u′) and (v, v′) are replaced by an XOR gadget as
shown in Figure 1, resulting in a new graph G′ (with four
new vertices a, b, c and d). Let Cu\v be the set of cycle covers
containing (u, u′) but not (v, v′), and wu\v =

P
C∈Cu\v

w(C)

be their total weight. Let Cv\u and wv\u =
P
C∈Cv\u

w(C)

be defined analogously. Then there exist two disjoint sets of
cycle covers of G′ with total weight 4wu\v and 4wv\u, while
all cycle covers of G′ not in these sets have total weight 0.

The proof is omitted, as we will state and prove our own
modified version in Section 3.2 (see Lemma 3.8).

This leads to the following:

Theorem 3.4. [Valiant] Given a 3-SAT formula ϕ and
the graph Gϕ as described, per(Gϕ) = 43mS, where S is the
number of satisfying assignments of ϕ.

We omit the formal proof, but give some of the intuition.
Beginning with G0

ϕ, we begin adding XOR gadgets one at a
time. When a pair of edges is replaced by an XOR gadget,
any cycle covers that are consistent with respect to that pair
of edges are turned into a set of cycle covers whose total
weight is four times the original weight. All other cycle
covers in the new graph have total weight 0. This continues
until each of the 3m XOR gadgets are added, at which point

the original consistent cycle covers have become a set of cycle
covers with total weight 43m while all other cycle covers in
the final graph have weight 0. The total weight of the cycle
covers in the final graph is therefore 43mS, as required.

3.2 Our construction
In this section we prove the following formal version of

Theorem 1.1 stated in the introduction.

Theorem 3.5. Let F be a field of characteristic p 6= 2. If
p = 0, computing detM2(F) is #P-hard. On the other hand,
if p > 2, computing detM2(F) is ModpP -hard.

Our proof is also a reduction from #3SAT (or Modp-SAT
in the case of positive odd characteristic) and is based on
Valiant’s framework as described in the previous subsection.
Given a 3SAT formula ϕ, we wish to construct a directed
graph Hϕ with weights belonging to M2(F) such that the
number of satisfying assignments of ϕ can be computed from
det(M(Hϕ)), as expressed in equation (2.1) above. We will
first describe the graph and then prove its correctness.

A very naive but instructive first try would be to simply
use the graph Gϕ from Valiant’s construction, replacing each
edge weight w ∈ F with wI2, where I2 is the 2 × 2 identity
matrix. This fails, of course, because of the factor sgn(C)
inside the summation, which is based on the parity of the
number of cycles in C. The immediate problem is that each
of the three types of gadgets could conceivably use an odd
or even number of cycles. As shown in Figure 2 (right),
variable gadgets may have a different number of self-loops
on different sides; clause gadgets may use one or two cycles
depending on which external edges are chosen; and XOR
gadgets show similar behavior.

Fortunately, these problems can be overcome if we also
allow ourselves to modify the edge weights, and crucially,
use the noncommutative structure available in M2(F). This

Figure 3: Modified gadgets.

results in the gadgets shown in Figure 3. We now define
two graphs, a preliminary graph H0

ϕ and final graph Hϕ, in
analogy with G0

ϕ and Gϕ from Section 3.1. The new graphs
H0
ϕ and Hϕ will be constructed in the same manner as Gϕ,

only using the modified gadgets from Figure 3 instead of the
original gadgets in Figure 1.

The rough idea behind these gadgets is that with the new
weights, each resulting cycle cover of a gadget of the“wrong”
sign will have an extra −1 sign from its edge weights. The
determinant is then essentially the same as the permanent.
We now explain the changes in more detail.

For variable gadgets, the fix is easy: all we have to do
is make sure that both sides of the gadget have (say) an
even number of vertices, and hence an even number of self
loops. This can be accomplished by adding, if necessary, a
new vertex and appropriate new edges on one or both sides.
The new external edges, if any, will not be connected to any
of the clause gadgets.

For clause gadgets, we need to address the problem that
some cycle covers have only one cycle, while others have
two. Here we benefit from the observation that one of the
edges, (x, y) in Figure 3, is used only in cycle covers with
two cycles. Thus we can correct for parity by changing the
sign of this edge from I2 to −I2; as a result, every cycle
cover of a clause gadget has the same signed weight.

For XOR gadgets, simply changing the edge weights to
scalar multiples of I2 is insufficient. (Indeed, Valiant pre-
sciently noticed this in 1979!) However, we can rescue the
construction by using more sophisticated matrix-valued edge
weights instead. In particular, we define the following three
2× 2 matrices:

X =

„
1 0
0 −1

«
; Y =

„
0 −1
−1 0

«
; Z =

„
0 −1
1 0

«
.

(3.1)
We then modify the weights of the edges between vertices
a, b, c and d. Specifically, each edge entering vertex b has its
weight multiplied by X; each edge entering c has its weight
multiplied by Y , and each edge entering d has its weight
multiplied by Z.

Now, with Hϕ defined, we prove that computing det(Hϕ)
is equivalent to computing the number of satisfying assign-
ments of ϕ. We first observe the following analogue of
Lemma 3.2.

Lemma 3.6. Let Ccon be the set of all consistent cycle cov-

ers of H0
ϕ. Then there exists z ∈ {1,−1} such that for all

C ∈ Ccon, we have sgn(C)w(C) = zI2.

Proof. As in the proof of Lemma 3.2, there is a bijection
between satisfying assignments of ϕ and consistent cycle cov-
ers of H0

ϕ. We need to show that each of these cycle covers
has the same signed weight. For such a cycle cover C ∈ Ccon
we have sgn(C) = (−1)n

0
H−c(C), where n0

H is the number of
vertices in H0

ϕ and c(C) is the number of cycles in C. We

further know that (−1)c(C) = (−1)p+m+q, where p is the
number of cycles used to cover the n variable gadgets, m is
the number of clauses, and q is the number of times C uses
two cycles to cover a clause gadget. Since we assumed p to

be even, we have sgn(C) = (−1)n
0
H+m+q.

On the other hand, w(C) is the product of the edge weights
of C. All of these weights are I2 except for the w(x, y)
in the clause gadget, which has weight −I2 and shows up
when C uses two edges for a clause gadget. Thus w(C) =

(−1)qI2, and sgn(C)w(C) = (−1)n
0
H+mI2, which is indepen-

dent of the cycle cover C. (Hence,
P
C∈Ccon sgn(C)w(C) =

(−1)n
0
H+mSI2, where S is the number of satisfying assign-

ments of ϕ.)

Without loss of generality, we can assume from here on that
the sign z is positive, as we can insert a new vertex within
an edge so that n0

H +m is even.
We now prove the following useful identities for XOR gad-

gets, which can be verified by hand.

Lemma 3.7. Let M be the adjacency matrix for the XOR
gadget, i.e.,

M =

0BB@
0 −X −Y Z
0 X 2Y Z
0 3X 0 Z
I2 X Y −Z

1CCA .

Letting MI,J indicate the minor of M with rows in set I
and columns in set J removed, we have (1) det(M3,1) =
−4I2; (2) det(M1,3) = −4J2; (3) det(M) = det(M1,1) =

det(M3,3) = det(M{1,3},{1,3}) = 0, where J2 =

„
0 1
1 0

«
.

Now consider a graph G with vertices labeled 1, . . . , nG
and weights in M2(F). Suppose G contains vertex-disjoint
edges (u, u′) and (v, v′), each with weight I2. Suppose now

that the edges (u, u′) and (v, v′) are replaced by an XOR
gadget as shown in Figure 3. This results in a new graph
G′, with four new vertices a, b, c and d, which we number
nG + 1, . . . , nG + 4. We now define a mapping ψ from C(G)
to subsets of C′(G) as follows: given cycle covers C ∈ C(G)
and C′ ∈ C(G′), then C′ ∈ ψ(C) if and only if (1) for all
edges e ∈ C\{(u, u′), (v, v′)}, we have e ∈ C′; (2) (u, u′) ∈ C
if and only if (u, a), (c, u′) ∈ C′; and (3) (v, v′) ∈ C if and
only if (v, c), (a, v′) ∈ C′.

This leads to the following analogue of Lemma 3.3:

Lemma 3.8. Let Cu\v = {C ∈ C(G) : (u, u′) ∈ C, (v, v′) 6∈
C} be the set of cycle covers of G containing (u, u′) but
not (v, v′), and Cv\u = {C ∈ C(G) : (v, v′) ∈ C, (u, u′) 6∈
C}. Then there exists a mapping ψ from C(G) to subsets
of C′(G) such that ψ(C1) ∩ ψ(C2) = ∅ for all C1, C2 ∈
C(G) and (1) for any C ∈ Cu\v, the total weight of ψ(C) isP
C′∈ψ(C) sgn(C′)w(C′) = 4sgn(C)w(C), (2) for any C ∈

Cv\u,
P
C′∈ψ(C) sgn(C)w(C′) = 4sgn(C)w(C)J2, and (3)

the remaining cycle covers in G′ have total weightP
C′ 6∈ψ(C)∀C∈Cu\v∪Cv\u

sgn(C′)w(C′) = 0.

Proof. We start by proving (1). Fix any C ∈ Cu\v.
Notice that ψ(C) consists of all C′ ∈ C(G′) that contain
(u, a), (c, u′) and all of C’s edges except (u, u′). Call this set
of common edges EC ; by the assumption that w(u, u′) = I2,
w(EC) = w(C). The set ψ(C) consists of all possible ways
of completing EC to a cycle cover C′ of G′ by adding edges
to G′ so that every vertex has indegree and outdegree 1.
Within EC , the only vertices with deficient degree are a, b, c
and d. Vertices b and d have indegree and outdegree 0, while
a has indegree 1 and outdegree 0, and c has indegree 0 and
outdegree 1. Note that the edges (u, a) and (c, u′) must
belong to the same cycle in C′, and so the edges in EC form
zero or more completed cycles and an incomplete cycle from
c to a. The number of completed cycles is c(C) − 1, where
c(C) is the number of cycles in C.

We thus need to add three edges matching the vertices
{a, b, d} to the vertices {b, c, d}; call these three edges EXOR,
so that EC ∪ EXOR forms a cycle cover C′. The weight of
C′ is therefore w(C′) = w(EC)w(EXOR). The sign of C′

is (−1)n+4−c(C′), where c(C′) is the number of cycles in
C′. We can see that c(C′) is the sum of the number of
completed cycles in EC and the number of cycles among
{a, b, c, d} assuming the existence of an edge from c to a.
Hence c(C′) = c(C)−1+c(EXOR∪{(c, a)}), and so sgn(C′) =

−sgn(C)(−1)4−c(EXOR∪{(c,a)}) = −sgn(C)sgn(EXOR ∪
{(c, a)}). Thus,

P
C′∈ψ(C) sgn(C′)w(C′) =

− sgn(C)w(EC)
P
C′∈ψ(C) sgn(EXOR ∪ {(c, a)})w(EXOR) =

−sgn(C)w(EC) det(M3,1). From Lemma 3.7, this is
4sgn(C)w(EC) = 4sgn(C)w(C), as required.

The proof of (2) proceeds similarly, except that ψ(C) con-
tains (v, c) and (a, v′) instead of (u, a) and (c, v′). The set
of common edges then has an incomplete path from a to
c. As a result, we end up with

P
C′∈ψ(C) sgn(C′)w(C′) =

−sgn(C)w(EC) det(M1,3) = 4sgn(C)w(C)J2.
To prove (3), we observe that a cycle cover in C(G′) that

contains (u, a) and (c, u′) but not (v, c) or (a, v′) must fall
into ψ(C) for some C ∈ Cu\v; similarly, any cycle cover
containing (v, c) and (a, v′) but not (u, a) or c, u′) must fall
into ψ(C) for some C ∈ Cv\u. These were already accounted
for in the proofs of (1) and (2), so we can concentrate only on
the leftover cycle covers. Partition these leftover cycle covers

into equivalence classes based on their edge sets excluding
edges wholly within {a, b, c, d}; namely C′1 ∼ C′2 if and only
if C′1 \ {a, b, c, d} × {a, b, c, d} = C′2 \ {a, b, c, d} × {a, b, c, d}.
For any equivalence class, its cycle covers must either all
(a) contain none of these four edges, (b) contain (u, a) and
(a, v′) only, (c) contain (v, c) and (a, v′) only, or (d) contain
all four edges.

Up to sign, the total weights of those equivalence classes in
(a) contain a factor of det(M), those in (b) contain a factor
det(M1,1), those in (c) contain a factor det(M3,3), and those
in (d) contain a factor det(M{1,3},{1,3}). From Lemma 3.7,
all four of these determinants are 0, and so the total weight
of the cycle covers in any equivalence class is 0, as is therefore
the total weight of all the leftover cycle covers.

With this in hand, we can prove the following key result:

Theorem 3.9. Given a 3SAT formula ϕ with S satisfying
assignments, let the graph Hϕ with weights in M2(F) be as
defined above. Then det(Hϕ) = aI2 + bJ2, where a + b =
43mS.

Proof. The structure of the proof is similar to the sketch
given after Theorem 3.4, though with extra care needed to
handle the complications of working with matrices. In the
end, each cycle cover of G ends up with weight 43mI2 or
43mJ2, giving the result.

Let us start with H0
ϕ, which we know from Lemma 3.6 has

det(H0
ϕ) = SI2. In particular, for each satisfying assignment

of ϕ, there is a consistent cycle cover of H0
ϕ of weight I2.

There exist 3m pairs of edges in H0
ϕ that when replaced by

XOR gadgets will convert H0
ϕ to Hϕ; each of these pairs

contains an external edge in a clause gadget and an external
edge in a variable gadget referring to the same literal.

Consider what happens when we replace one of the above-
mentioned edge pairs with an XOR gadget, forming a new
graph H1

ϕ. From Lemma 3.8, each cycle cover C that is
consistent on this edge pair in H0

ϕ will be mapped to ψ(C),
a set of cycle covers in the new graph whose total signed
weight will either be 4I2 or 4J2. Further, since all of these
sets ψ(C) are disjoint and all other cycle covers have total
signed weight 0, the total signed weight of all cycle covers
in H1

ϕ is
P
C∈C1con(G) 4K2(C), where C1con(G) are those cycle

covers of G that are consistent on this edge pair, and K2(C)
is either I2 or J2.

Now suppose a second edge pair is replaced with an XOR
gadget, resulting in the graph H2

ϕ. Consider a cycle cover
C of H0

ϕ in ψ(C) that is consistent on both the first and
second edge pairs. Then each cycle cover of H1

ϕ in ψ(C)
will be mapped to a set of cycle covers ψ(ψ(C)) of H2

ϕ, with
signed weight that is 4I2 or 4J2 multiple of its signed weight
in H1

ϕ. The set ψ(ψ(C)) therefore has total signed weight of
either 16I2 or 16J2, since all of the images of ψ are disjoint.
Once again, the total signed weight of all cycle covers in H2

ϕ

is
P
C∈C1,2

con(G)
16K2(C), where C1,2con(G) is the set of cycle

covers of G consistent on both edge pairs.
Carrying this out over all 3m edge pairs to reach Hϕ, we

see that every consistent cycle cover ofH0
ϕ becomes a disjoint

set of cycle covers in Hϕ of total signed weight 43mI2 or
43mJ2, while all other cycle covers in Hϕ have total weight
0. The total weight over all original consistent cycle covers isP
C∈Ccon(G) 43mK2(C). This therefore takes the form given

in the theorem.

This completes the proof of Theorem 3.5.

4. DETERMINANT COMPUTATION OVER
UPPER TRIANGULAR MATRIX ALGE-
BRAS

In this section, we consider the problem of computing the
determinant over the algebra of upper triangular matrices
of dimension d. We show that the determinant over these
algebras can be computed in time NO(d), where N denotes
the size of the input. We will later generalize this result to
arbitrary algebras to yield Theorem 5.4.

Given a field F, recall that Ud(F) denotes the algebra
of upper triangular matrices of dimension d with entries
from F.

Theorem 4.1. Let F be a field. There exists a determin-
istic algorithm that, when given as input an n×n matrix M
with entries from Ud(F), computes the determinant of M in
time poly(Nd), where N is the size of the input.

Proof. The algorithm is simple. We write out the ex-
pression for the determinant of M and note that each entry
of det(M) may be written as the sum of nO(d) many deter-
minants of matrices with entries from the underlying field.
Since each of these can be computed in time NO(1), we ob-
tain an NO(d)-time algorithm for our problem.

Let M = (mi,j), where mi,j ∈ Ud(F) for each i, j ∈ [n].
Given m ∈ Ud(F), we use m(p, q) to denote the (p, q)th entry
of m. We have

det(M) =
X
σ∈Sn

sgn(σ)m1,σ(1)m2,σ(2) · · ·mn,σ(n)

Consider a product of matrices m = m1 · · ·mn where each
mi ∈ Ud(F). For p, q ∈ [d] such that p ≤ q, we may write
the (p, q)th entry of m as

m(p, q) =
X

k1,k2,...,kn−1∈[d]

m1(p, k1)m2(k1, k2) · · ·mn(kn−1, q)

=
X

p≤k1≤···≤kn−1≤q

m1(p, k1)m2(k1, k2) · · ·mn(kn−1, q)

(4.1)

where the last equality follows since mi(k, l) = 0 unless k ≤
l. Note that the number of terms in the summation in (4.1)
is equal to the number of increasing sequences of length n
consisting of elements from [d] and is bounded by nO(d).

Fix any p, q ∈ [d] such that p ≤ q. By (4.1), we may write
det(M)(p, q) asX
p≤k1≤···≤kn−1≤q

X
σ∈Sn

sgn(σ) ·m1,σ(1)(p, k1) ·

m2,σ(2)(k1, k2) · · ·mn,σ(n)(kn−1, q).

We now note that each of the inner summations may be
written as the determinant of an appropriate matrix over
the underlying field. Fix any k = (k1, . . . , kn−1) satisfying
p ≤ k1 ≤ k2 ≤ · · · ≤ kn−1 ≤ q. Denote by Mk the matrix
(mi,j(ki−1, ki))i,j , where k0 denotes p and kn denotes q. It
follows from (4.2) that det(M)(p, q) =

P
k det(Mk).

Note that the matrices Mk are n×n matrices with entries
from the underlying field, and hence their determinants can
be computed in time NO(1). Therefore, we can compute
det(M)(p, q), for each p, q, in time nO(d) · NO(1) = NO(d).
The result follows.

5. DETERMINANT COMPUTATION OVER
GENERAL ALGEBRAS

We now consider the problem of computing the determi-
nant of an n × n matrix with entries from a general finite-
dimensional algebra A of dimension D over a field F that is
either finite or the rationals. We consider the algorithmic
question of computing the determinant over A, where A is
a fixed algebra (and hence of constant dimension) such as
M2(F).

We prove a strong dichotomy for finite fields of character-
istic p > 2. For any fixed algebra A, we show, based on the
structure of the algebra, that either the determinant over A
is polynomial time computable, or computing the determi-
nant over A is ModpP -hard. For the rationals, we do not
obtain a dichotomy but our results yield upper and lower
bounds for many interesting classes of algebras.

We first recall a few basic facts about the structure of
finite dimensional algebras. An algebra is simple if it is
isomorphic to a matrix algebra (possibly of dimension 1)
over a field extension of F. An algebra is semisimple if it
can be written as the direct sum of simple algebras.5

Recall that a left ideal in an algebra A is a subalgebra I
of A such that for any x ∈ I and a ∈ A, we have ax ∈ I;
a right ideal is defined similarly. An ideal I is said to be
nilpotent if there exists an m ≥ 1 such that the product
of any m elements from I is 0. The radical of A, denoted
R(A), is defined to be the ideal generated by all the nilpotent
left ideals of A. We list some well-known properties of the
radical (see [8, Chapter IV]): (a) the radical is a left and
right ideal in A; (b) the radical is nilpotent; and (c) A/R(A)
is semisimple. The least d such that the product of any d
elements of R(A) is 0 is called the nilpotency index of R(A).

An algebra A is a semidirect sum of subalgebras B1 and
B2 if A = B1 ⊕B2 as a vector space; we denote this as A =
B1⊕′B2. The Wedderburn-Malcev theorem tells us that any
algebra is a semidirect sum of its radical with a subalgebra.
We refer to such a decomposition as a Wedderburn-Malcev
decomposition.

We start with the hardness result, which is a formal ver-
sion of Theorem 1.2 in the introduction.

Theorem 5.1. Let A denote any fixed algebra over a fi-
nite field F of characteristic p > 2. If A/R(A) is noncommu-
tative, computing the determinant over A is ModpP -hard.

Proof. Consider the problem of computing the determi-
nant over an algebra A such that A/R(A), the “semisimple
part”of A, is noncommutative. Since A/R(A) is semisimple,
we know that A/R(A) ∼=

L
iAi, where each Ai is a simple

algebra, and hence isomorphic to a matrix algebra over a
field extension of F. If each of the Ai’s is a matrix algebra
of dimension 1 (that is, each Ai is simply a field extension
of F), then A/R(A) is commutative. Hence, w.l.o.g., we as-
sume that A1 has dimension greater than 1. Moreover, by
the Wedderburn-Malcev theorem we know that A contains
a subalgebra B ∼= A/R(A). Thus, the algebra A1 is isomor-
phic to a subalgebra of A. Thus, Theorem 3.5 immediately
implies that computing the determinant over A is ModpP -
hard.

5This is not the standard definition of semisimplicity in the case
of infinite fields. However, we will only use it in the case that F
is finite (cf., [13].)

5.1 The upper bound
In this section, we show that if A/R(A) is commutative

then the determinant over A is efficiently computable. How-
ever, we present our result in somewhat greater generality.
We assume that the algebra A is presented to the algorithm
along with the input as follows: we are given a (vector space)
basis {a1, . . . , aD} for A along with the pairwise products
aiaj for every i, j ∈ [D]. Let d denote the nilpotency index
of R(A).

The Wedderburn-Malcev theorem tells us that the algebra
A = B ⊕′ R(A), where B is a semisimple subalgebra of A
isomorphic to A/R(A), and hence commutative.

We use without explicit mention the following result, which
was stated in the work of Chien and Sinclair [6] (and implicit
in that of Mahajan and Vinay [14] and several other works):
There is a deterministic algorithm which, when given any
commutative algebra A of dimension D and an n × n ma-
trix over A as input, computes the determinant of A in time
poly(n,D).

We start with two simple lemmas, the proofs of which are
deferred to the full version.

Lemma 5.2. There is a deterministic polynomial time al-
gorithm which, when given an algebra A as input, computes
the nilpotency index of A.

Lemma 5.3. Let A be a finite-dimensional algebra with
Wedderburn-Malcev decomposition A = B ⊕′ R(A). Then
1 ∈ B.

These lemmas and a generalization of Theorem 4.1 yield
the following:

Theorem 5.4. There exists a deterministic algorithm that,
when given as input an algebra A of dimension D s.t. A/R(A)
is commutative, and an n×n matrix M with entries from A,
computes the determinant of M in time NO(d), where d is
the nilpotency index of R(A) and N is the size of the input.

In particular, when A is a fixed algebra, d ≤ D = O(1),
and hence Theorem 5.4 gives us a polynomial time algo-
rithm. This immediately yields the sharp dichotomy theo-
rem in the case of a fixed algebra over finite fields of odd
characteristic.

Corollary 5.5. Let F be any finite field of odd charac-
teristic and A be any fixed algebra over F. Then, if A/R(A)
is noncommutative, computing the determinant over A is
ModpP -hard. If A/R(A) is commutative, then the determi-
nant can be computed in polynomial time.

Proof of Theorem 5.4. The algorithm first computes
the Wedderburn-Malcev decomposition A = B ⊕′ R(A) of
the algebra A: a result of de Graaf et al. ([9]) shows that such
a decomposition may be computed efficiently. By Lemma 5.2,
we can compute the nilpotency index d of the algebra in
deterministic polynomial time. We assume that d ≤ n; oth-
erwise, the brute force algorithm for the determinant has
running time NO(d).

For any i and j, the (i, j)th entry of the input matrix M
can be written uniquely as mi,j = bi,j + ri,j where bi,j ∈ B
and ri,j ∈ R(A); the elements bi,j and ri,j are also efficiently
computable. Now, note that the determinant of the input

matrix M can be written as

det(M) =
X
σ∈Sn

sgn(σ)

nY
i=1

(bi,σ(i) + ri,σ(i))

=
X
σ∈Sn

sgn(σ)
X
S⊆[n]

t(σ, S)

where t(σ, S) is the product, in increasing order of i, of ri,j
for i ∈ S and bi,j for i 6∈ S. Note that t(σ, S) ∈ R(A)|S|

(we use here the fact that R(A) is an ideal in A) and hence,
t(σ, S) = 0 if |S| ≥ d. Thus, we need only consider S of size
strictly less than d.

We divide the terms t(σ, S) based on the ri,j that actually
appear in t(σ, S). Specifically, for each 1-1 function f : S →
[n], let t(σ, S, f) denote t(σ, S) if σ|S = f and 0 otherwise.
We can write the determinant det(M) as

det(M) =
X
S⊆[n]:
|S|<d

X
f :S→[n]:
f 1−1

X
σ∈Sn

sgn(σ)t(σ, S, f)

=
X
S⊆[n]:
|S|<d

X
f :S→[n]:
f 1−1

det(M(S, f))

where the entriesm(S, f)i,j ofM(S, f) are defined as follows:
for i ∈ S, m(S, f)i,j = 0 if f(i) 6= j and ri,j otherwise; for
i 6∈ S, m(S, f)i,j = bi,j . We show that for each S and f as

above, det(M(S, f)) can be computed in time NO(d), which

will prove the theorem since there are only nO(d) of them to
compute. For the remainder of the proof, we fix some subset
S ⊆ [n] of size t < d and f : S → [n] that is 1-1.

Note that the matrix M(S, f) is“almost”a matrix over the
commutative subalgebra B of A: it contains exactly d entries
outside B, one in each row indexed by an element of S. We
reduce the computation of det(M(S, f)) to the computation
of the determinant of a similar matrix over a commutative
algebra closely related to B. Indeed, let B⊗(t+1) denote
B⊗B⊗· · ·⊗B (t+1 times). This is a commutative algebra

of dimension at most Dd. Furthermore, we see that 1⊗(t+1)

is the identity element of this algebra, which we denote by 1.
For i ∈ [t] ∪ {0}, we denote by Bi the following subalgebra

of B⊗(t+1): 1⊗i ⊗ B ⊗ 1⊗(t−i). It can easily be seen that
each Bi is isomorphic to B by the isomorphism φi : B → Bi
where φi(b) = 1⊗i ⊗ b⊗ 1⊗(t−i).

For i ∈ [n], we denote by Pre(i) the set {i′ ∈ S | i′ < i}.
We now construct a new matrix M ′(S, f) with entries from

B⊗(t+1) as follows:

m′(S, f)i,j =

8<: 0 if i ∈ S and f(i) 6= j,
1 if i ∈ S and f(i) = j,
φ`(m(S, f)i,j) if i 6∈ S and ` = |Pre(i)|.

In words, to construct M ′(S, f) we replace each entry in
M(S, f) that is in R(A) by the identity 1, and each entry
bi,j ∈ B by the corresponding element in B`, where ` =
|Pre(i)|.

Since M ′(S, f) is a matrix with entries from the commu-

tative algebra B⊗(t+1), its determinant can be computed
in time NO(d). Say S = {i1, . . . , it} and f(ik) = jk for
k ∈ [t]. Let {e1, . . . , em} be a basis for B. Then, we

have det(M(S, f)) =
P

σ∈Sn:
σ|S=f

sgn(σ)
“Q

i<i1
bi,σ(i)

”
· ri1,j1 ·“Q

i1<i<i2
bi,σ(i)

”
· ri2,j2 · · · rit,jt ·

“Q
i>it

bi,σ(i)

”
.

Each product of the form
Q
i∈T bi,σ(i) that appears in the

summation above is an element of the commutative algebra
B and hence det(M(S, f)) can be expanded in the basis of
B as follows:X
σ∈Sn:
σ|S=f

sgn(σ)

mX
k=1

α
(0)
k,σek

!
· ri1,j1 · · · rit,jt ·

mX
k=1

α
(t)
k,σek

!

=
X

k∈[m]t+1

 X
σ

sgn(σ)α
(0)
k0,σ
· · ·α(t)

kt,σ

!
ek0ri1,j1 · · · rit,jtekt

=
X

k∈[m]t+1

ck · ek0ri1,j1ek1 · · · rit,jtekt , (5.1)

where k denotes the tuple (k0, . . . , kt) and ck denotesP
σ:σ|S=f α

(0)
k0,σ
· · ·α(t)

kt,σ
. Let us expand det(M ′(S, f)) sim-

ilarly. We use e
(`)
k to denote φ`(ek). We can write

det(M ′(S, f)) as

X
σ∈Sn:
σ|S=f

sgn(σ)
Y
i<i1

φ0(bi,σ(i)) · 1 · · ·1 ·
Y
i>it

φt(bi,σ(i))

=
X
σ∈Sn:
σ|S=f

sgn(σ)

mX
k=1

α
(0)
k,σe

(0)
k

!
· 1 · · ·1 ·

mX
k=1

α
(t)
k,σe

(t)
k

!

=
X
k

ck · e
(0)
k0
e
(1)
k1
· · · e(t)kt

=
X
k

ck · ek0 ⊗ ek1 ⊗ · · · ⊗ ekt .

Thus, we can simply read off the coefficients ck from
det(M ′(S, f)) and, using Equation (5.1), we can compute
det(M(S, f)). Since det(M ′(S, f)) can be computed in

time NO(d), we obtain a NO(d)-time algorithm to compute
det(M(S, f)) and hence det(M) as well.

6. DISCUSSION
Our results show that the basic Godsil-Gutman approach

to approximating the permanent, as generalized by Chien
et al. [5] runs into many obstacles, since the estimators are
not efficiently computable. In the case of the quaternions,
the result of Chien et al. shows that a suitable modification
of the basic estimator still gives a relatively good approxi-
mation to the permanent. Is there such a modification for
matrix algebras?

Our dichotomy theorem in Section 5 used crucially the fact
that we worked over a finite field of odd characteristic. Over
the rationals, for example, even the structure of semisimple
algebras is fairly complicated, and we do not have an ex-
act characterization of when the determinant over such an
algebra is efficiently computable. Extending our dichotomy
theorem to these algebras is an interesting open problem.

Theorem 5.4 shows that even when given the algebra A
as input, the determinant remains efficiently computable as
long as A/R(A) is commutative and A has bounded nilpo-
tency index. How close is this to being a characterization of
algebras over which the determinant is polynomial time com-
putable (under reasonable complexity assumptions) when
the algebra is part of the input? More generally, can one
come up with suitable conditions on the radical R(A) under
which computing the determinant over A is hard even when
A/R(A) is commutative?

7. REFERENCES
[1] Arora, S., and Barak, B. Computational Complexity: A

Modern Approach. Cambridge University Press, 2009.
[2] Arvind, V., and Srinivasan, S. On the hardness of the

noncommutative determinant. In Proc. 42nd ACM Symp.
on Theory of Computing (STOC) (2010), pp. 677–686.

[3] Barvinok, A. I. Polynomial time algorithms to approximate
permanents and mixed discriminants within a simply expo-
nential factor. Random Struct. Algorithms 14, 1 (1999), 29–
61.

[4] Berkowitz, S. J. On computing the determinant in small
parallel time using a small number of processors. Inf. Pro-
cess. Lett. 18, 3 (1984), 147–150.

[5] Chien, S., Rasmussen, L. E., and Sinclair, A. Clifford al-
gebras and approximating the permanent. J. Computer and
System Sciences 67, 2 (2003), 263–290. (Preliminary version
in 34th STOC, 2002).

[6] Chien, S., and Sinclair, A. Algebras with polynomial iden-
tities and computing the determinant. SIAM J. Computing
37, 1 (2007), 252–266. (Preliminary version in 45th FOCS,
2004).

[7] Chistov, A. Fast parallel calculation of the rank of matrices
over a field of arbitrary characteristic. In Fundamentals of
Computation Theory, L. Budach, Ed., vol. 199 of LNCS.
Springer, 1985, pp. 63–69.

[8] Curtis, C. W., and Reiner, I. Representation Theory of
Finite Groups and Associative Algebras. No. XI in Pure and
Applied Mathematics. Interscience Publishers, 1962.

[9] de Graaf, W. A., Ivanyos, G., Küronya, A., and Rónyai,
L. Computing levi decompositions in lie algebras. Appl. Al-
gebra Eng. Commun. Comput. 8, 4 (1997), 291–303.

[10] Godsil, C. D., and Gutman, I. On the matching poly-
nomial of a graph. In Algebraic Methods in Graph The-
ory, Vol. I, L. Lovász and V. T. S’os, Eds. North Holland,
Amsterdam–New York, 1981, pp. 241–249.

[11] Hyafil, L. The power of commutativity. In Proc. 18th IEEE
Symp. on Foundations of Comp. Science (FOCS) (1977),
pp. 171–174.

[12] Karmarkar, N., Karp, R. M., Lipton, R. J., Lovász, L.,
and Luby, M. A monte-carlo algorithm for estimating the
permanent. SIAM J. Computing 22, 2 (1993), 284–293.

[13] Lam, T.-Y. A first course in noncommutative rings, vol. 131
of Graduate texts in Mathematics. Springer, 1991.

[14] Mahajan, M., and Vinay, V. Determinant: Combinatorics,
algorithms, and complexity. Chicago J. Theor. Comput. Sci.
1997, 5 (1997). (Preliminary version in 8th SODA, 1997).

[15] Moore, C., and Russell, A. Approximating the permanent
via nonabelian determinants, 2009.

[16] Nisan, N. Lower bounds for non-commutative computation
(extended abstract). In Proc. 23rd ACM Symp. on Theory
of Computing (STOC) (1991), pp. 410–418.

[17] Papadimitriou, C. H. Computational Complexity. Addison-
Wesley, 1994.

[18] Samuelson, P. A. A method of determining explicitly the
coefficients of the characteristic equation. Annals of Mathe-
matical Statistics 13, 4 (1942), 424–429.

[19] Valiant, L. G. The complexity of computing the permanent.
Theoretical Comp. Science 8 (1979), 189–201.

[20] Winograd, S. On the number of multiplications necessary
to compute certain functions. Comm. on Pure and Appl.
Math. 23, 2 (1970), 165–179.

	Introduction
	Our results

	Preliminaries
	The lower bound for 2 x 2 matrix algebras
	Valiant's lower bound for the permanent
	Our construction

	Determinant computation over upper triangular matrix algebras
	Determinant computation over general algebras
	The upper bound

	Discussion
	References

