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Abstract. For every graph G, the coloring number of G does not ex-
ceed the least strong limit cardinal above the graph’s list-chromatic num-
ber.

1. introduction

Let G = (V,E) always denote an undirected, simple graph. Two well-
known variations on the chromatic number χ(G) are the list-chromatic num-
ber χ`(G) and the coloring-number Col(G). For every G,

χ(G) ≤ χ`(G) ≤ Col(G).

For every cardinal λ the list-chromatic number of the complete bipartite
graph K(λ, λλ) is larger than λ, hence no function in χ(G) bounds χ`(G).
Alon proved that for every finite G,

(1) Col(G) ≤ (4 + o(1))χ`(G)

and that this bound is tight up to a constant (see [2]).
Alon’s question was whether the coloring number of an infinite graph

is absolutely bounded by some function of the list-chromatic number. A
theorem of Erdős and Hajnal [3] implies that the double successor is such a
function if the additional axiom of the GCH is assumed.

Below it is proved that for every graph G,

(2) Col(G) ≤ iω(χ`(G)).

The function iω(λ) is the ω-th iterated exponent, defined by i0(λ) = λ,

in+1(λ) = 2in(λ) and iω(λ) = limn∈ω in(λ). We do not know if this bound
is tight. Komjáth [7] proved that for every infinite cardinal λ it is consistent
that 2ℵ0 = λ+ and χ`(K(λ, λ)) = ℵ0, hence, as Col(K(λ, λ)) = λ, at least
one exponent in χ`(G) is required to bound Col(G) for all infinite G. Below
we show that a cardinal arithmetic assumption considerably weaker than
the SCH implies

This research was done when the author was a member of the Institute for Advanced
Study in Princeton, NJ. The author is grateful to the institute for the ideal conditions it
provided him for doing this research.

1



2 MENACHEM KOJMAN

(3) Col(G) ≤ max{2χ`(G), (χ`(G))++}.

1.1. Notation. The coloring number Col(G) of a graph G = (V,E) is the
least cardinal κ for which there exists a well-ordering ≺ of V with the prop-
erty that for every vertex v ∈ V the set G≺[v] := {u : {u, v} ∈ E and u ≺ v}
satisfies |G≺[v]| < κ. The list-chromatic number of G is the least cardinal
κ such that for every assignment of lists of colors L(v) to all vertices of G
such that |L(v)| ≤ κ there is a proper coloring c of G such that c(v) ∈ L(v)
for all v ∈ V .

For a set A and cardinal κ we denote by [A]κ the collection of all κ-subsets
of A, that is, [A]κ = {X : X ⊆ A and |X| = κ}. If κ ≤ λ are cardinals, then
the cardinality of [λ]κ is λκ.

2. proofs

Theorem 2.1. For every graph G with ν := χ`(G) it holds that

Col(G) ≤ iω(ν).

For every cardinal ν the list chromatic number of K(ν, νν) exceeds ν by a
direct counting argument (see [7]), hence a graph with list-chromatic number
ν omits K(ν, νν). Therefore, in the case of finite ν = n, Theorem 2.1 follows
from the case ρ = ℵ0 in:

Theorem 2.2 (Erdős and Hajnal [3]). For every natural number n > 0 and
every ρ ≥ ℵ0, every K(n, ρ+)-free graph has coloring number at most ρ.

Erdős and Hajnal proved in the same paper, assuming the GCH, that
for every infinite ν and ρ ≥ ν++, every K(ν, ρ+)-free graph has coloring
number at most ρ, so if one assumes the GCH then every graph with infinite
χ`(G) = ν satisfies Col(G) ≤ ν++. Without additional assumptions the
following holds:

Theorem 2.3. Suppose ν is infinite and ρ ≥ iω(ν). Every K(ν, ρ+)-free
graph has coloring number at most ρ.

Theorem 2.3 finishes the proof of Theorem 2.1. It will be proved by
induction on |V | after some preparation.

Definition 2.4. Let G = (V,E) be a graph.

(1) Let F : P(V )→ P(V ) be defined by

F (X) =
⋂
v∈X

G[v]

(2) For a cardinal κ let Fκ = F � [V ]κ.
(3) Observe that F and hence also Fκ, for each κ, is anti-monotone,

that is
X ⊆ Y =⇒ F (Y ) ⊆ F (X).
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(4) A set B ⊆ V is κ-closed for a cardinal κ if F (X) ⊆ B for every
X ∈ [B]κ. If B is κ-closed it is κ′-closed for all κ′ ≥ κ by anti-
monotonicity of F .

(5) The κ-closure of A ⊆ V , denoted clκA, is the intersection of all κ-
closed subsets of V which contain A and is itself κ-closed. If A is
κ-closed it is κ′-closed for all κ′ ≥ κ.

Fact 2.5. (1) If B ⊆ V is κ-closed then |G[v]∩B| < κ for all v ∈ V \B.
(2) If 〈Bi : i < θ〉 is a ⊆-increasing sequence of κ-closed sets and cfθ 6=

cfκ, then
⋃
i<θ Bi is κ-closed.

(3) If 〈Bi : i < θ〉 is a ⊆-increasing sequence of κ-closed sets and cfθ = κ
then |G[v] ∩

⋃
i<θ Bi| ≤ κ for all v ∈ V \

⋃
i<θ Bi.

Proof. The first clause is clear. For the second: replacing θ by its cofinality
and the sequence by a cofinal subsequence we may assume θ is regular. Let
X ∈ [

⋃
i<θ Bi]

κ be given and assume that |X ∩ Bi| < κ for all i. Since
|X| = κ the case θ < cfκ leads to a contradiction, hence θ ≥ cfκ. If θ > cfκ
then |X ∩ Bi| stabilizes below κ, which again leads to a contradiction if
θ < κ. If θ > κ then X ∩ Bi stabilizes in ⊆ and contradiction follows. We
conclude, then, that |X ∩ Bi| = κ for some i < θ. By anti-monotonicity
F (X) ⊆ F (X ∩Bi) and as Bi is κ-closed F (X ∩Bi) ⊆ Bi.

The last clause follows from the first. �

Definition 2.6. A cardinal θ is κ-stable for a graph G = (V,E) if for every
set A ∈ [V ]θ the κ-closure of A has cardinality θ. If θ is κ-stable for G it is
also κ′-stable for G for all κ′ ≥ κ by Definition 2.4 (4).

Definition 2.7 (Shelah [9]). For cardinals κ, λ the revised exponent λ[k] is
the least cardinality of a collection A ⊆ [λ]κ with the property that for each
X ∈ [λ]κ there exists Y ⊆ A such that |Y| < κ and X ⊆

⋃
Y.

Lemma 2.8. Suppose that κ = cfκ and 2κ ≤ λ. If λ[κ] = λ then λ is
κ-stable for every K(κ, λ+)-free graph G.

Proof. Suppose that A ∈ [V ]λ and fix A ⊆ [A]κ of cardinality λ as guaran-

teed by |A| = λ = λ[κ]. Given X ∈ [A]κ find Y ∈ [A]<κ such that X ⊆
⋃
Y.

As κ is regular, there exists some Z ∈ Y such that |X ∩ Z| = κ. Now
F (X) ⊆ F (X ∩ Z) by anti-monotonicity of F .

This proves that for every X ∈ [A]κ there is some Z ∈ A and W ∈ [Z]κ

such that F (X) ⊆ F (W ), that is:

(4)
⋃

X∈[A]κ
F (X) =

⋃
Z∈A

⋃
W∈[Z]κ

F (W ).

The total number of κ-subsets X ∈ [A]κ on the left hand side may be

larger than λ, but |A| = λ[κ] = λ and |[Z]κ| = 2κ ≤ λ for each Z ∈ A, so
the union on the right hand side is taken over λ × 2κ = λ sets of the form
F (W ).
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As G is K(κ, λ+)-free, for every W ∈ [V ]κ it holds that |F (W )| ≤ λ so
we get that

(5)
∣∣∣ ⋃
X∈[A]κ

F (x)
∣∣∣ ≤ λ.

Given A ∈ [V ]λ let A0 = A, Ai+1 = Ai ∪
⋃
X∈[Ai]κ F (X) and for limit i

let Ai =
⋃
j<iAj . The set Aκ+ contains A and is κ-closed since for every

X ∈ [
⋃
i<κ+ Ai]

κ there is some i < κ+ for which X ∈ [Ai]
κ, so F (X) ⊆ Ai+1.

Using (5) and κ+ ≤ λ it follows by induction on i < κ+ the set |Ai| ≤ λ for
all i ≤ κ+, so we are done. �

Recall that by the König-Zermelo Lemma, for every ordinal α, (ℵα+ω)κ >
ℵα+ω for every cardinal ℵα and infinite κ, or, in other words, arbitrarily large
cardinals ℵα are strictly smaller than their κ-th power. In contrast to this:

Theorem 2.9 (Shelah’s Revised GCH in ZFC theorem [9], see also [10]). For
every infinite cardinal ν, for every λ ≥ iω(ν) there is some κ(λ) < iω(ν)

such that λ[κ] = λ for all κ such that κ(λ) ≤ κ = cfκ < iω(ν).

Though the equation λ[κ] = λ does not hold for any fixed κ < iω(ν)
with every λ ≥ iω(ν), for every λ ≥ iω(ν) it holds with almost all regular
κ < iω(ν).

Claim 2.10. For every infinite cardinal ν, for every λ ≥ iω(ν) there exists
κ(λ) < iω(ν) such that λ is κ(λ)-stable for G for every K(ν,iω(ν)+)-free
graph G.

Proof. Let λ ≥ iω(ν) be given. By Shelah’s revised GCH theorem, λ[κ] = λ
for all sufficiently large regular κ < iω(ν). Fix, then, κ(λ) = cfκ(λ) <

iω(ν) for which λ[κ(λ)] = λ. If G is any K(ν,iω(ν)+)-free graph it is also
K(κ(λ), λ+)-free. It now follows from Lemma 2.8 that λ is κ(λ)-stable for
G. �

Proof of Theorem 2.3. Let now ν ≥ ℵ0 be arbitrary and we prove 2.3 by
induction on λ = |V |. For λ ≤ ρ there is nothing to prove as Col(G) ≤ |G|
for every graph G.

Let G = (V,E) be a given K(ν, ρ+)-free graph with |V | = λ > ρ and
assume that Col(G′) ≤ iω(ν) holds for all K(ν, ρ+)-free G′ = (V ′, E′) with
|V ′| < λ.

For every cardinal θ satisfying ρ ≤ θ < λ fix, using Claim 2.10, some
cardinal κ(θ) < iω(ν) such that θ is κ(θ)-stable for G.

We need to define a well ordering ≺ on V that witnesses Col(G) ≤ iω(ν).
This ordering will be defined as a well-ordered sum of well-orderings.

Case 1: cfλ = ℵ0. Fix a strictly increasing sequence of cardinals 〈θn : n <
ω〉 with θ0 ≥ ρ and with sup{θn : n < ω} = λ. Present V as an increasing
sequence of sets

⋃
nBn such that |Bn| = θn and Bn is κ(θn)-closed for each
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n. (E.g, enumerate V = {vα : α < λ} and let B0 = clκ(θ0){vα : α < θ0} and

Bn+1 = clκ(θn+1)

(
{vα : α < θn+1} ∪Bn

)
. )

By the induction hypothesis and θn < λ we can fix enumerations {vnα :
α < α(n)} of B0, for n = 0, and of Bn \ Bn−1 for each n > 0 for suitable
ordinals α(n) such that for every n and α < α(n) it holds that

(6) |G[vnα] ∩ {vnβ : β < α}| < iω(ν).

Put C0 = B0 and Cn+1 = Bn+1 \ Bn for all n. Now {Cn : n ∈ N} is a
partition of V and |Cn| = θn. Define a well ordering ≺ on V =

⋃
nCn by

vmβ ≺ vnα iff m < n or m = n and β < α. Let vnα be an arbitrary vertex in

V and we need to show |G≺[vnα]| < iω(ν). The cardinality of G≺[vnα] ∩ Cn
is < iω(ν) by (6) and u 6≺ vnα whenever u /∈ Bn, so we need only count
the vertices vmβ for m < n. As, for n > 0, {vmβ : m < n, β < α(m)} =

Bn−1 is k(θn−1)-closed and vnα /∈ Bn−1, it follows from Fact 2.5 (1) that
|G[vnα] ∩Bn−1| < κ(θn−1). Thus |G≺[vnα]| < iω(ν).

Case 2: cfλ > ℵ0. Fix a ≤-increasing sequence 〈θi : i < cfλ〉 of cardinals
satisfying iω(ν) ≤ θi < λ for each i such that (∀θ < λ)(∃i < cfλ)(θ ≤ θi).
In the case λ = θ+ for some θ we fix θi = θ for all i < λ.

By increasing κ(θi) < iω(ν) we may assume that κ(θi) = (in(i)(ν))+

for some n(i) for each i < θ. As cfλ > ℵ0 is regular, by restricting to a
sub-sequence we get that κ(θi) = κ for all i < cfλ for some fixed regular
κ < iω(ν).

Using the κ-stability of θi for G, define inductively on i < cfλ a ⊆-
increasing sequence of subsets Bi ⊆ V satisfying:

• |Bi| = θi < λ and Bi is κ-closed.
• V =

⋃
i<θ Bi

Denote Ci = Bi\
⋃
j<iBj for i ∈ I and let I = {i < cfλ : Bi\

⋃
j<iBj 6= ∅}.

The collection {Ci : i ∈ I} is a partition of V with |Ci| < µ for each i ∈ I.
By the induction hypothesis fix, for i ∈ I, an enumeration Ci = {viα : α <

α(i)} for some suitable ordinal α(i) so that |G[viα] ∩ {viβ : β < α}| < iω(ν)

for each α < α(i). Define a well ordering ≺ on V by vjβ ≺ viα iff j < i or

j = i and β < α. To verify that ≺ witnesses Col(G) ≤ iω(ν) we only check

that an arbitrary vertex vij has fewer than iω(ν) neighbors vjβ with j < i.

If i = i′+ 1 is a successor ordinal, the union
⋃
j<iBj = Bi′ is κ-closed. Also

if cfi 6= κ this union is κ-closed by Fact 2.5 (2). In these two cases, then,

viα has strictly fewer than κ neighbors vjβ with j < i by Fact 2.5 (1). In

case cfi = κ the vertex viα has ≤ κ many neighbors in
⋃
j<iBj by Fact 2.5

(3). �

Corollary 2.11 (Testability of Col(G) ≤ µ in bounded subgraphs). Suppose
ν is infinite and µ = iω(ν). For every graph G, Col(G) ≤ µ if one of the
following conditions holds:

(1) Col(G′) ≤ ν for every subgraph G′ ≤ G of cardinality ν+.
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(2) χ`(G
′) ≤ ν for every subgraph G′ ≤ G of cardinality 2ν .

(3) Col(G′) < µ for every subgraph G′ ≤ G of cardinality µ+

Proof. The complete bipartite graph K(ν, ν+) satisfies Col(K(ν, ν+)) = ν+.
So if every subgraph of G of size ν+ has coloring number µ, the graph G
omits K(ν, ν+), and hence Col(G) ≤ µ. This proves (1), and (2) is similar,
by χ`(K(ν, 2ν)) = ν+.

To prove (3), assume that Col(G) > µ, so by Claim 2.3 there are copies
Gn ≤ G of K(in(ν), ρ+) for all n. Let G′ =

⋃
nGn. The cardinality of G′

is µ+, but Col(G′) ≥ µ. �

2.1. Tighter bounds from additional assumptions. As for every λ <
(2ν)+ω it holds that λν = λ, the proof in the previous section gives that
Col(G) ≤ 2ν for all K(ν, 2ν)-free G = (V,E) with |V | ≤ (2ν))+ω.

Getting tighter upper bounds on colorability for all K(ν, 2ν)-free graphs
is also possible if one assume some mild restrictions on cardinal arithmetic
as in [4].

Definition 2.12. For an infinite regular cardinal κ let (∗)κ denote the state-
ment: every cardinal µ > 2κ with cfµ = κ is closed under κ-powers, that is,
θ < µ⇒ θκ < µ.

The statement “(∗)κ for all regular κ” is weaker than the Singular Cardi-
nal Hypothesis, which is weaker than the Generalized Continuum Hypoth-
esis. By Gitik’s theorem [5], for every regular κ the statement (∗)κ is not
provable in ZFC modulo the consistency of large cardinal axioms.

Lemma 2.13. Assuming (∗)κ for a regular cardinal κ, every cardinal λ ≥ 2κ

is κ+-stable for every K(κ, λ+)-free graph G.

Proof. Let us first state the simple

Fact 2.14. If λκ = λ and G is K(κ, λ+)-free, λ is κ-stable for G.

Proceed now by induction on λ ≥ 2κ. The cardinal λ = 2κ itself is κ-stable
for every K(κ, λ+)-free graph G by Corollary 2.14, hence it is also κ+-stable.
If cfλ 6= κ then κ+-stability of λ follows from the induction hypothesis by
Fact 2.5 (2). The remaining case is cfλ = κ. Using the assumption (∗)κ,
fix an increasing sequence of cardinals 〈θi : i < κ〉 with limit λ such that
θκi = θi. Given A ∈ [V ]λ present A ⊆

⋃
i<κ+ Bi with each Bi a κ-closed set

and now the union is κ-stable, hence κ+-stable, by 2.5 (2). �

Theorem 2.15. Assuming (∗)κ, every graph G with χ`(G) = κ satisfies
Col(G) ≤ max{2κ, κ++}.

Proof. By induction on λ = |V | ≥ 2κ, using κ+-stability. Present V =⋃
i<cfλBi, an increasing union of κ+-closed sets Bi with |Bi| < λ and let

Ci = Bi \
⋃
j<iBj , I = {i : Ci 6= ∅}. As each Bi is κ+-closed, for every i ∈ I

and v /∈
⋃
j<iBj it holds that |G[v] ∩

⋃
j<iBj | ≤ κ+. �
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