
Algorithmica
DOI 10.1007/s00453-012-9648-0

On the Exact Complexity of Evaluating Quantified
k-CNF

Chris Calabro · Russell Impagliazzo ·
Ramamohan Paturi

Received: 30 June 2011 / Accepted: 31 March 2012
© Springer Science+Business Media, LLC 2012

Abstract We relate the exponential complexities 2s(k)n of k-SAT and the expo-

nential complexity 2s(EVAL(Π23-CNF))n of EVAL(Π23-CNF) (the problem of evaluat-
ing quantified formulas of the form ∀�x∃�yF(�x, �y) where F is a 3-CNF in �x vari-
ables and �y variables) and show that s(∞) (the limit of s(k) as k → ∞) is at most
s(EVAL(Π23-CNF)). Therefore, if we assume the Strong Exponential-Time Hypothe-
sis, then there is no algorithm for EVAL(Π23-CNF) running in time 2cn with c < 1. On
the other hand, a nontrivial exponential-time algorithm for EVAL(Π23-CNF) would
provide a k-SAT solver with better exponent than all current algorithms for suffi-
ciently large k. We also show several syntactic restrictions of the evaluation problem
EVAL(Π23-CNF) have nontrivial algorithms, and provide strong evidence that the
hardest cases of EVAL(Π23-CNF) must have a mixture of clauses of two types: one
universally quantified literal and two existentially quantified literals, or only existen-
tially quantified literals. Moreover, the hardest cases must have at least n − o(n) uni-
versally quantified variables, and hence only o(n) existentially quantified variables.
Our proofs involve the construction of efficient minimally unsatisfiable k-CNFs and
the application of the Sparsification lemma.

R. Impagliazzo research was supported by the Simonyi Fund, the Bell Company Fellowship and the
Fund for Math, and NSF grants DMS-083573, CNS-0716790 and CCF-0832797.
R. Paturi research was supported by NSF grant CCF-0947262 from the Division of Computing and
Communication Foundations. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

C. Calabro
Google Inc., Mountain View, CA 94043, USA

R. Impagliazzo · R. Paturi (�)
Department of Computer Science and Engineering, University of California, San Diego, La Jolla,
CA 92093-0404, USA
e-mail: paturi@cs.ucsd.edu

mailto:paturi@cs.ucsd.edu

Algorithmica

Keywords Quantified Boolean formulas · Satisfiability

1 Introduction

From the viewpoint of exponential complexity of NP-complete problems, the most
studied and best understood problems are probably the restricted versions of the
formula satisfiability problem (SAT), in particular, k-SAT, the restriction of SAT to
k-CNFs, and CNF-SAT, the restriction to general CNFs. There has been a sequence
of highly nontrivial and interesting algorithmic approaches to these problems [7,
8, 11, 13–17], where the best known constant factor improvements in the exponent
are of the form 1 − 1/Θ(k) for k-SAT and 1 − 1/Θ(lg c) for CNF-SAT with at most
cn clauses. More recently, the algorithmic approaches have been generalized to ob-
tain improved exponential time algorithms for bounded-depth linear size circuits [6].
Also, a sequence of papers [4, 5, 9, 10] has shown many nontrivial relationships be-
tween the exponential complexities of these problems, and helped characterize their
hardest instances (under the assumption that they are indeed exponentially hard).

In this paper, we consider the complexity of evaluating quantified formulas (quan-
tified k-CNFs and k-DNFs). A quantified formula φ is an expression of the following
form, Q1 �x1 · · ·Qi �xi F where F is either a k-CNF or a k-DNF, each �xj is a tuple
of Boolean variables, and Q1, . . . ,Qi is a sequence of alternating quantifiers. Sim-
ilarly, we define a quantified circuit to be a quantified expression Q1 �x1 · · ·Qi �xi C

where C is a Boolean circuit. For k = 2, the problem of evaluating quantified k-CNF

or quantified k-DNF can be solved in linear time [1], but for k ≥ 3, it is PSPACE-
complete. Note that the exponential complexity of evaluating arbitrary quantified cir-
cuits C, which is at least as large as that of evaluating quantified 3-CNF, is at most
2npoly(|C|): evaluation of a circuit can be carried out in time polynomial in its size,
and backtracking need explore at most 2n paths, each of length at most n, where n

is the number of variables of the input (and this only requires polynomial space as
well). We ask whether there exist nontrivial exponential-time algorithms for evaluat-
ing quantified k-CNF and quantified k-DNF for k ≥ 3.

Since we cannot hope for a nontrivial, unconditional result about the exponen-
tial complexity of quantified formulas, we will relate the exponential complexity of
evaluating quantified formulas to the exponential complexity of k-SAT. As in [9], let
s(k) = inf{c|∃ a randomized algorithm for k-SAT with time complexity poly(m)2cn

for k-CNF formulas of size m over n variables}. More generally, we define the expo-
nential complexity of an evaluation problem Φ to be s(Φ) = inf{c|∃ a randomized al-
gorithm for evaluating an instance φ of Φ with time complexity poly(m)2cn where m

is the size of φ and n is the number of variables}. While [9] did not explicitly use the
words ‘randomized algorithm’ in its definition of s(k) (it uses the word ‘algorithm’
without qualification), it meant to employ a broader class of algorithms (randomized
algorithms) so as to define the constants s(k) robustly.

Let ETH denote the Exponential-Time Hypothesis that s(3) > 0, i.e., 3-SAT re-
quires 2cn time for some c > 0. Let s(∞) denote the limit of the sequence {s(k)}.
[9] proposed the open question whether s(∞) = 1, which we will call the Strong
Exponential-Time Hypothesis (SETH). Since the best known upper bounds for s(k)

are all of the form 1 − 1/Θ(k), SETH is plausible.

Algorithmica

As with CNF-SAT, we will consider various syntactic restrictions of quantified
k-SAT to arrive at a minimally complex set of formulas which are as hard as the stan-
dard existentially quantified 3-CNFs as far as exponential complexity is concerned.
However, merely bounding k does not seem to be enough. Our main restriction is
to bound the number of alternations of quantifiers. Let Πik-CNF (Σik-CNF) denote
the set of quantified k-CNF of the form Q1 �x1 · · ·Qi �xi F where F ∈ k-CNF, each
�xj is a tuple of Boolean variables, and Q1, . . . ,Qi is a sequence of i alternating

quantifiers starting with a universal (existential) quantifier. Similarly, we define the
formulas Σik-DNF and Πik-DNF. Define EVAL(Φ) to be the problem of evaluat-
ing a quantified formula in Φ , where Φ is one of Πik-CNF, Πik-DNF, Σid -CNF,
and Σik-DNF. When i is odd (even), EVAL(Πik-CNF) (EVAL(Σik-CNF)) can be
reduced in polynomial time to EVAL(Πi−1k-CNF) (EVAL(Σi−1k-CNF)). Similarly,
when i is even (odd), EVAL(Πik-DNF) (EVAL(Σik-DNF)) can be reduced in poly-
nomial time to EVAL(Πi−1k-DNF) (EVAL(Σi−1k-DNF)). Using the earlier notation,
we use s(EVAL(Φ)) to denote the exponential complexity of the evaluation prob-
lem Φ , where Φ is one of EVAL(Πik-CNF), EVAL(Πik-DNF), EVAL(Σid -CNF), and
EVAL(Σik-DNF). Note that k-SAT is the same problem as EVAL(Σ1k-CNF) (also,
s(k) = s(EVAL(Σ1k-CNF))) and that EVAL(Π1k-CNF) is the problem of evaluating
universally quantified k-CNF, which can be done in polynomial time.

Our main result is s(∞) ≤ s(EVAL(Π23-CNF)). Thus SETH would imply that
for EVAL(Π23-CNF), we should not expect algorithms with time complexity of the
form 2δn for δ < 1. Since EVAL(Πik-CNF) is at least as hard when i ≥ 2, k ≥ 3,
the exponential complexity of problems in the polynomial hierarchy would seem
to top off rather early. Of course, SETH is a very strong assumption, so this ev-
idence should be considered weak. Conversely, a single nontrivial algorithm for
EVAL(Π23-CNF) would provide a k-SAT solver better than all current algorithms for
sufficiently large k.

We also show several syntactic restrictions of EVAL(Π23-CNF) that have non-
trivial algorithms, concluding that the hardest cases of EVAL(Π23-CNF) must
have a mixture of clauses of two types under the assumption SETH: one uni-
versally quantified literal and two existentially quantified literals, or only ex-
istentially quantified literals. Algorithmic design may benefit by concentrating
on the hard cases, in much the same way that much of the progress in k-SAT

solvers has been driven by focusing on the hard cases—when there are a lin-
ear number of clauses, only one solution, expanding variable-dependence graph,
etc.

Lastly, we relate the exponential complexities s(EVAL(Φ)) in terms of each
other for various Φ when the clause density is not too high, although it may well
be that these are all simply 1. In particular, we show that the evaluation prob-
lem EVAL(Πik-CNF) (EVAL(Σik-CNF)) for formulas with at most m clauses can
be reduced to EVAL(Πi+1k

′-DNF) (EVAL(Σi+1k
′-DNF)) formulas in polynomial

time as long as k′ ≥ 3 and m ∈ o(nk′−1). Similar statements hold for the problems
EVAL(Πik-DNF) and EVAL(Σik-DNF).

Williams [18] explored similar problems, namely exponential upper bounds for
evaluating quantified CNF and k-CNF formulas with at most cn clauses and with
no bound on the number of quantifier alternations. We will call such quantified for-
mulas QCNF and k-QCNF respectively. Among other results, Williams [18] presents

Algorithmica

an algorithm for EVAL(QCNF) that runs in time O(2.773cn) time and space. He also
presents an algorithm that runs in time O(2.695n) and polynomial space for evalu-
ating 3-QCNF for the special case of c = 1. Each of these algorithms outperforms
exhaustive search only when c is very small, certainly no more than 2. This is prob-
ably not an accident: our results suggest that finding a substantially improved al-
gorithm for moderate c, even for a small number of quantifier alternations, is un-
likely.

The main step of our lower bound proof is to encode a k-CNF as a Π23-CNF

using only o(n) additional variables. For this encoding, we construct a minimally
unsatisfiable CNF formula with many clauses while using few additional variables.
Another key technique in our proofs is the Sparsification lemma [5, 10]:

Lemma 1 (Sparsification lemma) There is an algorithm A with the following prop-
erty. For all k ≥ 2, ε ∈ (0,1], and F ∈ k-CNF with n variables, A(k, ε,φ) outputs a
sequence F1, . . . , Fs ∈ k-CNF with nO(k) delay per formula such that

1. s ≤ 2εn,
2. F is satisfiable if and only if

∨
i Fi is satisfiable, and

3. for all i, |Fi | ≤ O(k
ε
)3kn.

1.1 Notation

We assume that the readers are familiar with the standard vocabulary dealing with
Boolean formulas such as conjunctive normal form (CNF), disjunctive normal form
(DNF), k-CNF, and k-DNF. We use roman letters F, G, and H to denote such un-
quantified formulas. If F is a formula, then var(F) denotes set of variables oc-
curring in F. If a is a partial assignment to the variables of F, F|a denotes the
restriction of F to a. |F| denotes the number of clauses in the CNF F. A CNF

(DNF) F is regarded as a Boolean formula at times in which case it is a con-
junction (disjunction) of clauses (terms) and as a set of clauses (terms) at other
times. Intended meaning should be clear from the context. For example, for CNFs
F and G, F ⊆ G indicates that the CNFs F and G should be viewed as sets of
clauses.

For i ≥ 1 and k ≥ 1, Πik-CNF, Πik-DNF, Σik-CNF, and Σik-DNF denote quanti-
fied formulas as defined earlier. We use greek letters φ and ψ to denote quantified for-
mulas. If φ is a quantified formula where the variable x is existentially (universally)
quantified, then we say that the corresponding literals are existentially (universally)
quantified.

For convenience, we use the same symbol to denote the type of a formula as well
as the set of such formulas. For example, k-CNF stands for the set of all k-CNFs.

We use SAT, CNF-SAT, and k-SAT to denote the standard satisfiability problems.
For quantified formula classes Φ , we let EVAL(Φ) to denote the corresponding evalu-
ation problem. For example, EVAL(Π23-CNF) is the problem of evaluating Π23-CNF

formulas. For each satisfiability problem Φ , Φ also stands for the set of satisfiable
formulas of the appropriate type. For example, SAT stands for the set of all satisfiable
Boolean formulas. Similarly, for each evaluation problem Φ , Φ stands for the set of
true formulas of the appropriate type.

Algorithmica

2 Lower Bound for EVAL(Π23-CNF)

Our proof uses a construction similar to [3], Proposition 3.2, that allows us to reduce
the clause width of a k-CNF using a small number of new quantified variables. For
this, we need for all k′ a “minimally unsatisfiable” k′-CNF which includes a large
number of k′ − 1 clauses. Moreover, we would like to employ as few additional vari-
ables as possible, certainly no more than o(n) additional variables. The following
construction suffices for our purposes. An almost identical construction is indepen-
dently obtained by Choongbum Lee [12]. However, it is an open question whether
there are other constructions that employ fewer variables. Our construction differs
from [3] primarily in its efficiency, since we are more concerned with exponential
complexity rather than hardness for a class closed under polynomial time reductions,
such as NP or coNP.

Say a pair (F, G) of CNFs is minimally unsatisfiable if and only if ∀F′ ⊆ F ((F′ ∧
G) /∈ SAT ⇐⇒ F′ = F). In other words, the pair (F, G) is minimally unsatisfiable if
and only if F∧G is unsatisfiable, but for any proper subset F′ � F, the formula F′ ∧G
is satisfiable. Say that H ∈ CNF is combinable with (F, G) if and only if |H| ≤ |F| and
var(H)∩ var(F ∧ G) = ∅. In this case, letting f : H → F be an arbitrary injection, we
define

combine(H, F, G) = G ∪ {{l̄} ∪ f (C) | l ∈ C ∈ H} ∪ (F − range(f)),

i.e., starting with G, for each clause C of H and literal l of C, we add a clause
meaning “l implies the clause of F corresponding to C”; and any clauses of F that
are left over get added as-is, without adjoining a literal.

Lemma 2 Let H be combinable with minimally unsatisfiable (F, G) and H′ =
combine(H, F, G). For every assignment to the variables of H, H|a evaluates to true
if and only if H′|a is unsatisfiable.

Proof This is simply because in H′, after assigning to var(H), each clause f (C)

appears in the resulting formula if and only if some literal l ∈ C is assigned true.
Note that this does not depend on the specific injection f : H → F. �

Lemma 3 For all integers k ≥ 3 and m ≥ 1, one can construct in time poly(m),
F ∈ (k − 1)-CNF and G ∈ k-CNF such that

• (F, G) is minimally unsatisfiable
• |F| ≥ m

• |var(F ∧ G)| ≤ (k−1)2

k−2 �m1/(k−1)�.

Proof Let l = �m1/(k−1)�. Consider a (k − 1) × l matrix A of Boolean variables xi,j

and the contradictory statements

1. “every row of A contains a 1”,
2. “every choice of one entry from each row contains a 0”.

Algorithmica

We can express 1. by using at most k−1
k−2 l new variables yi,j and k-clauses G as

follows. For each i, partition xi,1, . . . , xi,l into b = � l
k−2� blocks of size at most

k − 2. Add to G k-clauses expressing that yi,1 is the OR of the variables of the first
block; yi,j is the OR of yi,j−1 and the variables of the j th block, for j ∈ [2, b − 1];
and that the OR of yi,b−1 and the variables of the bth block is true. Note that
y = z1 ∨ z2 ∨ · · · ∨ zl can be expressed as an (l + 1)-CNF since every Boolean func-
tion in n variables can be expressed as a CNF where each clause has width at most n.
We can express 2. by using a set F of (k − 1)-clauses where |F| = lk−1 ≥ m. Each
clause in F is a disjunction of the negations of the variables in the matrix where each
row contributes exactly one variable. F and G have the desired properties. �

Corollary 1 For all k, k′ ≥ 3, given H ∈ k-CNF with n variables �x and m

clauses, one can construct in time poly(n), H′ ∈ k′-CNF with n variables �x and
(k′−1)2

k′−2 �m1/(k′−1)� variables �y such that ∀a ∈ {0,1}var(H) (H(a) = 1 ↔ H′|a /∈ SAT).
In particular, H ∈ SAT if and only if ∀�x∃�y H′ is false.

Proof Use Lemma 3 to construct minimally unsatisfiable (F, G) with F ∈ (k′ − 1)-CNF,

G ∈ k′-CNF, |F| = m, |var(F ∧ G)| ≤ (k′−1)2

k′−2 �m1/(k′−1)�, and var(H)∩ var(F ∧ G) =
∅. Let H′ = combine(H, F, G) and apply Lemma 2. �

We are now ready to prove our main theorem which shows that for all k, the
exponential complexity s(k) is at most s(EVAL(Π23-CNF)).

Theorem 1 s(∞) ≤ s(EVAL(Π23-CNF)), where s(k) is the limit of the nondecreas-
ing sequence s(k).

Proof Fix k and ε > 0. We will show that s(k) ≤ s(EVAL(Π23-CNF))+4ε. Let F be a
k-CNF with n variables. Use Lemma 1 to sparsify F into at most 2εn many subformu-
las Fi so that each has at most m = � εn

4 �2 clauses for all sufficiently large n. By Corol-
lary 1, with k′ = 3, for each Fi , we can construct in time poly(n) a φi ∈ Π23-CNF

with (1 + ε)n variables such that Fi ∈ SAT if and only if φi is false. So F ∈ SAT if and
only if φi is false for some i. Evaluating each φi with some EVAL(Π23-CNF) solver
with exponential complexity at most s(EVAL(Π23-CNF)) + ε, we get that

s(k) ≤ (s(EVAL(Π23-CNF)) + ε)(1 + ε) + ε ≤ s(EVAL(Π23-CNF)) + 4ε. �

Remark 1 Our construction in the preceding proof can be done using O(
√

n) new
variables rather than εn new variables. For the current proof, we did not need the
advantage of fewer variables and hence we used a more relaxed bound on the number
of clauses of the sparsified formulas.

The previous result puts us in an interesting situation. [9] showed that ETH im-
plies s(k) increases infinitely often as a function of k. Consider the following much
weaker analogue.

Conjecture 1 If ETH is true, then there exist i≥2, k≥3 such that s(EVAL(Πik-CNF))

< s(EVAL(Πi+1(k + 1)-CNF)).

Algorithmica

Conjecture 1, together with Theorem 1, would imply that s(∞) < 1. To see this,
assume that for some i and k, s(EVAL(Πik-CNF)) < s(EVAL(Πi+1(k + 1)-CNF)).
Since s(EVAL(Πi+1(k + 1)-CNF)) ≤ 1, it follows that s(EVAL(Π23-CNF)) ≤
s(EVAL(Πik-CNF)) < 1, which implies s(∞) < 1 by Theorem 1.

3 Algorithms for Two Special Cases

In this section, we show that quantified CNF-SAT has a poly time algorithm if each
clause has at most one existentially quantified literal and that EVAL(Π23-CNF) has a
nontrivial algorithm if each clause has at least one universally quantified literal. The
purpose of such theorems is to find where the hard cases of EVAL(Πik-CNF) lie.

In a quantified CNF, we say that two clauses A,B disagree on variable x if
and only if one of A,B contains x and the other contains ¬x. A,B are resolv-
able if and only if they disagree on exactly one variable x, and the resolvent is
resolve(A,B) = A ∪ B − {x,¬x}. Also, define eliminate(A) to be A after removing
any universally quantified literal l of A for which no existentially quantified literal l′
of A occurs after l in the order of quantification. A,B are Q-resolvable if and only
if they are resolvable on an existential variable, and the Q-resolution operation is
qresolve(A,B) = eliminate(resolve(A,B)). Büning, Karpinski and Flögel [2] intro-
duced the Q-resolution proof system and showed that it is sound and complete, in the
sense that a quantified CNF is false if and only if the empty clause can be derived by
first replacing each clause C by eliminate(C) and then repeatedly applying qresolve
to generate new clauses.

Theorem 2 Let φ = ∀ �x1 ∃ �x2 . . .∀ �xn F be a quantified Boolean formula where each
clause of F ∈ CNF has at most one existentially quantified literal. Then φ can be
evaluated in polynomial time.

Proof Since each clause contains at most one existentially quantified literal, any ap-
plication of the Q-resolution operator will produce the empty clause. Letting φ′ be φ

after replacing each clause C in F by eliminate(C), φ is true if and only if φ′ does
not contain the empty clause and no two clauses are Q-resolvable in φ′. �

Theorem 3 Let φ = ∀�x ∃�y F, where F ∈ 3-CNF. If each clause of F has at least one
universally quantified literal, then φ can be evaluated in time 2cn for some c < 1.

Proof Let G = (V ,E) where the vertex set V consists of the existentially quantified
literals of φ and there is an edge between from vertex a to vertex b with label c

if (ā ∨ b ∨ c̄) is a clause of F, a, b are existentially quantified literals and c is a
universally quantified literal.

While we define the graph G assuming that each clause has exactly two exis-
tentially quantified literals and one universally quantified literal, other cases can be
handled as well. For example, if (a ∨ b̄ ∨ c̄) is a clause with a as the sole existentially
quantified variable and the remaining two literals b̄ and c̄ are universally quantified,
we introduce the edge (ā, a) with the label b ∧ c. 2-clauses can be treated similarly.

Algorithmica

Branching rules used in [18] can also be applied to reduce the formulas with these
special types of clauses (clauses with more than one universally quantified literal
or 2-clauses) to formulas with clauses containing exactly one universally quantified
literal and two existentially quantified literals.

A consistent path in G is a path such that no two edge labels disagree, a consistent
cycle is a consistent path that is a cycle. Consistency of a path can be checked in
polynomial time since all labels are products of literals. Then φ is false if and only if
there is an existentially quantified variable z such that there is a consistent cycle in G

containing nodes z, z̄.
Notice that a simple cycle containing nodes z, z̄ cannot use more edge labels

than 4εn, where εn is the number of existentially quantified variables. So we can
test whether there is a cycle in G containing z, z̄ in time at most poly(|φ|)(2n

4εn

) ≤
poly(|φ|)22h(2ε)n where h is the binary entropy function.

If ε is large, we can exhaustively search over all settings of the universally quan-
tified variables and then use a k-SAT[3] algorithm on the rest. If our k-SAT[3] al-
gorithm runs in time 2s(3)n, then the combined algorithm runs in time at most
min{2(1−ε)n+εs(3)n,22h(2ε)n}, which is maximized at about ε = .0526 for s(3) = .387
and yields a run time of at most 2.964n. If s(3) is smaller, this value would be even
smaller. Note that there is already an algorithm for k-SAT[3] with s(3) < .387 [8]. �

It is unlikely that we can find a polynomial time algorithm for the variant where
each clause has at least one universally quantified literal because of the following.

Theorem 4 The language of true Π23-CNF formulas where each clause has at least
one universally quantified literal is coNP-complete.

Proof The language is in coNP because a witness for falsehood is a consistent cycle
containing some existential variable z and its negation z̄. To show coNP-hardness,
we reduce from 3-UNSAT. Let F ∈ 3-CNF have n variables �x and m clauses. Assume
without loss of generality that m is even, otherwise, just repeat some clause twice. Let
n′ = m

2 , �y = (y1, . . . , yn′) be new variables, and consider the following contradictory
2-CNF:

G = {(yi → yi+1), (yi+1 → yi) | i ∈ [n′ − 1]} ∪ {(yn′ → ȳ1), (ȳ1 → yn′)}.
Then the pair of formulas (G,∅) is minimally unsatisfiable and |G| = m. By
Lemma 2, φ = ∀�x∃�y combine(F, G,∅) is a Π23-CNF with at least one universally
quantified variable in each clause and such that F ∈ SAT if and only if φ is false. �

The coNP-hardness of Theorem 4 also follows from [3], Proposition 3.2, if one
observes that the number of universal variables in each constraint constructed there
is 1.

Remark 2 As pointed out by one of the referees, the construction in Theorem 4 also
shows that if ETH is true, then the exponential complexity of EVAL(Π23-CNF) with
at least one universally quantified literal per clause is greater than 0.

Algorithmica

4 Reduction to a Canonical Form

Theorems 1 and 3 together suggest that clauses containing only existentially quanti-
fied literals and clauses with a mixture of universally quantified literals and existen-
tially quantified literals are both essential to make an instance of EVAL(Π23-CNF)

hard. Below we present further evidence of this.
Let Π23-CNF′ be the special case of Π23-CNF where each clause is one of just

two types:

(1) contains one universally quantified literal and two existentially quantified literals
(2) contains only existentially quantified literals.

We then obtain the following theorem, which uses the same idea as in [18] and
follows from the algorithm therein.

Theorem 5 s(EVAL(Π23-CNF′)) < 1 =⇒ s(EVAL(Π23-CNF)) < 1.

Proof Let A be an algorithm with run time ≤ O(2cn) with c < 1 for EVAL(Π23-CNF′).
Given a Π23-CNF, do this: while there is a clause other than types (1) or (2), i.e.,
a clause C with at least one universally quantified variable and at most one existen-
tially quantified variable, reject if there is no existentially quantified variable in C,
but otherwise branch on the universally quantified variables. One of the branches will
force the existentially quantified variable. Each formula at a leaf has only clauses of
type (1) or (2), so apply algorithm A. To simplify the calculations, since our goal is
only to show that s(EVAL(Π23-CNF)) < 1, we will consider a simpler algorithm at
the expense of the constant in the exponent: while there is a clause C with at least
one universally quantified variable and at least one existentially quantified variable,
spawn seven subproblems, one for each setting of the three variables in the clause
except for the setting that makes the clause false. This algorithm solves the general
case in time at most O(2dn) where d = max{c, lg 7

3 } < 1. �

We may also assume, without loss of generality, that in a Π2k-CNF the number of
existentially quantified variables is o(n), since otherwise we could branch on every
possible setting of the universal variables and then invoke a k-SAT solver to obtain a
nontrivial algorithm for EVAL(Π2k-CNF).

5 Parameter trade-off at higher levels of the hierarchy

In the next theorem, we show that when confronted with evaluating a Πik-CNF in-
stance, one may be able to reduce k to k′ < k if one is willing to increase i by 1, and
the input clause density is not too high. For a function m, let Σik-CNFm (Πik-CNFm)
be Σik-CNF (Πik-CNF) but where the number of clauses is promised to be at most
m(n). Similar notation is used for the quantified k-DNFs.

Theorem 6 Let k, k′ ≥ 3,m ∈ o(nk′−1). For all i ≥ 1,

s(EVAL(Πik-CNFm)) ≤ s(EVAL(Πi+1k
′-DNF))

s(EVAL(Σik-CNFm)) ≤ s(EVAL(Πi+1k
′-DNF)).

Algorithmica

Remark 3 The first (second) inequality of the theorem is trivial for odd (even)
i since EVAL(Πik-CNF) (EVAL(Σik-CNF)) can be reduced in polynomial time to
EVAL(Πi−1k-CNF) (EVAL(Σi−1k-CNF)).

Remark 4 Inequalities dual to those in Theorem 6 also hold for quantified k-DNFs.

Proof Consider a quantified formula φ = Q1 �x1 · · ·Qi �xi F where Q1, . . . ,Qi are al-
ternating quantifiers, each �xj is a tuple of Boolean variables, and F is a k-CNF with n

variables �x and at most m(n) clauses. Using Corollary 1, ∀ε > 0 and for sufficiently
large n, we can construct in polynomial time a k′-CNF F′ such that

• F′ has (1 + ε)n variables: �x and εn new variables �y.
• For each assignment a to �x, F(a) = 1 if and only if F′|a /∈ SAT.

So

φ = Q1 �x1 · · ·Qi �xi F ⇐⇒ Q1 �x1 · · ·Qi �xi ¬∃�y F′

⇐⇒ Q1 �x1 · · ·Qi �xi∀�y ¬F′ = φ′

If φ ∈ Πik-CNF (Σik-CNF), then φ′ ∈ Πi+1k
′-CNF (Σi+1k

′-CNF). Moreover, φ′
has at most (1 + ε)n variables where ε can be chosen to be arbitrarily small for all
sufficiently large n. Theorem follows from the definition of the exponential complex-
ity. �

It would be nice to eliminate the requirement that φ have at most o(nk′−1) clauses.
One might try to do this by first sparsifying φ, but the possibly complex quantification
of the variables prevents this.

Acknowledgements We thank the reviewers for their helpful comments and corrections.

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified
boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

2. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Com-
put. 117(1), 12–18 (1995)

3. Chen, H.: Existentially restricted quantified constraint satisfaction. Inf. Comput. 207(3), 369–388
(2009)

4. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique k-SAT: an isolation
lemma for k-CNFs. In: Proceedings of the Eighteenth IEEE Conference on Computational Complex-
ity, 386–393 May 2008. Journal of Computer and Systems Sciences, vol. 74, pp. 135–144 (2003).
Preliminary version

5. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause density for SAT.
In: CCC ’06: Proceedings of the 21st Annual IEEE Conference on Computational Complexity, pp.
252–260. IEEE Computer Society, Washington (2006)

6. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In:
Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Den-
mark, September 10–11, 2009. Revised Selected Papers, pp. 75–85. Springer, Berlin (2009)

7. Dantsin, E., Wolpert, A.: An improved upper bound for SAT. In: Bacchus, F. (ed.) Lecture Notes in
Computer Science, vol. 3569, pp. 400–407. Springer, Berlin (2005)

Algorithmica

8. Timon, H.: 3-sat faster and simpler - unique-sat bounds for PPSZ hold in general. In: Proceedings of
the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 277–284 (2011)

9. Impagliazzo, R., Paturi, R.: The complexity of k-SAT. In: IEEE Conference on Computational Com-
plexity, vol. 14, pp. 237–240 (1999)

10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexit? J. Com-
put. Syst. Sci. 63, 512–530 (1998). Preliminary version In: 39th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 653–662 (1998)

11. Iwama, K., Seto, K., Takai, T., Tamaki, S.: Improved randomized algorithms for 3-sat. In: Cheong,
O., Chwa, K.-Y., Park, K. (eds.) Algorithms and Computation. Lecture Notes in Computer Science,
vol. 6506, pp. 73–84. Springer, Berlin (2010)

12. Lee, C.: On the size of minimal unsatisfiable formulas. ArXiv E-prints (2008)
13. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT.

J. ACM 52(3), 337–364 (2005). Preliminary version In: 39th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 628–637 (1998)

14. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. In: Preliminary version in 38th Annual
Symposium on Foundations of Computer Science, vol. 566 (1999). 1997

15. Daniel, R.: Improved bound for the PPSZ/Schöning-algorithm for 3-sat. J. Satisf. Boolean Model.
Comput. 1(2), 111–122 (2006)

16. Schöning, U.: A probabilistic algorithm for k-sat based on limited local search and restart. Algorith-
mica 32(4), 615–623 (2002)

17. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Al-
gorithms 54(1), 40–44 (2005)

18. Williams, R.: Algorithms for quantified boolean formulas. In: Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 299–307 (2002)

	On the Exact Complexity of Evaluating Quantified k-CNF
	Abstract
	Introduction
	Notation

	Lower Bound for EVAL(Pi2 3-CNF)
	Algorithms for Two Special Cases
	Reduction to a Canonical Form
	Parameter trade-off at higher levels of the hierarchy
	Acknowledgements
	References

