The *f*-Vector of the Descent Polytope

Denis Chebikin · Richard Ehrenborg

Received: 27 October 2008 / Revised: 25 October 2010 / Accepted: 7 December 2010 /

Published online: 7 January 2011

© Springer Science+Business Media, LLC 2011

Abstract For a positive integer n and a subset $S \subseteq [n-1]$, the descent polytope DP_S is the set of points (x_1, \ldots, x_n) in the n-dimensional unit cube $[0, 1]^n$ such that $x_i \ge x_{i+1}$ if $i \in S$ and $x_i \le x_{i+1}$ otherwise. First, we express the f-vector as a sum over all subsets of [n-1]. Second, we use certain factorizations of the associated word over a two-letter alphabet to describe the f-vector. We show that the f-vector is maximized when the set S is the alternating set $\{1, 3, 5, \ldots\} \cap [n-1]$. We derive a generating function for $F_S(t)$, written as a formal power series in two non-commuting variables with coefficients in $\mathbb{Z}[t]$. We also obtain the generating function for the Ehrhart polynomials of the descent polytopes.

Keywords Descent set statistics · Maximizing inequalities · Alternating set · Non-commutative rational generating function · Ehrhart polynomial

1 Introduction

A classic topic in combinatorics is the study of descent set statistics of permutations. For a subset S of the set $[n-1] = \{1, \ldots, n-1\}$, the statistic $\beta(S)$ denotes the number of permutations in the symmetric group \mathfrak{S}_n with descent set S. One well-known result is that the descent set statistic $\beta(S)$ is maximized on the alternating sets: $\{1,3,\ldots\} \cap [n-1]$ and $\{2,4,\ldots\} \cap [n-1]$; see [2,6-8,12].

In this paper we study a class of polytopes DP_S which we call *descent polytopes*. They are indexed by subsets S of [n-1], and the polytope corresponding to S is the

D. Chebikin

Department of Mathematics, MIT, Cambridge, MA 02139, USA

e-mail: chebikin@gmail.com

R. Ehrenborg (

)

Department of Mathematics, University of Kentucky, Lexington, KY 40506, UK

e-mail: jrge@ms.uky.edu

closure of the set of points of the unit hypercube $[0, 1]^n$ whose coordinates, viewed as a sequence of n numbers, have descent set S. In general, these polytopes are not simplicial nor simple: the polytope for n = 3 and $S = \{1\}$ is the Egyptian pyramid, that is, the square based pyramid. We show how to compute the f-vector of the descent polytope DP_S .

Some invariants of descent polytopes are directly related to the descent set statistic, and others exhibit analogous behavior. For example, the volume of the descent polytope DP_S is given by the descent set statistic $\beta(S)/n!$. We also show in the paper that the f-vector of the descent polytope is entrywise maximized on the alternating set. In order to prove this result we show that the entries of the f-vector obey certain inequalities analogous to those satisfied by descent set statistics; see Theorem 2.4.

One way to encode a subset S of [n-1] is by a word \mathbf{v}_S in two letters, in our case \mathbf{x} and \mathbf{y} . Since \mathbf{v}_S can be viewed as a non-commutative monomial in the two variables \mathbf{x} and \mathbf{y} , this encoding suggests that one should work with non-commutative generating functions. That is, to study a polytope invariant ϕ of descent polytopes, one has to determine the generating function

$$\sum_{n\geq 1} \sum_{S\subseteq [n-1]} \phi(\mathsf{DP}_S) \cdot \mathbf{v}_S = \sum_{\mathbf{v}} \phi(\mathsf{DP}_{\mathbf{v}}) \cdot \mathbf{v},\tag{1.1}$$

where we tacitly allow the descent polytopes to be indexed by monomials.

In the case of the f-polynomial, an encoding of the f-vector, the generating function in (1.1) is a rational generating function; see Theorem 3.2. Furthermore, by expanding this rational function we obtain a more concise expression for the f-polynomial of the descent polytope DP_S . This expression is in terms of a particular type of factorizations of the monomial \mathbf{v}_S ; see Corollary 3.3.

Descent polytopes are also lattice polytopes and hence their Ehrhart polynomials are also of interest. We also determine the non-commutative generating function for Ehrhart polynomials of the descent polytopes; see Theorem 4.2. We note that even this power series is rational.

We end the paper with a few open questions and directions for further research.

2 An Expression for the f-Polynomial F_v

For a set $S \subseteq [n-1] = \{1, 2, ..., n-1\}$, define the *descent polytope* DP_S to be the set of points $(x_1, ..., x_n)$ in \mathbb{R}^n such that $0 \le x_i \le 1$, and

$$\begin{cases} x_i \ge x_{i+1} & \text{if } i \in S, \\ x_i \le x_{i+1} & \text{if } i \notin S. \end{cases}$$

Thus DP_S is the *order polytope* of the ribbon poset $Z_S = \{z_1, z_2, ..., z_n\}$ defined by the cover relations $z_i > z_{i+1}$ if $i \in S$ and $z_i < z_{i+1}$ if $i \notin S$; see [9]. It is clear that the set S and its complement $\overline{S} = [n-1] - S$ yields the same descent polytope up to an affine transformation. Also the reverse set $S^{rev} = \{n-i : i \in S\}$ give the same polytope.

Let **x** and **y** be two non-commuting variables. For $S \subseteq [m]$, define $\mathbf{v}_S = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_m$ where

$$\mathbf{v}_i = \begin{cases} \mathbf{x} & \text{if } i \notin S, \\ \mathbf{y} & \text{if } i \in S. \end{cases}$$

Since pairs (n, S), where $S \subseteq [n-1]$, are in bijective correspondence with **xy**-words via $(n, S) \mapsto \mathbf{v}_S$, it is natural to parameterize the descent polytopes and their f-polynomials by **xy**-words. That is, we write $\mathrm{DP}_{\mathbf{v}}$ and $F_{\mathbf{v}}$, where $\mathbf{v} = \mathbf{v}_S$ for some $S \subseteq [|\mathbf{v}|]$, and $|\mathbf{v}|$ denotes the length of the word \mathbf{v} . This notation has the advantage, as the **xv**-word not only encodes the subset but also the dimension n.

For an **xy**-word $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_{n-1}$, define the statistic $\kappa(\mathbf{v})$ by $\kappa(\mathbf{v}) = 2 + |\{i : \mathbf{v}_i \neq \mathbf{v}_{i+1}\}|$ for $\mathbf{v} \neq 1$, and $\kappa(1) = 1$. A direct observation is that the number of facets of the descent polytope is described by κ .

Lemma 2.1 The number of (n-1)-dimensional faces of the n-dimensional descent polytope DP_v is given by

$$f_{n-1}(\mathrm{DP}_{\mathbf{v}}) = n - 1 + \kappa(\mathbf{v}).$$

Proof There are n-1 supporting hyperplanes of the form $x_i = x_{i+1}$ that each intersect the polytope in a facet. The hyperplane $x_i = 1$ intersects the polytope in a facet if one of the following three cases holds: $\mathbf{v}_{i-1}\mathbf{v}_i = \mathbf{x}\mathbf{y}$; i = 1 and $\mathbf{v}_1 = \mathbf{y}$; or i = n and $\mathbf{v}_n = \mathbf{x}$. A similar statement holds for the hyperplane $x_i = 0$. The lemma follows by adding these three statements.

For an **xy**-word $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_{n-1}$ and a subset T of [n-1], define \mathbf{v}^T to be the subword $\mathbf{v}^T = \mathbf{v}_{j_1} \mathbf{v}_{j_2} \cdots \mathbf{v}_{j_k}$, where $T = \{j_1 < j_2 < \cdots < j_k\}$. The following theorem provides a way to compute the f-polynomial $F_{\mathbf{v}}$.

Theorem 2.2 Let \mathbf{v} be an \mathbf{xy} -word of length n-1. Then the f-polynomial of the descent polytope $\mathrm{DP}_{\mathbf{v}}$ is given by

$$F_{\mathbf{v}} = 1 + \sum_{T \subseteq [n-1]} \left(\frac{t+1}{t} \right)^{\kappa(\mathbf{v}^T)} \cdot t^{|T|+1}.$$

Proof For a face \mathcal{F} of a polytope, let \mathcal{F}^I denote the relative interior of \mathcal{F} . Then the polytope is the disjoint union of \mathcal{F}^I taken over all faces \mathcal{F} , including the polytope itself.

Recall that the descent polytope $\mathrm{DP_v}$ consists of all points $(x_1,\ldots,x_n) \in \mathbb{R}^n$ belonging simultaneously to the half spaces $x_i \geq 0$, $x_i \leq 1$ $(1 \leq i \leq n)$, $x_i \leq x_{i+1}$ $(\mathbf{v}_i = \mathbf{x})$, and $x_i \geq x_{i+1}$ $(\mathbf{v}_i = \mathbf{y})$. A face \mathcal{F} of $\mathrm{DP_v}$ can be uniquely identified by specifying which of these half spaces contain \mathcal{F} on their boundary hyperplanes, as long as the intersection of the whole polytope and the specified boundary hyperplanes is non-empty. Forming the specification just for the half spaces of the form $x_i \leq x_{i+1}$ or $x_i \geq x_{i+1}$ restricts the location of \mathcal{F}^I in \mathbb{R}^n to the region defined by the relations

$$x_1 = x_2 = \dots = x_{j_1} \le x_{j_1+1} = x_{j_1+2} = \dots = x_{j_2}$$

$$\le \dots \le x_{j_k+1} = x_{j_k+2} = \dots = x_n$$
 (2.1)

for some $T = \{j_1 < j_2 < \cdots < j_k\} \subseteq [n-1]$, where the symbol \leq denotes strict inequality: $x_{j_i} < x_{j_{i+1}}$ if $\mathbf{v}_{j_i} = \mathbf{x}$, or $x_{j_i} > x_{j_{i+1}}$ if $\mathbf{v}_{j_i} = \mathbf{y}$. Then T is the set of indexes j for which \mathcal{F} does *not* lie entirely on the boundary hyperplane $x_j = x_{j+1}$ and thus the relative interior \mathcal{F}^I is contained in the interior of the corresponding half space. Let $\mathcal{R}(T)$ denote the intersection of the region defined by (2.1) and the hypercube $[0, 1]^n$. Each point (x_1, \ldots, x_n) of $DP_{\mathbf{v}}$ belongs to exactly one such region $\mathcal{R}(T)$, namely, the one for $T = \{j \mid x_j \neq x_{j+1}\}$. Thus we have the disjoint union

$$DP_{\mathbf{v}} = \bigsqcup_{T \subseteq [n-1]} \mathcal{R}(T).$$

Let us show that the term corresponding to $T \neq \emptyset$ in the expression in the statement of the theorem is the contribution to $F_{\mathbf{v}}$ of the faces \mathcal{F} of $\mathrm{DP}_{\mathbf{v}}$ for which \mathcal{F}^I is contained in the region $\mathcal{R}(T)$. In other words, we claim that for $T \neq \emptyset$ we have

$$\sum_{\mathcal{F}:\mathcal{F}^I \subseteq \mathcal{R}(T)} t^{\dim \mathcal{F}} = \left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^T)} \cdot t^{|T|+1}.$$
 (2.2)

Fix $\varnothing \neq T \subseteq [n-1]$. To select a particular face \mathcal{F} from the set of all faces with the property $\mathcal{F}^I \subseteq \mathcal{R}(T)$, we need to complete the specification started above, that is, we must specify which of the hyperplanes $x_i = 0$, 1 contain \mathcal{F} , and we must make sure that the intersection of the set of the specified hyperplanes and $\mathcal{R}(T)$ is non-empty. In terms of defining relations (2.1), this task is equivalent to setting the common value of some of the "blocks" of coordinates (x_1, \ldots, x_{j_1}) , $(x_{j_1+1}, \ldots, x_{j_2}), \ldots, (x_{j_k+1}, \ldots, x_n)$ to 0 or 1. Since the relations must remain satisfiable by at least one point in $[0,1]^n$, only the blocks preceded in (2.1) by > (or nothing) and succeeded by < (or nothing) can be set to 0. Similarly, only the blocks preceded by < (or nothing) and succeeded by > (or nothing) can be set to 1. Thus each block can be set to at most one of 0 and 1. The letters of the \mathbf{xy} -word $\mathbf{v}^T = \mathbf{v}_{j_1} \cdots \mathbf{v}_{j_k}$ encode the inequality signs in (2.1) (\mathbf{x} stands for <, and \mathbf{y} stands for >), so the number of blocks that can be set to 0 or 1 is the total number of occurrences of \mathbf{x} followed by \mathbf{y} , or \mathbf{y} followed by \mathbf{x} , in \mathbf{v}^T , plus 2, as we also need to count the first and the last blocks. In other words, the number of such blocks is $\kappa(\mathbf{v}^T)$.

Observe that the dimension of the face of $\mathrm{DP}_{\mathbf{v}}$ obtained by this specification procedure equals the number of blocks that have not been set to 0 or 1: the common values of the coordinates in those blocks form the "degrees of freedom" that constitute the dimension. Let us call such blocks *free*. The number of faces \mathcal{F} with $\mathcal{F}^I \subseteq \mathcal{R}(T)$ for which the specification procedure results in m free blocks is

$$\binom{\kappa(\mathbf{v}^T)}{|T|+1-m},$$

the number of ways to choose |T| + 1 - m blocks that are *not* free out of $\kappa(\mathbf{v}^T)$ possibilities. Hence we have

$$\sum_{\mathcal{F}:\mathcal{F}^{I} \subseteq \mathcal{R}(T)} t^{\dim \mathcal{F}} = \sum_{m=|T|+1-\kappa(\mathbf{v}^{T})}^{|T|+1} \binom{\kappa(\mathbf{v}^{T})}{|T|+1-m} \cdot t^{m}$$

$$= t^{|T|+1-\kappa(\mathbf{v}^{T})} \cdot \sum_{\ell=0}^{\kappa(\mathbf{v}^{T})} \binom{\kappa(\mathbf{v}^{T})}{\ell} \cdot t^{\ell}$$

$$= t^{|T|+1-\kappa(\mathbf{v}^{T})} \cdot (t+1)^{\kappa(\mathbf{v}^{T})},$$

proving (2.2).

Finally, for $T = \emptyset$, we have $\mathcal{R}(T) = \{0 \le x_1 = \dots = x_n \le 1\}$, which is just the line segment joining the two vertices $(0, \dots, 0)$ and $(1, \dots, 1)$ of $\mathrm{DP}_{\mathbf{v}}$. Thus the contribution of $\mathcal{R}(T)$ to $F_{\mathbf{v}}$ is

$$t+2=1+\left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^{\varnothing})}\cdot t.$$

Adding this equation to the sum of (2.2) taken over the non-empty T proves the theorem.

Theorem 2.2 yields a combinatorial interpretation of the number of vertices of the polytope $\mathrm{DP}_{\mathbf{v}}$. Call an \mathbf{xy} -word $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_k$ alternating if $\mathbf{v}_i \neq \mathbf{v}_{i+1}$ for all 1 < i < k-1. Then we have the following corollary.

Corollary 2.3 For \mathbf{v} an \mathbf{xy} -word of length n-1, the number of vertices of the descent polytope $\mathrm{DP}_{\mathbf{v}}$ is one greater than the number of subsets $T\subseteq [n-1]$ for which the word \mathbf{v}^T is alternating.

Proof The number of vertices of DP_v is the constant term of F_v . For the summand corresponding to a subset $T \subseteq [n-1]$ in the formula of Theorem 2.2, the constant term is either 0 or 1, the latter being the case if and only if $|T| + 1 - \kappa(\mathbf{v}^T) = 0$. This condition is equivalent to \mathbf{v}^T being alternating, proving the corollary.

As we mention in the introduction, the descent set statistic $\beta(S)$ is maximized when S is the alternating set. The most elegant proof of this fact uses the **cd**-index of the simplex; see [7]. For an **xy**-word **v**, let $\overline{\mathbf{v}}$ denote the word obtained from **v** by replacing **x**'s with **y**'s and vice versa. Then the following inequality holds:

$$\beta(\mathbf{u}\mathbf{y}\mathbf{x}\mathbf{v}) > \beta(\mathbf{u}\mathbf{y}\mathbf{v}),\tag{2.3}$$

where we use xy-words to encode the sets. In each of the proofs [2, 6, 8, 12] that the alternating word maximizes the descent set, the arguments rely on proving the inequality (2.3). However, the cd-index proof gives a quick way to verify this inequality. We now state a similar inequality for the f-vectors of descent polytopes.

Theorem 2.4 Let **u** and **v** be two **xy**-words such that the sum of their lengths is n-3, that is, $|\mathbf{u}| + |\mathbf{v}| = n-3$. Then the difference

$$F_{\mathbf{u}\mathbf{y}\mathbf{x}\mathbf{v}}(t) - F_{\mathbf{u}\mathbf{y}\mathbf{y}\mathbf{\overline{v}}}(t) \tag{2.4}$$

has positive coefficients at $1, t, ..., t^{n-1}$. That is, for $0 \le i \le n-1$ the descent polytope $DP_{\mathbf{u}\mathbf{v}\mathbf{v}}$ has more faces of dimension i than the descent polytope $DP_{\mathbf{u}\mathbf{v}\mathbf{v}}$.

Proof Let $|\mathbf{u}| = m$ and $|\mathbf{v}| = n - m - 3$. For $T \subseteq [m]$ and $U \subseteq [n - m - 3]$, define

$$Q_{T,U}(t) := \sum_{E \subseteq \{1,2\}} \left(\frac{t+1}{t} \right)^{\kappa(\mathbf{u}^T(\mathbf{y}\mathbf{x})^E \mathbf{v}^U)} \cdot t^{|T|+|U|+|E|+1}. \tag{2.5}$$

Thus $Q_{T,U}(t)$ is the sum of four of the terms in the summation formula for $F_{\mathbf{u}\mathbf{y}\mathbf{x}\mathbf{v}}(t)$ given by Theorem 2.2, corresponding to fixed choices of letters drawn from \mathbf{u} and from \mathbf{v} . Similarly, let us define

$$\overline{Q}_{T,U}(t) := \sum_{E \subseteq \{1,2\}} \left(\frac{t+1}{t} \right)^{\kappa (\mathbf{u}^T (\mathbf{y}\mathbf{y})^E \overline{\mathbf{v}}^U)} \cdot t^{|T|+|U|+|E|+1}.$$

Note that $Q_{T,U}(t)$ depends only on |T|, |U|, $\kappa(\mathbf{u}^T\mathbf{v}^U)$, the last letter of \mathbf{u}^T , and the first letter of \mathbf{v}^U , and not on the particular choice of the remaining letters of \mathbf{u}^T and \mathbf{v}^U . Thus to show that the difference $Q_{T,U}(t) - \overline{Q}_{T,U}(t)$ is a polynomial with non-negative coefficients, it suffices to consider nine cases corresponding to \mathbf{u}^T (respectively, \mathbf{v}^U) ending (respectively, beginning) with \mathbf{x} or \mathbf{y} , or being equal to the empty word 1.

We summarize our calculations in Table 1. We denote $\kappa(\mathbf{u}^T\mathbf{v}^U)$ by k, and we divide each polynomial by the common factor $(t+1)^k \cdot t^{|T|+|U|+1-k}$. In the fourth column, which corresponds to $Q_{T,U}$, the four summands represent the results of inserting 1, \mathbf{x} , \mathbf{y} , and $\mathbf{y}\mathbf{x}$ between \mathbf{u}^T and \mathbf{v}^U . For example, if \mathbf{u}^T ends with an \mathbf{x} and \mathbf{v}^U begins with an \mathbf{x} , then inserting \mathbf{y} increases the value of the statistic κ by 2, thus contributing a factor of

$$\left(\frac{t+1}{t}\right)^2 \cdot t = (t+1)^2 \cdot t^{-1}$$

to the corresponding term of (2.5). Similarly, the entries in the fifth column consist of a factor resulting from a different value of κ for the word $\mathbf{u}^T \overline{\mathbf{v}}^U$ times the contributions of inserting 1, \mathbf{y} (counted twice), and \mathbf{y}^2 between \mathbf{u}^T and $\overline{\mathbf{v}}^U$.

We conclude that in every case the quotient $\frac{Q_{T,U}(t)-\overline{Q}_{T,U}(t)}{(t+1)^{k-1}\cdot t^{|T|+|U|+1-k}}$ is a polynomial of degree 2 with non-negative coefficients. Hence the difference $Q_{T,U}(t)-\overline{Q}_{T,U}(t)$ is a polynomial with non-negative coefficients. Summing over all possible pairs (T,U) yields that the difference in (2.4) has non-negative coefficients. More specifically, the polynomial $Q_{T,U}(t)-\overline{Q}_{T,U}(t)$ has degree (k-1)+(|T|+|U|+1-k)+2=|T|+|U|+2. This degree can attain any integer value between 2 and n-1.

\mathbf{u}^T	\mathbf{v}^U	$\kappa(\mathbf{u}^T\overline{\mathbf{v}}^U)$	$\frac{Q_{T,U}(t)}{(t+1)^k t^{ T + U +1-k}}$	$\frac{\overline{Q}_{T,U}(t)}{(t+1)^k t^{ T + U +1-k}}$	$\frac{Q_{T,U}(t) - \overline{Q}_{T,U}(t)}{(t+1)^{k-1} t^{ T + U +1-k}}$
x	x ···	k + 1	$1 + t + (t+1)^{2}t^{-1} + (t+1)^{2}$	$(t+1)t^{-1}$ $\cdot (1+2t+t^2)$	$(t+1)^2$
· · · x	y · · ·	k-1	$1+t+t + (t+1)^2$	$(t+1)^{-1}t$ $\cdot (1+2(t+1)^2 t^{-1} + (t+1)^2)$	t^2
$\cdots \mathbf{y}$	x · · ·	k-1	$1 + t + t + t^2$	$(t+1)^{-1}t$ $\cdot (1+2t+t^2)$	$(t+1)^2$
y	$\mathbf{y}\cdots$	k + 1	$1 + (t+1)^{2}t^{-1}$ $+t + (t+1)^{2}$	$(t+1) t^{-1}$ $\cdot (1+2t+t^2)$	$(t+1)^2$
1	x · · ·	k	1+t+(t+1) + (t+1)t	$1 + 2t + t^2$	$(t+1)^2$
1	y · · ·	k	$1 + (t+1) + t + (t+1)^2$	1 + 2(t+1) $+(t+1)t$	$t^2 + t$
· · · x	1	k	$1 + t + (t+1) + (t+1)^2$	1 + 2(t+1) $+(t+1)t$	$t^2 + t$
$\cdots \mathbf{y}$	1	k	1 + (t+1) $+t + (t+1)t$	$1 + 2t + t^2$	$(t+1)^2$
1	1	k = 1	$1 + (t+1) + (t+1)^2$	1 + 2(t+1) + (t+1)t	$(t+1)^2$

Table 1 Calculations for the proof of Theorem 2.4

Thus the leading terms of these differences contribute positively to the coefficients of $t^2, t^3, \ldots, t^{n-1}$ in the difference (2.4). Furthermore, in the case $T = U = \emptyset$ we have $Q_{T,U}(t) - \overline{Q}_{T,U}(t) = (t+1)^2$, which yields a positive contribution to the constant and the linear terms of the overall difference. The proof is now complete.

Let \mathbf{z}_n be the alternating word of length n starting with the letter \mathbf{x} . Then $\overline{\mathbf{z}_n}$ is the alternating word beginning with \mathbf{y} . That is, the two alternating words are

$$\mathbf{z}_n = \underbrace{\mathbf{x}\mathbf{y}\mathbf{x}\cdots}_n$$
 and $\overline{\mathbf{z}_n} = \underbrace{\mathbf{y}\mathbf{x}\mathbf{y}\cdots}_n$.

We now have the maximization result for the f-vector of descent polytopes.

Corollary 2.5 The f-vector of the two descent polytopes $\mathrm{DP}_{\mathbf{z}_{n-1}}$ and $\mathrm{DP}_{\overline{\mathbf{z}_{n-1}}}$ is maximal among the f-vectors of all descent polytopes of dimension n. That is, for each $0 \le i \le n-1$, the polytope $\mathrm{DP}_{\mathbf{z}_{n-1}}$ has more faces of dimension i than the descent polytope $\mathrm{DP}_{\mathbf{v}}$ of dimension n for a non-alternating word \mathbf{v} .

3 The Power Series $\Phi(x, y)$

We now derive a non-commutative generating function $\Phi(\mathbf{x}, \mathbf{y})$ for the f-polynomial $F_{\mathbf{v}}$, which belongs to the ring $\Phi(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}[t] \langle \langle \mathbf{x}, \mathbf{y} \rangle \rangle$. We define the power series $\Phi(\mathbf{x}, \mathbf{y})$ by

$$\Phi(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{v}} F_{\mathbf{v}} \cdot \mathbf{v},$$

where the sum is over all **xy**-words **v**. Since we have the symmetry $F_{\mathbf{v}} = F_{\overline{\mathbf{v}}}$, we obtain that $\Phi(\mathbf{x}, \mathbf{y})$ is symmetric with respect to **x** and **y**, that is,

$$\Phi(\mathbf{x},\mathbf{v}) = \Phi(\mathbf{v},\mathbf{x}).$$

Let **v** be an **xy**-word $\mathbf{v}_1\mathbf{v}_2\cdots\mathbf{v}_{n-1}$. Consider the following polynomials:

$$K_{\mathbf{v}}(t) := \sum_{T \subseteq [n-1]: \mathbf{v}_{j_1} = \mathbf{x}} \left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^T)} \cdot t^{|T|+1},$$

$$L_{\mathbf{v}}(t) := \sum_{T \subseteq [n-1]: \mathbf{v}_{j_1} = \mathbf{y}} \left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^T)} \cdot t^{|T|+1},$$

where \mathbf{v}_{j_1} denotes the first letter of the word $\mathbf{v}^T = \mathbf{v}_{j_1} \mathbf{v}_{j_2} \cdots \mathbf{v}_{j_k}$, as in the notation of Theorem 2.2. Since \mathbf{v}^T begins with either \mathbf{x} or \mathbf{y} unless $T = \emptyset$, we have

$$F_{\mathbf{v}} = K_{\mathbf{v}} + L_{\mathbf{v}} + t + 2, \tag{3.1}$$

where t + 2 is the f-polynomial of DP₁, the line segment. We continue with a lemma that relates the two polynomials K_v and L_v .

Lemma 3.1 For an **xy**-word **v** the following four equalities hold:

$$K_{yv} = K_v,$$

$$L_{xv} = L_v,$$

$$K_{xv} = L_{vv} = (t+1) \cdot (K_v + L_v + t + 1).$$

Proof For an integer i and a set $U \subseteq \mathbb{Z}$, let U + i denote the set obtained by adding i to each element of U. Also let $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_{n-1}$, where each \mathbf{v}_i is either \mathbf{x} or \mathbf{y} .

Clearly, $(\mathbf{y}\mathbf{v})^T$ begins with \mathbf{x} if and only if $1 \notin T$ and \mathbf{v}^{T-1} begins with \mathbf{x} , in which case $(\mathbf{y}\mathbf{v})^T = \mathbf{v}^{T-1}$. Hence $K_{\mathbf{v}\mathbf{v}} = K_{\mathbf{v}}$.

Now, $(\mathbf{x}\mathbf{v})^T$ begins with \mathbf{x} if and only if either $1 \in T$, or else $1 \notin T$ and \mathbf{v}^{T-1} begins with \mathbf{x} . In the former case, we have $T = \{1 < j_1 + 1 < j_2 + 1 < \dots < j_k + 1\}$, and $(\mathbf{x}\mathbf{v})^T = \mathbf{x}\mathbf{v}_{j_1}\mathbf{v}_{j_2}\cdots\mathbf{v}_{j_k}$. Set $U = (T - \{1\}) - 1 = \{j_1 < \dots < j_k\}$. Then $\kappa((\mathbf{x}\mathbf{v})^T) = \kappa(\mathbf{v}^U)$ if $\mathbf{v}_{j_1} = \mathbf{x}$, and $\kappa((\mathbf{x}\mathbf{v})^T) = \kappa(\mathbf{v}^U) + 1$ if $\mathbf{v}_{j_1} = \mathbf{y}$. Hence

$$\sum_{1 \in T \subseteq [n]} \left(\frac{t+1}{t}\right)^{\kappa((\mathbf{x}\mathbf{v})^T)} \cdot t^{|T|+1} = (t+1)^2 + t \cdot \sum_{U: \mathbf{v}_{j_1} = \mathbf{x}} \left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^U)} \cdot t^{|U|+1}$$

$$+ (t+1) \cdot \sum_{U:\mathbf{v}_{j_1} = \mathbf{y}} \left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^U)} \cdot t^{|U|+1}$$
$$= (t+1)^2 + t \cdot K_{\mathbf{v}} + (t+1) \cdot L_{\mathbf{v}}, \tag{3.2}$$

where the first term $(t+1)^2$ corresponds to $T = \{1\}$ and $U = \emptyset$. In the case where $1 \notin T$ and \mathbf{v}^{T-1} begins with \mathbf{x} we have, as before, $(\mathbf{x}\mathbf{v})^T = \mathbf{v}_{j_1}\mathbf{v}_{j_2}\cdots\mathbf{v}_{j_k} = \mathbf{v}^{T-1}$, and hence

$$\sum_{T:\mathbf{v}_{j_1}=\mathbf{x}} \left(\frac{t+1}{t}\right)^{\kappa((\mathbf{x}\mathbf{v})^T)} \cdot t^{|T|+1} = \sum_{\mathbf{v}_{j_1}=\mathbf{x}} \left(\frac{t+1}{t}\right)^{\kappa(\mathbf{v}^{T-1})} \cdot t^{|T-1|+1} = K_{\mathbf{v}}.$$
 (3.3)

Adding (3.2) and (3.3) yields

$$K_{xy} = (t+1) \cdot (K_y + L_y + t + 1).$$

The relations for L_{xv} and L_{yv} follow from symmetry that arises from exchanging the variables x and y.

Starting with $K_1 = L_1 = 0$, one can use Lemma 3.1 to recursively compute K_v and L_v , and hence F_v , from (3.1). Recall the generating power series

$$\Phi(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{v}} F_{\mathbf{v}} \cdot \mathbf{v},$$

where the sum is over all **xy**-words, including the empty word $\mathbf{v} = \mathbf{v}_{\varnothing} = 1$. Define the two generating power series

$$K(\mathbf{x},\mathbf{y}) := \sum_{\mathbf{v}} K_{\mathbf{v}} \cdot \mathbf{v},$$

$$\Lambda(\mathbf{x},\mathbf{y}) := \sum_{\mathbf{v}} L_{\mathbf{v}} \cdot \mathbf{v}.$$

From the definitions of $K_{\mathbf{v}}$ and $L_{\mathbf{v}}$ it follows that $K_{\mathbf{v}} = L_{\overline{\mathbf{v}}}$. By the symmetry in the two variables \mathbf{x} and \mathbf{y} we have

$$\Lambda(\mathbf{x},\mathbf{y}) = K(\mathbf{y},\mathbf{x}).$$

Then, by (3.1), we have

$$\Phi(\mathbf{x}, \mathbf{y}) = K(\mathbf{x}, \mathbf{y}) + \Lambda(\mathbf{x}, \mathbf{y}) + (t+2) \cdot \sum_{\mathbf{v}} \mathbf{v}$$

$$= K(\mathbf{x}, \mathbf{y}) + K(\mathbf{y}, \mathbf{x}) + (t+2) \cdot \sum_{r \ge 0} (\mathbf{x} + \mathbf{y})^r$$

$$= K(\mathbf{x}, \mathbf{y}) + K(\mathbf{y}, \mathbf{x}) + (t+2) \cdot \frac{1}{1 - \mathbf{x} - \mathbf{y}}.$$
(3.4)

Using the equations in Lemma 3.1 and recalling that $K_1 = 0$ we obtain

$$\begin{split} \mathbf{K}(\mathbf{x}, \mathbf{y}) &= \sum_{\mathbf{v}} K_{\mathbf{x}\mathbf{v}} \cdot \mathbf{x}\mathbf{v} + \sum_{\mathbf{v}} K_{\mathbf{y}\mathbf{v}} \cdot \mathbf{y}\mathbf{v} \\ &= (t+1) \cdot \mathbf{x} \cdot \sum_{\mathbf{v}} (K_{\mathbf{v}} + L_{\mathbf{v}} + t + 1) \cdot \mathbf{v} + \mathbf{y} \cdot \sum_{\mathbf{v}} K_{\mathbf{v}} \cdot \mathbf{v} \\ &= (t+1) \cdot \mathbf{x} \cdot \left(\mathbf{K}(\mathbf{x}, \mathbf{y}) + \Lambda(\mathbf{x}, \mathbf{y}) + (t+1) \cdot \frac{1}{1 - \mathbf{x} - \mathbf{y}} \right) + \mathbf{y} \cdot \mathbf{K}(\mathbf{x}, \mathbf{y}) \\ &= (t+1) \cdot \mathbf{x} \cdot \left(\Phi(\mathbf{x}, \mathbf{y}) - \frac{1}{1 - \mathbf{x} - \mathbf{y}} \right) + \mathbf{y} \cdot \mathbf{K}(\mathbf{x}, \mathbf{y}), \end{split}$$

where the last step is by (3.4). Rearranging terms we have

$$K(\mathbf{x}, \mathbf{y}) = (t+1) \cdot (1-\mathbf{y})^{-1} \cdot \mathbf{x} \cdot \left(\Phi(\mathbf{x}, \mathbf{y}) - \frac{1}{1-\mathbf{x}-\mathbf{y}}\right).$$

Adding this equation and its symmetric version obtained by exchanging \mathbf{x} and \mathbf{y} one has

$$K(\mathbf{x}, \mathbf{y}) + K(\mathbf{y}, \mathbf{x}) = (t+1) \cdot \left((1-\mathbf{y})^{-1} \cdot \mathbf{x} + (1-\mathbf{x})^{-1} \cdot \mathbf{y} \right)$$
$$\cdot \left(\Phi(\mathbf{x}, \mathbf{y}) - \frac{1}{1 - \mathbf{x} - \mathbf{y}} \right),$$

using the symmetry $\Phi(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{y}, \mathbf{x})$. Now using (3.4) we can solve for $\Phi(\mathbf{x}, \mathbf{y})$ and arrive at the following theorem.

Theorem 3.2 The generating power series $\Phi(\mathbf{x}, \mathbf{y})$ is given by

$$\Phi(\mathbf{x}, \mathbf{y}) = \left(1 + \frac{t+1}{1 - (t+1) \cdot ((1-\mathbf{y})^{-1} \cdot \mathbf{x} + (1-\mathbf{x})^{-1} \cdot \mathbf{y})}\right) \cdot \frac{1}{1 - \mathbf{x} - \mathbf{y}}.$$

Corollary 3.3 For an xy-word v the f-vector of the descent polytope DP_v is given by the sum

$$F_{\mathbf{v}}(t) = 1 + \sum_{(\mathbf{u}_1, \dots, \mathbf{u}_{k-1}, \mathbf{u}_k)} (t+1)^k,$$

where the sum ranges over all factorizations of the word $\mathbf{v} = \mathbf{u}_1 \cdots \mathbf{u}_{k-1} \cdot \mathbf{u}_k$ such that each of the factors $\mathbf{u}_1, \dots, \mathbf{u}_{k-1}$ are of the form $\mathbf{x}^i \mathbf{y}$ or $\mathbf{y}^i \mathbf{x}$, where $i \geq 0$, and there is no condition on the last factor \mathbf{u}_k .

Proof Rewrite Theorem 3.2 as

$$\Phi(\mathbf{x}, \mathbf{y}) = \frac{1}{1 - \mathbf{x} - \mathbf{y}} + \frac{1}{1 - (t+1) \cdot ((1-\mathbf{y})^{-1} \cdot \mathbf{x} + (1-\mathbf{x})^{-1} \cdot \mathbf{y})} \cdot \frac{t+1}{1 - \mathbf{x} - \mathbf{y}}$$
$$= \sum_{\mathbf{v}} \mathbf{v} + \sum_{j \ge 0} \left((t+1) \cdot \sum_{i \ge 0} (\mathbf{y}^i \mathbf{x} + \mathbf{x}^i \mathbf{y}) \right)^j \cdot (t+1) \cdot \sum_{\mathbf{v}} \mathbf{v},$$

where in both sums \mathbf{v} ranges over all \mathbf{xy} -words. The corollary follows by reading the generating function.

Example 3.4 Consider the 5-dimensional descent polytope DP_v where v = xyyx. We have the following list of 11 factorizations:

$$v = xyyx$$

$$= x \cdot yyx = xy \cdot yx$$

$$= x \cdot y \cdot yx = x \cdot yyx \cdot 1 = xy \cdot y \cdot x = xy \cdot yx \cdot 1$$

$$= x \cdot y \cdot y \cdot x = x \cdot y \cdot yx \cdot 1 = xy \cdot y \cdot x \cdot 1$$

$$= x \cdot y \cdot y \cdot x \cdot 1$$

Hence the f-polynomial of the polytope DP_{xyyx} is given by

$$F_{\mathbf{xyyx}} = 1 + (t+1) + 2 \cdot (t+1)^2 + 4 \cdot (t+1)^3 + 3 \cdot (t+1)^4 + (t+1)^5$$

= 12 + 34 \cdot t + 42 \cdot t^2 + 26 \cdot t^3 + 8 \cdot t^4 + t^5.

For the alternating word \mathbf{z}_{n-1} we can say more about the associated descent polytope. The number of vertices of $\mathrm{DP}_{\mathbf{z}_{n-1}}$ is the Fibonacci number F_{n+2} ; see for instance [10, Exercise 1.14e]. More generally, the f-vector of $\mathrm{DP}_{\mathbf{z}_{n-1}}$ is given by the next result.

Corollary 3.5 The f-polynomial of the n-dimensional descent polytope $DP_{\mathbf{z}_{n-1}}$ is described by

$$F_{\mathbf{z}_{n-1}} = 1 + \sum_{(c_1, c_2, \dots, c_k)} (t+1)^k,$$

where the sum is over all compositions of n such that all but the last part is less than or equal to 2, that is, $c_1, \ldots, c_{k-1} \in \{1, 2\}$.

Proof The only factors of the alternating word \mathbf{z}_{n-1} of the form $\mathbf{x}^i\mathbf{y}$ or $\mathbf{y}^i\mathbf{x}$ have i=0,1. Hence it is enough to record the length of each factor \mathbf{u}_i , that is, $d_i=|\mathbf{u}_i|$. Thus we are summing over vectors of non-negative integers (d_1,\ldots,d_k) such that the sum of the entries is n-1 and $d_1,\ldots,d_{k-1}\in\{1,2\}$ and $d_k\geq 0$. By adding one to the last entry d_k we have a composition of n.

This corollary yields the generating function

$$\sum_{n>1} F_{\mathbf{z}_{n-1}} \cdot x^n = \frac{x}{1-x} + \frac{1}{1-(t+1)\cdot(x+x^2)} \cdot (t+1) \cdot \frac{x}{1-x}.$$
 (3.5)

Setting t = 0 in this generating function and adding constant 1 yields $(1 + x)/(1 - x - x^2)$, the generating function for the Fibonacci numbers as expected.

4 A Generating Power Series for the Ehrhart Polynomials of DP_S

Besides the f-vector, another geometric invariant of a polytope is the *Ehrhart polynomial*. As a function of a non-negative integer r, the Ehrhart polynomial of a lattice polytope P is the number of lattice points in the dilation $r \cdot P$. Ehrhart's fundamental result is that this function is a polynomial in r. In the case of the n-dimensional descent polytope DP_S , the Ehrhart polynomial $\iota_S(r)$ counts the number of lattice points satisfying the inequalities $0 \le x_1, x_2, \ldots, x_n \le r, x_i \ge x_{i+1}$ for $i \in S$, and $x_i \le x_{i+1}$ for $i \notin S$. In this section we derive the generating power series

$$I(r; \mathbf{x}, \mathbf{y}) := \sum_{\mathbf{v}} \iota_{\mathbf{v}}(r) \cdot \mathbf{v}.$$

As before, we adopt the shorthand $\iota_{\mathbf{v}_S} = \iota_S$.

Let us call an element w of the set $\{0, 1, \ldots, r\}^n$ an r-word of length n. Define the descent set D(w) of $w = (w_1, w_2, \ldots, w_n)$ to be the set of positions i such that $w_i > w_{i+1}$. For an xy-word v of length n-1, let $\beta(r,v)$ be the number of r-words w of length n such that D(w) is encoded by v (that is, $v = v_{D(w)}$). Note that $\beta(r,v)$ is not quite the Ehrhart polynomial ι_v , as it only counts those integer points of r DP $_v$ with strict descents. Still, a generating power series for $\beta(r,v)$ is the first step in our computation of I(r;x,y).

For an **xy**-word of length n-1, let $\alpha(r, \mathbf{v})$ be the number of r-words of length n such that D(w) is contained in the subset of [n-1] encoded by \mathbf{v} . Fix $r \ge 0$, n > 0, and $S \subseteq [n-1]$. Write the word \mathbf{v}_S as

$$\mathbf{v}_S = \mathbf{x}^{g_1-1} \mathbf{y} \mathbf{x}^{g_2-1} \mathbf{y} \cdots \mathbf{y} \mathbf{x}^{g_k-1},$$

so that $g = (g_1, g_2, \ldots, g_k)$ is the composition co(S) of n associated to S. To construct a word counted by $\alpha(r, \mathbf{v})$, one needs to choose, for every i, a multiset of elements of $\{0, 1, \ldots, r\}$ that go into the "block" corresponding to the part g_i of g, put them in (weakly) increasing order, and concatenate the blocks. There are $\binom{r+g_i}{g_i}$ ways of choosing the elements for the ith block. Thus if we define

$$Q_r(x) := \sum_{j>1} {r+j \choose j} \cdot x^{j-1} = x^{-1} \cdot \left((1-x)^{-r-1} - 1 \right)$$

then the generating power series for $\alpha(r, \mathbf{v})$ is

$$A(r; \mathbf{x}, \mathbf{y}) := \sum_{\mathbf{v}} \alpha(r, \mathbf{v}) \cdot \mathbf{v}$$

$$= \sum_{k \ge 1} Q_r(\mathbf{x}) \cdot (\mathbf{y} \cdot Q_r(\mathbf{x}))^{k-1}$$

$$= Q_r(\mathbf{x}) \cdot (1 - \mathbf{y} \cdot Q_r(\mathbf{x}))^{-1}, \tag{4.1}$$

where k runs through all possible numbers of parts of the composition g = co(S), and the index j in the definition of Q_r corresponds to the choice of each part size.

A standard application of the inclusion-exclusion principle yields

$$B(r; \mathbf{x}, \mathbf{y}) := \sum_{\mathbf{y}} \beta(r; \mathbf{x}, \mathbf{y}) \mathbf{v} = A(r; \mathbf{x} - \mathbf{y}, \mathbf{y}). \tag{4.2}$$

The final step is the following claim:

Lemma 4.1 The generating function of the Ehrhart polynomials of the descent polytopes is expressed in terms of $B(r; \mathbf{x}, \mathbf{y})$ as

$$I(r; \mathbf{x}, \mathbf{y}) = (1 - \mathbf{y})^{-1} \cdot B(r; \mathbf{x}(1 - \mathbf{y})^{-1}, \mathbf{y}(1 - \mathbf{y})^{-1}).$$

Proof For an **xy**-word $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_{n-1}$ and an integer point $p = (p_1, p_2, \dots, p_n)$ in r DP_v, define $\varphi(\mathbf{v}, p) = (\mathbf{u}, q)$, where the **xy**-word **u** and the r-word q are obtained from **v** and p as follows: for each index $i \in [n-1]$ such that $p_i = p_{i+1}$ and $\mathbf{v}_i = \mathbf{y}$, remove the letter at the ith position from **v** as well as the ith coordinate from p. For example, if p = (2, 3, 1, 1, 1, 1, 4) and $\mathbf{v} = \mathbf{xyyyxyx}$, then the removal should be done for i = 3, 4, 6, so q = (2, 3, 1, 1, 4) and $\mathbf{u} = \mathbf{xyxx}$.

Let $B(r, \mathbf{u})$ be the set of r-words with descent set encoded by \mathbf{u} , so that $\beta(r, \mathbf{u}) = |B(r, \mathbf{u})|$. Note that if $\varphi(\mathbf{v}, p) = (\mathbf{u}, q)$ then $q \in B(r, \mathbf{u})$. For a fixed \mathbf{u} and $q \in B(r, \mathbf{u})$, the inverse image $\varphi^{-1}(\mathbf{u}, q)$ can be obtained by performing the following operation in all possible ways: start with \mathbf{u} , insert an arbitrary number of \mathbf{y} 's (maybe none) in each of the gaps between consecutive letters of \mathbf{u} , before the first letter of \mathbf{u} , and after the last letter of \mathbf{u} , and for each coordinate q_i of q, insert as many copies of q_i before that coordinate as the number of \mathbf{y} 's that were inserted before the ith letter of \mathbf{u} (for i = n, use the number of \mathbf{y} 's inserted after the last letter of \mathbf{u}). The resulting $\mathbf{x}\mathbf{y}$ -word \mathbf{v} and integer point p satisfy $\varphi(\mathbf{v}, p) = (\mathbf{u}, q)$. In terms generating functions we have

$$\sum_{(\mathbf{v},p)\in\varphi^{-1}(\mathbf{u},q)} \mathbf{v} = (1+\mathbf{y}+\mathbf{y}^2+\cdots)\cdot\mathbf{u}_1\cdot(1+\mathbf{y}+\mathbf{y}^2+\cdots)$$

$$\cdot\mathbf{u}_2\cdots\mathbf{u}_m\cdot(1+\mathbf{y}+\mathbf{y}^2+\cdots)$$

$$= (1-\mathbf{y})^{-1}\cdot\mathbf{u}_1\cdot(1-\mathbf{y})^{-1}\cdot\mathbf{u}_2\cdots\mathbf{u}_m\cdot(1-\mathbf{y})^{-1}, \qquad (4.3)$$

where $\mathbf{u} = \mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_m$ and $\mathbf{u}_i \in \{\mathbf{x}, \mathbf{y}\}$. Consider the sum of (4.3) over all pairs (\mathbf{u}, q) such that $q \in B(r, \mathbf{u})$. The left-hand side of the resulting identity is

$$\sum_{\{(\mathbf{v}, p): p \in r \text{ DP}_{\mathbf{v}}\}} \mathbf{v} = \sum_{\mathbf{v}} \iota_{\mathbf{v}}(r) \cdot \mathbf{v} = I(r; \mathbf{x}, \mathbf{y}).$$

The right-hand side is

$$\sum_{\mathbf{u}} |B(r, \mathbf{u})| \cdot (1 - \mathbf{y})^{-1} \cdot \mathbf{u}_1 \cdot (1 - \mathbf{y})^{-1} \cdot \mathbf{u}_2 \cdots \mathbf{u}_m \cdot (1 - \mathbf{y})^{-1}$$
$$= (1 - \mathbf{y})^{-1} \cdot B(r; \mathbf{x}(1 - \mathbf{y})^{-1}, \mathbf{y}(1 - \mathbf{y})^{-1}).$$

Combining the above results, we obtain our desired theorem:

Theorem 4.2 The generating function of the Ehrhart polynomials of the descent polytopes is given by

$$I(r; \mathbf{x}, \mathbf{y}) = (1 - \mathbf{y})^{-1} \cdot Q_r \left((\mathbf{x} - \mathbf{y})(1 - \mathbf{y})^{-1} \right)$$
$$\cdot \left(1 - \mathbf{y}(1 - \mathbf{y})^{-1} \cdot Q_r \left((\mathbf{x} - \mathbf{y})(1 - \mathbf{y})^{-1} \right) \right)^{-1},$$

where
$$Q_r(x) = x^{-1} \cdot ((1-x)^{-r-1} - 1)$$
.

5 Concluding Remarks

A more general invariant of the descent polytopes to study is the flag f-vector. The flag f-vector is efficiently encoded by the **cd**-index. Is there a way to describe the **cd**-index of the descent polytope DP_S in terms of the **xy**-word **v**_S? Finding a non-commutative generating function for the **cd**-indices of descent polytopes would be a natural way to extend the results of this paper. The **cd**-indexes of descent polytopes up to dimension 6 can be found in [1, Appendix A.2].

Setting t=1 in the polynomial $F_{\mathbf{v}}(t)$ we obtain the number of faces of the descent polytope $\mathrm{DP}_{\mathbf{v}}$. In particular, for the alternating word \mathbf{z}_n we obtain the sequence $\{F_{\mathbf{z}_{n-1}}(1)\}_{n\geq 1}=3,7,19,51,\ldots$ This sequence has a different combinatorial interpretation, as it matches the sequence A052948 in the Online Encyclopedia of Integer Sequences [11] defined as the number of paths from (0,0) to (n+1,0) with allowed steps (1,1),(1,0) and (1,-1) contained within the region $-2\leq y\leq 2$. The generating function

$$\frac{1 - 2x^2}{1 - 3x + 2x^3}$$

given in [11] indeed results if t = 1 is substituted into (3.5) and the constant 1 is added. Is there a bijective proof? A first step to find such a bijective proof would be to find a statistic on these lattice paths with the same distribution as the dimensions of the faces of the descent polytope $\mathrm{DP}_{\mathbf{z}_{n-1}}$.

For an \mathbf{xy} -word $\mathbf{v} = \mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n$ let \mathbf{v}^* denote the reverse of the word, that is, $\mathbf{v}^* = \mathbf{v}_n \cdots \mathbf{v}_2 \mathbf{v}_1$. Note that the two descent polytopes $\mathrm{DP}_{\mathbf{v}}$ and $\mathrm{DP}_{\mathbf{v}^*}$ only differ by a linear transformation and hence their f-polynomials agree, that is, $F_{\mathbf{v}} = F_{\mathbf{v}^*}$. However the expressions for the f-polynomials for $F_{\mathbf{v}}$ and $F_{\mathbf{v}^*}$ in Corollary 3.3 differ. Is there a bijection between the factorizations of \mathbf{v} and \mathbf{v}^* ? The number of factorizations of \mathbf{v} is also equal the number of alternating subwords of \mathbf{v} ; see Corollary 2.3. This fact also asks for a bijective proof.

A second way to encode subsets of [n-1] is by compositions. In [1, Chap. 3] this encoding is used to obtain more recurrences to compute the f-polynomial F_S .

More inequalities for the descent statistic have been proved in [3, 4]. Can these inequalities be extended to the f-polynomial $F_{\mathbf{v}}$? For instance, Ira Gessel asked the following question: where does the maximum of the descent set statistic occur when restricting to words \mathbf{v} of length n-1 having exactly k runs of \mathbf{x} 's and \mathbf{y} 's. He conjectured and it was proved in [3] that the maximum occurs at the composition

$$(r, \underbrace{r+1, \ldots, r+1}_{a}, r, \ldots, r)$$
 where $r = \lfloor (n-1)/k \rfloor$ and $a = (n-1) - r \cdot k$. Would

the f-polynomial be maximized at the same composition?

Descent polytopes occur as a subdivision of the n-dimensional unit cube in the work of Ehrenborg, Kitaev, and Perry [5]. They are studying consecutive pattern avoidance with analytic means. When considering descent pattern avoidance they obtain operators on $L^2([0,1]^n)$ whose eigenfunctions only depends on x_1 when restricted to a descent polytope.

Theorem 4.2 gives a rational non-commutative generating function for the Ehrhart polynomials of the descent polytopes. However, we know that this generating function is symmetric in the two variables \mathbf{x} and \mathbf{y} . Is there a different rational expression for this generating function that shows this symmetry?

Acknowledgements We thank Margaret Readdy and two referees for their comments on an earlier version of this paper. The second author was partially funded by National Science Foundation grant DMS-0902063 and he would like to thank the Institute for Advanced Study where this paper was completed.

References

- 1. Chebikin, D.: Polytopes, generating functions, and new statistics related to descents and inversions in permutations. Doctoral dissertation, Massachusetts Institute of Technology (2008)
- 2. de Bruijn, N.G.: Permutations with given ups and downs. Nieuw Arch. Wiskd. 18, 61-65 (1970)
- 3. Ehrenborg, R., Mahajan, S.: Maximizing the descent statistic. Ann. Comb. 2, 111–129 (1998)
- Ehrenborg, R., Levin, M., Readdy, M.: A probabilistic approach to the descent statistic. J. Combin. Theory Ser. A 98, 150–162 (2002)
- Ehrenborg, R., Kitaev, S., Perry, P.: A spectral approach to pattern avoiding permutations, preprint (2010), arXiv: 1009.2119
- 6. Niven, I.: A combinatorial problem on finite sequences. Nieuw Arch. Wiskd. 16, 116–123 (1968)
- 7. Readdy, M.A.: Extremal problems for the Möbius function in the face lattice of the *n*-octahedron. Discrete Math., **139**, 361–380 (1995). Special issue on Algebraic Combinatorics
- 8. Sagan, B.E., Yeh, Y.-N., Ziegler, G.: Maximizing Möbius functions on subsets of Boolean algebras. Discrete Math. 126, 293–311 (1994)
- 9. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986)
- 10. Stanley, R.P.: Enumerative Combinatorics, vol. I. Wadsworth/Brooks/Cole, Pacific Grove (1986)
- 11. The Online Encyclopedia of Integer Sequences http://oeis.org/
- 12. Viennot, G.: Permutations ayant une forme donnée. Discrete Math. 26, 279–284 (1979)

