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We extend the notion of consecutive pattern avoidance to con-
sidering sums over all permutations where each term is a prod-
uct of weights depending on each consecutive pattern of a fixed
length. We study the problem of finding the asymptotics of these
sums. Our technique is to extend the spectral method of Ehrenborg,
Kitaev and Perry. When the weight depends on the descent pattern
we show how to find the equation determining the spectrum. We
give two length 4 applications. First, we find the asymptotics of
the number of permutations with no triple ascents and no triple
descents. Second, we give the asymptotics of the number of per-
mutations with no isolated ascents or descents. Our next result is
a weighted pattern of length 3 where the associated operator only
has one non-zero eigenvalue. Using generating functions we show
that the error term in the asymptotic expression is the smallest
possible.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Ehrenborg, Kitaev and Perry [3] used the spectrum of linear operators on the space L2([0,1]m) to
study the asymptotics of consecutive pattern avoidance. We extend their techniques to study asymp-
totics of sums over all permutations where each term is a product of weights which depend on the
consecutive patterns of a fixed length m + 1. When the weights are all zero or one, this reduces to
studying consecutive pattern avoidance. Furthermore, when the weights depend on the descent pat-
tern, we show how to obtain the equation whose roots are the spectrum of the associated linear
operator. In general this is a transcendental equation.

We give two length 4 examples. First we study the number of permutations with no triple ascents
and no triple descents. This is equivalent to {1234,4321}-avoiding permutations. We determine the
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transcendental eigenvalue equation and a numerical approximation to the largest root, which gives
the asymptotics of the number such permutations.

The second example is permutations that avoid the ten alternating patterns 1324, 1423, 2314,
2413, 3412 and 2143, 3142, 3241, 4132, 4231. This is the class of permutations with no isolated
ascents or descents. Yet again, we obtain the transcendental eigenvalue equation satisfied by the
spectrum and give numerical approximation to its largest root.

We next turn to a weighted length 3 example. We are interested in the sum over all 123-avoiding
permutations where the term is 2 to the power of the number of double descents. Here we also con-
sider the extra conditions if the permutation begins/ends with an ascent or a descent. The associated
operator only has one non-zero eigenvalue, namely 1. Hence the asymptotics is a constant c times n
factorial and the error term is bounded by n! · rn where r is an arbitrary small positive number.

It remains to understand the error term. We are able to find the associated generating functions.
Furthermore, we show that the error term is the smallest possible! The asymptotics is c · n! (where
the constant c is irrational, in fact, transcendental) and the explicit expression is the nearest integer
to c · n! for large enough n. This behavior also occurs with the derangement numbers. This classical
sequence makes its appearance as one of the sequences that we study.

We end the paper with concluding remarks and open problems.

2. Weighted consecutive pattern avoidance

For x1, x2, . . . , xk distinct real values, define Π(x1, x2, . . . , xk) to be the unique permutation σ in
the symmetric group Sk such that xi < x j if and only if σi < σ j for all indices 1 � i < j � k. We say
that a permutation π in Sn consecutively avoid a permutation σ in Sm if there is no index i such
that Π(πi,πi+1, . . . ,πi+m−1) = σ .

Let wt be a real-valued weight function on the symmetric group Sm+1. Similarly, let wt1, wt2
be two real-valued weight functions on the symmetric group Sm . We call wt1 and wt2 the initial,
respectively, the final weight function. We extend these three weight functions to the symmetric
group Sn for n � m by defining

Wt(π) = wt1
(
Π(π1,π2, . . . ,πm)

)
·

n−m∏
i=1

wt
(
Π(πi,πi+1, . . . ,πi+m)

)
· wt2

(
Π(πn−m+1,πn−m+2, . . . ,πn)

)
.

In other words, the weight of a permutation π in Sn is the product of the initial weight function
wt1 applied to the m first entries of π with the product of the weight function wt applied to every
segment of π of length m + 1 with the final weight function wt2 applied to the m last entries of π .
The question is what can one say about the quantity

αn =
∑

π∈Sn

Wt(π).

Consecutive pattern avoidance can be studied this way by using the weight functions wt1(σ ) =
wt2(σ ) = 1 for all σ in Sm and wt(σ ) = 1 if σ /∈ S and wt(σ ) = 0 otherwise, where S ⊆ Sm+1 is the
set of forbidden patterns. Observe then that a permutation π ∈ Sn avoids the patterns in S if and
only if Wt(π) = 1. Note that by letting the initial weight function wt1 and the final weight function
wt2 be 0,1-functions, we are studying consecutive pattern avoidance with forbidden initial and final
configurations.

The methods of Ehrenborg, Kitaev and Perry [3] to study the asymptotics of consecutive pattern
avoidance by considering the spectrum of operators on L2([0,1]m) naturally extend to this more gen-
eral setting of weights on permutations.
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Define the function χ on the (m + 1)-dimensional unit cube [0,1]m+1 by χ(x) = wt(Π(x)). Note
that χ is undefined on a point with two equal coordinates. However, this situation occurs on a set of
measure zero and hence can be ignored. Next define the operator T on the space L2([0,1]m) by

T
(

f (x1, . . . , xm)
) =

1∫
0

χ(t, x1, . . . , xm) · f (t, x1, . . . , xm−1)dt. (2.1)

Note that L2([0,1]m) is a Hilbert space with the inner product defined by

( f , g) =
∫

[0,1]m

f (x1, . . . , xm) · g(x1, . . . , xm)dx1 · · ·dxm.

The adjoint operator T ∗ is defined by the relation ( f , T ∗(g)) = (T ( f ), g). For the operator T defined
in Eq. (2.1) we have that

T ∗( f (x1, . . . , xm)
) =

1∫
0

χ(x1, . . . , xm, u) · f (x2, . . . , xm, u)du.

Finally, the spectrum of an operator T is all the values λ such that T − λ · I is not an invertible
operator.

Similarly to the function χ , define the two functions κ and μ on the m-dimensional unit cube
[0,1]m by κ(x) = wt1(Π(x)) and μ(x) = wt2(Π(x)).

Generalizing the main result in [3], we have the following theorem.

Theorem 2.1. The non-zero spectrum of the associated operator T consists of discrete eigenvalues of finite
multiplicity which may accumulate only at 0. Furthermore, let r be a positive real number such that there is no
eigenvalue of T with modulus r and let λ1, . . . , λk be the eigenvalues of T greater in modulus than r. Assume
that λ1, . . . , λk are simple eigenvalues with associated eigenfunctions ϕi and that the adjoint operator T ∗ has
eigenfunctions ψi corresponding the eigenvalues λi . Then we have the expansion

αn/n! = (
T n−m(κ),μ

) =
k∑

i=1

(ϕi,μ) · (κ,ψi)

(ϕi,ψi)
· λn−m

i + O
(
rn). (2.2)

The proof is the same as in [3, Section 2.2] and hence omitted.
Theorem 2.1 requires us to determine both the eigenfunction ϕ and the adjoint eigenfunction ψ for

each eigenvalue in order to compute the constant in each term. However, when the weight function
has symmetry in the sense described below then the adjoint eigenfunction can be determined from
the eigenfunction.

Let J be the involution on L2([0,1]m) given by J ( f (x1, x2, . . . , xm)) = f (1 − xm, . . . ,1 − x2,

1 − x1). Note that J is a self-adjoint operator on L2([0,1]m), that is, ( J f , g) = ( f , J g). Similar to
[3, Lemma 4.7] we have that

Lemma 2.2. Assume that the weight function wt is real-valued and satisfies the symmetry

wt(σ ) = wt(m + 2 − σm+1,m + 2 − σm, . . . ,m + 2 − σ1)

for all σ ∈ Sm+1 . If ϕ is an eigenfunction of the operator T with eigenvalue λ then ψ = Jϕ is an eigenfunction
of the adjoint T ∗ with the eigenvalue λ. Furthermore, we have the equality ( f ,ψ) = (ϕ, J f ) for a real-valued
function f .
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To prove Lemma 2.2, the only part that differs from the proof in [3, Lemma 4.7] is the line ( f ,ψ) =
( f , Jϕ) = ( f , Jϕ) = ( J f ,ϕ) = (ϕ, J f ) = (ϕ, J f ).

3. Weighted descent pattern avoidance

We now introduce weighted descent pattern avoidance and the connection with consecutive pat-
tern avoidance. For a permutation π = π1π2 · · ·πn ∈ Sn define its descent word (see for instance [4,8])
to be u(π) = u1u2 · · · un−1 where ui = a if πi < πi+1 and ui = b if πi > πi+1, that is, an a at position
i encodes that π has an ascent at position i and a b encodes a descent.

Let wt be a weight function on ab-words of length m, that is, the set {a,b}m . Similarly, let wt1
and wt2 be weight functions on ab-words of length m − 1. We extend this weight function to words
of length n greater than m − 1 by letting

Wt(v1 · · · vn) = wt1(v1 · · · vm−1) ·
n−m+1∏

i=1

wt(vi · · · vi+m−1) · wt2(vn−m+2 · · · vn).

Finally, we extend the weight to permutations by letting Wt(π) = Wt(u(π)).
Recall that the word x has the word w as a factor if we can write x = v · w · z, where v and z are

also words and the dot denotes concatenation. Let U be a collection of ab-words of length m, that is,
U is a subset of {a,b}m . Define S(U ) by

S(U ) = {
σ ∈ Sm+1: u(σ ) ∈ U

}
.

It is clear that a permutation π that avoids the descent patterns in U is equivalent to that the per-
mutation avoids the consecutive patterns in S(U ). Hence descent pattern avoidance is a special case
of consecutive pattern avoidance.

A few examples are in order.

Example 3.1. m = 1 and U = {b}. There is only one permutation without any descents, namely 12 · · ·n,
and hence αn = 1.

Example 3.2. m = 2 and U = {ab}. This forces the permutation to have no peaks. Hence αn = 2n−1 for
n � 1.

Example 3.3. m = 2 and U = {aa,bb}. This forces the permutation to be alternating. Alternating per-
mutations are enumerated by the Euler numbers, that is, αn = 2 · En for n � 2 and αn = 1 for n � 1.
See for instance [8, Section 1.6.1] or [3, Example 1.11].

For an ab-word u of length m −1 define the descent polytope Pu to be the subset of the unit cube
[0,1]m corresponding to all vectors with descent word u, that is,

Pu = {
(x1, . . . , xm) ∈ [0,1]m: xi � xi+1 if ui = a and xi � xi+1 if ui = b

}
.

Observe that the unit cube [0,1]m is the union of the 2m−1 descent polytopes. Similar to [3, Propo-
sition 4.3 and Corollary 4.4] we have the next proposition. Furthermore, the proof is also similar and
hence omitted.

Proposition 3.4. Let T be the operator associated with a weighted descent pattern avoidance and k an integer
such that 0 � k � m − 1. Let u be an ab-word of length m − 1 and f a function in L2([0,1]m). Then the
function T k( f ) restricted to the descent polytope Pu only depends on the variables x1 through xm−k.
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A direct consequence of Proposition 3.4 is that the eigenfunctions have a special form:

Corollary 3.5. If ϕ is an eigenfunction of T associated to a non-zero eigenvalue, then the eigenfunction ϕ
restricted to any descent polytope Pu only depends on the variable x1 .

Let V be the subspace of L2([0,1]m) consisting of all functions f such that the restriction f |Pu

only depends on the variable x1 for all words u of length m−1. Let f be a function in the subspace V .
Then the function T ( f ) is described as follows. For an ab-word u of length m − 2 and y ∈ {a,b} we
have

T ( f )|Puy =
x1∫

0

wt(auy) · f (t)|Pau dt +
1∫

x1

wt(buy) · f (t)|Pbu dt. (3.1)

In light of Corollary 3.5 to solve the eigenvalue problem for the operator T : L2([0,1]m) −→
L2([0,1]m), it is enough to solve the eigenvalue problem for the restricted operator T |V : V −→ V .
The restricted operator is of a particular form, which we describe in the next section.

4. A general operator and its spectrum

Recall that for a square matrix M the exponential matrix of M is defined by the converging power
series

eM =
∑
k�0

Mk/k! = I + M + M2/2 + M3/3! + · · · .

The general solution of the system of first order linear equations d
dx �p(x) = M · �p(x) is given by �p(x) =

eM·x · �c where �c is the initial condition �p(0).
Let γ (M) denote the matrix

γ (M) =
1∫

0

eM·t dt,

where the integration is entrywise. Observe that

M · γ (M) =
1∫

0

M · eM·t dt = [
eM·t]1

0 = eM − I. (4.1)

Hence when M is non-singular we can write γ (M) = M−1 · (eM − I). Also note that by integrating the
power series of eM·t term by term we obtain that

γ (M) =
∑
k�0

Mk/(k + 1)! = I + M/2 + M2/3! + M3/4! + · · · .
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Lemma 4.1. The two following indefinite integrals hold:

∫
eM·t dt = γ (M · t) · t + �C,

∫
M · t · eM·t dt = t · eM·t − γ (M · t) · t + �C .

Proof. The first identity follows by integrating the power series termwise. The second identity follows
from integrating the equality M · t · eM·t + eM·t = d

dt (t · eM·t). �
Let A and B be two k × k matrices. Consider the integral operator T defined on vector-valued

functions by

T
(�p(x)

) = A ·
x∫

0

�p(t)dt + B ·
1∫

x

�p(t)dt, (4.2)

where the integration is componentwise.
Observe that the restricted operator described in Eq. (3.1) is of the form (4.2) by letting A and B

be matrices indexed by ab-words of length m − 1 and the entries be given by

Auy,au = wt(auy) and Buy,bu = wt(buy)

where y ∈ {a,b} and u is an ab-word of length m−2, and the remaining entries of the matrices are 0.
The following theorem concerns the eigenvalues and eigenfunctions of the operator in (4.2).

Theorem 4.2. The non-zero spectrum of the operator T is given by the set of non-zero roots of the equation
det(P ) = 0, where the matrix P is given by

P = −λ · I + B · γ (
(A − B)/λ

)
, (4.3)

and the eigenfunctions are of the form �p(x) = e(A−B)/λ·x · �c, where the vector �c satisfies the equation P · �c = 0.

Proof. Differentiate the eigenfunction equation λ · �p = T (�p) with respect to x to obtain the differential
equation

d

dx
�p(x) = M · �p(x),

where we let M denote the matrix 1/λ · (A − B). This equation has the solution

�p(x) = eM·x · �c,

where �c is the initial condition. Substituting the solution for the differential equation back into the
eigenfunction equation, we obtain
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λ · eM·x · �c = A ·
x∫

0

eM·t · �c dt + B ·
1∫

x

eM·t · �c dt

= A · [γ (M · t) · t
]x

0 · �c + B · [γ (M · t) · t
]1

x · �c
= (

(A − B) · γ (M · x) · x + B · γ (M)
) · �c

= (
λ · (eM·x − I

) + B · γ (M)
) · �c.

Canceling terms we obtain P ·�c = 0. We can only find the non-zero vector �c if the matrix P is singular,
that is, has a zero determinant. �

In the case when A − B is non-singular the condition in Theorem 4.2 can be expressed as

0 = det(P ) · det(M)

= det
(−A + B · e(A−B)/λ

)
.

Theorem 4.3. An eigenvalue λ of the operator T is simple if its associated eigenfunction �p(x) satisfies the
vector identity

B · e(A−B)/λ · �p(0) �= 0. (4.4)

Proof. Assume that the eigenvalue λ is not simple, that is, it satisfies the generalized eigenvalue
equation λ · �q = T (�q) + �p. Differentiate this equation to obtain

λ · d

dx
�q(x) = (A − B) · �q(x) + d

dx
�p(x).

Again let M = (A − B)/λ. Multiply both sides with 1/λ · e−M·x to obtain

e−M·x · d

dx
�q(x) − M · e−M·x · �q(x) = 1/λ · e−M·x · d

dx
�p(x).

This equation is equivalent to

d

dx

(
e−M·x · �q(x)

) = 1/λ · M · �c.

Hence we have the general solution

�q(x) = 1/λ · eM·x · M · �c · x + eM·x · �d,

where �d is a constant vector. Without loss of generality we can set �d = 0 since we are looking for a
particular solution. Inserting the particular solution 1/λ · eM·x · M · �c · x into the generalized eigenvalue
equation, we obtain
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M · x · eM·x · �c = A/λ ·
x∫

0

M · t · eM·tdt · �c + B/λ ·
1∫

x

M · t · eM·tdt · �c + eM·x · �c

= A/λ · [t · eM·t − γ (M · t) · t
]x

0 · �c + B/λ · [t · eM·t − γ (M · t) · t
]1

x · �c + eM·x · �c
= M · (x · eM·x − γ (M · x) · x

) · �c + B/λ · (eM − γ (M)
) · �c + eM·x · �c.

Canceling terms using the identity (4.1) and multiplying by λ we have

0 = B · (eM − γ (M)
) · �c + λ · �c.

Adding the equation P · �c = 0 to this identity gives us the conclusion of the theorem. �
5. Two length 4 examples

5.1. No triple ascents, no triple descents

Let us consider the case when we avoid the two words aaa and bbb. This is equivalent to avoiding
the consecutive patterns 1234 and 4321. In this case we have the two matrices

A =
⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

⎞
⎟⎠ and B =

⎛
⎜⎝

0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ .

Note the matrix A − B is invertible and diagonalizable. To simplify calculations let

τ =
√

1 + √
5

2
and σ =

√
−1 + √

5

2
.

That is, the four eigenvalues of the matrix A − B are ±σ and ±τ · i.
Using a computer algebra package as Maple, we obtain that the determinant of the matrix P from

Theorem 4.2 expands as

20

λ4
· det(P ) = 8 + (

3 + i + √
5 · (τ + σ · i)

) · e(σ+τ ·i)/λ

+ (
3 − i + √

5 · (τ − σ · i)
) · e(σ−τ ·i)/λ

+ (
3 − i + √

5 · (−τ + σ · i)
) · e(−σ+τ ·i)/λ

+ (
3 + i + √

5 · (−τ − σ · i)
) · e(−σ−τ ·i)/λ.

Thus we obtain

Proposition 5.1. Let λ0 be the largest real positive root of the equation

−8 = (
3 + i + √

5 · (τ + σ · i)
) · e(σ+τ ·i)/λ

+ (
3 − i + √

5 · (τ − σ · i)
) · e(σ−τ ·i)/λ
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+ (
3 − i + √

5 · (−τ + σ · i)
) · e(−σ+τ ·i)/λ

+ (
3 + i + √

5 · (−τ − σ · i)
) · e(−σ−τ ·i)/λ. (5.1)

Then λ0 is the largest eigenvalue (in modulus) of the associated operator T and the asymptotics of the number
of permutations without triple ascents and triple descents is given by

αn/n! = c · λn−3
0 + O

(
rn),

where c and r are two positive constants such that r < λ0 .

Proof. It remains to show that the eigenvalue λ0 is simple. Observe that the de Bruijn graph with the

two directed edges aa
aaa−→ aa and bb

bbb−→ bb removed is ergodic. Now the conclusion follows from
combining Theorems 1.7 and 4.2 in [3]. �

Solving Eq. (5.1) numerically we obtain the three largest roots:

λ0 = 0.9240358576 . . . ,

λ1,2 = −0.2875224461 . . . ± 0.4015233122 . . . · i.

Hence we have that r is bounded below by |λ1,2| = 0.4938523335 . . . .
For the eigenvalue λ = 0.9240358576 . . . we can solve for the vector �c and we have

�c =
⎛
⎜⎝

0.6536190979 . . .

0.6536190979 . . .

0.3815287011 . . .

0

⎞
⎟⎠ .

Thus we have the eigenfunction ϕ = e(A−B)/λ·x · �c and adjoint eigenfunction ψ = Jϕ . Note that when
we restrict the adjoint eigenfunction ψ to a descent polytope we obtain a function only depending
on the last variable x3. For these two functions we calculate

(ϕ,1) = (1,ψ) = 0.6020376937 . . . ,

(ϕ,ψ) = 0.3647767214 . . . .

Combining this we have the constant

(ϕ,1) · (1,ψ)

(ϕ,ψ)
= 0.9936198319 . . . .

Thus in numerical terms we have that the asymptotics for the number of permutations with no triple
ascents and triple descent is given by

0.9936198319 . . . · (0.9240358576 . . .)n−3 · n!.
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5.2. Avoiding isolated ascents and descents

We next consider the case when we avoid the two words aba and bab. This is equivalent to
avoiding the ten alternating permutations 1324, 1423, 2314, 2413, 3412 and 2143, 3142, 3241, 4132,
4231. In this case we have the two matrices

A =
⎛
⎜⎝

1 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎠ and B =

⎛
⎜⎝

0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 1

⎞
⎟⎠ .

Yet again the matrix A − B is invertible and diagonalizable. The eigenvalues are ±τ and ±σ · i. Similar
to Proposition 5.1 we have:

Proposition 5.2. Let λ0 be the largest real positive root of the equation

−8 = (
3 − i + √

5 · (−τ + σ · i)
) · e(τ+σ ·i)/λ

+ (
3 + i + √

5 · (−τ − σ · i)
) · e(τ−σ ·i)/λ

+ (
3 + i + √

5 · (τ + σ · i)
) · e(−τ+σ ·i)/λ

+ (
3 − i + √

5 · (τ − σ · i)
) · e(−τ−σ ·i)/λ. (5.2)

Then λ0 is the largest eigenvalue (in modulus) of the associated operator T and the asymptotics of the number
of permutations not having any isolated ascents or descents is given by

αn/n! = c · λn−3
0 + O

(
rn),

where c and r are two positive constants such that r < λ0 .

The same argument as in Proposition 5.1 yields that the largest eigenvalue λ is simple. The only

difference is that we consider the de Bruijn graph with the two edges ab
aba−→ ba and ba

bab−→ ab
removed.

Numerically, we find the following three largest roots to Eq. (5.2):

λ0 = 0.6869765032 . . . ,

λ1,2 = 0.1559951131 . . . ± 0.5317098371 . . . · i.

The next largest root λ1,2 bounds r from below by |λ1,2| = 0.5541207686 . . . .
Similar to Section 5.1 we can obtain the numerical asymptotic expression for the quantity αn . The

numerical data is as follows:

�c =
⎛
⎜⎝

0.4315640876 . . .

0
0.6378684967 . . .

0.6378684967 . . .

⎞
⎟⎠ ,

and



R. Ehrenborg, J. Jung / Advances in Applied Mathematics 49 (2012) 375–390 385
(ϕ,1) = (1,ψ) = 0.2798342976 . . . ,

(ϕ,ψ) = 0.0878970625 . . . .

Combining this we have the constant

(ϕ,1) · (1,ψ)

(ϕ,ψ)
= 0.8908970548 . . . .

Finally, we conclude that the asymptotics for the number of permutations with no isolated ascents
and no isolated descents is given by

0.8908970548 . . . · (0.6869765032 . . .)n−3 · n!.

6. A weighted example of length 3

Define a weight function on the set of ab-words of length 2 such that wt(aa) = 0, wt(bb) = 2 and
wt(ab) = wt(ba) = 1 and the initial and final weight functions wt1 and wt2 are identical to 1. We are
interested in understanding the sum

αn =
∑

π∈Sn

Wt(π).

A more explicit way to write this sum is as follows

αn =
∑
π

2bb(π),

where the sum is over all 123-avoiding permutations of length n and bb(π) denotes the number of
double descents of π .

Let us refine the number αn by considering if the permutation begins with an ascent or a descent,
and similarly how the permutation ends, that is, we define αn(a,a), αn(a,b), αn(b,a) and αn(b,b)

for n � 2 by

αn(x, y) =
∑

Wt(π),

where the sum is over all permutations π in Sn whose descent word u(π) begins with the letter x
and ends with the letter y. Note that α2(x, y) is given by the Kronecker delta δx,y . These quantities
can also be expressed by changing the initial and final weight functions.

By the symmetry π1,π2, . . . ,πn 	−→ n + 1 −πn, . . . ,n + 1 −π2,n + 1 −π1 we have that αn(a,b) =
αn(b,a).

First we consider the spectrum of the associated operator.

Theorem 6.1. The only non-zero eigenvalue of the operator T is λ = 1. This is a simple eigenvalue. Furthermore,
the eigenfunction ϕ and the adjoint eigenfunction ψ associated with this eigenvalue are given by

ϕ = e−x ·
{

1 − x if 0 � x � y � 1,

2 − x if 0 � y � x � 1,
and ψ = e y−1 ·

{
y if 0 � x � y � 1,

y + 1 if 0 � y � x � 1.
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Proof. The associated operator T can be written in the form (4.2) using the matrices

A =
(

0 0
1 0

)
and B =

(
0 1
0 2

)
.

Note that A − B has eigenvalue −1 of algebraic multiplicity 2, but geometric multiplicity 1, that is,
the Jordan form of A − B consists of one Jordan block of size 2. Computing the matrix P we obtain

0 = det(P ) = exp(−1/λ) · λ · (λ − 1),

which only has the non-zero root λ = 1. Furthermore for this root, the null space of the matrix P is
spanned by the vector

�c =
(

1
2

)
.

Finally, it is straightforward to verify B · eM · �c �= �0, hence λ = 1 is a simple eigenvalue by Theorem 4.3.
Moreover the eigenfunction ϕ is given by

ϕ = exp

((
0 −1
1 −2

)
· x

)
·
(

1
2

)
= e−x ·

(
1 − x
2 − x

)
.

Since the weight function wt satisfies the symmetry in Lemma 2.2, we obtain that the adjoint eigen-
function is given by ψ = J (ϕ). �
Theorem 6.2. The asymptotics of the sequences αn(a,a), αn(a,b), αn(b,b) and αn are given by

αn(a,a)/n! = e − 4 + 4/e + O
(
rn),

αn(a,b)/n! = 1 − 2/e + O
(
rn),

αn(b,b)/n! = 1/e + O
(
rn),

αn/n! = e − 2 + 1/e + O
(
rn),

where r is an arbitrary small positive real number.

Proof. Let 1a denote the function encoding an ascent, that is, 1a(x, y) = 1 if x < y and 0 otherwise.
Similarly, let 1b be the function encoding a descent, that is, 1b(x, y) = 1 if x > y and 0 otherwise.
Note that we have that J1a = 1a and J1b = 1b . By letting the initial function κ and the final function
μ vary over the two functions 1a and 1b , we obtain the constant term in the asymptotic expression
in Theorem 2.1. First we compute the inner products

(ϕ,1a) = (1a,ψ) = 1 − 2 · 1/e,

(ϕ,1b) = (1b,ψ) = 1/e,

(ϕ,ψ) = 1/e,

where we used Lemma 2.2 for two of the five equalities. Hence the constants are:
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(ϕ,1a) · (1a,ψ)

(ϕ,ψ)
= e − 4 + 4 · 1/e,

(ϕ,1b) · (1a,ψ)

(ϕ,ψ)
= 1 − 2 · 1/e,

(ϕ,1b) · (1b,ψ)

(ϕ,ψ)
= 1/e.

This proves the three first results of the theorem. The fourth result is obtained by adding the asymp-
totic expressions for αn(a,a), αn(a,b), αn(b,a) and αn(b,b). �

In order to study these sequences further, we introduce the associated exponential generating
functions. Let Fx,y(z) denote the generating function

Fx,y(z) =
∑
n�2

αn(x, y) · zn

n! .

Similarly, let F (z) be the generating function for the sequence αn .

Proposition 6.3. The generating function Fx,y(z) satisfies the following equation:

Fx,y(z) = δx,y · z2

2! + δx,b · δy,a · 2 · z3

3!

+
z∫

0

(
Fx,a(w) + 2 · Fx,b(w)

) · Fb,y(w)dw

+ δx,a ·
z∫

0

Fb,y(w)dw

+ δx,b ·
z∫

0

w · Fb,y(w)dw

+ δy,b ·
z∫

0

(
Fx,a(w) + 2 · Fx,b(w)

)
dw

+ δy,a ·
z∫

0

(
Fx,a(w) + 2 · Fx,b(w)

) · w dw. (6.1)

Proof. We demonstrate that all the terms on the right-hand side are in fact counting permutations.
The first term corresponds to permutations of length 2. The second term corresponds to permutations
of length 3 with the element 1 in the middle position, that is, the two permutations 213 and 312.

For the remaining permutations we break a permutation at the position where the element 1
occurs. We obtain two smaller permutations σ and τ of lengths k, respectively, r, where k + r =
n − 1. The elements are distributed in

(n−1
k

)
ways between these two permutations. This is encoded

by multiplication of exponential generating functions. Finally, the integral shifts the coefficient from
wn−1/(n − 1)! to zn/n!.
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We continue to describe the terms. The third term corresponds to 2 � k, r, that is, at least two
elements precede the element 1 and at least two elements follow the element 1. Note that τ must
begin with a descent to avoid creating a double ascent. Also when σ ends with a descent, we create
a double descent when concatenating σ with the element 1. This explains the factor 2 in front of the
term Fx,b .

The fourth term corresponds to k = 0 and r � 2. The Kronecker delta states that the permutation
starts with an ascent. The fifth term corresponds to k = 1 and r � 2, in which the permutation starts
with a consecutive descent and ascent. Similarly, the sixth and seventh terms correspond to the two
cases r = 0 and k � 2, respectively, r = 1 and k � 2.

Since each permutation has been accounted for, the equality holds. �
Note that Proposition 6.3 is similar in spirit to the equations obtained by Elizalde and Noy [5] for

the generating functions for certain classes of pattern avoidance permutations.

Theorem 6.4. The generating functions Fx,y(z) and F (z) are given by

Fa,a(z) = 1

1 − z
· (ez − 4 + 4 · e−z) − 1 + 2 · z,

Fa,b(z) = 1

1 − z
· (1 − 2 · e−z) + 1 − z,

Fb,b(z) = 1

1 − z
· e−z − 1,

F (z) = 1

1 − z
· (ez − 2 + e−z).

Proof. Proposition 6.3 can be viewed as a recursion for the coefficient αn(x, y). Hence the equation
in this proposition has a unique solution and it is enough to verify the theorem by showing that the
proposed generating functions satisfy Eq. (6.1).

Finally, the generating function F (z) is obtained by adding the four generating functions Fa,a(z),
Fa,b(z), Fb,a(z) and Fb,b(z). �

Since e−z/(1 − z) is the generating function for the number of derangements, we obtain

Corollary 6.5. For n � 2, the number of derangements on n elements, Dn, is given by αn(b,b), that is,

Dn =
∑
π

2bb(π),

where the sum is over all permutations π on n elements with no double ascents and starting and ending with
a descent.

Muldoon Brown and Readdy [7, Theorem 6.4] have essentially given a bijective proof of this corol-
lary. For more details see [6, Section 3.7].

As a corollary to Theorem 6.4 we have the following recursions:

Corollary 6.6. Recursions for the sequences αn(a,a), αn(a,b), αn(b,b) and αn are given by, where n � 3,

αn(a,a) = n · αn−1(a,a) + 1 + 4 · (−1)n,

αn(a,b) = n · αn−1(a,b) − 2 · (−1)n,
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αn(b,b) = n · αn−1(b,b) + (−1)n,

αn = n · αn−1 + 1 + (−1)n.

Using the generating functions in Theorem 6.4 we now obtain that the error terms are the smallest
possible. We express the result as explicit expressions using the nearest integer function, which we
denote by 
x�.

Theorem 6.7. The quantities αn(a,a), αn(a,b), αn(b,b) and αn are given by the explicit expressions

αn(a,a) = ⌊
(e − 4 + 4/e) · n!⌉ for n � 8,

αn(a,b) = ⌊
(1 − 2/e) · n!⌉ for n � 3,

αn(b,b) = 
1/e · n!� for n � 2,

αn = ⌊
(e − 2 + 1/e) · n!⌉ for n � 4.

Proof. The third equality is classical. We show the first equality. The coefficient of zn/n! in the gen-
erating function Fa,a(z), for n � 2, is given by

αn(a,a) = n! ·
n∑

k=0

1k − 4 · 0k + 4 · (−1)k

k! .

Hence the difference

n! · (e − 4 + 4/e) − αn(a,a) = n! ·
∑

k�n+1

1k + 4 · (−1)k

k! ,

is bounded in absolute value by

n! ·
∑

k�n+1

5

k! = 5

n + 1
+ 5

(n + 1) · (n + 2)
+ · · · .

Note that this is a decreasing function in n. For n = 10 this function dips below 1/2, showing the first
equality for n � 10. The two cases n = 8,9 can be done by hand. The second and fourth equalities
follow by similar arguments. �
7. Concluding remarks

Are there other operators of the form (2.1) which only have a finite number of non-zero eigenval-
ues? Furthermore, if the associated sequences are integer sequences would the corresponding error
term be the smallest possible, as in Theorem 6.7?

The operators of the form (2.1) have so far yielded four types of behavior:

(i) The operator has an infinite number of eigenvalues and the asymptotic expansion converges. An
example of this is alternating permutations. See [3, Example 1.11] and [4]. Another example is
{123,231,312}-avoiding permutations. See [3, Section 7].

(ii) The operator has an infinite number of eigenvalues and the asymptotic expansion does not give
an expression that converges. This occurs with 123-avoiding permutations and 213-avoiding per-
mutations. See [3, Sections 5 and 6].
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(iii) The operator has a finite, but positive, number of non-zero eigenvalues. See Section 6. For in-
stance, is there such an operator with exactly two non-zero eigenvalues? What behavior does
the error term of the asymptotic expansion have? Are there other examples with the smallest
possible error term?

(iv) The operator has no non-zero eigenvalues. Here the behavior can vary a lot. Compare ba-avoiding
permutations in Example 3.2 with {312,321}-avoiding permutations in [2]. Also see [3, Exam-
ple 3.9].

The two Eqs. (5.1) and (5.2) in Section 5 have an interesting pattern in their roots. Consider the
two equations in terms of the variable z = 1/λ. Then the roots lie on the real axis and close to a
vertical line in the complex plane. Is there an explanation for this behavior? Switching back to the
variable λ it says that the roots lie on the real axis and close to a circle in the complex plane.

Baxter, Nakamura and Zeilberger [1] have developed efficient methods to compute the number of
permutations avoiding certain patterns. Their methods use umbral techniques and have been imple-
mented in Maple. Their techniques can be extended to compute the weighted problem introduced in
this paper.
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