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RANDOM CNF’S ARE HARD FOR THE

POLYNOMIAL CALCULUS

Eli Ben-Sasson and Russell Impagliazzo

Abstract. We prove linear lower bounds on the Polynomial Calculus
(PC) refutation-degree of random CNF whenever the underlying field
has characteristic greater than 2. Our proof follows by showing the PC
refutation-degree of a unsatisfiable system of linear equations modulo 2
is equivalent to its Gaussian width, a concept defined by the late Mikhail
Alekhnovich.
The equivalence of refutation-degree and Gaussian width which is the
main contribution of this paper, allows us to also simplify the refutation-
degree lower bounds of Buss et al. (2001) and additionally prove non-
trivial upper bounds on the resolution and PC complexity of refuting
unsatisfiable systems of linear equations.
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1. Introduction

The seminal paper of Chvátal & Szemerédi (1988) showed that almost every
unsatisfiable 3-CNF formula with n variables and cn clauses (for c a large
enough constant), is extremely hard for Resolution to refute, i.e. the refutation
size is exponential in n. This result came shortly after lower bounds for concrete
contradictions were shown, most notably for the unsatisfiable CNF encoding the
pigeonhole principle (Haken 1985) and for Tseitin contradictions over expander
graphs (Urquhart 1987), and showed that the weakness of Resolution is not
limited to specially tailored formulas. On the contrary, the formulas that are
easy to refute are the exception.

In the 1990’s several algebraic proof systems have entered the proof com-
plexity scene, the Polynomial Calculus (PC) drawing most attention, because
of its simplicity and partial automatizability (Clegg et al. 1996; Pitassi 1996).
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The main complexity measure of PC is the minimal refutation-degree, which
was shown by Clegg et al. (1996) to be closely related to minimal PC refu-
tation size. Several refutation-degree lower bounds have been established for
concrete contradictions such as the pigeonhole principle (Impagliazzo et al.
1999a; Razborov 1998), Tseitin contradictions and other counting principles
(Buss et al. 2001). A major open question has been whether PC displays a
weakness for random inputs, similar to that of Resolution. The main result of
this paper is a positive resolution of this question for all fields of characteristic
greater than 2. The case of characteristic 2 was resolved by Alekhnovich &
Razborov (2003) via different techniques shortly after our initial report was
published. Our proof technique allows us to derive the bounds of Buss et al.
(2001) in a simpler manner and to prove nontrivial upper bounds on the refu-
tation complexity of systems of linear equations modulo 2 in Resolution and
PC. Next we describe in detail our main results, followed by an overview of the
proof technique.

1.1. Main results.

Lower bounds for random CNF’s. It is well-known since the work of
Chvátal & Szemerédi (1988) that with high probability a random k-CNF with
n variables and O(n) clauses, demands exponential size resolution refutations.
Stated simply: Resolution is usually no better than exhaustively checking all
possible 2n assignments. The simplest explanation for this inefficiency is that
Resolution performs badly on inputs that have high expansion (according to
Definition 3.2 below) and random CNFs do have large expansion. Our first
main result, stated next, is that PC does not fare significantly better on random
CNF and for similar reasons. The main complexity measure studied in the
context of the polynomial calculus is that of refutation degree (see Section 2
for a formal definition). The refutation degree of a CNF F , formulated as a
set of polynomials, is the minimal degree d such that there exists a polynomial
calculus refutation of F in which each line (which is a polynomial) has degree
at most d.

Definition 1.1 (Random k-CNF’s). Let F ∼ Fn,Δ
k denote that F is a ran-

dom k-CNF formula on n variables and m = Δ · n clauses, chosen at random
by picking Δ ·n clauses i.i.d from the set of all

(
n
k

)
·2k clauses, with repetitions.

Δ is called the clause density.
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Theorem 1.2 (Random CNFs are hard for PC). For integer k≥3 and Δ>0
there exists a constant ε = ε(k,Δ) > 0 such that the following holds. For F a
field of characteristic greater than 2, with high probability the refutation-degree
of F ∼ Fn,Δ

k over F is at least εn.

As shown in (Impagliazzo et al. 1999b, Section 6), the minimal number of
monomials appearing in a polynomial calculus refutation of a 3-CNF F over n
variables is exponential d2/n where d denotes the refutation degree of F . Thus,
Theorem 1.2 also implies exponential lower bounds on the size of polynomial
calculus refutations of a random CNF.

Simplified lower bounds for Tseitin and related contradictions. The
work reported in Buss et al. (2001) proved linear lower bounds on the refutation-
degree of Tseitin contradictions and certain counting principles. We provide
a different proof of these statements and as an example provide the proof for
Tseitin contradictions. Recall that a linear equation modulo 2 of the form∑k

i=1 xi ≡ b (mod 2) for b ∈ {0, 1} can be expressed in a unique way as a
k-CNF formula with 2k−1 clauses of size k each. We call this CNF the defining
CNF of the linear equation and the clauses of this CNF are referred to as the
defining clauses of the linear equation.

Definition 1.3 (Tseitin contradiction). Let G = (V,E) be an undirected
simple graph over n vertices. Let b : V → {0, 1} be an odd-labeling of V ,
i.e., a labeling satisfying

∑
v∈V b(v) ≡ 1 (mod 2). The Tseitin contradiction

over G and b, denoted T (G, b), is the CNF over variable set {xe : e ∈ E} that
is the conjunction of the defining CNFs of the following linear constraints

∑

e�v
xe ≡ b(v) (mod 2), v ∈ V .

It is well-known since the work of Tseitin (1968); Urquhart (1987) that
T (G, b) is unsatisfiable and furthermore, requires exponentially long proofs
when G is an expander graph. This result was extended to the case of PC
refutation-degree in Buss et al. (2001) who proved the following result, for
which our techniques provide an arguably simpler proof (see Section 3).

Theorem 1.4 (Buss et al. 2001). Let G = (V,E) be a connected graph and
b : V → {0, 1} be an odd-labeling of V . For T (G, b) the Tseitin contradiction
over G and b, and F a field of characteristic greater than 2, the refutation-
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degree of T (G, b) over F is at least half the expansion of G, defined as

e(G) = min

{
|E(S, V \ S)| : |V |

3
≤ |S| ≤ 2|V |

3

}
.

Upper bounds on refutation-degree. Our final set of results use the refu-
tation system for unsatisfiable systems of linear equations introduced in Sec-
tion 2 under the name Gaussian calculus to give nontrivial upper bounds on
the resolution proof size and PC refutation-degree of systems of linear systems
modulo 2. In particular, we prove that every such system has a resolution
refutation of size at most 2n/2+o(n) and a PC refutation of degree at most
n/4 + o(n). This is in contrast to work reported by Pudlák & Impagliazzo
(2000) which showed that tree-like resolution of such systems can require size
2(1−ε)n for arbitrary ε > 0, thus approaching exhaustive search.

1.2. Proof techniques. All results reported in this paper come from con-
sidering unsatisfiable systems of linear equations modulo 2. Let Ax = b denote
such a system, where A is a m× n matrix with {0, 1} values, b ∈ {0, 1}m and
x = x1, . . . , xn is a set of variables. Basic linear algebra shows that Ax = b is un-
satisfiable if and only if there exists y ∈ {0, 1}m such that y�A = (0, 0, . . . , 0)�

and y�b = 1, where all computations are carried out modulo 2. Thus, the
vector y can be viewed as a refutation of Ax = b.

The following analogous view of this refutation, suggested by the late
Mikhail Alekhnovich [personal communication, 1999], will be crucial for obtain-
ing our results. View the ith row of Ai and the ith element of b as a constraint
on x. A Gaussian refutation of Ax = b is a sequence of lines, where each line is
either a constraint Aix = bi or a linear combination of two previous lines and
the final line is (0, 0, . . . , 0)�x = 1. The Gaussian width of such a refutation is
the maximal number of variables appearing in a line in the refutation and the
Gaussian refutation width of the system is the minimal Gaussian width taken
over all Gaussian refutations.

The observation of Alekhnovich is that the Gaussian width of Ax = b is
essentially equal to the resolution refutation width of the CNF defining Ax = b.
Our main observation is that the Gaussian width is also equivalent to half the
refutation-degree of the related CNF when working in a field of characteristic
> 2. With this observation we can apply the width-method of Ben-Sasson &
Wigderson (2001) to obtain linear lower bounds on the refutation-degree of
various expanding sets of constraints. Informally, a set of constraints is said
to be expanding if every relatively small subset of constraints mentions many
distinct variables.
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As an application of our proof technique we now sketch the proof of the
lower bound on refutation-degree of random 3CNFs. A set of linear constraints
modulo 2, where each constraint mentions at most 3 variables, can be encoded
as a 3CNF in a natural way. The converse is also true, namely, a 3CNF can
be viewed as a subset of clauses that define a linear system modulo 2 with at
most 3 variables per constraint. Furthermore, if the 3CNF is expanding, so is
the underlying linear system. Random 3CNFs are well-known to be expand-
ing, implying their underlying systems are expanding. By our key observation
such linear systems have large refutation-degree over fields of characteristic
> 2. This also implies that the 3CNF which induced them must have large
refutation-degree, because this CNF can be derived from the linear system
using constant degree. This completes the sketch of the proof of Theorem 1.2.

1.3. Subsequent developments. The main open question left by our work
was to understand the PC refutation-degree of random CNFs over fields of
characteristic 2. This problem was resolved via different methods than reported
here by Alekhnovich & Razborov (2003).

Organization of the rest of the paper. In Section 2 we define Gaussian
width and show it is equivalent to PC refutation-degree for linear systems
modulo 2. Section 3 presents lower bounds for Gaussian width in terms of
the expansion of the input system. Section 4 proves Theorem 1.2 by reducing
random linear equations to random CNF’s. In Section 5 we conclude with
upper bounds for Resolution width and PC refutation-degree for systems of
linear equations.

2. Gaussian width and refutation degree

In this section we define Gaussian width and prove that it is equivalent to PC
refutation-degree for systems of linear equations modulo 2 that are formulated
over fields of characteristic greater than 2.

Notation. The letter F will denote a field and Fq a finite field of size q.
Calligraphic letters denote sets of formulas: P will be a set of polynomials, and
L will be reserved for sets of linear equations.

We shall start by dealing with unsatisfiable sets of linear equations mod q,
a prime (most of the paper sets q = 2). Let L = {�i}mi=1 be such a set over n
variables x1, . . . , xn. For simplicity let us assume that L is minimal unsatisfi-
able, i.e. every proper subset of it is satisfiable. For reasons that will become
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clear later on, we allow variables to appear on both sides of the equality sign,
so formally �i has the following syntactic structure:

(2.1)
∑

j∈Si1

aj · xj = c+
∑

j∈Si2

bj · xj

where aj, bj ∈ Fq\{0} and c ∈ Fq. We say that two lines are equivalent modulo q
if subtracting one from the other modulo q gives the equation 0 = 0.

Perhaps the most natural way to prove that L is unsatisfiable is by Gaussian
elimination in the field Fq. We start with the lines of L as axioms and produce
new linear equations by addition of existing lines and scalar multiplication.
We prove that L is unsatisfiable by deriving the unsatisfiable linear equation
1 = 0. The number of lines needed to refute L is at most m. Let us call such
a refutation a Gaussian Calculus refutation, or simply, a Gaussian refutation.
Let the Gaussian width of refuting L, denoted wG(L), be the maximal number
of variables appearing in a line of the Gaussian refutation.

Suppose we wish to show that L is unsatisfiable, but we work within a field F
with characteristic p �= q, which has a primitive q’th root of unity called ω. The
multiplicative group generated by ω is isomorphic to the additive group Zq, and
we use this isomorphism to translate L into a set of polynomials over F such
that there is a bijection between the set of assignments satisfying L and the set
of common roots of the corresponding set of polynomials (such a set is called
an algebraic set or a variety).

Definition 2.2 (Linear equations modulo q �= p as a set of polynomials).Let
L = {�i}mi=1 be a minimal unsatisfiable set of linear equations mod q, where �i
is as described in (2.1). Let F be a field of characteristic p �= q, having a
primitive root of unity of order q, denoted ω. The polynomial translation of
the equation �i to F , denoted PF (�i) is the following polynomial:

(2.3)
∏

j∈Si1

y
aj
j − ωc ·

∏

j∈Si2

y
bj
j .

The translation of L to F , denoted PF (L) is the set of polynomials that is
the union of:

(i) {yqi − 1}ni=1. This set ensures the roots of the system of polynomials are
contained in {1, ω, ω2, . . . , ωq−1}n.

(ii) {PF (�i)}mi=1.
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Remark 2.4. (i) Notice PF (L) is a set of binomials, i.e. polynomials with
two monomials. This simple observation will play a crucial role in our
investigation.

(ii) The transformation described in the previous definition is invertible,
i.e. every binomial P which has structure as in (2.3) where aj, bj , c ∈
{0, 1, . . . , q − 1}, corresponds to a linear equation �. Moreover, � is satis-
fied by an assignment α = (α1, . . . , αn) ∈ {0, . . . , q−1}n iff (ωα1 , . . . , ωαn)
is a root of PF (�).

(iii) Suppose PF (�1), PF (�2) are polynomial translations of �1, �2, respectively.
Let I denote the ideal generated by {yqi − 1}ni=1. Then �1 is equivalent to
�2 modulo q if and only if PF (�1) ≡ PF (�2) (mod I).

If L is unsatisfiable then PF (L) is unsatisfiable in F , i.e., it has no common
roots, but Gaussian elimination is not sufficient for proving this fact. In order
to reach a contradiction, one must allow multiplication of lines by variables,
working within the framework of the Polynomial Calculus, introduced in Clegg
et al. (1996) and further developed in Beame et al. (1994); Razborov (1998).

Definition 2.5 (The Polynomial Calculus). Let F be a fixed field, and P a
set of polynomials over F . A polynomial calculus derivation, or simply, deriva-
tion, of a polynomial Q from P is a sequence of polynomials π = {P1, . . . , PS}
such that PS = Q, and each Pi is either an axiom from P or derived from
previous polynomials by addition or by multiplication by scalars and variables.
A refutation is a derivation of the polynomial 1 (that clearly has no roots). The
set P is said to be unsatisfiable or contradictory iff its set of roots is empty,
which happens iff P has a refutation.

The natural complexity measure for the Polynomial Calculus is its refuta-
tion-degree, defined next.

Definition 2.6 (Refutation-degree). The degree of a Polynomial Calculus
refutation is the maximal degree of a polynomial appearing in the refutation.

The refutation-degree of an unsatisfiable set of polynomials P , denoted
d(P), is the minimal degree of a refutation of P .

The main theorem of this section is stated next. The rest of this section is
devoted to its proof.
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Theorem 2.7. Let L be an unsatisfiable set of linear equations modulo 2 of
width at most k, let F be a field of characteristic p �= 2, and let P = P(L).
Then,

max

{
k,

1

2
wG(L)

}
≤ d(P) ≤ max

{
k,

1

2
wG(L)

}
+ 1 .

In our proof of Theorem 2.7 we shall require a couple of lemmas, stated
next. Their proof follows that of Theorem 2.7. The first lemma, stated here
for q = 2, can be generalized to systems of linear equations mod q �= 2 using
the same proof strategy as below.

Lemma 2.8. Let PF (�1), PF (�2) be the translations of two equivalent linear
equations mod 2, denoted �1, �2, to a field F with characteristic greater than 2.
Then there is a PC derivation of PF (�2) from PF (�1)∪ {y2i − 1}ni=1 with degree
at most 1 + max{d(PF (�1)), d(PF (�2))}.

The next lemma can be proved either by use of the Laurent relation de-
scribed in Buss et al. (2001) or by means of the Groebner Basis algorithm
described in Clegg et al. (1996). We take the latter approach. In what follows,
a binomial refutation is a refutation in which all polynomials are binomials.

Lemma 2.9. If P is a set of binomials, then there is a binomial refutation of P
of minimal degree. Moreover, if all coefficients of P are in {1,−1}, then there
is binomial refutation of P of minimal degree, in which all monomials have
coefficients in {1,−1}.

Proof of Theorem 2.7. To see that d(P) ≤ 
max{k, 1
2
wG(L)�}+ 1, take

any Gaussian refutation of width w, and let d = 
w/2� + 1. Without loss
of generality a line � in the refutation is equivalent to

∑
i∈S xi = b for some

S ⊆ {1, . . . , n}, |S| ≤ w and b ∈ {0, 1}. We shall now prove, by induction on
the number of lines in the Gaussian refutation, that any polynomial

∏
i∈S1

yi−
(−1)b

∏
i∈S2

yi with S1, S2 a partition of S satisfying |S1|, |S2| ≤ 
w/2� has a
PC derivation from P of degree at most max{k + 1, d}.

The base case of � ∈ L follows from Lemma 2.8 because PF (�) ∈ P is of
degree at most k. Next, assume � is the sum of the two lines �1 :=

∑
i∈S xi = b

and �2 :=
∑

i∈T xi = b′ and � has the form
∑

i∈S⊕T xi = (b + b′ (mod 2)).
Let P1, P2 be corresponding polynomials, such that P1 is equivalent to PF (�1)
modulo {y2i − 1}ni=1, and similarly for P2. Define R = S ∩ T, r = |R|, s =
|S −R|, t = |T −R|. Note that s+ t = |S ⊕ T | ≤ w.

Suppose r ≤ 
w/2�. Assume wlog s ≤ t. Let T ′ ⊆ T − R be an arbitrary
set of size t′ = min{t, 
w/2�}, and let T ′′ = (T − R) − T ′ and t′′ = |T ′′|. We
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claim that t′′ + s ≤ 
w/2�. To see this notice that if t′ = 
w/2� then

t′′ + s = (t− t′) + s = t+ s− 
w/2� ≤ w − 
w/2� ≤ 
w/2� .

On the other hand, if t′ = t < 
w/2� then t′′ = 0 hence t′′ + s = s ≤ 
w/2� by
our assumption that s ≤ t and s+ t ≤ w. We have shown that t′′ + s ≤ 
w/2�
as claimed. Additionally, we have r + t′′ ≤ 
w/2�. To see this, assuming
t′ = 
w/2� we have

r + t′′ = |T | − t′ ≤ w − 
w/2� ≤ 
w/2� ,

whereas assuming t′ = t < 
w/2� we get t′′ = 0 so r + t′′ = r ≤ 
w/2� with
the last inequality following from the supposition made at the beginning of this
paragraph.

Use P2 to derive

P3 :=
∏

i∈R∪T ′′

yi − (−1)b
′ ∏

i∈T ′

yi .

Use P1 to derive
P4 :=

∏

i∈R
yi − (−1)b

∏

i∈S−R

yi

and multiply P4 by
∏

i∈T ′′ yi to derive

P5 :=
∏

i∈R∪T ′′

yi − (−1)b
′ ∏

i∈(S−R)∪T ′′

yi .

Subtract P3 from P5 to derive

P6 :=
∏

i∈(S−R)∪T ′′

yi − (−1)bb
′ ∏

i∈T ′

yi .

Inspection reveals that the maximal degree of {P1, . . . , P6} is at most d, and
by use of Lemma 2.8 this completes the proof of the case r ≤ 
w/2�.

Next we deal with the case of r > 
w/2�. Let R′ ⊂ R be an arbitrary set
of size |R′| = 
w/2� and set R′′ = R−R′. Use P1 to derive

P3 :=
∏

i∈R′

yi − (−1)b
∏

i∈S−R′

yi .

Use P2 to derive
P4 :=

∏

i∈R′

yi − (−1)b
′ ∏

i∈T−R′

yi .
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Subtract the two to get the binomial

P5 :=
∏

i∈S−R′

yi − (−1)bb
′ ∏

i∈T−R′

yi .

Notice that the polynomial modulo 2 corresponding to this polynomial is equiv-
alent to the polynomial modulo 2 corresponding to the polynomial

P6 :=
∏

i∈S−R

yi − (−1)bb
′ ∏

i∈T−R

yi .

Thus, by Lemma 2.8 we conclude P6 can be derived from P5 in degree at most d
as claimed.

In the other direction, assume Lp has a PC refutation of degree d, hence, by
Lemma 2.9 it has a refutation in which each line is a multilinear binomial and all
coefficients are either 1 or −1. We may construct inductively a corresponding
Gaussian refutation with Gaussian width at most 2d. To see this, notice that
the PC refutation has no scalar multiplications by constants other than −1.
A multiplication of P by the variable yj corresponds to changing

∑
i∈S1

xi =
b+

∑
i∈S2

xi into xj +
∑

i∈S1
xi = b+ xj +

∑
i∈S2

xi, and for any addition of P1

and P2, one of the monomials in P1, P2 must be identical (otherwise the output
would not be a binomial), and hence adding the corresponding linear equations
would yield the proper result.

If we get a single monomial by adding two binomials in the PC refutation,
then both sides of the above polynomials involve the same sets S1, S2 of vari-
ables, but with different constants b. Then adding the corresponding linear
equations will give us a nonzero constant equaling 0, and we have obtained a
contradiction. Thus, wG(L) ≤ 2d(P) as claimed and the proof is complete. �

Proof of Lemma 2.8. �1, �2 are equivalent iff �1 is
∑

i∈S1
xi = c+

∑
i∈T1

xi

and
∑

i∈S2
xi = c+

∑
i∈T2

xi where S1⊕T1 = S2⊕T2 and ⊕ denotes symmetric
difference. We argue the case of S1 = S2 ∪ {x1}, T2 = T1 ∪ {x1}. The full case
then follows by induction. We have that PF (�1) is

∏

i∈S1

yi − (−1)c ·
∏

i∈T1

yi = y1
∏

i∈S2

yi − (−1)c ·
∏

i∈T1

yi ,

where 1 �∈ T1. We multiply the above equation by y1 yielding

y21
∏

i∈S2

yi − (−1)c ·
∏

i∈T2

yi .
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Next, we multiply the axiom y21 − 1 by
∏

i∈S2
yi and subtract this from the

previous equation, yielding PF (�2). Notice the degree of this derivation is at
most 1 + max{d(PF (�1)), d(PF (�2))} and this completes the proof. �

Proof of Lemma 2.9. In Clegg et al. (1996) it is shown that if a system
of equations has a degree d refutation, then such a refutation is generated by
the Groebner basis algorithm (using any degree-respecting order on terms).
Thus, it suffices to prove our claim for this particular refutation, which we do
by induction on the number of steps in the Greobner basis refutation.

Inspection of the Groebner basis algorithm shows that the refutation so
generated has the following property: each time a polynomial P is generated
as a linear combination of two previous polynomials P = aP1 + bP2, then
a = 1 and b is chosen such that some monomial in P1 is canceled by this sum,
meaning P1, P2 can be written respectively as P1 = m1+P ′

1, P2 = m2+P2 where
bm2+m1 = 0. Thus, if P1, P2 are binomials with {−1, 1}-coefficients then so is
P . Furthermore, multiplying a binomial with {−1, 1}-coefficients by a variable
results in a binomial with {−1, 1}-coefficients. This completes the proof of the
inductive step and shows that all lines in the Groebner refutation (which has
minimal degree) are binomials with {−1, 1}-coefficients, as claimed. �

3. High expansion yields high degree

In this section we show that the Gaussian width and, by Theorem 2.7, the
refutation-degree, of a system of linear equations is directly connected to its
expansion, defined next. To define expansion we require the notion of a bound-
ary.

Definition 3.1 (Boundary). For f a function and x a variable, we say that f
depends on x if there is some assignment to all variables other than x, such
that the value of f is not fixed. let V ars(f) be the set of all variables that f
depends on and let the width of f be |V ars(f)|.

For F a set of functions, the boundary of F , denoted ∂F , is the set of
variables x such that there is exactly one function f ∈ F that depends on x.

Definition 3.2 (Expansion). For F an unsatisfiable set of functions, let s be
the minimal size of an unsatisfiable subset of F . The expansion of F is

e(F) � min

{
|∂F ′| : F ′ ⊂ F ,

s

3
≤ |F ′| ≤ 2s

3

}
.
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An alternative, graph oriented, definition of expansion is as follows. Let G
be the bipartite graph with left vertex set F , right vertex set Vars(F) and an
edge connecting f to x if f depends on x. Then e(F) is the minimal size of the
set of unique-neighbors of a “medium size” subset of the left hand vertices.

The following theorem is the main result of this section. The proof closely
follows the width lower bound method of Ben-Sasson & Wigderson (2001).

Theorem 3.3. Let L be an unsatisfiable set of linear equations modulo 2 of
width at most k and let F be a field of characteristic p �= 2. Then,

d
(
PF (L)

)
≥ max

{
k,

1

2
e(L)

}
.

Proof. We assume that k < 1
2
e(L). By Theorem 2.7 we only have to prove

that wG(L) ≥ e(L). Let s be the minimal size of an unsatisfiable subset of L.
We say that a set of equations L′ ⊆ L implies an equation � and denote this by
L′ |= � if and only if every assignment that satisfies L′ also satisfies �. Define
the following measure on linear equations:

μ(�) � min{|L′| : L′ ⊆ L, L′ |= �} .

The following claims can be verified by inspection:

1. For � ∈ L, μ(�) ≤ 1.

2. μ(1 = 0) = s.

3. μ(�1 + �2) ≤ μ(�1) + μ(�2).
This is because if L1 |= �1, L2 |= �2, then clearly L1 ∪ L2 |= �1 + �2.

Hence, in every Gaussian refutation there must be a line � for which s
3
≤

μ(�) ≤ 2s
3
. Fix such a line �, and let L′ be a minimal subset of size μ(�)

implying �. We claim that � depends on every variable in ∂L′. Assume this is
not the case, i.e. assume xi ∈ ∂L′ \ V ars(�), and let �′ be the unique equation
in L′ which depends on xi. By the minimality of L′ there is some assignment α
that satisfies all of L′ \ {�′} but falsifies �′ and �. One can flip the assignment
of α on xi so as to satisfy �′, without affecting � or the rest of L′, thus L′ �|= �.
Contradiction. �

With the aid of Theorem 3.3 we can derive the lower bounds of Buss et al.
(2001) on the refutation degree of Tseitin contradictions and related formulas.
As an example we study the case of Tseitin contradictions and prove Theo-
rem 1.4.
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Proof of Theorem 1.4. First we notice as in Tseitin (1968); Urquhart
(1987) that if G is connected then T (G, b) is minimal unsatisfiable, i.e., remov-
ing any single constraint from it makes the residual system satisfiable. Next,
we argue that the expansion of T (G, b) as per Definition 3.2 coincides with the
definition of the term in Theorem 1.4. Indeed, S ⊂ V has t edges going from
S to V \ S if and only if the set of constraints

∑

e�v
xe ≡ b(v) (mod 2) , v ∈ S

has a boundary of size t, because for each crossing edge e=(v, u), v∈S, u∈V \S
the variable xe appears in exactly one constraint, namely, the constraint over
vertex v. Now that we have shown that the two definitions, in Definition 3.2
and in Theorem 1.4, of the term “expansion” coincide, we apply Theorem 3.3
and complete our proof. �

4. Random k-CNF’s

In this section we prove Theorem 1.2 and show that PC is not much better
than Resolution in refuting random k-CNF’s. Our proof goes by reducing the
refutation-degree of a random CNF to the refutation-degree of a closely related
random set of linear equations.

4.1. Proof of Theorem 1.2. The standard formulation of a clause C as a
polynomial is PC :=

∏
i∈positive(1−xi) ·

∏
i∈negative xi, where positive is the set of

positive literals appearing in C (the set negative is similarly defined). A CNF
formula C = {Ci}mi=1, formulated in polynomial calculus, is the following set of
polynomials {PCi

}mi=1 ∪ {x2
i − xi}ni=1. From now on, we shall think of all CNF

formulas as formulated in this manner.
To connect random CNFs to random linear equations we use a different

method for producing the distribution Fn,Δ
k over random k-CNFs from Defini-

tion 1.1.

Definition 4.1 (Random linear equations). Let L ∼ Ln,Δ
k denote that L is

a random set of linear equations mod 2, each having k variables, chosen at
random by picking Δn equation i.i.d from the set of all 2

(
n
k

)
equations, with

repetitions.

Given Ln,Δ
k , one can produce Fn,Δ

k from Definition 1.1 by replacing each
� ∈ L with one of its 2k−1 defining clauses (as defined before Definition 1.3)
picked at random, with equal probability. Let us denote by CL any CNF formula
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derived from L by this process. Notice that L |= CL, but the converse is not
necessarily true. In the other direction, for any clause C there is a unique linear
equation mod 2 �C such that �C depends on all variables of C and �C |= C.
For C a CNF formula, let LC = {�C : C ∈ C} be the (unique) linear closure
of C. This gives a way to produce Ln,Δ

k from Fn,Δ
k .

The following theorem is the main observation of this section. It says that
taking the linear closure of a unsatisfiable CNF which has high expansion,
cannot help decrease the refutation-degree substantially.

Theorem 4.2. For C a k-CNF, and PF (LC) the formulation of the linear clo-
sure of C as a set of polynomials in the field F , of characteristic greater than 2,
we have d(C) ≥ max{d(PF (LC)), k + 1}.

The following lemma appears originally in Chvátal & Szemerédi (1988) for
CNF formulas. It is proved using what is by now a standard union bound
and applies to sets of linear equations just as well (see, e.g. (Ben-Sasson &
Wigderson 2001, Section 6.3)).

Lemma 4.3. For integer k ≥ 3 and Δ > 0 there exists a constant κ =
κ(k,Δ) > 0 such that

PrL ∼ Ln,Δ
k e(L) ≥ κn = 1− o(1) .

Proof of Theorem 1.2. Lemma 4.3 claims that with high probability a
random set of linear equations L has expansion that is linear in the number of
underlying variables. Theorem 3.3 implies the refutation-degree of a random set
of linear equations is with high probability linear in n, as long as the underlying
field has characteristic > 2. Theorem 4.2 completes the proof by showing that
with high probability a random CNF requires linear refutation-degree. �

4.2. Proof of Theorem 4.2. The following definition and lemma from Buss
et al. (2001) will assist us in our reduction of random CNFs to random systems
of linear equations.

Definition 4.4 (Buss et al. 2001). Let P(x), Q(y) be two sets of polynomials
over a field F . Then P(x) is (d1, d2)-reducible to Q(y) if there exists a degree d1
polynomial ri(x) for every yi such that Q(r(x)) has a PC derivation of degree
d2 from P(x).
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Lemma 4.5 (Buss et al. 2001). Suppose that P(x) is (d1, d2)-reducible toQ(y).
Then if there is a degree d3 PC refutation of Q(y), then there is a degree
max(d2, d3d1) PC refutation of P(x).

Our proof of Theorem 4.2 also requires the following lemma.

Lemma 4.6. Let � be a linear equation mod 2, over the variables x1, . . . , xk,
and let P = PF (�)∪{y2i − 1}ki=1 be its formulation as a set of polynomials over
a field F of characteristic �= 2. Let C be a clause over x1, . . . , xk such that
� |= C. P is (1, k + 1)-reducible to PC .

Proof. Set xi = (1 + yi)/2. From this definition and y2i − 1 one can deduce
x2
i −xi. PC is implicationally complete, thus, there is a derivation of C from P ,

using only variables that appear either in P or in C. This derivation can be
assumed to have degree at most k + 1, because every time a monomial with
degree k + 1 appears in the derivation, some variable x has degree 2, and
the monomial can be reduced to degree k by use of the previously derived
polynomials x2

i − xi. �
We conclude this section with the proof of Theorem 4.2.

Proof of Theorem 4.2. Let C̄� be the k-CNF definition of the linear equa-
tion �, and let C̄L be the conjunction of the C�’s, for all � ∈ L (formulated as a
set of polynomials). Clearly, C ⊆ C̄L, hence any refutation of C is also a refuta-
tion of C̄L. The previous Lemma 4.6 implies that PF (LC) is (1, k+1)-reducible
to C̄L, and the theorem follows. �

5. Upper bounds on refutations of linear equations

In this section we prove nontrivial upper bounds on the complexity of refut-
ing unsatisfiable systems of linear equations modulo 2 in Resolution and the
Polynomial Calculus. All upper bounds stated below follow directly from the
following theorem, the proof of which constitutes the bulk of this section.

Theorem 5.1 (Upper bounds on Gaussian width). For L an unsatisfiable sys-
tem of linear equations modulo 2 of width k = O(1) over n variables,

wG(L) ≤ n/2 + o(n) .

Moreover, there exists a refutation of size at most n that achieves this width.

Let SR(F), wR(F) respectively denote the minimal size, width, of a Reso-
lution refutation of the CNF F . The previous result and its proof have the
following implications:
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Corollary 5.2. For F(L) the CNF formulation of a system of width O(1)
linear equations mod 2,

wR

(
F(L)

)
≤ n/2 + o(n) .

Corollary 5.3. For F(L) the CNF formulation of a system of width O(1)
linear equations mod 2,

SR

(
F(L)

)
≤ 2n/2+o(n) .

Corollary 5.4. For Pp a system of linear equations mod 2, in the field Fp,
p > 2,

d(Pp) ≤ n/4 + o(n) .

The corollaries mentioned above show that for tautologies expressing sys-
tems of linear equations modulo 2, proof complexity can be significantly less
than that of exhaustive search refutation. These results contrast with the work
of Pudlák & Impagliazzo (2000) which showed that tree-like resolution refu-
tations of such systems can require size 2(1−ε)n for arbitrary ε > 0. Hence,
resolution based methods with more memory could be faster than DLL algo-
rithms for larger clause sizes.

Proof of Theorem 5.1. Let the equations be
∑

i∈Sj
xi = bj for j = 1, . . . ,

m, with|Sj| ≤ k. Assume without loss of generality that the equations are
minimally dependent, i.e., that ⊕jSj = ∅ and

∑
j bj = 1 (mod 2). Let π be

a random permutation of 1, . . . ,m, and consider the refutation obtained by
always adding the equations one by one in the order π(1), . . . , π(m). We claim
that with high probability the width of this refutation, which by construction
has size m ≤ n, is at most n/2+ o(n). Let 1 ≤ j ≤ m ; we will show that with
high probability, the width of the j’th line, Wj = |⊕j′≤jSπ(j′)| ≤ n/2+o(n). Let
q = j/n. Consider the random experiment of picking equations with probability
q independently and summing the picked equations to get

∑
i∈S′ xi = b′ for

some set S ′ and bit b′. Let C be the number of chosen equations. Then if we
subsequently subtract C − j chosen equations if C > j or add j − C random
unchosen equations otherwise, the result is distributed as the j’th equation.
The difference in widths of the two processes is bounded by |C− j|k. Since the
expectation of C is j and it is normally distributed, Pr[|C−j| ≥ αn1/2] ≤ e−α2/2.
Thus, we concentrate on the width of S ′.

Let ti be the number of equations xi appears in; since the sum of equations
gives 0 = 1, ti is even. Let Bad = {i|ti ≥ kn1/4}. Since m < n, we know that
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|Bad| ≤ n3/4. Look at the random indicator variable Ri which is 1 if xi ∈ S ′.
Let R =

∑
i 	∈Bad Ri be the number of “good” elements in S ′.

Pr(Ri = 0)− Pr(Ri = 1) =

l=ti∑

l=0

(−1)l
(
ti
l

)
ql(1− q)ti−l

= (1− 2q)ti > 0 .

This implies E(Ri) ≤ 1/2 for every i. Additionally,

V (R) = E(R2)−
(
E(R)2

)

=
∑

i,i′ 	∈Bad

(
E(RiRi′)− E(Ri)E(Ri′)

)

≤
∑

i,i′ 	∈Bad and ∃c such that i,i′∈Sc

(
E(RiRi′)E(Ri)E(Ri′)

)

≤ kn5/4 .

So,

Pr(R ≥ n/2 + kn3/4) ≤ Pr
(
|R− E(R)| ≥ kn3/4

)

≤ kn5/4/(k2n3/2) ≤ n−1/4 .

Hence, with probability 1− 2n−1/4,

Wj ≤ R + |Bad|+ |C − j|k
≤ n/2 + kn3/4 + n3/4 + n1/2 lnn

= n/2 +O(kn3/4) .

We only obtained a probability 1−O(n−1/4) bound on the above probability.
However, this suffices to show that with probability 3/4, each j which is a
multiple of Dn3/4 for a sufficiently large constant D has Wj ≤ n/2+O(kn3/4).
However, if this is true, then since Wj ≤ Wj′ + k|j − j′|, the same is true for
any j, using j′ the nearest multiple of Dn3/4.

Note that the process of adding the lines one by one ensures that the set of
variables for each new equation involves at most k variables that do not appear
in the old one. This is used to prove Corollary 5.3, since then the derivation
of the j’th line in the Gaussian refutation is logically valid and depends on
at most Wj + k variables. It thus follows from the implicational completeness
of resolution that the line can be simulated by a resolution refutation of size
2Wj+k. �
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