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Abstract
Foam problems are about how to best partition space 
into bubbles of minimal surface area. We investigate the 
case where one unit-volume bubble is required to tile 
d-dimensional space in a periodic fashion according to the 
standard, cubical lattice. While a cube requires surface area 
2d, we construct such a bubble having surface area very close 
to that of a sphere; that is, proportional to  (the minimum 
possible even without the constraint of being periodic). Our 
method for constructing this “spherical cube” is inspired by 
foundational questions in the theory of computation related 
to the concept of hardness amplification. Our methods give 
new algorithms for “coordinated discretization” of high-
dimensional data points, which have near-optimal noise 
resistance. We also provide the most efficient known cubical 
foam in three dimensions.

1. INTRODUCTION
A foam in the d-dimensional space Rd is a partition of Rd into 
bounded sets called bubbles. In such a foam, the bubbles are 
said to tile the space. The main question studied in this work 
is if a foam in Rd has only bubbles with a given volume, what 
is the minimal possible average surface area of its bubbles? 
This fundamental question has been a focus of study for sci-
entists in many disciplines, from physicists studying soap 
bubbles,21 to chemists studying crystal structures,12 biolo-
gists studying cell aggregation,3 mathematicians studying 
sphere-packings,14 materials scientists studying polymers,20 
and even artists and architects.6 In this work, we present 
a new approach to the construction of tiling shapes, based 
on methods from computer science. This approach leads 
to an asymptotically optimal solution of the Cubical Foam 
Problem, defined below.

1.1. Foams
Questions about minimal surface area tilings of space have a 
very long history. In the 19th century, Thomson (Lord Kelvin) 
introduced the Kelvin Foam Problem,26 which asks how 
three-dimensional space can be partitioned into bubbles 
of volume 1 such that the average surface area of the bub-
bles in the foam is minimized. This question is motivated 
not only by its mathematical appeal, but also by interest in 
the physics of foams in nature, since surface tension makes 
bubbles seek to minimize their surface area.

One way to design foams with small surface area is to 
first construct a lattice of periodically arranged points, and 

then to take the Voronoi cells around each lattice point. 
The Voronoi cell of a lattice point x is the bubble, which 
includes all points that are closer to x than to any other 
lattice point. The solution Kelvin proposed in 1887 for his 
problem was based on the Voronoi foam associated with 
the so-called body-centered cubic lattice. The bubbles in 
this foam have a surface area . 
Kelvin further suggested letting this foam relax, so that it 
conforms with Plateau’s Rules for soap bubbles21; modern 
computer simulations show that this decreases the sur-
face area to about 5.306.7, 18 In 1994, Weaire and Phelan27 
exhibited a foam with an improved average surface area of 
about 5.288. The Weaire–Phelan foam is formed by relax-
ing the Voronoi foam for a periodic subset of lattice points 
(Figure 1). Weaire and Phelan used the crystal structure of 
a certain silicon–sodium clathrate to choose the points. It 
is still unknown whether or not their foam optimally solves 
Kelvin’s problem.

It is natural to study the Kelvin Foam Problem in 
dimensions other than three. In two dimensions, it was 
long believed that the best solution is to tile space with 
regular hexagons, which is the Voronoi foam of the trian-
gular lattice. The optimality of this foam was conjectured 
as far back as in the 4th century by Pappus of Alexandria, 
but a mathematical proof was found only in 1999, by 
Hales.13 In higher dimensions, a lower bound on the aver-
age surface area follows from the Isoperimetric Inequality: 
the surface area of any bubble of volume 1 must be at 
least as large as that of a ball of volume 1. As the number 
of dimensions d grows, this lower bound asymptotically 
approaches . An upper bound that matches this 
lower bound up to a factor of 2 can be obtained by taking 
the Voronoi foam of a d-dimensional lattice in which the 
covering-radius to packing-radius ratio tends to 2. Such a 
lattice can be obtained by a probabilistic construction.8 
Hence, the minimum surface area in the d-dimensional 
Kelvin Foam Problem grows in proportion to the square-
root of the dimension.

In our work, we consider tilings that are periodic with 
respect to the integer lattice (also known as the cubic lattice). 

The original version of this paper is entitled “Spherical 
Cubes and Rounding in High Dimensions” and was 
published in the Proceedings of the 49th Annual IEEE 
Symposium on Foundations of Computer Science, IEEE 
Computer Society, 2008.
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The high-dimensional version of the Cubical Foam 
Problem was raised by Feige et al.11 in 2007, who noted a sur-
prising connection to a certain problem in theoretical com-
puter science about computational hardness amplification. 
We shall explain the details of this connection later. A sub-
sequent result of Raz24 on the limits of such amplification, 
using an idea from a related paper of Holenstein,16 provided 
us with the tools to solve the high-dimensional Cubical 
Foam Problem.

1.2. Our results
•	 We give a probabilistic construction proving the exis-

tence of a bubble that partitions d-dimensional space 
according to the cubic lattice and whose surface area is 
at most . Thus, our bubble is nearly spherical, in 
the sense that its surface area is larger than that of a 
sphere by only a constant multiplicative factor (about 
3.04). The best previous constructions had surface area 
proportional to d (like the cube itself has). We conclude 
that the optimal solution to the Cubical Foam Problem 
has surface area proportional to the square-root of the 
dimension, just as in the more general Kelvin Foam 
Problem. Thus in high dimensions, integer-lattice til-

This lattice consists of the points in d-dimensional space 
whose coordinates are all integers. We address the follow-
ing question:

Cubical Foam Problem: What is the least surface area of 
a bubble that partitions d-dimensional space periodically 
according to the integer lattice?

The Voronoi foam for the integer lattice consists of 
cubes of side length 1. In d dimensions, these cubes have 
surface area 2d. This grows linearly with the dimension, 
much higher than the known lower bound of . Are there 
more “spherical” cubes, which still tile by the integer lat-
tice, but have surface area closer to that of a ball? This is 
the main question that we answer in this work.

The Cubical Foam Problem seems to have been first 
formally raised by Choe.10 Choe showed that in two dimen-
sions, the unit square whose surface area (perimeter) is 4 is 
not the optimal solution. Rather, the optimal solution is the 
isosceles hexagon shown in Figure 2, with 120° angles, side  
lengths  and , and perimeter about 3.864. Choe gave  
the three-dimensional version as an open problem. Prior to 
our work, the best known solution was simply to add depth 
to the Choe hexagon, transforming it into the prism shown 
in Figure 2, with surface area 5.864.11

Figure 1. (Left) Four bubbles in the Kelvin Foam, formed by relaxing the Voronoi cells of the body-centered cubic lattice. (Right) Seven bubbles 
in the Weaire–Phelan Foam, formed by relaxing the Voronoi cells of the A15 Packing.

Figure 2. (Left) The Choe Hexagon, Choe’s optimal solution to the Cubical Foam Problem in two dimensions. (Right) The hexagons extruded 
into three-dimensional prisms. The resulting three-dimensional cubical foam is not optimal; a solution with smaller average surface area 
is presented in this work.
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ings are essentially as efficient as arbitrary tilings.
•	 We show that our construction also yields a highly noise-

resistant procedure for the rounding high-dimensional 
data. Specifically, we obtain a randomized procedure, 
which assigns each vector of real numbers x = (x1,…, xd) 
to  a vector of integers n = (n1,…, nd), with the following 
two guarantees. Each ni is always simply xi rounded up or 
down to its floor or ceiling integer, yet if two real vectors 
x, y are at Euclidean distance r, then our procedure 
assigns them to the same integer vector except with 
probability at most 2 ⋅ p ⋅ r. Thus, if two parties get two 
noisy versions x, y of the same integer vector n, they will 
round them to the same vector with very high probability. 
Somewhat remarkably, the error in this natural coordi-
nation task does not depend on the dimension at all, and 
depends only linearly on the noise. Previously known 
procedures either rounded points to far off points, so 
that |xi − ni| could be as large as , or separated points at 
distance r with probability as high as .9, 19

•	 Using different (and ad hoc) methods, we give an 
explicit construction for the Cubical Foam Problem in 
three dimensions with a surface area about 5.602. This 
beats the surface area of the prism obtained from 
Choe’s prism by about 4.5%.

1.3. Computational hardness amplification
Our method for constructing an efficient cubical foam 
has a surprising inspiration: the subject of computational 
hardness amplification in the study of the theory of com-
putation. Consider a computational task T, such as solv-
ing a system of equations, finding the best move in a chess 
position, optimizing a schedule under constraints, etc. 
The difficulty, or hardness, of T is measured in terms of 
the computational resources (say the number of steps 
in an algorithm) required to obtain a solution of a given 
quality. Hardness amplification refers to methods that can 
be used to transform T into an even harder task, requir-
ing even more resources. For example, one could consider 
the task of solving T on d inputs simultaneously. Is this d 
times harder, or can a clever reuse of resources allow for 
a computation that achieves more than what one would 
naively expect?

This question arises in many areas of computational 
theory, including cryptography, pseudorandomness, and 
optimization. Our foam construction is motivated by prog-
ress in understanding hardness amplification in the con-
text of solving constraint satisfaction problems, a major 
topic in computer science, operations research, statisti-
cal physics, and information theory (e.g., Achlioptas et 
al.1). A  constraint satisfaction problem is specified by a 
collection of constraints on n variables. For the purpose 
of this discussion, we shall restrict ourselves to bivariate 
constraints, of the form c(x, y), where each constraint c 
depends on only two of the n variables. A solution to the 
problem is a setting of the variables that maximizes the 
number of constraints that are satisfied. For example, the 
well-known graph coloring problem can be viewed as a 
bivariate constraint problem. Associate a single variable xv 
for each vertex v of the given graph and each edge {u, v} 

gives us the constraint xu ≠ xv. If the variables are allowed 
to take values from {1, 2, 3}, then the constraints are all 
satisfiable, if and only the graph is 3-colorable.

One way to solve a constraint satisfaction problem 
is to try all settings of the variables and count the num-
ber of constraints that each setting satisfies, but this 
method is very inefficient, requiring exponential time. If 
P ≠ NP, one cannot find a solution that satisfies all the 
constraints efficiently. A seminal hardness amplification 
result, the PCP Theorem,4, 5 from 1992, improved this to 
show that if P ≠ NP, then efficient algorithms cannot even 
find approximate solutions that satisfy nearly all, a (1 − ε0) 
fraction of the constraints, when a solution satisfying all 
the constraints is known to exist. Here, ε0 is a small posi-
tive constant. Indeed, the proof actually shows that it is 
hard to approximate even the fraction of constraints that 
are satisfiable.

Raz’s celebrated Parallel Repetition Theorem23 from 1995 
dramatically strengthened this hardness of approximation 
result: he showed that for every ε > 0, if P ≠ NP, then efficient 
algorithms cannot guarantee solutions that satisfy very few, an ε 
fraction of the satisfiable constraints. Raz achieves this through 
a transformation of constraints called parallel repetition that 
we describe next. Suppose we are given a set of constraints on 
n variables. These constraints can be used to define new con-
straints on nd variables as follows: Each new variable corre-
sponds to a d-tuple of variables from the old problem. For every 
d-tuple of the original constraints c1, c2,…, cd, we obtain a new 
constraint C(X, Y) = c1(x1, y1) ∧ c2(x2, y2) ∧ … ∧ cd(xd, yd) that can be 
thought of as a bivariate constraint on the variables X = (x1,…, xd)  
and Y = ( y1,…, yd). The resulting compound constraints are said 
to have been obtained by repeating the original constraints d 
times in parallel.

If the best assignment can satisfy (1 − ε) fraction of the 
original constraints, how many constraints can be sat-
isfied in the parallel repetition? Intuitively, one might 
think that the fraction of satisfiable constraints should 
be smaller, perhaps decay exponentially in d, since each 
new constraint corresponds to satisfying a set of d of the 
original constraints. But proving that this is true turned 
out to be very challenging, and counterexamples for pure 
exponential decay were known. In a breakthrough result, 
Raz showed that no assignment that can satisfy roughly 
(1 − ε32)d fraction of the constraints obtained by parallel 
repetition, namely, some exponential decay, occurs. A key 
quantity of interest here is the rate of decay, namely, 
how “quickly” does the problem become harder, and the 
approximating factor decrease. Set f (d) to be the largest 
number for which d repetitions of a constraint satisfac-
tion problem decreases the approximation factor from 

 to some small constant, say 1/10. In this notation, 
Raz showed that f (d) ≥ d1/32, and left open determining the 
optimal dependence on d.

This result played a key role in showing that many types 
of problems cannot be solved by efficient algorithms 
(again assuming P ≠ NP). A theorem that would prove a 
bound of the type f (d) ≈ d was dubbed a Strong Parallel 
Repetition theorem, and it remained open whether such a 
theorem holds. Subsequent works improved Raz’s bound 
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to a constraint satisfaction problem where every constraint 
involves two variables which are points in Rd. Indeed, Raz’s 
analysis of the Odd Cycle constraints suggests the investiga-
tion of a related problem (which we state somewhat impre-
cisely for the sake of brevity): Assign each point x in the unit 
cube [0, 1)d a shift z ∈ [0, 1)d in such a way that most nearby 
pairs of points are likely to be assigned the same shift.

The construction will be based on a carefully chosen 
probability distribution f on [0, 1)d. For now, we describe the 
construction for any distribution f and later explain how to 
choose the optimal f. Let fx be f translated by −x, so fx is a 
probability density function on −x + [0, 1)d; and let f~x be the 
periodic extension of this function, so f~x(z) = f (z + x mod 1). 
Holenstein’s Consistent Sampling Lemma gives a method 
for assigning shifts to all points such that the probability x 
and y are assigned different shifts is essentially .  
We draw a sequence of points (Z1, H1), (Z2, H2),… such that 
Zi is  drawn uniformly from [0, 1)d, and Hi is uniform on 
(0,   f ∞), where  f ∞ denotes the maximum value of f. 
Each x is then assigned a shift z = Zi, where zi comes from 
the first pair satisfying f~x(Zi) > Hi. Thus, we are led to seek 
a function f for which this is small whenever x and y are 
nearby points.

Given a density function f and a number h > 0, consider the 
shape D = {x : f (x) > h}  (0, 1)d together with its boundary. 
We call D, or a translate of D a droplet. We will want droplets 
to have smooth boundaries, which do not touch the bound-
ary of [0, 1]d. For this reason, we will require that f ’s periodic 
extension f~ be analytic and equal to 0 on the boundary of 
[0, 1]d; we will call such a density function f proper. Given a 
proper density function f, we can now describe our random-
ized algorithm for producing a periodic discretization and 
associated cubical foam:

Algorithm 1: Periodic discretization (and foam) construction, 
given f:

1.	 Let all points of Rd be unassigned.
2.	 For stage i = 1, 2, … until all points are assigned:

(a) �Choose a uniformly random pair (Zi, Hi) from [0, 1)d 
× (0,  f ∞).

(b) �Let droplet Di be {x :   (x) > Hi}, together with its 
boundary.

(c) �Assign all currently unassigned points in Di to (0,…, 0), 
and extend this assignment periodically.

(d) �Color all assignments from stage i with color i.

We remark that we color all the assignments merely to aid in 
the analysis of the algorithm.

It is not hard to prove that this algorithm indeed ends 
after a finite number of stages with probability 1. It is also 
clear that regardless of the algorithm’s random choices, it 
always produces a periodic discretization. Thus, the points 
assigned to (0,…, 0) by the algorithm always constitute a 
principal bubble, which partitions space according to the 
integer lattice.

We illustrate a sample run of the algorithm in Figure 3, 
with d = 2 and f (x1, x2) = 4sin2(p x1) sin2(p x2). The integer lat-
tice is outlined in gray, with the origin depicted as a gray 
dot. The first three panels illustrate stages 1, 2, and 3 of the 

toward such a strong theorem, first to f (d) ≥ d1/3 15 in gen-
eral, and then to f (d) ≥  22 for an important subclass 
of constraints satisfaction problems, but the progress 
stopped at .

Feige et al.11 were the first to observe that the parallel rep-
etition question was related to foams. They studied a partic-
ular collection of constraints called Odd Cycle constraints, 
and showed that for them f (d) ≥ . They also showed that if 
there is a d-dimensional cubical foam with surface area A(d), 
then for this constraint satisfaction problem f (d) ≤ A(d). In 
particular, this meant that any proof that improved on their 
bound would show that there is no cubical foam with sur-
face area , and any Strong Parallel Repetition theorem 
would prove that standard cubes are essentially the best 
cubical foams.

Once again, Raz24 resolved the matter and showed that 
Odd Cycles were a counterexample to Strong Parallel Repeti
tion. He proved that for Odd Cycle constraints f (d) ≤   and  
thus that the results of bounds f (d) ≥   of Feige et  al.11 
and Rao22 are optimal! Indeed, one can view Raz’s work as 
constructing a discrete cubical foam, with surface area pro-
portional to . A key tool used by Raz was the so-called 
Consistent Sampling Lemma, invented by Holenstein to prove 
the upper bound of f (d) ≤ d1/3 mentioned above. Raz’s result 
inspired our construction.

2. AN ALGORITHM FOR BUILDING CUBICAL FOAMS
Our solution to the Cubical Foam Problem involves general-
izing Raz’s discrete methods to Euclidean space and open-
ing up the proof of the Consistent Sampling Lemma. We use 
the “Buffon’s Needle” method to estimate surface area and 
we optimize our results using Fourier analysis.

Before describing our “sphere-like” cubical foam, we give 
some motivation for its construction. As stated earlier, our 
construction can also be interpreted as a very noise-resistant 
randomized discretization procedure for rounding off vec-
tors of real numbers to vectors of integers.

Definition 1. A discretization is a mapping which assigns 
each point x = (x1,…, xd) ∈ Rd to an integer point r = (r1,…, rd) 
∈ Zd, such that |ri − xi| < 1 for each i. If a discretization has the 
property that whenever x is rounded to r, then x + s is rounded 
to r + s for all s ∈ Zd, we say that the discretization is periodic. 
Given a periodic discretization, we define its principle bub-
ble to be the set of points that are rounded to the origin.

The principal bubble of a periodic discretization tiles Rd 
according to the integer lattice. Thus, any periodic discreti-
zation immediately yields a cubical foam. We will in fact 
give a randomized procedure whose output is a periodic 
discretization (hence also a cubical foam). As described 
earlier, we say that such a procedure is noise-resistant if 
every two nearby points x, y ∈ Rd are unlikely to be assigned 
to different integer points. Intuitively, we expect the bub-
bles produced by a noise-resistant procedure to have 
small surface area, because x and y are assigned to differ-
ent integer points only if the line segment joining them 
crosses the surface of a bubble. We will later see that find-
ing a periodic discretization in which nearby pairs x and y  
are usually assigned to the same integer point is very similar 
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algorithm. In each stage, the black dot represents −Zi and 
the black dashed line outlines the droplet Di. Colors 1, 2, and 
3 are green, yellow, and red, respectively; we have used dark 
colors to show the points assigned to (0, 0) and light colors 
to show their periodic translations.

3. ANALYSIS OF THE ALGORITHM
First, we compute the probability of rounding a pair of 
points x, y to different droplets:

Theorem 1. Let f be a proper density function, and  be a 
short line segment in Rd, say y = x + ε ⋅ u, where u is a vector 
of length 1, and ε > 0 is sufficiently small. For a given execution 
of Algorithm 1, let N denote the number of times  crosses the 
boundary between differently colored regions. Then

where the notation ≈ means equality up to order ε2.
Next, using the relationship between noise resistance 

and surface area we show:

Theorem 2. Given an execution of Algorithm 1, let A denote 
the surface area of the boundary between color regions within 
[0, 1)d. Then

Finally, we find f that minimizes the noise resistance and 
surface area:

Theorem 3.  is a proper density function 
with . Moreover, for each vector of unit length u, 
f satisfies ∫|〈∇f, u〉| ≤ 2p.

The bounds we obtain for our cubical foam solution 
and for the noise resistance of our coordinated discretiza-
tion procedure follow easily from these theorems. The bub-
ble B output by Algorithm 1 has a surface area at most 2A, 
where A is the quantity in Theorem 2; hence with the f from 
Theorem 3, the expected value of B’s surface area is at most 

. Hence, there must exist a bubble that tiles d accord-
ing to the integer lattice with a surface area at most . 
As for the noise resistance of Algorithm 1 as a coordinated 

Figure 3. A sample run of the algorithm, with d = 2, f(x1, x2) = 4sin2(px1) sin2(p x2). The integer lattice is outlined in gray, with the origin depicted 
as a gray dot. The first three panels illustrate stages 1, 2, and 3 of the algorithm. In each stage, the black dot represents −Zi and the black 
dashed line outlines the droplet Di. Colors 1, 2, and 3 are green, yellow, and red, respectively; we have used dark colors to show the points 
assigned to (0, 0) and light colors to show their periodic translations. In the first panel is the assignment after stage 1: all points in the dark 
green droplet are assigned to (0, 0); the light green translations are assigned periodically. The assignment after stage 2: the unassigned 
(uncolored) points within the outlined droplet are colored dark yellow and are assigned to (0, 0). The assignment after stage 3, using red.  
The algorithm terminates after this stage—all points in R2 have been assigned. In the final panel, we outline the final bubble which partitions 
R2 periodically according to the integer lattice.
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discretization procedure, if points x, y ∈ Rd at distance ε are 
assigned different integer points by the algorithm, then 
N, the number of times segment  crosses the boundary 
between color regions, must be at least 1. The probability of 
this event is at most E[N]. Combining Theorems 1 and 3, this 
probability is at most 2pε (up to an error of ε2, but this error 
can be eliminated) as claimed.

Next we outline the proofs of Theorems 1, 2, and 3.
We begin with the main result, Theorem 1. Let D~ = closure 

({x : f~Z (x) > H}) be a random “droplet pattern” as would be 
chosen in a single stage of Algorithm 1; that is, D~, is a ran-
dom droplet along with all of its integer translations. Let I 
denote the event that D~ intersects the segment , and let 
M denote the number of intersection points between the 
boundary of D and the segment . Since  is very short, 
the first color region that touches the segment is very likely 
to completely enclose it. Thus, even conditioned on event I 
occurring, M is quite likely to be 0. More precisely, our main 
goal is to show that

	 � (1)

Using Equation (1), it is not hard to prove Theorem 1. To see 
this, consider the first stage of the algorithm’s execution in 
which a droplet pattern touching  is chosen. Let M1 be the 
number of intersections between  and the boundary of 
this droplet pattern. Equation (1) tells us that E[M1] ≈ ε ⋅ b. 
Recalling that N denotes the number of times  crosses the  
boundary between differently colored regions at the termi-
nation of the algorithm, we certainly have N ≥ M1. However, 
it is unlikely that N will exceed M1. Indeed, consider the 
second stage of the algorithm’s execution in which a drop-
let pattern touching  is chosen, and define M2 to be the 
number of intersections between the boundary of this drop-
let pattern and . Again, by Equation (1) we have E [M2] ≈ 
ε ⋅ b. But furthermore, these M2 intersections can only con-
tribute to N if the first droplet pattern to touch  failed to 
completely enclose it. The probability of this is precisely 
Pr[M1 > 0] ≤ E [M1] ≈ ε ⋅ b. Hence, the expected contribution 
to N from this second stage is at most (ε ⋅ b)2. Continuing the 
argument, we are able to upper-bound E [N] by

We now describe the proof of Equation (1). Since the proba-
bilistic choice of D~ is invariant under any translation of Rd, we 
may assume x = 0 and hence y = ε ⋅ u. For a given z ∈ [0, 1)d, let 
gz : [0, ε] → R≥0 denote the restriction of f~z to the line segment 
from 0 to ε ⋅ u and write G(z) =  gz∞. The event I occurs 
when the randomly chosen Z and H satisfy H < G(Z), and the 
quantity M is equal to #{s ∈ [0, ε] : gz (s) = H}. (Here, we have 
discounted events with probability 0.) Hence,

	 � (2)

Regarding the denominator of this expression, G(Z) = gz(0) =  
f (Z) up to an additive error of order ε by Taylor’s theorem, 

and hence  up to order ε. 
As for the numerator of Equation (2), the inner integral 
equals the vertical distance traveled by a particle moving 
along the curve gz; this can be seen by partitioning the 
curve into small, nearly straight arcs, and considering 
their contribution to the integral. Hence, the inner integral 
equals . Since  up to order ε on [0, ε],  

 up to order  
ε2. Substituting this into the outer integral in the numerator 
of Equation (2), we conclude that

	 � (3)

up to order ε2 as claimed in Equation (1).
To prove Theorem 2, we need a method for computing 

surface area. We use the following (see Santalo25)

Theorem 4 (Buffon’s Needle Theorem): Let S be a 
d-periodic piecewise smooth surface. “Drop a needle” of length 
0 < ε < 1; i.e., let x be a random point in [0, 1)d, let u be a random 
vector of length 1, and let y = x + ε ⋅ u. If N denotes the number of 
intersections of the needle  with the surface S, then

	 � (4)

where cd is the dimension-dependent–constant E [ u1].
Note that the value of cd is not important, as it gets 

cancelled out in our analysis. Given the execution of 
Algorithm 1, we can apply Buffon’s Needle Theorem to 
compute the quantity A from Theorem 2. We obtain that 
E [A] = E [N]/(cd ⋅ ε), where in E [N] the probabilistic experi-
ment is both the execution of Algorithm 1 and the random 
choice of the “needle.” Applying Theorem 1 for each choice 
of the needle, we obtain

	 � (5)

up to an additive error of order ε. Since ε can be arbitrarily 
small, Equation (5) is in fact an exact equality. And further, 
for each fixed vector ∇f (z), the quantity Eu [|〈∇f (z), u〉|] 
equals  f (z) ⋅ cd. Substituting this into Equation (5) proves 
Theorem 2.

It remains to prove Theorem 3. Suppose, we seek a proper 
density function on [0, 1)d such that ∫  f  is small. Writing 
f = g2 and using the Cauchy–Schwarz inequality:

	 � (6)

where we also used that ∫ f = ∫ g2 = 1. Since f is a proper den-
sity function, g’s periodic extension is smooth and 0 on the 
boundary of [0, 1]d. We may therefore rewrite g using the 
multidimensional sine series:

	 � (7)

Differentiating Equation (7) and applying Parseval’s theo-
rem, we get

 



96    communications of the acm   |   october 2012  |   vol.  55  |   no.  10

“base” facet centered at the origin; specifically, an edge 
from (−s, s) to (s, −s) for some parameter s. This already gives 
all vertices, by periodic extension. The hexagonal bubble 
is the convex hull of the two base points, their translates 
within [0, 1)2, and their translates by (1, 1). One chooses s 
to minimize the resulting surface area (perimeter).

We similarly construct a tiling shape B in three dimen-
sions. We form a “base” facet centered at the origin, which 
is a regular hexagon, with vertices ±(0, −t, t), ±(−t, 0, t), and 
±(−t, t, 0), for some t ∈ (0, 1/3). Again, this gives all vertices, 
by periodic extension. We take B to be the convex hull of 
the 6 base points, along with their 6 translates within [0, 1)3 
and their 6 translates within (0, 1]3. The polytope B has 
14 facets: two opposing base regular hexagons, six larger 
“isosceles” hexagons, and six rectangles. An illustration is 
in Figure 4.

One may calculate that B has a surface area

which is minimized when t ≈ 0.1880, having minimal value 
about 5.6121. This already beats the surface area of the 
Choe prism.

We can further improve this solution by letting B relax 
(within the torus R3/Z3) as a soap bubble. Using Brakke’s 

	 � (8)

Applying Parseval to ∫ g2 = 1 yields that , subject 
to which Equation (8) is minimized when ĝ (1, 1,…, 1) = 1. Thus, 
we are led to the solution for f stated in Theorem 3 and 
obtain the bound  from Equations (6) and 
(8). It remains to verify that ∫ |〈∇f, u〉| ≤ 2p also holds for 
each vector u. Using the Cauchy–Schwartz inequality, we 
obtain

for our choice of g, and hence f. This completes the proof of 
Theorem 3.

4. A THREE-DIMENSIONAL CUBICAL FOAM
Although we have asymptotically solved the Cubical Foam 
Problem up to a small constant factor, in the physically 
natural case of d = 3, our construction does not improve 
on the Choe Prism, or even the cube. Here, we present an 
improved three-dimensional cubical foam, constructed via 
an ad hoc method.

The two-dimensional minimizer given by Choe in 
Figure  2 (left) can be described as follows: Start with a 
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Figure 4. Our new three-dimensional cubical foam. (Top left) The unrelaxed tile. (Top right) The tile after it has relaxed according to  
Plateau’s Rules. (Bottom left) The unrelaxed tile forming a foam according to the integer lattice. (Bottom right) Illustration of the relaxed 
foam as soap bubbles.
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ReferencesSurface Evolver,7 we obtain the relaxed bubble B shown 
in Figure 4. We remark that it has slightly wavy faces and 
curved edges, and that the vertices have moved according to 
t ≈ 0.1814. The surface area of B is slightly less than 5.602, 
according to Surface Evolver.

5. DISCUSSION
We have given a probabilistic construction of a cubical foam 
with near-spherical surface area. The construction uses 
ideas that are new to the study of foams, and is inspired by 
work on the limits of “hardness amplification” in certain 
computational optimization problems. Our construction 
gives the first suggestion that in high dimensions, optimal 
foams might not be derived from Voronoi cells and may be 
quite unlike polyhedra.

We have also given an algorithmic application of our 
foam’s construction: a very “noise-resistant” procedure 
for rounding off vectors of d real numbers to integers. This 
discretization algorithm may not be practical for very large 
d, as Algorithm 1 is likely to run for a number of stages 
which is exponential in d. An important open problem is 
to find a coordinated discretization procedure with simi-
lar noise resistance, but taking time that grows only poly-
nomially in d.

Finally, the construction of our cubical foam used ran-
domness in an essential way; randomness is also used in 
other efficient high-dimensional constructions of foams 
(such as high-dimensional Kelvin foams). Although ran-
domness is clearly required for noise-resistant coordinated 
discretization, it is an intriguing question as to whether it is 
necessary for the construction of foams, or whether explicit 
or derandomized constructions exist.

Subsequent to our work.17 Alon and Klartag2 gave a 
simpler derivation of our cubical foam via Cheeger’s iso-
perimetric inequality; their analysis also shows that there 
exists a fixed parameter h that can be used as Hi through-
out Algorithm 1. In other words, a good foam can be 
derived from the random translations of a single droplet 
of the form

However, it still remains unknown as to how to construct an 
explicit “spherical cube.”
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