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COVARIANCE ESTIMATION FOR DISTRIBUTIONS WITH 2 + ε
MOMENTS

NIKHIL SRIVASTAVA AND ROMAN VERSHYNIN

Abstract. We study the minimal sample size N = N(n) that suffices to estimate the
covariance matrix of an n-dimensional distribution by the sample covariance matrix in the
operator norm, with an arbitrary fixed accuracy. We establish the optimal bound N = O(n)
for every distribution whose k-dimensional marginals have uniformly bounded 2+εmoments
outside the sphere of radius O(

√
k). In the specific case of log-concave distributions, this

result provides an alternative approach to the Kannan-Lovasz-Simonovits problem, which
was recently solved by Adamczak, Litvak, Pajor and Tomczak-Jaegermann [1]. Moreover,
a lower estimate on the covariance matrix holds under a weaker assumption – uniformly
bounded 2+εmoments of one-dimensional marginals. Our argument consists of randomizing
the spectral sparsifier, a deterministic tool developed recently by Batson, Spielman and
Srivastava [4]. The new randomized method allows one to control the spectral edges of the
sample covariance matrix via the Stieltjes transform evaluated at carefully chosen random
points.

1. Introduction

1.1. Covariance estimation problem. Estimating covariance matrices of high dimen-
sional distributions is a basic problem in statistics and its numerous applications. Consider
a random vector X valued in R

n and let us assume for simplicity that X is centered, i.e.
EX = 0; this restriction will not be needed later. The covariance matrix of X is the n× n
positive semidefinite matrix

Σ = EXXT .

Our goal is to estimate Σ from a sample X1, . . . , XN taken from the same distribution as X .
A classical unbiased estimator for Σ is the sample covariance matrix

ΣN =
1

N

N
∑

i=1

XiX
T
i .

A basic question is to determine the minimal sample size N which guarantees that Σ is
accurately estimated by ΣN . More precisely, for a given accuracy ε > 0 we are interested in
the minimal N = N(n, ε) so that

E ‖ΣN − Σ‖ ≤ ε‖Σ‖
where ‖·‖ denotes the spectral (operator) norm. Replacing X by Σ−1/2X and Xi by Σ−1/2Xi,
we reduce the problem to the distributions for which Σ = I, i.e. to isotropic distributions.
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1.2. Sampling from isotropic distributions. We consider independent isotropic random
vectors Xi valued in R

n, i.e. such that EXiX
T
i = I. Our goal is to determine the minimal

sample size N = N(n, ε) such that

E ‖ΣN − Σ‖ ≤ ε.

For obvious dimension reasons, one must have N ≥ n. A remarkably general result of
M. Rudelson ([12], see [16, Section 4.3]) yields that if ‖X‖2 = O(

√
n) almost surely, then

(1.1) N = O(n logn)

where the O(·) notation hides the dependence on ε here and thereafter. It is well known that
the logarithmic oversampling factor cannot be removed from (1.1) in general, for example if
the distribution is supported on O(n) points; see Section 1.8.

Nevertheless, it is also known that for sufficiently regular distributions the logarithmic
oversampling factor is not needed in (1.1). This is a property of the standard normal dis-
tribution in R

n and, more generally, of the distributions with sub-gaussian one-dimensional
marginals. Namely,

N = O(n)

holds for every distribution that satisfies

(1.2) sup
‖x‖2≤1

(E |〈X, x〉|p)1/p = O(
√
p) for p ≥ 1.

This result can be obtained by a standard covering argument, see [16, Section 4.3].
It is an open problem to describe the distributions for which the logarithmic oversampling

is not needed, i.e. for which N = O(n). The gap between sub-gaussian distributions where
this bound holds and discrete distributions on O(n) points where it fails is quite large.

It is already a difficult problem to relax the sub-gaussian moment assumption (1.2) to
anything weaker while keeping N = O(n). A major step was made by R. Adamczak,
A. Litvak, A. Pajor and N. Tomczak-Jaegermann [1], who showed that N = O(n) still holds
(in fact, with high probability) under the sub-exponential moment assumptions:

(1.3) ‖X‖2 = O(
√
n) a.s., sup

‖x‖2≤1

(E |〈X, x〉|p)1/p = O(p) for p ≥ 1.

As an application, it was shown in [1] that N = O(n) holds for log-concave distributions, and
in particular for the uniform distributions on isotropic convex bodies in R

n. This answered
a question posed by R. Kannan, L. Lovasz and M. Simonovits in [9].

The second author of the present paper speculated in [15] that N = O(n) should hold for
a much wider class of distributions than sub-exponential, perhaps for all distributions with
2+ε moments. (The second moment – the variance – is assumed to be finite by the nature of
the problem, as otherwise the covariance matrix is not defined.) The goal of the the current
paper is to provide a result of this type.

Theorem 1.1. Consider independent isotropic random vectors Xi valued in R
n. Assume

that Xi satisfy the strong regularity assumption: for some C, η > 0, one has

(SR) P
{

‖PXi‖22 > t
}

≤ Ct−1−η for t > C rank(P )

for every orthogonal projection P in R
n. Then, for ε ∈ (0, 1) and for

N ≥ Cmain ε
−2−2/η · n
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one has

(1.4) E

∥

∥

∥

1

N

N
∑

i=1

XiX
T
i − I

∥

∥

∥
≤ ε.

Here Cmain = 512(48C)2+2/η(6 + 6/η)1+4/η, and as before ‖ · ‖ denotes the spectral (operator)
matrix norm and ‖ · ‖2 denotes the Euclidean norm in R

n.

Remark. Since the distribution of PXi is isotropic in the range of P , we have E ‖PXi‖22 =
rank(P ). This explains why (SR) concerns only the tail values of t which are above rank(P ).

1.3. Covariance estimation. Returning to the covariance estimation problem, we deduce
the following.

Corollary 1.2 (Covariance estimation). Consider a random vector X valued in R
n with

covariance matrix Σ. Assume that for some C, η > 0, the isotropic random vector Z =
Σ−1/2X satisfies

(SR) P
{

‖PZ‖22 > t
}

≤ Ct−1−η for t > C rank(P )

for every orthogonal projection P in R
n. Then, for every ε ∈ (0, 1) and

N ≥ Cmain ε
−2−2/η · n

the sample covariance matrix ΣN obtained from N independent copies of X satisfies

E ‖ΣN − Σ‖ ≤ ε‖Σ‖.
This result follows by applying Theorem 1.1 for the independent copies of the random

vectors Zi = Σ−1/2Xi instead of Xi, and by multiplying the matrix 1
N

∑N
i=1XiX

T
i − I in

(1.4) by Σ1/2 on the left and on the right. Thus, for distributions satisfying (SR) we conclude
that the minimal sample size for the covariance estimation is N = O(n).

Let us illustrate these results with two important examples.

1.4. Sampling from log-concave distributions and convex sets. A notable class of
examples where Corollary 1.2 applies is formed by the log-concave distributions, which in-
cludes the uniform distributions on convex bodies. Consider a random vector X with a
log-concave distribution in R

n, i.e. whose density has the form e−V (x) where log V (x) is a
convex function on R

n. A concentration inequality of G. Paouris [11] implies that regularity
assumption (SR) holds for X . Indeed, consider an orthogonal projection P in R

n and let
k = rank(P ). The distribution of the isotropic random vector Z = Σ−1/2X is log-concave in
R

n, and so is the distribution of PZ in the k-dimensional space range(P ). The theorem of
G. Paouris then states that

P
{

‖PZ‖22 > t
}

≤ exp(−ct) for t > Ck

where C, c > 0 are absolute constants. This is obviously stronger than assumption (SR), so
Corollary 1.2 applies.

We conclude that the minimal sample size for estimating the covariance matrix of a log-
concave distribution is N = O(n). This matches the bound obtained by R. Adamczak et al.
[1], though it should be noted that the guarantee of [1] holds with probability that converges
to 1 exponentially fast as n→ ∞, whereas ours holds only in expectation. We have not tried
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to obtain probability bounds of this type; note however that under our general assumption
(SR), the probability can not converge to 1 faster than at a polynomial rate in n.

1.5. Sampling from product distributions. A distribution does not have to be log-
concave in order to satisfy the regularity assumptions in Theorem 1.1 and Corollary 1.2. For
example, all product distributions with finite 4 + ε moments have the required regularity
property. We can deduce this from the following thin shell estimate:

Proposition 1.3 (Thin shell probability for product distributions). Let p ≥ 2, and consider
a random vector X = (ξ1, . . . , ξn), where ξi are independent random variables with zero
means, unit variances and with uniformly bounded (2p)-th moments. Then for every 1 ≤
k ≤ n and for every orthogonal projection P in R

n with rankP = k, one has

(1.5) E |‖PX‖22 − k|p . kp/2.

The factor implicit in (1.5) depends only on p and on the bound on the (2p)-th moments.

The proof of Proposition 1.3 is given in the Appendix.
Applying Chebychev’s inequality together with (1.5) we obtain for t ≥ k that

P
{

‖PX‖22 > k + t
}

≤ t−p · E |‖PX‖22 − k|p . t−p kp/2 ≤ t−p/2.

Thus for p > 2 we get a sub-linear tail, as required in the regularity assumption (SR).

This shows that Theorem 1.1 applies for product distributions in R
n with uniformly bounded

4 + ε moments, and it gives N = O(n) for their covariance estimation. Note that this mo-
ment assumption is almost tight – according to [5], if the components ξi are i.i.d. and have
infinite fourth moment, then lim sup ‖ΣN‖ → ∞ as n → ∞ and n/N → y > 0. (This is
because in this situation at least one of the Nn i.i.d. coordinates of X1, . . . , XN will likely
to be large.)

1.6. Extreme eigenvalues. Theorem 1.1 states that, for sufficiently largeN , all eigenvalues
of the sample covariance matrix ΣN = 1

N

∑N
i=1XiX

T
i are concentrated near 1. It is easy to

extend this to a result that holds for all N , as follows.

Corollary 1.4. Let n,N be arbitrary positive integers, suppose Xi are independent isotropic
random vectors in R

n satisfying (SR), and let y = n/N . Then the sample covariance matrix

ΣN = 1
N

∑N
i=1XiX

T
i satisfies:

(1.6) 1− C1y
c ≤ Eλmin(ΣN) ≤ Eλmax(ΣN) ≤ 1 + C1(y + yc).

Here c = η
2η+2

, C1 = 512(16C)1+2/η(6 + 6/η)1+4/η, and λmin(ΣN), λmax(ΣN ) denote the

smallest and the largest eigenvalues of ΣN respectively.

We deduce this result in Section 3. One can view (1.6) as a non-asymptotic form of
the Bai-Yin law for the extreme eigenvalues of sample covariance matrices [3]. This law,
associated with the work of S. Geman, Z. Bai, Y. Yin, P. Krishnaiah and J. Silverstein,
applies for product distributions, specifically for random vectors X = (ξ1, . . . , ξn) with i.i.d.
components ξi with zero mean, unit variance and finite fourth moment. For such distributions
one has asymptotically almost surely that

(1.7) (1−√
y)2 − o(1) ≤ λmin(ΣN) ≤ λmax(ΣN) ≤ (1 +

√
y)2 + o(1)
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as n → ∞ and n/N → y ∈ [0, 1), see the rigorous statement in [3]. This limit law is
sharp. On the other hand, the inequalities (1.6) hold in any fixed dimensions N, n and for
general distributions (as in Theorem 1.1), without any independence requirements for the
coordinates.

Remark. Comparing (1.6) with (1.7) one can ask about the optimal value of the exponent
c, in particular whether c = 1/2. In a recent paper [2], R. Adamczak et al. obtained
the optimal exponent c = 1/2 for log-concave distributions, and more generally for sub-
exponential distributions in the sense of (1.3). As (1.3) implies (SR) with η = (p− 1)/2 and
C ≤ (O(p))p, Theorem 1.1 recovers a bound of c = 1/2− 1/(p+ 1) = 1/2− o(1) as p→ ∞.

Remark (Random matrices with independent rows). Corollary 1.4 can be interpreted as a
result about the spectrum of random matrices with independent rows. Indeed, if A is the
matrix with rows Xi then ΣN = 1

N

∑N
i=1XiX

T
i = 1

N
ATA. So the singular values of the

matrix 1√
N
A are the same as the eigenvalues of the matrix ΣN , and they are controlled as

in (1.6). In particular, under the regularity assumption (SR) on Xi we obtain that

(E ‖A‖2)1/2 ≤ C2(
√
N +

√
n)

where C2 =
√
2C1 and C1 is as in Corollary 1.4.

Notice that while the rows of matrix A are independent, the columns of A may be depen-
dent. The simpler case where all entries of A are independent is well understood by now. In
the latter case, if the entries have zero mean and uniformly bounded fourth moments, the
bound E ‖A‖ .

√
N +

√
n follows, for example, from a general inequality of R. Latala [10].

1.7. Smallest eigenvalue. Our proof of Theorem 1.1 consists of two separate arguments
for upper and lower bounds for the spectrum of the sample covariance matrix. It turns
out that the full power of the strong regularity assumption (SR) is not needed for the lower
bound. It suffices to assume 2 + η moments for one-dimensional marginals rather than for
marginals in all dimensions. This is only slightly stronger than the isotropy assumption,
which fixes the second moments of one-dimensional marginals, and it broadens the class of
distributions for which the result applies. We state this as a separate theorem.

Theorem 1.5 (Smallest eigenvalue). Consider independent isotropic random vectors Xi

valued in R
n. Assume that Xi satisfy the weak regularity assumption: for some C, η > 0,

(WR) sup
‖x‖2≤1

E |〈Xi, x〉|2+η ≤ C.

Then, for ε > 0 and for

(1.8) N ≥ Clower ε
−2−2/η · n,

the minimum eigenvalue of the sample covariance matrix ΣN = 1
N

∑N
i=1XiX

T
i satisfies

Eλmin(ΣN ) ≥ 1− ε.

Here Clower = 40(10C)2/η.

Remark (Moments vs. Tails). We have chosen to write (WR) in terms of moments rather than
in terms of tail bounds as in (SR). By integration of the tails one can check that, for any
given η > 0, (SR) with parameter C implies (WR) with parameter C ′ = C(2 + 2/η).
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In the remainder of the paper we will use (WR) for theorems regarding only the smallest
eigenvalue and (SR) for theorems which involve the largest one.

Remark (Product distributions with 2 + η moments). Many distributions of interest satisfy
(WR). For example, let X = (ξ1, . . . , ξn) have i.i.d. components ξi with zero mean, unit
variance and finite (2 + η) moment. Then a standard application of symmetrization and
Khintchine’s inequality (or a direct application of Rosenthal’s inequality [13], see [8]) shows
that one-dimensional marginals of X also have bounded (2 + η) moments, i.e. (WR) holds.

In the context of the Bai-Yin law discussed in Section 1.6, this indicates that the smallest
eigenvalue of a random matrix can be approximately controlled (as in (1.6)) even if the fourth
moment is infinite. However, as we already recalled, four moments are necessary to control
the largest eigenvalue in the classical Bai-Yin law [5].

Remark (Covariance estimation). Theorem 1.5 can be used to obtain a lower estimate for
the covariance matrix under the weak regularity assumption (WR).

1.8. Optimality of the regularity assumptions. Let us briefly mention two simple and
known examples that illustrate the role of regularity assumptions (SR) and (WR) in the control
of the largest and smallest eigenvalues respectively.

For the largest eigenvalue as in Theorem 1.1, it is not sufficient to put a regularity assump-
tion of the type (SR) only on one-dimensional marginals, as it is done in Theorem 1.5 for
the smallest eigenvalue. Even the following very strong (exponential) moment assumption
is insufficient:

(1.9) sup
‖x‖2≤1

P
{

|〈X, x〉| > t
}

≤ C exp(−ct) for t > 0.

Indeed, consider a random vector X = ξZ where Z is a random vector uniformly distributed
in the Euclidean sphere in R

n centered at the origin and with radius
√
n, and where ξ is a

standard normal random variable. Then X is isotropic, and all one-dimensional marginals
of X have exponential tail decay (1.9). However, the multiplier ξ produces a dimension-
free tail decay of the norm of Z, namely P{‖X‖2 > t

√
n} = P{ξ > t} & exp(−C ′t2)

for t > 0. It follows that a sample of N independent copies X1, . . . , XN of X safisfies
Emaxi≤N ‖Xi‖22 & N logN , so the matrix ΣN = 1

N

∑N
i=1XiX

T
i satisfies

E ‖ΣN − I‖ ≥ N−1
Emax

i≤N
‖Xi‖22 − 1 & logN,

which contradicts the conclusion of Theorem 1.1. This example is essentially due to G. Aubrun,
see [1, Remark 4.9].

Remark. It is not clear whether Theorem 1.1 would hold if, in addition to (2 + η) moments
on one-dimensional marginals, one puts a total boundedness assumption

‖X‖ = O(
√
n) almost surely.

A conjecture of this type is discussed in [15] where a version of Theorem is proved under
this assumption, with η = 2 but with an additional (log log n)O(1) oversampling factor.

Furthermore, we note that for the smallest eigenvalue as in Theorem 1.5, one can not drop
the regularity assumption (WR), i.e. the assumption with η = 0 is not sufficient. This is seen
for Xi uniformly distributed in the set of 2n points (±ek) where (ek)

n
k=1 is an orthonormal
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basis in R
n. Indeed, in order that the smallest eigenvalue of the matrix ΣN = 1

N

∑N
i=1XiX

T
i

be different from zero, one needs ΣN to have full rank, for which all n basis vectors ek need
be present in the sample X1, . . . , XN . By the coupon collector’s problem, for this to happen
with constant probability one needs a sample of size N & n logn. For N = o(n logn), the
smallest eigenvalue is zero with high probability, so the conclusion of Theorem 1.5 fails.

1.9. The argument: randomizing the spectral sparsifier. Our proof of Theorem 1.1
consists of randomizing the spectral sparsifier invented by J. Batson, D. Spielman and N. Sri-
vastava [4] (see [14]). The randomization makes the spectral sparsifier appear naturally in
the context of random matrix theory. The method is based on evaluating the Stieltjes trans-
form of ΣN while making rank one updates. However, in contrast to typical methods of
random matrix theory (and to the spectral sparsifier itself), we shall evaluate the Stieltjes
trasnform at random real points.

Let us illustrate the method by working out a crude upper bound O(1) for the largest eigen-
value of ΣN . Equivalently, we want to show that a general Wishart matrix AN := NΣN =
∑N

i=1XiX
T
i has all eigenvalues bounded by O(N). We evaluate the Stieltjes transform

(1.10) mAN
(u) = tr(uI −AN )

−1 =
n

∑

i=1

(

u− λi(AN)
)−1

, u ∈ R,

where λi(AN) denote the eigenvalues of AN . This function has singularities at the points
λi(AN) and it vanishes at infinity. So the largest eigenvalue of AN is the largest u where
mAN

(u) = ∞. However, such u is difficult to compute. So we soften this quantity by
considering the largest number uN that satisfies

(1.11) mAN
(uN) = φ

where φ is a fixed sensitivity parameter, for example φ = 1.
The soft spectral edge uN provides an upper bound for the actual spectral edge, λmax(AN ) <

uN . So our goal is to show that

E uN = O(N).

This is the same problem as in [4] except the eigenvalues and hence the soft spectral edge
uN are now random points. The randomized problem is more difficult as we note below.

As opposed to the largest eigenvalue of A, the soft spectral edge uN can be computed
inductively using rank-one updates to the matrix; uN will move to the right by a random
amount at each step as we replace Ak−1 by Ak = Ak−1 +XkX

T
k . Initially, A0 = 0 so u0 = n.

It suffices to prove that the uk moves by O(1) on average at each step:

(1.12) E(uk − uk−1) = O(1).

Indeed, by summing up we would obtain the desired estimate E uN = n+O(1)N = O(N).
The soft edge uk can be recomputed at each step because it is determined by the Stieltjes

transform mAk
(u), which in turn can be recomputed using Sherman-Morrison formula as is

done in [4], which gives for every u ∈ R that

(1.13) mAk
(u) = mAk−1

(u) +
XT

k (uI − A)−2Xk

1−XT
k (uI − A)−1Xk

.
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This reduces proving (1.12) to a probabilistic problem, which is essentially governed by the
distribution of the random vector Xk.

The difficulty is that we are facing a non-linear inverse problem. Indeed, for a fixed u it is
not difficult to compute the expectation of mAk

(u) from (1.13), and in particular to bound
the expectation by φ; this is done in [4]. However, we require the identity mAk

(u) = φ to
hold deterministically, because the largest u that satisfies it defines the soft spectral edge of
Ak as in (1.11). The task of computing the expectation of a random number u for which
mAk

(u) = φ is a highly non-linear inverse problem [6, Section 4.1]. This is where some
regularity of Xk with respect to the eigenstructure of Ak−1 becomes essential. A technical
part of our argument developed in most of the remaining sections is to realize and prove
that a small amount or regularity encoded by (SR) or (WR) is already sufficient to control the
solution to the inverse problem, and ultimately to control the spectral edges of A.

1.10. Organization of the paper. The rest of the paper is organized as follows. We start
with the somewhat simpler Theorem 1.5 for the smallest eigenvalue in Section 2. A corre-
sponding result for the largest eigenvalue, Theorem 3.1, is proved in Section 3. Corollary 1.4
is also deduced in Section 3. Combining Theorems 1.5 and 3.1 in Section 4, we obtain the
main Theorem 1.1 on the spectral norm. In the Appendix, we prove Proposition 1.3 on the
regularity of product distributions.

Acknowledgement. The authors are grateful to the referees whose comments improved
the presentation of the paper.

2. The Lower Edge

We begin by proving Theorem 1.5 about the the lower edge of the spectrum, which is
slightly simpler and requires fewer assumptions than the upper edge. As in [4], the tool that
we use to do this is the lower Stieltjes transform

mA(ℓ) = tr(A− ℓI)−1 =

n
∑

i=1

(

λi(A)− ℓ
)−1

, ℓ ∈ R.

Note that mA(ℓ) = −m−A(−ℓ) where mA is the usual Stieltjes transform in (1.10).
For a sensitivity value φ > 0, we define the lower soft spectral edge ℓφ(A) to be the smallest

ℓ for which

mA(ℓ) = φ.

SincemA(ℓ) increases from 0 to∞ as ℓ increases from −∞ to the lower spectral edge λmin(A),
the value ℓφ(A) is defined uniquely, and we always have the bound

ℓφ(A) < λmin(A).

For φ → ∞ we have ℓφ(A) → λmin(A). However, we will work with small sensitivity
φ ∈ (0, 1), which will make the soft spectral edge ℓφ(A) softer and easier to control.

The crucial property of ℓφ(A) is that it grows steadily under rank-one updates. Consider
what happens when we add a random rank-one matrix XXT to A ≻ ℓI, where X is chosen
from an isotropic distribution on R

n. As E tr(A +XXT ) = tr(A) + trEXXT = tr(A) + n,
we expect the eigenvalues of A+XXT to have increased by 1 on average. It turns out that

8



ℓφ(A) behaves almost as nicely as this if the distribution of X is sufficiently regular and the
sensitivity φ is sufficiently small. This is established in the following theorem.

Theorem 2.1 (Random Lower Shift). Suppose X is an isotropic random vector in R
n

satisfying the weak regularity assumption: for some C, η > 0,

(WR) sup
‖x‖≤1

E |〈X, x〉|2+η ≤ C.

Let ε > 0 and

φ ≤ c2.1 ε
1+2/η,

where c−1

2.1 = 10(5C)2/η. Then for every symmetric n× n matrix A one has

E ℓφ(A+XXT ) ≥ ℓφ(A) + 1− ε.

Iterating Theorem 2.1 easily yields a proof of Theorem 1.5 as follows.

Proof of Theorem 1.5. Let A0 = 0 and Ak = Ak−1 + XkX
T
k for k ≤ N . Setting φ =

c2.1 ε
1+2/η, we find that

ℓφ(A0) =
−n
φ
.

Applying Theorem 2.1 inductively to A0, A1, . . . , AN , we find that

E
[

ℓφ(Ak)− ℓφ(Ak−1) |Ak−1

]

≥ 1− ε for all k ≤ N ,

where we take the conditional expectation with respect to the random vector Xk given the
random vectors X1, . . . , Xk−1, i.e. given Ak−1. Summing up these bounds yields

(2.1) E ℓφ(AN) ≥ ℓφ(A0) +N(1− ε).

Recalling that λmin(AN) > ℓφ(AN) and dividing both sides of (2.1) by N , we conclude that

Eλmin

( 1

N

N
∑

i=1

XiX
T
i

)

>
ℓφ(A0)

N
+ 1− ε = 1− ε− n

φN
.

For N ≥ n/εφ, the bound becomes 1 − 2ε. Substituting the value of φ and replacing ε by
ε/2 gives the promised result. �

The rest of this section is devoted to proving Theorem 2.1. Given a matrix A, a real
number ℓ < λmin(A), and a vector x ∈ R

n, we say that δ ≥ 0 is a feasible lower shift if

A ≻ (ℓ+ δ)I and mA+xxT (ℓ+ δ) ≤ mA(ℓ).

The definition of the soft spectral edge ℓ = ℓφ(A) along with monotonicity of the Stieltjes
transform implies that

ℓφ(A+ xxT ) ≥ ℓφ(A) + δ

for every feasible lower shift δ. So we will be done if we can produce a feasible shift δ such
that E δ ≥ 1− ε where the expectation is over random X .

We begin by reducing the feasibility for a shift δ to an inequality involving two quadratic
forms. The following lemma appeared in [4], and we include it with proof for completeness.
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Lemma 2.2 (Feasible Lower Shift). Consider numbers ℓ ∈ R, δ > 0, a matrix A ≻ (ℓ+ δ)I
and a vector x. Then a sufficient condition for

(2.2) mA+xxT (ℓ+ δ) ≤ mA(ℓ)

is1

(2.3)
1

δ

xT (A− ℓ− δ)−2x

tr(A− ℓ− δ)−2
− xT (A− ℓ− δ)−1x =:

1

δ
q2(δ, x)− q1(δ, x) ≥ 1.

Proof. We begin by expanding mA+xxT (ℓ+ δ) using the Sherman-Morisson formula:

mA+xxT (ℓ+ δ) = tr(A+ xxT − ℓ− δ)−1 = tr(A− ℓ− δ)−1 − xT (A− ℓ− δ)−2x

1 + xT (A− ℓ− δ)−1x
.

Furthermore,

tr(A− ℓ− δ)−1 = mA(ℓ) + tr[(A− ℓ− δ)−1 − (A− ℓ)−1].

The assumption A ≻ (ℓ+ δ)I implies that

(A− ℓ− δ)−1 − (A− ℓ)−1 � δ(A− ℓ− δ)−2.

Combining these estimates we see that (2.2) holds as long as

δ · tr(A− ℓ− δ)−2 − xT (A− ℓ− δ)−2x

1 + xT (A− ℓ− δ)−1x
≤ 0

which we can rearrange into (2.3) observing that all quadratic forms involved are positive. �

The inequality (2.3) is quite nontrivial in the sense that δ appears in many places, and it
is not immediately clear from looking at it what the largest feasible δ is given A, x, and ℓ.
In the following lemma, we present a tractable and explicit quantity defined solely in terms
of q1(0, x) and q2(0, x) which always satisfies (2.3) and thus provides a lower bound on the
best possible δ.

Lemma 2.3 (Explicit Feasible Shift). Consider numbers ℓ ∈ R, φ > 0, a matrix A ≻ ℓI
satisfying mA(ℓ) ≤ φ, and a vector x. Then for every t ∈ (0, 1), the shift

δ := (1− t)3q2(0, x) 1{q1(0,x)≤t} 1{q2(0,x)≤t/φ}

satisfies A ≻ (ℓ+δ)I and condition (2.3). Therefore δ is a feasible lower shift, i.e. mA+xxT (ℓ+
δ) ≤ mA(ℓ).

The proof is based on regularity properties of the quadratic forms q1 and q2, which we
state in the following two lemmas.

Lemma 2.4 (Regularity of Quadratic Forms). Consider numbers ℓ ∈ R, φ > 0, a matrix
A ≻ ℓI satisfying mA(ℓ) ≤ φ, and a vector x. Then for every positive number δ < 1/φ, one
has A ≻ (ℓ+ δ)I, and moreover:

(i) q1(0, x) ≤ q1(δ, x) ≤ (1− δφ)−1q1(0, x);
(ii) (1− δφ)2q2(0, x) ≤ q2(δ, x) ≤ (1− δφ)−2q(0, x).

1To ease the notation, we sometimes write A− u instead of A− uI.
10



Proof. The assumption A ≻ ℓI states that all eigenvalues λi of A satisfy λi > ℓ. Together
with the assumption mA(ℓ) =

∑

i(λi − ℓ)−1 ≤ φ this implies that (λi − ℓ)−1 ≤ φ for all i,
hence λi − ℓ ≥ 1/φ > δ and A ≻ (ℓ+ δ)I as claimed.

(i) Let (ψi)i≤n denote the eigenvectors of A; then

(2.4) q1(δ, x) =
n

∑

i=1

〈x, ψi〉2
λi − ℓ− δ

.

Recalling that λi − ℓ ≥ 1/φ, we have the comparison inequalities

(1− δφ)(λi − ℓ) = λi − ℓ− φδ(λi − ℓ) ≤ λi − ℓ− δ ≤ λi − ℓ.

Using these for every term in (2.4) we complete the proof of (i).
(ii) Similar to (i), noting that the numerator and denominator of q2 are increasing in δ. �

Lemma 2.5 (Moments of Quadratic Forms). Consider numbers ℓ ∈ R, φ > 0 and a matrix
A ≻ ℓI satisfying mA(ℓ) ≤ φ. If X is an isotropic random vector satisfying (WR), then for
p = 1 + η/2 the following moment bounds hold:

(i) E q1(0, X) = mA(ℓ) ≤ φ and E q1(0, X)p ≤ Cφp;
(ii) E q2(0, X) = 1 and E q2(0, X)p ≤ C.

Proof. (i) As in the proof of the previous lemma, let (ψi)i≤n denote the eigenvectors of A.
By isotropy we have

E q1(0, X) =
n

∑

i=1

E〈X,ψi〉2
λi − ℓ

= mA(ℓ) ≤ φ.

For the moment bound we use Minkowski’s inequality to obtain

(E q1(0, X)p)1/p ≤
n

∑

i=1

(E〈X,ψi〉2p)1/p
λi − ℓ

≤
n

∑

i=1

C1/p

λi − ℓ
= C1/pmA(ℓ) ≤ C1/pφ.

(ii) Analogous to (i). �

We can now finish the proof of Lemma 2.3.

Proof of Lemma 2.3. First observe that by construction

(2.5) δ ≤ q2(0, x) 1{q2(0,x)≤t/φ} ≤ t/φ < 1/φ,

so that we always have A ≻ (ℓ+ δ)I by Lemma 2.4.
If either of the indicators in the definition of the shift δ is zero, then δ = 0, which is

trivially feasible and we are done. So assume both indicators are nonzero, that is q1(0, x) ≤ t
and q2(0, x) ≤ t/φ. By Lemma 2.2, it suffices to prove inequality (2.3), which is equivalent
to

q2(δ, x)

1 + q1(δ, x)
≥ δ.

11



We can show this by replacing δ with zero using Lemma 2.4:

q2(δ, x)

1 + q1(δ, x)
≥ q2(0, x)(1− δφ)2

1 + q1(0, x)(1− δφ)−1

≥ q2(0, x)(1− t)2

1 + t(1− t)−1
(as δφ ≤ t by (2.5) and q1(0, x) ≤ t)

= q2(0, x)(1− t)3 = δ.

The proof is complete. �

We now complete the proof of Theorem 2.1 by using the regularity properties of X to show
that the expectation of δ as defined in Lemma 2.3 is large. Roughly speaking, this happens
because (1) δ is defined to be slightly less than q2(0, X) whenever both q1(0, X) and q2(0, X)
are not too large; (2) that event occurs with very high probability when φ is sufficiently
small (3) the expectation of q2(0, X) equals 1.

Proof of Theorem 2.1. Let ℓ = ℓφ(A); then mA(ℓ) = φ ≤ c2.1ε
1+2/η by assumption. Define a

feasible shift δ as in Lemma 2.3 for t = ε/5. Recall that it suffices to prove that E δ ≥ 1− ε.
According to Lemma 2.3,

E δ = (1− t)3
[

E q2(0, X)− E q2(0, X) 1{q1(0,X)>t∨q2(0,X)>t/φ}

]

≥ (1− t)3
[

1− (E q2(0, X)p)
1

p · (P{q1(0, X) > t ∨ q2(0, X) > t/φ}) 1

q

]

where we used Hölder’s inequality with exponents p = 1 + η/2 and q = p
p−1

= 2/η + 1. By

Lemma 2.5, we have E q2(0, X))p ≤ C. Next, the probability can be estimated by union
bound, Markov’s inequality and the moment bounds of Lemma 2.5, which gives

P{q1(0, X) > t ∨ q2(0, X) > t/φ}
≤ P{q1(0, X)p > tp}+ P{q2(0, X)p > (t/φ)p}

≤ Cφp

tp
+

C

(t/φ)p
= 2C(φ/t)p.

We conclude that

E δ ≥ (1− t)3
[

1− C1/p · (2C(φ/t)p)1/q
]

≥ (1− t)3
[

1− 2C(φ/t)
η
2

]

(as 1/p+ 1/q = 1 and p/q = η/2)

= (1− ε/5)3(1− ε/5) (substituting t and the bound for φ)

≥ 1− ε,

as promised. �

3. The Upper Edge

In this section we establish the following estimate for the expected largest eigenvalue,
analogous to Theorem 1.5 for the smallest one.

12



Theorem 3.1 (Largest eigenvalue). Consider independent isotropic random vectors Xi val-
ued in R

n. Assume that Xi satisfy (SR) for some C, η > 0. Then, for ε ∈ (0, 1) and for

N ≥ Cupper ε
−2−2/η · n

the maximum eigenvalue of the sample covariance matrix ΣN = 1
N

∑N
i=1XiX

T
i satisfies

(3.1) Eλmax(ΣN ) ≤ 1 + ε.

Here Cupper := 512(16C)1+2/η(6 + 6/η)1+4/η.

We shall control the largest eigenvalue of a symmetric matrix A using the (upper) Stieltjes
transform

mA(u) = tr(uI − A)−1 =

n
∑

i=1

(

u− λi(A)
)−1

, u ∈ R.

Similarly to our argument for the lower edge, for a sensitivity value φ > 0 we define the
upper soft spectral edge uφ(A) to be the largest u for which

mA(u) = φ.

Since mA(u) decreases from ∞ to 0 as u increases from the upper spectral edge λmax(A) to
∞, the value uφ(A) is defined uniquely, and

uφ(A) > λmax(A).

For φ → ∞ we have uφ(A) → λmax(A), but as before we shall work with small sensitivity
values φ ∈ (0, 1). Our goal is to show that uφ(A) increases by about 1 on average with every
rank-one update.

Theorem 3.2 (Random Upper Shift). Suppose X is an isotropic random vector satisfying
the strong regularity assumption (SR) for some C, η > 0. Assume ε ∈ (0, 1) and

(3.2) φ ≤ c3.2 ε
1+2/η

where c−1

3.2 = 256(8C)1+2/η(6 + 6/η)1+4/η. Then for every symmetric matrix A one has

(3.3) E uφ(A+XXT ) ≤ uφ(A) + 1 + ε.

Iterating Theorem 3.2 yields a proof of Theorem 3.1.

Proof of Theorem 3.1. The argument is similar to the proof of Theorem 1.5 given in Sec-
tion 2. We set φ = φ(ε) = c3.2 ε

1+2/η. Then we start with A0 = 0 where uφ(A0) = n/φ and
inductively apply Theorem 3.2 for Ak = Ak−1 +XkX

T
k to obtain

Eλmax

( 1

N

N
∑

i=1

XiX
T
i

)

<
uφ(A0)

N
+ 1 + ε = 1 + ε+

n

φN
.

For N ≥ n/εφ, the bound becomes 1 + 2ε. Substituting the value of φ and replacing ε by
ε/2 gives the promised result. �

The above proof works for ε, φ(ε) < 1 and thus for N = Ω(n), but it may be extended to
smaller N as follows.
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Proof of Corollary 1.4. In the proof of Theorem 3.1 we have shown that for every ε ∈ (0, 1)
and every positive integer N , we have

E := Eλmax(ΣN ) < 1 + ε+
n

φ(ε)N

where φ(ε) = c3.2 ε
1+2/η. Optimizing in ε, we apply this estimate with ε = (n/N)

1

2+2/η when
n < N and with ε = 1/2 when n ≥ N to obtain:

E < 1 + (1 + c−1

3.2)
( n

N

)
1

2+2/η
if n < N,

E <
3

2
+

n

φ(1/2)N
≤ 1 + 22+2/ηc−1

3.2

( n

N

)

if n ≥ N.

Combining these, for every n and N we conclude that

E < 1 + (1 + c−1

3.2)
( n

N

)
1

2+2/η
+ 22+2/ηc−1

3.2

( n

N

)

,

as required.
A similar bound for Eλmin(ΣN ) is immediate from Theorem 1.5 (see the remark after its

proof). �

The rest of this section is devoted to proving Theorem 3.2. Given a matrix A, a real
number u > λmax(A), and a vector x ∈ R

n, we say that ∆ ≥ 0 is a feasible upper shift if

(3.4) A+ xxT ≺ (u+∆)I and mA+xxT (u+∆) ≤ mA(u).

The definition of the soft spectral edge u = uφ(A) along with monotonicity of the Stieltjes
transform implies that

(3.5) uφ(A+ xxT ) ≤ uφ(A) + ∆

for every feasible upper shift ∆. So will be done if we can produce a feasible shift ∆ such
that E∆ ≤ 1 + ε where the expectation is over random X .

As in our argument for the lower edge, we begin by reducing the feasibility for a shift δ
to an inequality involving two quadratic forms.

Lemma 3.3 (Feasible Upper Shift). Consider numbers u ∈ R, ∆ > 0, a matrix A ≺ uI and
a vector x. Then a sufficient condition for ∆ ≥ 0 to be a feasible upper shift is

(3.6)
xT (u+∆− A)−2x

mA(u)−mA(u+∆)
+ xT (u+∆− A)−1x =: Q2(∆, x) +Q1(∆, x) ≤ 1.

Proof. Note that A ≺ uI ≺ (u + ∆)I so that all quadratic forms are positive, and assume
x 6= 0 since otherwise the claim is trivial. As in the proof of Lemma 2.2, we use the Sherman-
Morisson formula to write:

mA+xxT (u+∆) = tr(u+∆−A− xxT )−1

= mA(u+∆) +
xT (u+∆− A)−2x

1− xT (u+∆− A)−1x

= mA(u)− (mA(u)−mA(u+∆)) +
xT (u+∆−A)−2x

1− xT (u+∆− A)−1x
.

14



Rearranging reveals that mA+xxT (u+∆) ≤ mA(u) exactly when (3.6) holds.
To establish the second condition

(3.7) xxT ≺ u+∆− A,

we recall that
R ≺ S ⇐⇒ S−1/2RS−1/2 ≺ I

for all positive matrices R, S (this can be seen, for instance, using the Courant-Fischer
theorem). Applying this fact to (3.7), we see that it suffices to have

(u+∆−A)−1/2xxT (u+∆− A)−1/2 ≺ I

or equivalently
xT (u+∆−A)−1x < 1

which follows from (3.6) and Q2(∆, x) > 0. �

We will reason about the two quantities Q1 and Q2 separately, producing two separate
shifts ∆1 and ∆2 for them and eventually combining these into a single ∆ := ∆1 ∨ ∆2 as
required by Lemma 3.3.

For some fixed parameter τ ∈ (0, 1), let us define ∆1 = ∆1(A, x, u) and ∆2 = ∆2(A, x, u)
to be the smallest non-negative numbers such which satisfy

(3.8) Q1(∆1, x) ≤ τ, Q2(∆2, x) ≤ 1− τ.

For u = uφ(A) and for a random vector x = X , Lemmas 3.4 and 3.6 will allow us to control
the expected value of each of these shifts:

(3.9) E∆1 ≤ ε/2, E∆2 ≤ 1 + ε/2,

whenever the sensitivity parameter φ = φ(τ, ε) is sufficiently small. From this we will obtain
Theorem 3.2 quickly as follows.

Proof of Theorem 3.2. Let uφ(A) = u, so the condition A ≺ uI of Lemma 3.3 holds. Consider
the shifts ∆1 = ∆1(A,X, u) and ∆2 = ∆2(A,X, u) defined above. By (3.8), we have

Q1(∆1, X) +Q2(∆2, X) ≤ 1.

Moreover, a quick inspection of the quadratic forms in Lemma 3.3 shows that Q1(∆, X) and
Q2(∆, X) are decreasing in ∆, hence

Q1(∆1 ∨∆2, X) +Q2(∆1 ∨∆2, X) ≤ 1.

Then Lemma 3.3 guarantees that ∆1 ∨ ∆2 is a feasible upper shift, which implies by (3.5)
that

uφ(A +XXT ) ≤ uφ(A) + ∆1 ∨∆2.

Furthermore, (3.9) yields a bound on the expected shift

E∆1 ∨∆2 ≤ E∆1 + E∆2 ≤ 1 + ε,

which gives the conclusion (3.3) of Theorem 3.2.
It remains to note that Lemmas 3.4 and 3.6 only guarantee that the bounds (3.9) when

the sensitivity φ is sufficiently small, namely φ ≤ φ1(τ, ε/2)∧ φ2(τ, ε/2). With τ = ε/16, we
can simplify this inequality into the assumption of Theorem 3.2. �

The rest of this section is devoted to controlling the shifts ∆1 and ∆2.
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Remark. It is easy to check that the proofs of Lemmas 3.4 and 3.6 which follow, and conse-
quently Theorem 3.2, only require

(3.10) EXiX
T
i ≺ cI,

for some constant c = c(ε). Thus if we desire a bound of λmax

(

1
N

∑N
i=1XiX

T
i

)

< 1 + ε in

Theorem 3.1, then EXiX
T
i = I can be replaced by the weaker condition (3.10).

3.1. Control of ∆1.

Lemma 3.4. Consider numbers u ∈ R, φ > 0 and a matrix A ≺ uI satisfying mA(u) ≤ φ.
Let X be a random vector satisfying (SR) for some C, η > 0, and let ε, τ ∈ (0, 1). If the
sensitivity satisfies

φ ≤ φ1(τ, ε) :=
τ 1+1/ηε1/η

(4C)1+1/η(4 + 4/η)1+3/η
,

then the shift ∆1 = ∆1(A,X, u) satisfies

E∆1 ≤ ε.

Proof. Let (ψi)i≤n and (λi)i≤n denote the eigenvectors and eigenvalues of A, and let ξi =
〈X,ψi〉2. We know that mA(u) =

∑n
i=1(u− λi)

−1 ≤ φ, and ∆1 is the smallest non-negative
number satisfying

n
∑

i=1

ξi
u− λi +∆1

≤ τ.

Rescaling everything by φ and setting µi := φ(u− λi) so that

n
∑

i=1

1

µi
=

n
∑

i=1

1

φ(u− λi)
≤ 1,

the problem becomes equivalent to bounding the least µ := φ∆1 for which

n
∑

i=1

1

µi + µ
≤ τ

φ
.

Applying the following somewhat more general probabilistic lemma to (ξi)i≤n, we conclude
that

E∆1 ≤
1

φ
Eµ ≤ 1

φ

C(4 + 4/η)3+η(4φ)1+η

τ 1+η

whenever

φ ≤ τ

4C
.

Substituting φ = φ1(τ, ε) gives the promised bound. �

Lemma 3.5. Suppose {ξi}i≤n are positive random variables with E ξi = 1 and:

(3.11) P

{

∑

i∈S
ξi ≥ t

}

≤ C

t1+η
provided t > C|S| = C

∑

i∈S
E ξi.
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for all subsets S ⊂ [n] and some constants C, η > 0. Consider positive numbers µi such that
n

∑

i=1

1

µi
≤ 1.

Let µ be the minimal positive number such that
n

∑

i=1

ξi
µi + µ

≤ K,

for some K ≥ 4C. Then

Eµ ≤ C(4 + 4/η)3+η

(K/4)1+η
.

Proof. For simplicity of calculations, assume for the moment that the values of all µi are
dyadic, i.e.

µi ∈ {20, 21, 22, . . .}.
For each dyadic number k, let

Ik := {i : ui = k}, nk := |Ik|.
By assumptions, we have

1 ≥
n

∑

i=1

1

µi
=

∑

k dyadic

∑

i∈Ik

1

k
=

∑

k dyadic

nk

k
,

and µ is the smallest positive number such that

(3.12)

n
∑

i=1

ξi
µi + µ

=
∑

k dyadic

1

k + µ

∑

i∈Ik

ξi ≤ K.

We estimate µ by replacing it with a bigger but easier quantity µ′. Define µ′ to be the
smallest positive number such that, for every dyadic k, one has

1

k + µ′

∑

i∈Ik

ξi ≤ εk where εk :=
K

2

nk

k
∨ K

2σ
k−

η
2+2η

where

(3.13) σ :=
∑

dyadic k

k−
η

2+2η ≤ 2 + 2η

η

∑

dyadic k

1

k
≤ 4 + 4/η.

Since
∑

k dyadic

1

k + µ′

∑

i∈Ik

ξi ≤
∑

k dyadic

εk ≤
K

2

∑

k dyadic

nk

k
+
K

2σ

∑

k dyadic

k−
η

2+2η ≤ K,

the definition of µ given in (3.12) yields

µ ≤ µ′.

It remains to bound Eµ′.
By definition,

µ′ = max
k dyadic

( 1

εk

∑

i∈Ik

ξi − k
)

+
.
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Let θk = 1
εk

∑

i∈Ik ξi − k. For every t ≥ 0, one has

P{θk > t} = P

{

∑

i∈Ik

ξi > (k + t)εk

}

.

Since εk ≥ Knk

2k
by definition, we have

(k + t)εk ≥ kεk ≥
Knk

2
=
K

2
E

(

∑

i∈Ik

ξi

)

≥ C E

(

∑

i∈Ik

ξi

)

.

So by the regularity assumption (3.11)

P{θk > t} ≤ C

(k + t)1+ηε1+η
k

.

A union bound then gives

P{µ′ > t} ≤
∑

k dyadic

C

(k + t)1+ηε1+η
k

≤ C

(K/2σ)1+η

∑

k dyadic

kη/2

(k + t)1+η
(by definition of εk)

≤ C

(K/2σ)1+η

∑

k dyadic

1

(k + t)1+η/2
.

This implies that

Eµ′ =

∫ ∞

0

P
{

µ′ > t
}

dt ≤ C

(K/2σ)1+η

∑

k dyadic

∫ ∞

0

dt

(k + t)1+η/2

=
C

(K/2σ)1+η

∑

k dyadic

k−η/2

η/2

≤ C

(K/2σ)1+η

2

η
· 4
η

(by a calculation similar to (3.13))

≤ C

(K/2)1+η
(4 + 4/η)3+η (by (3.13)).

The promised bound for general (non-dyadic) µi follows by rounding each µi down to the
nearest power of 2 and replacing K by K/2. �

Remark (Necessity of the strong regularity assumption (SR)). The preceding lemma is the
only place in the proof where the full power of (SR) is used. To see that it is necessary,
consider the following situation. Fix any S ⊂ [n] and let 1

µi
= 1{i∈S}|S| so that

∑

i
1
µi

= 1.

Then the smallest µ ≥ 0 for which
∑

i
1

µi+µ
≤ K is just

µ =
( 1

K

∑

i∈S
ξi − |S|

)

+
.

18



We now lowerbound the tail probability

P{µ ≥ t} = P

{

∑

i∈S
ξi ≥ K(|S|+ t)

}

≥ P

{

∑

i∈S
ξi ≥ 2Kt

}

for t ≥ |S|.

In order to have Eµ = O(1), this probability must be O(1/t) by Markov’s inequality, which is
essentially assumption (3.11) of the lemma. In the proof of Theorems 1.1 and 3.2, the sums of
random variables ξi arise from projections of the random vector X onto varying eigenspaces
of A; the only succinct way to guarantee (3.11) for all such projections is essentially (SR).

3.2. Control of ∆2.

Lemma 3.6. Consider numbers u ∈ R, φ > 0 and a matrix A ≺ uI satisfying mA(u) ≤ φ.
Let X be a random vector satisfying (SR) for some C, η > 0, and let ε ∈ (0, 1), 0 < τ < ε/2
be parameters. If the sensitivity satisfies

φ ≤ φ2(τ, ε) :=
ε2/η(ε− 4τ)

128 · (2C)2/η(4 + 6/η)4/η
,

then the shift ∆2 = ∆2(A,X, u) satisfies

E∆2 ≤ 1 + ε.

It will more convenient to work with the quadratic form

Q′
2(∆, x) :=

xT (u+∆−A)−2x

tr(u+∆− A)−2
,

for which we have

(3.14)
1

∆
Q′

2(∆, x) ≥ Q2(∆, x) for ∆ > 0,

since the denominators satisfy:

mA(u)−mA(u+∆) = tr[(uI −A)−1 − (u+∆−A)−1] ≥ ∆tr(u+∆− A)−2.

Remark. The reason for working with Q2 rather than directly with Q′
2 in Lemma 3.3 is that

Q2(∆, x) is decreasing in ∆; this monotonicity is required when arguing that the maximum
of the two shifts ∆ = ∆1 ∨∆2 is feasible in the proof of Theorem 3.2.

We begin by recording some regularity properties of Q′
2(∆, X).

Lemma 3.7 (Regularity and Moments of of Q′
2(∆, X)). Consider numbers u ∈ R, φ > 0

and a matrix A ≺ uI satisfying mA(u) ≤ φ. Let X be a random vector satisfying (SR) for
some C, η > 0. Then for every ∆ ≥ 0 one has:

(i) Q′
2(∆, X) ≤ (1 + φ∆)2Q′

2(0, X);
(ii) EQ′

2(∆, X) = 1;
(iii) EQ′

2(∆, X)p ≤ C(3 + 3/η) for p = 1 + 2η/3.

Proof. (i) is analogous to Lemma 2.4. In a similar way, we show that all eigenvalues λi of A
satisfy u− λi ≥ 1/φ, which implies the comparison inequality

u− λi ≤ u+∆− λi ≤ (1 + φ∆)(u− λi).
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Denoting (ψi)i≤n the eigenvectors of A, we express

(3.15) Q′
2(∆, X) =

∑n
i=1(u+∆− λi)

−2〈X,ψi〉2
∑n

i=1(u+∆− λi)−2
.

The comparison inequality yields (i).
(ii) We note that (3.15) can be rearranged as a convex combination of 〈X,ψi〉2:

Q′
2(∆, X) =

∑

i

αi〈X,ψi〉2 where αi ≥ 0,
∑

i=n

αi = 1.

Then (ii) follows since E〈X,ψi〉2 = 1 by isotropy.
(iii) We apply Minkowski’s inequality to obtain

(EQ′
2(∆, X)p)1/p ≤

n
∑

i=1

αi(E〈X,ψi〉2p)1/p.

Now a simple integration of tails implies that each

E〈X,ψi〉2p = E〈X,ψi〉2+4η/3 ≤ C(3 + 3/η),

which concludes the proof. �

Next, we see how the regularity properties of Q′
2(∆, X) translate into the corresponding

properties of ∆2:

Lemma 3.8 (Regularity of ∆2). Consider numbers u ∈ R, φ > 0 and a matrix A ≺ uI
satisfying mA(u) ≤ φ. Let X be a random vector satisfying (SR) for some C, η > 0, and let
0 < τ < 1/2. Then the shift ∆2 = ∆2(A,X, u) satisfies:

(i) E∆
1+η/2
2 ≤ 21+ηC(4 + 6/η)2;

(ii) E∆21{Q′

2
(0,X)≤(t−2τ)/8φ} ≤ 1 + t for every t ∈ [0, 1].

Proof. (i) By definition of ∆2 and using (3.14), we have for all t > 0:

P{∆2 > t} ≤ P{Q2(t, X) > 1− τ} ≤ P{Q′
2(t, X) > t(1− τ)}.

This probability can be controlled using Lemma 3.7 (iii) and Markov’s inequality, so we
obtain

P{∆2 > t} ≤ C(3 + 3/η)

t1+2η/3(1− τ)1+2η/3
≤ C(3 + 3/η)

(1/2)1+2η/3t1+2η/3

as τ < 1/2. Integration of tails yields

E∆
1+η/2
2 ≤ 21+2η/3 · C(3 + 3/η)

(

4 + 6/η
)

,

which implies the claim.
(ii) Let s0 denote the smaller solution of the quadratic equation

(1 + sφ)2Q′
2(0, X) = s(1− τ),

whenever a solution exists. In this case s0 > 0 and Lemma 3.7 (i) yields that

Q′
2(s0, X) ≤ s0(1− τ).

By (3.14), this yields Q2(s0, X) ≤ s0(1− τ). By definition of ∆2, this in turn implies that

∆2 ≤ s0.
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An elementary calculation shows that if Q′
2(0, X) ≤ (t − 2τ)/8φ then the solution s0 exists

and satisfies
s0 ≤ (1 + t)Q′

2(0, X).

It follows that
E s01{Q′

2
(0,X)≤(t−2τ)/8φ} ≤ (1 + t)EQ′

2(0, X) = 1 + t,

where we used Lemma 3.7 (i) in the last step. �

We can now complete the proof of Lemma 3.6.

Proof of Lemma 3.6. We decompose

E∆2 = E∆21{Q′

2
(0,X)≤(t−2τ)/8φ} + E∆21{Q′

2
(0,X)>(t−2τ)/8φ} =: E1 + E2.

By Lemma 3.8 (ii), we have E1 ≤ 1 + t. Next, we estimate E2 using Hölder’s inequality:

E2 ≤
(

E∆
1+η/2
2

)
1

1+η/2
(

P{Q′
2(0, X) > (t− 2τ)/8φ}

)

η/2
1+η/2 .

The two terms here can be estimated using Lemma 3.8 (i) and Lemma 3.7 along with
Markov’s inequality:

E2 ≤
(

21+ηC(4 + 6/η)2
)

1

1+η/2

( C(3 + 3/η)

((t− 2τ)/8φ)1+η/2

)

η/2
1+η/2

≤ 21+ηC(4 + 6/η)2 ·
( 8φ

t− 2τ

)η/2

.

Finally, we set t = ε/2 and use the assumptions φ ≤ φ2(τ, ε) and τ < ε/2 to conclude that
E2 ≤ ε/2. Together with E1 ≤ 1 + t = 1 + ε/2 this implies

E∆2 ≤ 1 + ε

as claimed. �

Remark. Although for convenience of application Lemma 3.6 is stated under the strong
regularity assumption (SR), the latter is not used in the proof. The argument above uses
only the weak regularity assumption (WR).

4. The Spectral Norm

In this section we prove Theorem 1.1 by showing that whenever X1, . . . , XN are indepen-
dent and satisfy (SR), the spectral norm estimate

(4.1) E ‖ΣN − I‖ ≤ ε

follows from the spectral edge estimates

(4.2) Eλmin(ΣN ) ≥ 1− ε/3; Eλmax(ΣN) ≤ 1 + ε/3

obtained in Theorems 1.5 and 3.1. The basic idea is to show using independence that

λaverage(ΣN) =
1

n
tr(ΣN )

is concentrated near its expectation of 1. Combining this with

E
(

λmax(ΣN )− λmin(ΣN )
)

≤ 2ε/3,

which follows immediately from (4.2), yields (4.1).
21



We rely on the following elementary proposition regarding sums of independent random
variables.

Proposition 4.1. Let Zi be independent random variables with EZi = 1 and satisfying the
following tail bounds for some C, η > 0:

P{|Zi| > t} ≤ Ct−1−η, t > 0.

If ε ∈ (0, 1) and

N ≥ (2C)2/η(1 + 1/η)2/η

(ε/2)2+2/η
,

then

E

∣

∣

∣

1

N

N
∑

i=1

Zi − 1
∣

∣

∣
≤ ε.

Postponing the proof of Proposition 4.1, we use this fact to control

1

n
tr(ΣN ) =

1

n

N
∑

i=1

‖Xi‖22
N

and prove the main theorem as follows.

Proof of Theorem 1.1. Assume the random vectors Xi are isotropic and satisfy (SR) with
parameters C, η. This implies that the random variables

Zi =
‖Xi‖22
n

satisfy the requirements of Proposition 4.1 with parameters C1+η, η. It follows that

(4.3) E

∣

∣

∣

1

n
tr(ΣN − I)

∣

∣

∣
= E

∣

∣

∣

1

N

N
∑

i=1

Zi − 1
∣

∣

∣
≤ ε

whenever

(4.4) N ≥ (4C)2+2/η(1 + 1/η)2/η

ε2+2/η
=:

Ctrace

ε2+2/η
.

Now consider the random variables

L = λmin(ΣN − I), U = λmax(ΣN − I), M =
1

n
tr(ΣN − I).

We have
L ≤M ≤ U,

and we are interested in

(4.5) ‖ΣN − I‖ = U ∨ −L ≤ U − L+ |M |.
When N ≥ Cuppern/ε

2+2/η, Theorem 3.1 gives EU ≤ ε. To show that EL ≥ ε, we
recall that (SR) with parameters C, η implies (WR) with parameters C(2 + 2/η), η and invoke
Theorem 1.5, noting that its requirement (1.8) is satisfied as

Cupper = 512(16C)1+2/η(6 + 6/η)1+4/η > 40(10C(2 + 2/η))2/η = Clower.
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Now that we have both bounds EU ≤ ε and EL ≥ ε, we can combine them with (4.3) and
(4.5), which yields

E ‖ΣN − I‖ ≤ 2ε+ ε,

whenever

(4.6) N ≥ Cupper

n

ε2+2/η
∨ Ctrace

1

ε2+2/η
.

Replacing ε by ε/3 and taking

N ≥ Cmain

n

ε2+2/η

where

Cmain := 512 · 32+2/η · (16C)2+2/η(6 + 6/η)1+4/η

always satisfies (4.6). This completes the proof of the theorem. �

Proof of Proposition 4.1. Fix a parameter K > 0, and decompose

Zi = Zi 1{|Zi|≤K} + Zi 1{|Zi|>K} =: Z ′
i + Z ′′

i .

Using EZ ′
i + EZ ′′

i = EZi = 1 and by triangle inequality we obtain

E

∣

∣

∣

1

N

N
∑

i=1

Zi − 1
∣

∣

∣
≤ E

∣

∣

∣

1

N

N
∑

i=1

Z ′
i − E

1

N

N
∑

i=1

Z ′
i

∣

∣

∣
+ E

∣

∣

∣

1

N

N
∑

i=1

Z ′′
i − E

1

N

N
∑

i=1

Z ′′
i

∣

∣

∣
=: E ′ + E ′′.

By Jensen’s inequality, independence and the bound on Z ′
i, we have

(E ′)2 ≤ Var
( 1

N

N
∑

i=1

Z ′
i

)

=
1

N2

N
∑

i=1

Var(Z ′
i) ≤

K2

N
.

Moreover, by triangle and Jensen’s inequalities,

E ′′ ≤ 2E
∣

∣

∣

1

N

N
∑

i=1

Z ′′
i

∣

∣

∣
≤ 2

N

N
∑

i=1

E |Z ′′
i |.

The assumption on the tails of Zi implies that P{|Z ′′
i | > t} ≤ C/(t ∨K)1+η for t > 0, thus

E |Z ′′
i | =

∫ ∞

0

P{|Z ′′
i | > t} dt ≤ C

Kη
+

C

ηKη
= C

(

1 +
1

η

)

K−η.

Hence

E ′′ ≤ 2C
(

1 +
1

η

)

K−η,

and

E ′ + E ′′ ≤ K√
N

+ 2C
(

1 +
1

η

)

K−η.

Choosing K = (ε/2)
√
N and using the assumption on N , one easily checks that

E ′ + E ′′ ≤ ε

2
+
ε

2
≤ ε

as desired. �
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Appendix. Proof of Proposition 1.3.

In this section we prove Proposition 1.3, which states that product distributions satisfy
the regularity assumption in Theorem 1.1. Note that this result and its proof are not needed
in the proof of Theorem 1.1.

Consider a random vector X and an orthogonal projection P in R
n as in Proposition 1.3.

Denoting by (Pij) the n× n matrix of the operator P , we express

‖PX‖22 = 〈X,PX〉 =
n

∑

i,j=1

ξiξjPij .

The contribution of the diagonal of P to this sum is

D :=

n
∑

i=1

ξ2i Pii.

Denote by P0 the matrix P with diagonal removed; then

(4.7) ‖PX‖22 −D = 〈X,P0X〉.
We can estimate 〈X,P0X〉 using a standard decoupling argument. Let X ′ denote an

independent copy of X , and let EX , EX′ denote the expectations with respect to X and X ′

respectively. Since the matrix P0 has zero diagonal, we have2

(4.8) E |〈X,P0X〉|p . EX′ EX |〈X,P0X
′〉|p.

This inequality can be obtained from general decoupling results, see [7, Theorem 3.1.1]; a
simple and well known proof of (4.8) is given in [17].

Next, an application of a standard symmetrization argument and Khintchine inequality
(or a direct application of Rosenthal’s inequality [13], see [8]) yields for every a ∈ R

n that

E |〈X, a〉|p = E

∣

∣

∣

n
∑

i=1

aiξi

∣

∣

∣

p

. ‖a‖p2.

Therefore, by conditioning on X ′ we obtain from (4.8) that

(4.9) E |〈X,P0X〉|p . EX′ ‖P0X
′‖p2 = E ‖P0X‖p2.

Since P0 equals P without the diagonal, the triangle inequality yields

‖P0X‖2 ≤ ‖PX‖2 +
(

n
∑

i=1

ξ2i P
2
ii

)1/2

Since 0 < Pii ≤ ‖P‖ ≤ 1, we can replace P 2
ii by Pii, so

‖P0X‖2 ≤ ‖PX‖2 +D1/2 . (‖PX‖22 +D)1/2.

Hölder’s inequality then implies that

(4.10) E ‖P0X‖p2 .
(

E
∣

∣‖PX‖22 +D
∣

∣

p)1/2
.

Putting (4.7), (4.9) and (4.10) together, we arrive at the inequality

E
∣

∣‖PX‖22 −D
∣

∣

p
.

(

E
∣

∣‖PX‖22 +D
∣

∣

p)1/2
.

2Throughout this proof, we write a . b if a ≤ Cb for some constant C which is independent of n.
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Put in different words, the random variable Z := ‖PX‖22 −D satisfies the inequality

‖Z‖2Lp
. ‖Z + 2D‖Lp ≤ ‖Z‖Lp + 2‖D‖Lp.

Solving this quadratic inequality we obtain that

(4.11) ‖Z‖Lp . 1 + ‖D‖1/2Lp
.

In order to bound ‖D‖Lp we consider

‖D − k‖pLp
= E

∣

∣

∣

n
∑

i=1

ξ2i Pii − k
∣

∣

∣

p

= E

∣

∣

∣

n
∑

i=1

(ξ2i − 1)Pii

∣

∣

∣

p

,

where we used that
∑n

i=1 Pii = tr(P ) = k. Recall that by the assumptions we have E(ξ2i−1) =
0 and ‖ξ2i − 1‖Lp ≤ ‖ξ2i ‖Lp + 1 = ‖ξi‖2L2p

+ 1 . 1. An application of Khintchine’s inequality

or Rosenthal’s inequality (as before) and the bound P 2
ii ≤ Pii yield that

(4.12) ‖D − k‖pLp
.

(

n
∑

i=1

P 2
ii

)p/2

≤
(

n
∑

i=1

Pii

)p/2

= (tr(P ))p/2 = kp/2.

It follows that
‖D‖Lp ≤ ‖D − k‖Lp + k . k1/2 + k . k.

Putting this into (4.11), we see that

(4.13) ‖Z‖Lp . k1/2.

Finally, by definition of Z and using the triangle inequality and bounds (4.13), (4.12), we
conclude that

∥

∥‖PX‖22 − k
∥

∥

Lp
≤ ‖Z‖Lp + ‖D − k‖Lp . k1/2 + k1/2 . k1/2.

Proposition 1.3 is proved. �
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