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Abstract

The first author showed that the list chromatic number of every graph with average degree
d is at least (0.5 − o(1)) log2 d. We prove that for r ≥ 3, every r-uniform hypergraph in which
at least half of the (r − 1)-vertex subsets are contained in at least d edges has list chromatic
number at least ln d

100r3 . When r is fixed, this is sharp up to a constant factor.

1 Introduction

A list for a hypergraph G is an assignment L that provides a subset Lv of a set S (called the set
of colors) to every vertex v of G. A list L for a hypergraph G is an s-list if |L(v)| = s for every
v ∈ V (G). Given a list L for G, an L-coloring of G is a proper (that is, with no monochromatic
edges) coloring f of the vertices of G such that f(v) ∈ Lv for every v ∈ V (G). The list chromatic
number (or choice number) χ`(G) of a hypergraph G is the minimum integer s such that for
every s-list L for G, there exists an L-coloring of G. These notions were introduced (for graphs)
independently by Vizing in [10] and by Erdős, Rubin and Taylor in [5]. It turned out that list
coloring possesses several properties different from those of an ordinary coloring. Indeed, χ`(G)
can be much larger than the ordinary chromatic number, χ(G). In particular, as shown in [5] (see
also [3] for some extensions), for every m ≥ 1, χ(Km,m) = 2, but

(1− o(1)) log2m ≤ χ`(Km,m) ≤ (1 + o(1)) log2m. (1)

We also know that Hadwiger’s Conjecture fails for list chromatic number and that list-k-critical
graphs may have cut vertices.

An additional property of list coloring of graphs, that is not shared by ordinary vertex coloring,
is the result proved by the first author in [1, 2] that the list chromatic number of each (simple)
graph with a large average degree is large.
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Theorem 1 (Alon [2]) The list chromatic number of each graph with average degree d is at least
(1
2 − o(1)) log2 d, where the o(1)-term tends to zero as d tends to infinity.

Ramamurthi [9] asked whether a similar statement holds for r-uniform hypergraphs (r-graphs,
for short). However, for r ≥ 3, there is no nontrivial lower bound on the list chromatic number of
an r-graph in terms of its average degree.

Example: Let Fk,d denote the 2kd-vertex graph which is the disjoint union of k copies of Kd,d.
Let G(k, d) be the r-uniform hypergraph whose edges are the r-tuples containing at least one edge
of Fk,d. Since χ`(G(k, d)) ≤ χ`(Fk,d), by (1), χ`(G(k, d)) ≤ (1 + o(1)) log2 d. Note that every
(r− 1)-tuple of vertices in G(k, d) not containing an edge of F (k, d) is contained in at least d edges
of G(k, d), and every (r − 1)-tuple containing an edge of Fk,d is contained in 2kd − r + 1 edges of
G(k, d). In particular,

|E(G(k, d))|
|V (G(k, d))|

≥ d

r(2kd)

(
2kd
r − 1

)
,

and for every given d this ratio can be made arbitrarily large by taking a sufficiently large k.
In view of this example, we considered lower bounds on χ`(G) in terms of codegrees of (r − 1)-

tuples of vertices (where the codegree of a set of vertices is the number of edges containing this
set). The main result of this paper is the following.

Theorem 2 Let d, r ≥ 3. Let G = (V,E) be an r-uniform hypergraph with n vertices and such
that for at least 1

2

(
n

r−1

)
of (r− 1)-tuples T of vertices of G, the number of edges of G containing T

is at least d. Let s ≤ ln d
100r3 be a positive integer. Then G is not list-s-colorable.

In view of the example, for fixed r, the bound on s in the theorem is sharp up to a constant
factor.

Very recently, several interesting results were obtained on list coloring of simple hypergraphs.
Recall that a hypergraph is simple if no two of its distinct edges share more than one vertex. Haxell
and Pei [6] proved that for every Steiner Triple System Tn on n vertices, χ`(Tn) ≥ c log n

log log n . Haxell
and Verstraete [7] proved that χ`(H) ≥ c

√
log d/ log log d for every 3-uniform d-regular simple

hypergraph H, and independently the authors [4] proved more general and slightly stronger bound:
for every fixed r ≥ 3, χ`(H) ≥ c(log d)1/(r−1) for each r-uniform simple hypergraph H with average
degree d. Conceptually, the last result is more advanced than the result of this paper, but it does
not give sharp bounds, as our theorem here does.

In the next three sections we prove Theorem 2. The generic main statement that we will carry
by induction is Lemma 3 in Section 3. But first in Section 2 we create conditions which then are
used by Lemma 3. Finally, in Section 4 we use the structures provided by Lemma 3 to get the final
contradiction. The considerations and procedures in all three sections are similar, but somewhat
different.

2 Preliminaries and the first step

If s = 1, then the theorem is trivial. So, throughout the paper, s ≥ 2, r ≥ 3 and we are working
with an r-uniform n-vertex hypergraph G = (V,E) satisfying the conditions of the theorem. We
also use the following notation:

For i = 1, . . . , r − 1, ni = dn d(i−r)/re, and nr = n− n1 − . . .− nr−1; t = dd1/2re. (2)
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By definition and because d ≤ n− r + 1 < n, we have

n1 ≥ n1/r, for i = 1, . . . , r − 1, d1/rni
2 ≤ ni+1 ≤ 2d1/rni, and d(r−i)/rni

2 ≤ n ≤ d(r−i)/rni. (3)

Sometimes the inequality s ≤ ln d
100r3 will be used in the form

d ≥ exp{100sr3} which is equivalent to d1/r ≥ exp{100sr2}. (4)

Claim 1 Let G = (V,E) satisfy the conditions of the theorem. Then there exists a partition
(V1, V2, . . . , Vr) of V such that |Vi| = ni for i = 1, . . . , r, and the cardinality of the set W2,...,r of
(r − 1)-tuples (v2, . . . , vr) with the property that vi ∈ Vi for i = 2, . . . , r, and there are at least t
vertices v1 ∈ V1 such that (v1, v2, . . . , vr) is an edge of G is at least 0.45

∏r
i=2 ni.

Proof. Choose V1, . . . , Vr−1 as random disjoint subsets of V of the given cardinalities. Say that
an ordered (r−1)-tuple (v2, . . . , vr) with vi ∈ Vi for i = 2, . . . , r is r-good, if it is contained in at least
d edges of G. Under the conditions of the theorem, the probability that a random ordered (r− 1)-
tuple (v2, . . . , vr) with vi ∈ Vi for i = 2, . . . , r is r-good is at least 1/2. The probability that an
r-good ordered (r−1)-tuple (v2, . . . , vr) with vi ∈ Vi for i = 2, . . . , r has fewer than t vertices v1 ∈ V1

such that (v1, v2, . . . , vr) is an edge of G is at most
∑t−1

i=0 xi, where xi =
(
d
i

)(
n−r+1−d

n1−i

)/(
n−r+1

n1

)
.

This sum is at most 0.1. Indeed, for 0 ≤ i ≤ t− 1, we have

xi+1

xi
=
(

d

i+ 1

)(
n− r + 1− d
n1 − i− 1

)(
d

i

)−1(n− r + 1− d
n1 − i

)−1

=
(d− i)(n1 − i)

(i+ 1)(n− r − d− n1 + i+ 2)

≥ (d− d1/2r)(n1 − d1/2r)
dd1/2ren

>
0.5dn1

2d1/2rn
≥ 0.25d(nd−(r−1)/r)

d1/2rn
=

1
4
d1/2r ≥ 1

4
e50r2

> 20.

So, since xt ≤ 1 and xi < xi+1/20 for 0 ≤ i ≤ t− 1, we have

t−1∑
i=0

xi ≤
t−1∑
i=0

xt−120i−t+1 < 2xt−1 < 0.1xt ≤ 0.1.

Thus the expectation of |W2,...,r| is at least

r∏
i=2

ni ·
1
2
· 0.9 = 0.45

r∏
i=2

ni.

Therefore, there exists a suitable partition. �

Fix a partition (V1, . . . , Vr) of V satisfying Claim 1. Let H ′1 be the (r − 1)-partite hypergraph
on V2 ∪ . . . ∪ Vr whose edges are the (r − 1)-tuples in W2,...,r.

Let S = {1, 2, . . . , 2rs} be a set of colors. To every v ∈ V1, assign a subset Sv of s colors from S
randomly and independently. Say that an edge (v2, . . . , vr) ∈ E(H ′1) is (r − 1)-good if every subset
S′ of S with cardinality s appears as the list of a vertex v ∈ V1 such that (v, v2, . . . , vr) is an edge
of G.

Claim 2 For every (v2, . . . , vr) ∈ E(H ′1), the probability P1(v2, . . . , vr) of the event that (v2, . . . , vr)
is (r − 1)-good is at least 0.9.
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Proof. Let (v2, . . . , vr) ∈ E(H ′1). The probability that a given subset S′ of S with cardinality
s does not appear as the list of a vertex v ∈ V1 such that (v, v2, . . . , vr) is an edge of G is at most(

1−
(

2rs
s

)−1
)t

≤ exp{−t/(2re)s} ≤ exp{−e50sr2−s ln(2re)} < exp{−e40sr2}.

Therefore,

1− P1(v2, . . . , vr) ≤
(

2rs
s

)
exp{−e40sr2} ≤ exp{s ln(2re)− e40sr2} < 0.1,

as claimed. �

Fix an assignment L1 of lists to the vertices in V1 such that the number of (r − 1)-good edges
in H ′1 is at least 0.9|W2,...,r| > 0.4

∏r
i=2 ni. Let H1 be the hypergraph formed by the (r − 1)-good

edges in H ′1. As we just derived,

|E(H1)| > 0.4
r∏

i=2

ni. (5)

Let W3,...,r be the set of the (r−2)-tuples (v3, . . . , vr), where vi ∈ Vi for i = 3, . . . , r, such that each
of them is contained in at least 0.2n2 edges of H1. Since

|E(H1)| ≤ 0.2n2

r∏
i=3

ni + 0.8n2|W3,...,r|,

by (5),

|W3,...,r| ≥
1
4

r∏
i=3

ni. (6)

Let H2 be the (r − 2)-partite hypergraph on V3 ∪ . . . ∪ Vr whose edges are the (r − 2)-tuples in
W3,...,r.

Fix any L1-coloring f1 of vertices in V1. For every edge e ∈ E(H1), let X1(f1, e) be the set
of colors in S not used on vertices v ∈ V1 such that e ∪ {v} ∈ E(G). Since e is (r − 1)-good,
|X1(f1, e)| ≤ s − 1. For every (v3, . . . , vr) ∈ E(H2), there exists X1(f1; v3, . . . , vr) ⊂ S with
|X1(f1; v3, . . . , vr)| = s− 1 such that at least 0.2n2

(
2rs
s−1

)−1
edges e ∈ E(H1) containing {v3, . . . , vr}

have X1(f1, e) ⊆ X1(f1; v3, . . . , vr). For every (v3, . . . , vr) ∈ E(H2), fix such a set X1(f1; v3, . . . , vr)
and let Y2(f1; v3, . . . , vr) denote the set of v2 ∈ V2 such that the set e = {v2, v3, . . . , vr} is an edge
of H1 and X1(e, f1) ⊆ X(f1; v3, . . . , vr). By definition,

|Y2(f1; v3, . . . , vr)| > 0.2n2

(
2rs
s− 1

)−1

≥ 0.2n2

(
2rs
s

)−1

. (7)

For every v ∈ V2, let L′(v) be a random s-element subset of S chosen uniformly and inde-
pendently from the choices for other vertices in V2. By (7), for a given (v3, . . . , vr) ∈ E(H2), the
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probability of the event M(f1, v3, . . . , vr) that some S′ ⊂ S of cardinality s is not a list of any
v2 ∈ Y2(f1; v3, . . . , vr) is at most(

2rs
s

)(
1−

(
2rs
s

)−1
)|Y2(f1;v3,...,vr)|

≤ (2re)s exp

{
−0.2n2

(
2rs
s

)−2
}
.

Thus the probability of the event M(f1) that for at least one (v3, . . . , vr) ∈ E(H2), the event
M(f1, v3, . . . , vr) occurs is at most nr−2(2re)s exp

{
−0.2n2(2re)−2s

}
. Since there are at most sn1

different L1-colorings of V1, the probability of the event M1 that M(f1) occurs for at least one
L1-coloring f1, is at most

sn1nr−2(2re)s exp
{
−n2

5
(2re)−2s

}
= exp

{
n1 ln s+ (r − 2) lnn+ s ln(2re)− n2

5
(2re)−2s

}
.

By (3), the expression in the last exponent is at most

n1 ln s+ (r − 2)(lnnr
1) + s ln(2re)− n1e

100sr2

20
e−2s ln(2re) ≤

≤ n1

(
ln s+ r2

lnn1

n1
+
s ln 6r
n1

− exp{100sr2 − 2s ln 6r − ln 20}
)
< 0.

It follows that with positive probability for every L1-coloring f1 of V1, no event M(f1) happens.
This yields the following claim.

Claim 3 There exists an assignment L′2 of s-lists from S to vertices in V2 such that for every
L1-coloring f1 of V1 and every (v3, . . . , vr) ∈ E(H2), there exists X1(f1; v3, . . . , vr) ⊂ S with
|X1(f1; v3, . . . , vr)| = s − 1 and a set Y2(f1; v3, . . . , vr) of vertices v2 ∈ V2 such that the set
e = {v2, v3, . . . , vr} is an edge of H1 and
(a) for every v2 ∈ Y2(f1; v3, . . . , vr), every color α ∈ S − X1(f1; v3, . . . , vr) is used on a vertex
v1 ∈ V1 such that (v1, v2, . . . , vr) ∈ E(G);
(b) every S′ ⊂ S of cardinality s is the list of some v2 ∈ Y2(f1; v3, . . . , vr).

We need this to prove the next claim.

Claim 4 There exists an assignment L2 of lists to vertices in V1 ∪ V2 such that for every L2-
coloring f2 of V1 ∪ V2 and every e = (v3, . . . , vr) ∈ E(H2), there exists Z2(f2; v3, . . . , vr) ⊂ S with
|Z2(f2; v3, . . . , vr)| = 2rs − 2(s − 1) such that for every α ∈ Z2(f2; v3, . . . , vr) there is an edge
(v1, v2, v3, . . . , vr) ∈ E(G) containing e with f2(v1) = f2(v2) = α.

Proof. Let

L2(v) :=
{
L1(v), if v ∈ V1;
L′2(v), if v ∈ V2,

where L1 and L′2 are provided by Claims 2 and 3. Let f2 be an arbitrary L2-coloring of V1 ∪ V2.
Let f1 denote the restriction of f2 to V1. Let e = (v3, . . . , vr) ∈ E(H2). Let X1(f1; v3, . . . , vr) ⊂ S
with |X1(f1; v3, . . . , vr)| = s − 1 and Y2(f1; v3, . . . , vr) be the sets provided by Claim 3. Then by
Claim 3(b), the set F2(f1, e) := f2(Y2(f1; v3, . . . , vr)) contains at least 2rs− (s− 1) colors. So, for
each α ∈ F2(f1, e), there exists v2(α) ∈ Y2(f1; v3, . . . , vr) such that f2(v2(α)) = α. By Claim 3(a),
if α /∈ X1(f1; v3, . . . , vr), then there is v1 ∈ V1 such that (v1, v2, . . . , vr) ∈ E(G) and f1(v1) = α.
Thus the claim holds for each subset Z2(f2; v3, . . . , vr) of the set F2(f1, e)−X1(f1; v3, . . . , vr) with
|Z2(f2; v3, . . . , vr)| = 2rs− 2(s− 1). �
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3 The general step

Mimicking the proofs of Claims 2-4, we generalize their statements to the following.

Lemma 3 Let G = (V,E) be a hypergraph as in the statement of the theorem and (V1, V2, . . . , Vr)
be a partition of V satisfying Claim 1. Let H1 be the (r − 1)-uniform (r − 1)-partite hypergraph
defined in the previous section. For j = 2, . . . , r− 1, there exists an (r− j)-uniform (r− j)-partite
hypergraph Hj and a list assignment Lj to the vertices in V1 ∪ . . . ∪ Vj satisfying all the properties
below:
(Q1) for every edge (vj+1, vj+2, . . . , vr) ∈ E(Hj), each vi belongs to Vi for i = j + 1, . . . , r.
(Q2) |E(Hj)| ≥ 2−j

∏r
i=j+1 ni.

(Q3) Each edge of Hj is contained in at least 51−jnj edges of Hj−1.
(Q4) For every Lj-coloring fj of

⋃j
i=1 Vi and every (vj+1, . . . , vr) ∈ E(Hj), there is Zj(fj ; vj+1, . . . , vr) ⊂

S with |Zj(fj ; vj+1, . . . , vr)| = 2rs− j(s− 1) such that for every α ∈ Zj(fj ; vj+1, . . . , vr) there is an
edge (v1, v2, v3, . . . , vr) ∈ E(G) containing e with fj(v1) = fj(v2) = . . . = fj(vj) = α.

Proof. For j = 2, the statement follows from (6) and Claims 2, 3 and 4. Suppose that the
statement holds for 2 ≤ j′ ≤ j − 1, that Hj−1 is the corresponding (r− j + 1)-uniform hypergraph
and that Lj−1 is the corresponding list assignment to the vertices in V1 ∪ . . .∪ Vj−1. Let the edges
of Hj be the (r− j)-tuples (vj+1, . . . , vr), where vi ∈ Vi for i = j + 1, . . . , r, such that each of them
is contained in at least nj51−j edges of H1. So, (Q1) and (Q3) hold by definition. Each edge of Hj

is contained in at most nj edges of Hj−1 and every other (r − j)-tuple (vj+1, . . . , vr), with vi ∈ Vi

for i = j + 1, . . . , r is contained in fewer than nj51−j edges of H1. Thus, since (Q2) holds for j − 1,
we have

nj |E(Hj)|+ nj51−j
r∏

i=j+1

ni ≥ 21−j
r∏

i=j

ni.

Cancelling nj and simplifying, we obtain

|E(Hj)| ≥ (21−j − 51−j)
r∏

i=j+1

ni > 2−j
r∏

i=j+1

ni,

i.e. (Q2) holds.
Fix an Lj−1-coloring fj−1 of

⋃j−1
i=1 Vi. Let (vj+1, . . . , vr) ∈ E(Hj). Since the number of distinct

sets Zj−1(fj−1; vj , vj+1, . . . , vr) ⊂ S with |Zj−1(fj−1; vj , vj+1, . . . , vr)| = 2rs−(j−1)(s−1) such that
(vj , . . . , vr) ∈ E(Hj−1) is at most

(
2rs

(j−1)(s−1)

)
<
(

2rs
(j−1)s

)
, there is a set Yj = Yj(fj−1; vj+1, . . . , vr) ⊂

Vj with

|Yj | ≥ nj51−j

(
2rs

(j − 1)s

)−1

≥ nj51−j(2re)−s(j−1) (8)

such that for all v ∈ Yj , the sets Zj−1(fj−1; vj , vj+1, . . . , vr) are the same.
For every v ∈ Vj , let L′(v) be a random subset of [2rs] chosen uniformly and independently

from all other vertices. By (8), the probability that for a given (vj+1, . . . , vr) ∈ E(Hj), some S′ ⊂ S
of cardinality s is not a list of any vj ∈ Yj(fj−1; vj+1, . . . , vr) is at most(

2rs
s

)(
1−

(
2rs
s

)−1
)|Yj(fj−1;vj+1,...,vr)|

≤ (2re)s exp

{
−nj51−j(2re)−s(j−1)

(
2rs
s

)−1
}
.
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Thus the probability of the event M(fj−1) that for at least one (vj+1, . . . , vr) ∈ E(Hj), some S′ ⊂ S
of cardinality s is not a list of any v ∈ Yj(fj−1; vj+1, . . . , vr) is at most

nr−j(2re)s exp
{
−nj51−j(2re)−s(j−1)(2re)−s

}
.

So, since there are sn1+...+nj−1 ≤ s2nj−1 different Lj−1-colorings of
⋃j−1

i=1 Vi, the probability of the
event Mj−1 that M(fj−1) occurs for at least one coloring fj−1, is at most

s2nj−1nr−j(2re)s exp
{
−nj51−j(2re)−rs

}
= exp{2nj−1 ln s+r − j lnn+s ln(2re)−nj51−j(2re)−rs}.

Similarly to the proof of Claim 3, by (3), the expression in the exponent is at most

2nj−1 ln s+ (r − 2)(lnnr
j−1) + s ln(2re)− nj−1e

100sr2

2
51−je−rs ln(2re) ≤

≤ nj−1

(
2 ln s+ r2

lnnj−1

nj−1
+ s

ln(2re)
nj−1

− e100sr2−j ln 5−rs ln(2re)

)
< 0.

It follows that with positive probability for every coloring fj−1 of V1 ∪ . . . ∪ Vj−1, no event M(f1)
happens. This means that there exists an assignment L′j of s-lists from [2rs] to the vertices in
Vj such that for every Lj−1-coloring fj−1 of

⋃j−1
i=1 Vi and for every (vj+1, . . . , vr) ∈ E(Hj), there

exists a set Xj−1(fj−1; vj+1, . . . , vr) ⊂ S with |Zj−1(fj−1; vj+1, . . . , vr)| = (j − 1)(s − 1) and a set
Yj(fj−1; vj+1, . . . , vr) of vertices vj ∈ Vj such that the set {vj , vj+1, . . . , vr} is an edge of Hj−1 and

(i) for every α ∈ S −Xj−1(fj−1; vj+1, . . . , vr), there is an edge (v1, v2, v3, . . . , vr) ∈ E(G) con-
taining {vj , vj+1, . . . , vr} with fj−1(v1) = fj−1(v2) = . . . = fj−1(vj−1) = α;

(ii) every S′ ⊂ S of cardinality s is the list of some vj ∈ Yj(fj−1; vj+1, . . . , vr).
Fix such an assignment L′j of lists to vertices in Vj and let

Lj(v) :=
{
Lj−1(v), if v ∈

⋃j−1
i=1 Vi;

L′j(v), if v ∈ Vj .

For a coloring fj of
⋃j

i=1 Vi, let fj−1 denote its restriction to
⋃j−1

i=1 Vi. Then by (ii), for every e =
(vj+1, . . . , vr) ∈ E(Hj) and every Lj-coloring fj of

⋃j
i=1 Vi, the set Fj(fj , e) := fj(Yj(fj−1; vj+1, . . . , vr))

contains at least 2rs − (s − 1) colors. Let α ∈ Fj(fj , e) − Xj−1(fj−1; vj+1, . . . , vr). Then there is
vj ∈ Yj(fj−1; vj+1, . . . , vr) with fj(vj) = α and by (i), there are v1 ∈ V1, . . . , vj−1 ∈ Vj−1 such that
(v1, v2, . . . , vr) ∈ E(G) and fj(v1) = fj(v2) = . . . = fj(vj−1) = α. Thus the lemma holds for each
subset Zj(fj ; vj+1, . . . , vr) of the set Fj(fj , e)−Xj−1(fj−1; vj+1, . . . , vr) with |Zj(fj ; vj+1, . . . , vr)| =
2rs− j(s− 1). �

4 The final step

By Lemma 3 for j = r − 1, there exists a 1-uniform hypergraph Hr−1 (in other words, a set W of
vertices) and a list assignment Lr−1 to the vertices in V1 ∪ . . . ∪ Vr−1 = V − Vr satisfying all the
properties below:
(Q1) W ⊆ Vr.
(Q2) |W | ≥ 2−r+1nr ≥ 2−rn.
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(Q3) Each vr ∈W is contained in at least 52−rnr−2 edges of Hr−2.
(Q4) For every Lr−1-coloring fr−1 of

⋃r−1
i=1 Vi and every vr ∈ W , there exists Zr−1(fr−1, vr) ⊂ S

with |Zr−1(fr−1, vr)| = 2rs− (r − 1)(s− 1) such that for every α ∈ Zr−1(fr−1, vr) there is an edge
(v1, v2, v3, . . . , vr) ∈ E(G) containing e with fr−1(v1) = fr−1(v2) = . . . = fr−1(vr−1) = α.

Now we essentially repeat the proof of Lemma 3. Fix an Lr−1-coloring fr−1 of V − Vr. Since
the number of distinct sets Zr−1(fr−1, vr) ⊂ S with |Zr−1(fr−1, vr)| = 2rs − (r − 1)(s − 1) is at
most

(
2rs

(r−1)(s−1)

)
<
(
2rs
sr

)
, there is a set Yr(fr−1) ⊂W with

|Yr(fr−1)| ≥ 2−rn

(
2rs
sr

)−1

≥ 2−rn6−rs (9)

such that for all vr ∈ Yr(fr−1), the sets Zr−1(fr−1, vr) are the same.
For every v ∈ Vr, let L′(v) be a random s-list chosen from S uniformly and independently from

all other vertices. By (9), the probability of the event M(fr−1) that some S′ ⊂ S of cardinality s
is not a list of any v ∈ Yr(fr−1) is at most(

2rs
s

)(
1−

(
2rs
s

)−1
)|Yr(fr−1)|

≤ (2re)s exp

{
−2−rn6−rs

(
2rs
s

)−1
}
.

Since there are at most
sn1+...+nr−1 ≤ s2nr−1

different Lr−1-colorings of V − Vr, the probability of the event Mr−1 that M(fr−1) occurs for at
least one Lr−1-coloring fr−1, is at most

s2nr−1(2re)s exp
{
−n2−r(6r)−rs(2re)−s

}
≤ exp{2nr−1 ln s+ s ln(6r)− n2−r(6r)−(r+1)s}. (10)

Since n ≥ nr−1d
1/r/4 ≥ nr−1 exp{100r2s}/4, the last expression in (10) is less than 1. So, with

positive probability the event Mr−1 does not hold. It follows that there exists an assignment of
lists to the vertices in Vr such that for every Lr−1-coloring fr−1 of

⋃r−1
i=1 Vi, there exists a set

Xr−1(fr−1) ⊂ S with |Xr−1(fr−1)| = (r− 1)(s− 1) and a set Yr(fr−1) of vertices vr ∈W such that
(i) for every α ∈ S −Xr−1(fr−1) there is an edge (v1, v2, v3, . . . , vr) ∈ E(G) containing vr with

fr−1(v1) = fr−1(v2) = . . . = fr−1(vr−1) = α;
(ii) every S′ ⊂ S of cardinality s is the list of some vr ∈ Yr(fr−1). Fix such an assignment L′′

of lists to vertices in Vr and let

Lr(v) :=
{
Lr−1(v), if v ∈

⋃r−1
i=1 Vi;

L′′(v), if v ∈ Vr.

For a coloring fr of G, let fr−1 denote its restriction to
⋃r−1

i=1 Vi. Then by (ii), for every
Lr-coloring fr of G, the set Fr(fr) := fr(Yr(fj−1)) contains at least 2rs − (s − 1) colors. Let
α ∈ Fr(fr) − Xr−1(fr−1). Then by definition there is vr ∈ Yr(fr−1) with fr(vr) = α and by (i),
there are v1 ∈ V1, . . . , vr−1 ∈ Vr−1 such that (v1, v2, . . . , vr) ∈ E(G) and fr(v1) = fr(v2) = . . . =
fr(vr−1) = α. So, we have an edge of G all whose vertices are colored with α. This proves the
theorem. �
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