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Abstract

Consider an optimization problem with n binary variables and d+1 linear objective functions.
Each valid solution x ∈ {0, 1}n gives rise to an objective vector in R

d+1, and one often wants
to enumerate the Pareto optima among them. In the worst case there may be exponentially
many Pareto optima; however, it was recently shown that in (a generalization of) the smoothed
analysis framework, the expected number is polynomial in n. Unfortunately, the bound obtained

had a rather bad dependence on d; roughly nd
d

. In this paper we show a significantly improved
bound of n2d.

Our proof is based on analyzing two algorithms. The first algorithm, on input a Pareto op-
timal x, outputs a “testimony” containing clues about x’s objective vector, x’s coordinates, and
the region of space B in which x’s objective vector lies. The second algorithm can be regarded
as a speculative execution of the first — it can uniquely reconstruct x from the testimony’s
clues and just some of the probability space’s outcomes. The remainder of the probability
space’s outcomes are just enough to bound the probability that x’s objective vector falls into
the region B.
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1 Introduction

We study the expected number of Pareto optimal solutions in multiobjective binary optimization
problems within the framework of smoothed analysis.

1.1 Multiobjective optimization and Pareto optima

In a typical decision-making problem there are multiple criteria used in judging the quality of a
solution. For example, in choosing a driving route between two points one might want to minimize
distance, tolls, number of turns, and expected traffic; in choosing a vacation hotel one might want
to minimize price and distance to the beach, while maximizing quality. In such cases there is rarely
a single solution which is best on all criteria simultaneously. The most popular way to handle
the tradeoff is to determine the set of all Pareto optimal solutions, meaning those solutions which
are not dominated in all measures of quality by some other solution. This idea, originating in
microeconomics, has been very extensively studied in computer science, especially in operations
research [Ehr05], algorithmic theory [PY02], artificial intelligence [Deb01], and database theory
(under the name “skyline queries”) [BKS01].

Even if one is not interested in Pareto optima per se, many algorithms and heuristics for solving
optimization problems enumerate Pareto optimal solutions as an intermediary step. For example,
the Nemhauser–Ullmann algorithm [NU69] for exactly solving the Knapsack problem works by
iteratively computing the Pareto optimal 〈value,weight〉 pairs achievable by the first i items, for
i = 1 . . . n. Beier and Vöcking [BV04] observed that this algorithm runs in time O(nB), where
B is an upper bound on the number of Pareto optima in each stage. As we describe below, this
allowed them to give the first polynomial-time algorithm for an NP-hard optimization problem
in the smoothed analysis framework, by performing smoothed analysis on the number of Pareto
optimal solutions.

Unfortunately, even in the simplest case multiobjective optimization — two linear objective
functions — the number of Pareto optimal solutions may be exponentially large in the number
of decision variables. There have been two main approaches to dealing with this exponential
complexity. The first, popularized by Papadimitriou and Yannakakis [PY02], involves comput-
ing “ǫ-approximate Pareto sets”. In many cases, polynomial-size ǫ-approximate Pareto sets can be
computed efficiently; see the thesis of Diakonikolas [Dia10] for references. The second approach, pio-
neered by Beier and Vöcking [BV04], involves studying multiobjective optimization in the smoothed
analysis framework.

1.2 Smoothed analysis for discrete optimization

Smoothed analysis was introduced in an influential work of Spielman and Teng [ST04], as a frame-
work intermediate between worst-case and average-case analysis. Here the idea is to think of real
numbers in the input as being defined based on imprecise measurements; specifically, they are first
fixed adversarially in [−1, 1], say, and then subjected to Gaussian noise with some small standard
deviation σ. In this framework, Spielman and Teng showed that a certain version of the simplex
algorithm for linear programming runs in poly(n, 1/σ) expected time.

A notable work of Beier and Vöcking [BV04] from 2003 showed that the NP-hard 0/1-Knapsack
problem can be solved in polynomial time in the smoothed analysis framework. (Previously, there
had been a long line of work on average-case analysis of 0/1-Knapsack: see, e.g., [DF89, GMS84,
Lue98].) Furthermore, they showed this holds even in a much more general model of smoothed
analysis. In one version of their model, each item’s profit Pi and weight Wi is an independent
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random variable with values in [0, 1]; the only restriction is that the probability density function
(pdf) of each Pi andWi is upper-bounded by the parameter φ. We call this model “φ-semirandom”.
It is easy to see that as φ is increased, the framework goes from (a very general version of) average-
case analysis to worst-case analysis. For example, given a small number σ, if we take φ = 1/σ then
the profits Pi could be of the form pi + Ui, where pi ∈ [σ, 1− σ] is an adversarially chosen number
and Ui is uniformly random on [−σ, σ]. (The original case of Gaussian noise does not quite fit in
this framework, but is easily handled with a small amount of additional work.)

1.3 Previous work

Beier and Vöcking showed that in this φ-semirandom model, the expected number of Pareto optimal
knapsacks is O(φn4); from this they immediately deduced that the Nemhauser–Ullmann algorithm
runs in expected O(φn5) time. In fact, Beier and Vöcking showed that the same is true even if
the weights are adversarially specified, and only the profits are chosen randomly (independently,
from φ-bounded distributions). In this case of adversarially weights, they also showed an Ω(n2)
lower bound for the expected number of Pareto optima, even for uniformly distributed profits (i.e.,
φ = 1).

In his thesis, Beier [Bei04] extended this analysis to general 2-objective binary optimization
problems. Specifically, he showed that given an arbitrary set of “solutions” S ⊆ {0, 1}n and arbitrary
2nd objective values Obj2(x) for each x ∈ S, if the 1st objective is linear and φ-semirandom,
then the expected number of Pareto optima is still O(φn4). Later work of Beier, Röglin, and
Vöcking [BRV07] improved this bound to O(φn2) (which is tight for constant φ) and also extended
to the case of integer-valued decision variables.

These works only handled the case of 2 objectives. Recently, Röglin and Teng [RT09] extended
the analysis to the case in which there are d + 1 objective functions, d of which are linear and
φ-semirandom, and one of which is completely arbitrary. Their bound on the expected number of
Pareto optima is polynomial in n and φ for constant d, and they were also able to polynomially
bound higher moments. Unfortunately, their result is probably of theoretical interest only, as the
dependence on d is rather bad. E.g., for d = 3 their upper bound on the expected number of
Pareto optima is roughly n97 assuming n ≥ 2453787938 (and is much worse than n97 for smaller n).
In general their bound is roughly (

√
φ · n)f(d) for f(d) = 2d−1(d+1)!, once n ≥ exp(exp(d2 log d)).

Röglin and Teng concluded their work by asking whether the exponent f(d) on n could be reduced
from dΘ(d) to poly(d); this was later recognized as an important open problem [Ten10]. Here, we
resolve this question.

Very closely related to the research we have just described is a sequence of works [BV06,
ANRV07, RV07, RT09], starting with Beier and Vöcking and culminating with Röglin and Teng,
showing that binary optimization problems are solvable in expected polynomial time in the smoothed
analysis framework if and only if they are solvable in randomized pseudopolynomial time in the
worst case.

1.4 Our contribution

In this work we give an affirmative answer to the open problem of Röglin and Teng, reducing their
bound from roughly n2d−1(d+1)! to n2d. Thus the exponent on n can in fact be made linear in d. In
particular, we prove that the expected number of Pareto optimal solutions in the model described
above is at most 2 · (4φd)d(d+1)/2 · n2d. It is interesting to compare our result with what is known
about Pareto optima when 2n points are chosen independently and uniformly in [−1, 1]d+1. In this
scenario, old results [BKST78, Dev80, Buc89] show that the expected number of Pareto optima is
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Θ(n)d for each constant d. Our bound is within a square of this quantity, despite the significant
dependencies in the model. We also note that this square is necessary at least for d = 1, due to the
Ω(n2) lower bound of Beier and Vöcking [BV04].

Usually, in smoothed analysis we are interested in demonstrating that a certain algorithm runs
quickly or that a certain approximation algorithm returns a near-optimal solution. In such cases,
one often defines an event – some property of the data that ensures an algorithm runs quickly or
an approximation algorithm works well. This is true in the context of previous literature on the
number of Pareto optimal solutions as well — indeed, the works of [BV06, RT09] are based on
notions of winner gap and loser gap which can be interpreted as a discrete analogue to condition
number.

Our approach turns this around: We give a deterministic algorithm, which on input a Pareto
optimal x, runs on the data and produces an event – in the form of a “testimony” containing
clues about x’s objective vector, x’s coordinates, and the region of space B in which x’s objective
vector lies. Our family of events is rather complicated, but is defined implicitly based on a simple
algorithm.

We then give a second algorithm which can be regarded as a speculative execution of the
first — it can uniquely reconstruct x from the testimony’s clues and just some of the probability
space’s outcomes. The remainder of the probability space’s outcomes are just enough to bound the
probability that x’s objective vector falls into the region B. So we are able to bound the probability
that any particular ”testimony” is output by the first algorithm, and consequently we are able to
give an upper bound on the expected number of Pareto optimal solutions.

2 Our result and approach

In this section we will describe the problem formally, state our Main Theorem, and then briefly
describe our approach. The remainder of the paper is devoted to the proof of the Main Theorem.

2.1 Problem definitions

Our setting captures the broad class of multiobjective binary optimization problems in which all
(but one) of the objective functions are linear. We fix once and for all an arbitrary set S ⊆ {0, 1}n
of solutions. These might encode knapsacks, the sets of edges forming a spanning tree in a given
graph, or even the sets of edges forming a Hamiltonian cycle.

Matrix notation. We think of solutions in S ⊆ {0, 1}n as column vectors. For a matrix (or
vector) A, we will write Ai for the i’th row of A and write Aj for the j’th column of A; thus Ai

j is

the (i, j) entry of A. For i < k we will also write Ai..k for the submatrix of A consisting of rows i
through k. Given matrices A and B of the same size we write A ◦B for their Hadamard product,
i.e., their entry-wise product. Thus (A ◦B)ij = Ai

jB
i
j.

Values and objectives. Associated to each solution x ∈ S are d+1 objectives; we encode them
with a column vector Obj(x) ∈ R

d+1. The first d objectives are assumed to be linear and are chosen
in a “φ-semirandom” fashion. More specifically, there is a d × n matrix V of random variables
called values. (We typically write random variables in boldface.) We assume that each entry of
V is an independent, continuous random variable with support on [−1, 1] and pdf bounded by the
parameter φ. The first d objectives of solution x are defined by the equation Obj1..d(x) = V x.
(Recall that x ∈ {0, 1}n is thought of as a column vector.) The (d+1)’th objectives of the solutions
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are neither linear nor random. We assume merely that they are fixed, distinct real numbers,
chosen in advance of V . (Indeed, their magnitudes are not important for us, only their relative
ordering.) We will significantly abuse notation by writing V

d+1x in place of Objd+1(x). In this
way, Obji(x) = V

ix holds for each i ∈ [d+ 1].

Pareto optima. Without loss of generality, we think of higher objectives as preferable. Accord-
ingly, given (column) vectors p, q ∈ R

d+1 we say that p dominates q if p ≥ q. Here “≥” is to be
interpreted entry-wise when applied to vectors; i.e., p dominates q if pi ≥ qi for all i ∈ [d+ 1]. We
will also sometimes use the notion of t-domination for t < d + 1; we say that p t-dominates q if
p1..t ≥ q1..t. Given a set of points P ⊂ R

d+1 we say that p ∈ P is Pareto optimal (within P) if p
is not dominated by any other point q ∈ P; i.e., for all q ∈ P \ {p}, there exists i ∈ [d + 1] with
pi > qi. Of course, we will be interested in applying this concept to the objectives of the solutions
in S. Given V , we consider P = {Obj(z) : z ∈ S} ⊂ [−n, n]d × R. We then say that the solution
x ∈ S is Pareto optimal if Obj(x) is Pareto optimal within P. Finally, given V , we define PO ⊆ S

to be the set of all Pareto optimal solutions.

2.2 Our result

We can now state our Main Theorem:

Main Theorem. E
V

[∣∣PO
∣∣
]
≤ 2 · (4φd)d(d+1)/2 · n2d.

2.3 Our approach

To prove the Main Theorem we use a probabilistic argument which has a rather unusual form.
Unfortunately, it is also fairly intricate. In this section we will try to convey some of the ideas of
the argument while hiding a number of complicating details.

Our proof can be seen as a d-dimensional generalization of the Beier–Röglin–Vöcking O(φn2)
upper bound for the d = 1 case (which we will later sketch). The reader is advised to keep
the cases d = 1, 2 in mind for visualization purposes. Recall that the solutions x ∈ S have d
semirandom linear objectives but their (d+ 1)’th objectives are fixed in advance arbitrarily. Once
the values V are drawn and the objectives Obj1..d(x) ∈ [−n, n]d thus determined, one can think
of identifying the Pareto optima among S via a “sweep” along the (d + 1)’th dimension. This
means proceeding through the solutions x ∈ S in decreasing order of Objd+1(x) and considering the
“point” Obj1..d(x) = V x ∈ [−n, n]d; the set of points which are not d-dominated by any previously
seen point correspond exactly to the set of Pareto optimal solutions.

Boxes and density. An oversimplification of our proof is to think of it as showing that the
“probability density” of Pareto optimal points in [−n, n]d is not too high; roughly O(nd). In aid
of making this formal, we fix once and for all a real number ǫ > 0 which should be thought of as
extremely small, ǫ ≪ 1/(φd22n). Additionally, we assume that 1/ǫ is an integer. We then introduce
the following definition:

Definition 2.1. For a point b ∈ (ǫZ)d, we define the d-box based at point b to be b+ [0, ǫ)d. Note
that the set of all d-boxes partitions [−n, n)d and indeed all of Rd. More generally, for t ∈ [d] and
b ∈ (ǫZ)j , we define the t-box based at point b to be (b+ [0, ǫ)d)×R

d−t. The set of all t-boxes also
partitions Rd.
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Since ǫ is so small, the probability that there will be two different points V x and V x′ in the
same d-box is negligible. Thus if B denotes an arbitrary d-box, we can upper-bound the number
of Pareto optima by (2n/ǫ)d times the probability that there is a Pareto optimum x ∈ S with
Obj1..d(x) in B. Our goal is to bound this probability by roughly O(nd)ǫd.

In particular, we must make sure to keep the probability roughly comparable to ǫd. A crucial
aspect of our proof is that we can bound Pr[V x ∈ B] by (φǫ)d for any x 6= ~0 while only using a
small part of the probability space. Specifically, suppose we select j ∈ [n] such that xj 6= 0, and
then imagine drawing all entries of V except for the j’th column V j . Then the final position of
the point V x is of the form (p1 + V

1
j , . . . , p

n + V
n
j ), where the pi’s are constants. This point will

lie in the box B only if each value V
i
j falls into a certain fixed interval of width ǫ. As the random

variables V i
j are independent and have pdf’s bounded by φ, the probability that all V i

j’s fall into

the required intervals is at most (φǫ)d. Note that this argument works for any possible outcome of
the d(n− 1) values outside of V j.

Uniqueness. Unfortunately we cannot simply take this observation and union-bound over all
potential Pareto optima x, since this would lose a factor of |S|. We would be in much better shape
if, after all values except for V j were drawn, there were very few solutions x — or even just a
unique solution x — for which the event

Tx = “x is Pareto optimal with V x ∈ B”

had a chance of occurring. Here by “have a chance of occurring”, we mean PrV j
[Tx] > 0. In

the simplest case of d = 1, Beier, Röglin, and Vöcking [BRV07] essentially show that essentially
holds if one adds some extra conditions to the event Tx. We now sketch a reinterpretation of their
argument.

The Beier–Röglin–Vöcking argument. Note that since d = 1 for this sketch, the values
matrix V is just a random (row) vector. For each j ∈ [n] and 1-box (interval) B, let us define the
significantly more complicated event

Tx,j,B = “xj = 1, V x ∈ B, x is Pareto optimal, and the ‘next’ Pareto optimum y has yj = 0”.

Here ‘next’ refers to the “sweep along the 2nd coordinate”; i.e., y is the solution z with maximal
Obj2(z) among {z ∈ S : V z > V x}. The Beier–Röglin–Vöcking argument takes a union bound
over all j ∈ [n] in addition to over all B. The key to their argument is the following “uniqueness”
claim: for any draw of the values other than V j , there is a unique x ∈ S for which the event Tx,j,B

has a chance of occurring. Given this claim, the proof is almost complete. For that unique x the
event Tx,j,B still has at most a φǫ chance of occurring, since xj must be 1 and the value V j is
still independent and undrawn. Union-bounding over all j and B, one concludes that the expected
value of

#{Pareto optimal x : the ‘next’ Pareto optimum y has yj 6= 1 = xj for some j}

is at most n·(2n/ǫ)·(φǫ) = 2φn2. This almost counts the total number of Pareto optima. Certainly
for each Pareto optimum x, there is some coordinate j such that the ‘next’ Pareto optimum y has
yj 6= a = xj ; it’s just that this bit a might be 0 rather than 1. The Beier–Röglin–Vöcking is
concluded (essentially) by union-bounding over a ∈ {0, 1} as well. (It may seem crucial that xj

was 1 and not 0 when we observed that PrV j
[V x ∈ B] ≤ φǫ. This difficulty is overcome with an

additional trick, changing the condition V x ∈ B in Tx,j,B to the condition V x−V ja in Tx,j,a,B.)
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The Röglin–Teng argument. How can we generalize this argument to d dimensions? Röglin
and Teng roughly take the following approach. First, they generalize the above argument to show
that for d = 1, the expected c’th power of the number of Pareto optima is (φn2)c(1+o(1)). This gives
them a concentration result for the number of Pareto optima. They then proceed by induction on
the dimension d. In reducing from dimension d to d− 1 there are two difficulties. First, instead of
having a unique x to worry about as in the Beier–Röglin–Vöcking, they need to worry about all
solutions in a (d − 1)-dimensional Pareto set. One expects this not to be too large, by induction;
however, their argument needs a high-probability result. Hence they need to inductively bound
higher powers of the number of Pareto optima. This induction leads to the rather bad dependence
on d. A second difficulty they face comes from their use of conditioning to separate the d’th
dimension from the first d− 1; this introduces dependencies that they must work to control.

Our argument. We define a family of events Tx,J,A,B. These events are again of the form “x
falls into a box related to B and certain other lower-dimensional conditions happen”. We need to
define these other conditions in an extremely careful way so that the following holds:

Based on J , there is a way to partition the draw of V into two parts called
M(J)◦V and M(J)◦V . Given the outcome of M(J)◦V , there is a unique

x ∈ S for which Tx,J,A,B can occur. Furthermore, the randomness remaining
in M(J) ◦ V is such that the probability of Tx,J,A,B can still be bounded

by an appropriately small quantity.

We manage to identify the necessary conditions; however they are complicated enough that
they cannot be described with just a sentence of text. Instead, we come to the first unusual
aspect of our argument; the extra conditions are of the form “a certain deterministic algorithm
Witness, when run with input x and V , produces a certain output testimony”. At this point the
reader might think that such conditions have no chance to satisfy the boxed property above: in
particular, since Witness depends on V , how can knowing its output still leave the M(J) ◦ V

part of the probability space free? We overcome this problem with a second unusual idea. We
introduce another deterministic algorithm called Reconstruct, which takes as input the output
Witness(x,V ), along with the outcome of M(J) ◦ V . We show that using just this information,
Reconstruct can recover the input x, assuming that it is Pareto optimal. This ability to reverse-
engineer x gives us the needed “uniqueness” property, and the fact that Reconstruct does not
need to know M(J) ◦ V – and yet this amount of remaining randomness is still enough to bound
the probability that x falls into certain boxes.

3 Outline of the proof

At this point we move from intuition to precise details. In this section we give the overall structure
of our proof of the Main Theorem. By the end of this outline we will have reduced it to a number
of lemmas, which are then proven in the appendices of the paper.

3.1 Testimonies

The first key ingredient in our proof is a deterministic map we call Witness, which takes as input
a solution x ∈ S and a fixed matrix of values V , and outputs a “testimony” (J,A,B):

Witness : (x, V ) 7→ (J,A,B).
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(The map Witness also depends on the fixed quantities n, ǫ, S, and the (d + 1)’th objectives
Objd+1(z).) We will actually only care about the behavior of Witness(x, V ) when the values V
make x into a Pareto optimum, but it is clearest to define the mapping for every pair of x and V .

Regarding the testimony itself, roughly speaking J is a list of d coordinates in [n], A is a
“diagonalization matrix” consisting of d bits per coordinate in J , and B is a list of t-boxes, one
for each t ∈ [d]. Very roughly speaking, the meaning of Witness(x, V ) = (J,A,B) is that the bits
{xj : j ∈ J} agree with certain bits in A and that V x falls into the boxes in B — or rather, that
a slight translation of V x based on A falls into these boxes. Precise details are given in Section 4,
but they are not important for understanding the outline of the proof. On first reading, one should
think of the number of possible testimonies as something roughly like n2d/ǫd(d+1)/2.

3.2 The OK event

We will also need to define a simple event based on the random draw of V which we call OK. In
studying Pareto optima we prefer not to distinguish between domination and “strict” domination.
Luckily we don’t have to: since the entries of V are continuous random variables, the probability
that V ix = V

iy for any i ∈ [d] and distinct x, y ∈ S is 0. Our event OK, which we now formally
define, slightly generalizes this:

Definition 3.1. OK = OK(V ) is defined to be the event that |V ix− V
iy| > ǫ for all i ∈ [d] and

distinct x, y ∈ S.

We require the following simple lemma:

OK Lemma. Pr[¬OK] ≤ φd22n+1ǫ.

Proof: For each fixed i ∈ [d] and distinct x, y ∈ {0, 1}n, we show that Pr[|V ix−V
iy| ≤ ǫ] ≤ 2φǫ;

the result then follows by a union bound. Since x and y are distinct we may select j ∈ [n] such
that xj − yj = 1, after possibly exchanging x and y. Now imagine that the values {V i

k : k 6= j} are
drawn first; then the event |V ix− V

iy| ≤ ǫ becomes of the form |c+V
i
j | ≤ ǫ for some constant c.

By independence, the random variable V i
j still has pdf bounded by φ, so this event has probability

at most φ · 2ǫ, as desired. �

3.3 Proof of the Main Theorem

We are now able to outline the proof of the Main Theorem.

E
V

[∣∣PO
∣∣
]
= E

V

[∣∣PO
∣∣ · 1[OK]

]
+E

V

[∣∣PO
∣∣ · 1[¬OK]

]
. (1)

Regarding the second term in (1), naively we have

E
V

[∣∣PO
∣∣ · 1[¬OK]

]
≤ E

V

[
2n · 1[¬OK]

]
= 2n Pr[¬OK] ≤ φd23n+1ǫ, (2)

using the OK Lemma. As for the first (main) term in (1), we break it up according to the possible
testimonies:

E
V

[∣∣PO
∣∣ · 1[OK]

]
=

∑

(J,A,B)

E
V

[∑
x∈S

1[x ∈ PO] · 1[Witness(x,V ) = (J,A,B)] · 1[OK]

]
. (3)
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For a given draw of values V , it is possible to show that if the event OK occurs, then the differ-
ent x ∈ PO generate unique testimonies (J,A,B). (This follows from the Testimony–Determines–
PO Lemma in Section 4.) In other words, for a fixed testimony (J,A,B), after V is drawn there
can be at most one x ∈ S for which the event

(
x ∈ PO

)
∧
(
Witness(x,V ) = (J,A,B)

)
∧OK

occurred. This shows that (3) is at most the number of possible testimonies. Unfortunately,
that is not a helpful bound because the number of possible testimonies includes the huge factor
(1/ǫ)d(d+1)/2 .

We now come to the key idea in the proof. For each fixed testimony (J,A,B), we split up the
draw of V into two stages in a way that depends on J . In the first stage, “most” of the dn entries
of V are drawn; we denote these entries by M(J) ◦ V for reasons to be explained later. In the
second stage, the remaining “few” entries of V are drawn (independently, of course); we denote
this second set of entries by M(J) ◦ V . On first reading, one should think of “few” as meaning
d(d+1)/2. Now the key idea is that the uniqueness property described above holds even after just
drawing M(J) ◦ V :

Uniqueness Lemma. Fix a testimony (J,A,B) and fix the outcome of M(J) ◦ V . Then there
exists at most one x ∈ S such that the event

(
x ∈ PO

)
∧
(
Witness(x,V ) = (J,A,B)

)
∧OK

can occur. Here the event’s randomness is just the draw of M(J) ◦ V .

Based on this idea, we write (3) as

∑

(J,A,B)

E
M(J)◦V

[∑
x∈S

Pr
M(J)◦V

[(
x ∈ PO

)
∧
(
Witness(x,V ) = (J,A,B)

)
∧OK

]]
.

The Uniqueness Lemma says that for each choice of (J,A,B) and M(J) ◦ V , at most one of the
probabilities in the above expression can be nonzero. Hence we may upper-bound (3) by

∑

(J,A,B)

E
M(J)◦V

[
max
x∈S

Pr
M(J)◦V

[(
x ∈ PO

)
∧
(
Witness(x,V ) = (J,A,B)

)
∧OK

]]
. (4)

We now complete the proof by showing that there is enough randomness left in M(J) ◦ V so
that for any x ∈ S, even the probability of the event Witness(x,V ) = (J,A,B) is small. We bound
this probability in terms of a parameter called dim(B), which we define in Section 4 For now, it
suffices to know that dim(B) is an integer between 0 and d(d + 1)/2; on first reading, one should
think of it as simply always being d(d+ 1)/2.

Boundedness Lemma. For every fixed (J,A,B), outcome of M(J) ◦ V , and x ∈ S, it holds that

Pr
M(J)◦V

[Witness(x,V ) = (J,A,B)] ≤ φdim(B)ǫdim(B).

Using this in (4) we upper-bound (3) by
∑

(J,A,B)

φdim(B)ǫdim(B). (5)

As mentioned, on first reading one should think of dim(B) as always being d(d+ 1)/2 and one
should think of the number of possible testimonies as being roughly n2d/ǫd(d+1)/2. Thus (5) is
roughly φd(d+1)/2 · n2d, comparable to the quantity in the Main Theorem. We will eventually do a
more precise but straightforward estimation to bound (5) (and hence (3)):
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Counting Lemma. For a fixed n and ǫ,
∑

possible testimonies
(J,A,B)

φdim(B)ǫdim(B) ≤ 2 · (4dφ)d(d+1)/2 · n2d.

Substituting this bound on (3), as well as the bound (2), into (1) yields

E
V

[∣∣PO
∣∣
]
≤ 2 · (4dφ)d(d+1)/2 · n2d + φd23n+1ǫ.

Since we can make ǫ arbitrarily small, the proof of the Main Theorem is complete.

4 Testimonies

In this section we describe the Witness algorithm, which assumes n, ǫ, S, and the (d + 1)’th
objectives Objd+1(z) are fixed. The input to Witness is a solution x ∈ S and a d × n matrix of
values V . The output is a “testimony”, which is a triple (J,A,B).

4.1 Components of a testimony

We now describe the components of a testimony.

Index vector. We call the first component, J , the “index vector”. This is defined to be a length-
d row vector from ([n]∪{⊥})d in which all non-⊥ indices are distinct. On first reading, one should
ignore the possibility of ⊥’s and simply think of an index vector J as an ordered list of d distinct
indices from [n].

Diagonalization matrix. We call the second component, A, a “diagonalization matrix”. A is
n × d matrix with entries from {0, 1,⊥}. Most entries in A will be 0; indeed, the row Aj will be
nonzero only if j is one of the indices in J . Before describing A completely formally, let us describe
the “typical” case when J contains no ⊥’s, and thus just consists of distinct indices from [n]. In
this case, A will also contain no ⊥’s. To make the picture even clearer, let us imagine that J is
simply (1, 2, . . . , d). Thus A will only be nonzero in its first d rows, so let us write A′ = A1..d. In
this case, if x ∈ S is the input to Witness, then A′ will be of the following form:




x1 ∗ ∗ ∗ · · · ∗
x2 x2 ∗ ∗ · · · ∗
x3 x3 x3 ∗ · · · ∗
x4 x4 x4 x4 · · · ∗
...

...
...

...
. . .

...

xd xd xd xd · · · xd




.

Here each xj is of course in {0, 1}, we write xj for 1 − xj, and ∗ denotes that the entry may be
either 0 or 1. We say that A diagonalizes x on J = (1, 2, . . . , d). We now give the formal definition
which includes the possibility of J containing ⊥’s.

Definition 4.1. Given an index vector J and a solution x ∈ {0, 1}n, we say that the matrix
A ∈ {0, 1,⊥}n×d is a diagonalization matrix, and in particular that it diagonalizes x on J , if the
following conditions hold: If j ∈ [n] does not appear in J , then row Aj is all zeros. Otherwise, if
j = Ju ∈ [n] for some u ∈ [d]:

Aj
t = ⊥ if and only Jt = ⊥, Aj

u = xj, Aj
t = xj for all t < u with Jt 6= ⊥. (6)
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Box list. The last component of a testimony, B, is a list B = (B1, . . . , Bd). For t ∈ [d] we have
that Bt = ⊥ if Jt = ⊥, and otherwise Bt is a t-box, as defined in Section 2.3. We define the
dimension of the box list B to be

∑{t ∈ [d] : Bt 6= ⊥}. On first reading, one should ignore the
possibility of Bt = ⊥, in which case dim(B) is always 1 + 2 + · · ·+ d = d(d+ 1)/2.

Masking matrix. Having defined the components (J,A,B) of a testimony, we now explain one
more piece of notation; that of a masking matrix. Given an index vector J , we define the associated
masking matrix M(J) ∈ {0, 1}d×n as follows:

M(J)ij =

{
1 if j = Jt ∈ [n] for some t ∈ [d] and i ≤ t,

0 otherwise.

For illustration, if J = (1, 2, . . . , d), then M(J) is the mostly-zeros d × n matrix whose left-most
d× d submatrix is 



1 1 1 1 . . . 1
0 1 1 1 . . . 1
0 0 1 1 . . . 1
0 0 0 1 . . . 1
...

...
...

...
. . .

...
0 0 0 0 . . . 1




.

Note that in the “typical” case that J contains no ⊥’s, the number of 1’s in M(J) is exactly

d(d + 1)/2. Given a masking matrix, we write M(J) for its bitwise complement; i.e., M(J)
i

j =

1−M(J)ij . We are now able to explain the notation used in the key step of the proof of the Main
Theorem. Given the semi-random matrix of values V , note that for any J ,

V = M(J) ◦ V +M(J) ◦ V .

Further, the random matrices M(J) ◦V and M(J) ◦V are independent of one another. This gives
our crucial means of separating the random draw of V into two stages.

4.2 The Witness mapping

Here is the deterministic algorithm computing the Witness mapping:
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Witness(x, V ) :

1. Set Rd+1 = S.

2. Initialize J to the length-d column vector (⊥,⊥, . . . ,⊥).

3. Initialize Y to the n× d matrix where every entry is ⊥.
4. For t = d, d− 1, d− 2, . . . , 1:

5. Let Ct = {z ∈ Rt+1 : V
1..tz > V 1..tx}.

6. If Ct 6= ∅,
7. Set column Yt to be the y ∈ Ct for which V t+1y is maximal.†

8. Set Jt to be the least index in [n] such that Y Jt
t 6= xJt.‡

9. Set Rt = {z ∈ Rt+1 : V
t+1z > V t+1Yt and zJt = xJt}.

10. Else

11. Set Rt = Rt+1.

12. End If

13. End For

14. Define the n× d matrix A by Aj
u =

{
Y j
u if j appears in J,

0 otherwise.

15. Define the Box list B = (B1, . . . , Bd) as follows:

For u ∈ [d], if Ju = ⊥ then set Bu = ⊥.
Otherwise, set Bu to be the u-box containing V x− (M(J) ◦ V )Au.

16. Output (J,A,B).

† Two comments about this line: Regarding maximality, say that we break ties by lexicographic order.
Regarding the case t = d, recall our abuse of notation: V d+1y is defined to be Objd+1(y).

‡ Such an index must exist: Y t 6= x because Y t ∈ Ct and therefore V 1..tY t > V 1..tx.

It is clear that the index vector J and the Box list B output by Witness have the form we
claimed. We now verify that Witness(x, V ) indeed outputs a proper diagonalization matrix A:

Proposition 4.2. The matrix A output by Witness(x, V ) always diagonalizes x on J .

Proof: At the end of the algorithm, by definition row Aj is all zeros if j does not appear in J .
Thus it remains to analyze each row AJu , where u ∈ [d] is such that Ju 6= ⊥. By definition, we
have AJu

t = Y Ju
t for each t ∈ [d]. Thus we need to verify the three conditions in (6) for Y Ju

t . First,
Y Ju
t = ⊥ if and only if Yt was “not defined” during iteration t of the algorithm (i.e., if Ct = ∅),

which occurs precisely when Jt = ⊥. Next, Y Ju
u = xj by definition of Ju. Finally, because of line (9)

in Witness we have that zJu = xJu for z ∈ Ru. Thus for any t < u where Jt 6= ⊥ (and thus Ct 6= ∅),
we have Y Ju

t = xJu because Y Ju ∈ Ct ⊆ Rt+1 ⊆ Ru. �

We also record another simple observation:

Proposition 4.3. Given an execution of Witness(x, V ), any two solutions in Rt have the same
Jt’th coordinate, the same Jt+1’th coordinate, . . . , and the same Jd’th coordinate (excluding the
cases t ≤ u ≤ d where Ju = ⊥).
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Proof: For a fixed t with Jt 6= ⊥, the fact that all solutions in Rt have the same Jt’th coordinate
follows immediately from the definition of Rt. The claim for coordinates Jt+1, . . . , Jd follows from
the fact that Rt ⊆ Rt+1 ⊆ · · · ⊆ Rd. �

This proposition combines with our definition of masking matrices in a crucial way:

Masking Lemma. Given an execution of Witness(x, V ), for any t ∈ [d] and z, z′ ∈ Rt,

V tz > V tz′ ⇔ (M(J) ◦ V )tz > (M(J) ◦ V )tz′.

Proof: We have

V t(z − z′) = (M(J) ◦ V )t(z − z′) + (M(J) ◦ V )t(z − z′).

By definition ofM(J), the row vector (M(J)◦V )t has nonzero entries only in indices Jt, Jt+1, . . . , Jd
(excluding those Ju’s which are ⊥). But by Proposition 4.3, z and z′ agree on these indices. Hence
(M(J) ◦ V )t(z − z′) = 0, and therefore V t(z − z′) = (M(J) ◦ V )t(z − z′). The lemma follows. �

Finally, our proof of the key Uniqueness Lemma in Section 5 will rely on the following simpler
uniqueness claim:

Testimony–Determines–PO Lemma. Suppose that we run Witness(x, V ), where V is an out-
come for the values such that x is Pareto optimal and such that OK occurs. Then at the end of
the run, x is uniquely defined by being the z ∈ R1 with maximal V 1z.

We remark that the assumption that OK(V ) occurs is stronger than necessary; we only need
that V iy 6= V iy′ for all i ∈ [d] and distinct y, y′ ∈ S (an event that occurs with probability 1).
Proof: We make the following two claims about the execution of Witness(x, V ):

Claim 1: For each t ∈ [d+ 1] it holds that x is not t-dominated by any z ∈ Rt.
Claim 2: x must be in R1.

Assuming these claims, the lemma follows immediately: x ∈ R1 by claim 2, and no z ∈ R1 has
V 1z ≥ V 1x by claim 1.

We begin by proving Claim 1. For t = d + 1, this follows immediately from the definition of
x being Pareto optimal. For smaller t, let us consider the t’th iteration of “For” loop, in which
Rt is defined. We need to consider two cases corresponding to the “If” condition. First suppose
Ct 6= ∅, so lines (7)—(9) are executed. Now if there were some z in the newly defined Rt which
t-dominated x, then it would satisfy V t+1z > V t+1Y t and V 1..tz ≥ V 1..tx. Since the OK event
holds, the latter inequality can be strengthened to V 1..tz > V 1..tx. But this means z must be in
the set Ct. Since V

t+1z > V t+1Y t, we have a contradiction with how Y t was chosen in line (7). We
now consider the second case, that Ct = ∅. In this case, Rt = Rt+1. Now by definition of Ct = ∅,
there is no z ∈ Rt+1 = Rt which has V 1..tz > V 1..tx. Since the OK event occurs, we can strengthen
this statement to say that no z ∈ Rt can even have V 1..tz ≥ V 1..tx, as needed.

We now prove Claim 2. Specifically, we show that x ∈ Rt for all t ∈ [d + 1] by (downward)
induction on t. The base case, that x ∈ Rt+1, hold by definition. Assume then that x ∈ Rt+1 for
some t ∈ [d]. Consider now the t’th iteration of the “For” loop. If the “If” condition does not hold
then Rt = Rt+1 ∋ x, as needed. Assume then that lines (7)—(9) are executed. To show x ∈ Rt it
suffices to show that V t+1x > V t+1Yt. If this is not true, then V t+1Yt ≥ V t+1x, and V 1..tYt ≥ V 1..tx
also, since Yt ∈ Ct. But that means that Yt ∈ Rt+1 (t+ 1)-dominates x, contradicting Claim 1. �
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5 The Uniqueness Lemma

Let us restate the Uniqueness Lemma.

Uniqueness Lemma. Fix a testimony (J,A,B) and fix the outcome of M(J) ◦ V . Then there
exists at most one x ∈ S such that the event

(
x ∈ PO

)
∧
(
Witness(x,V ) = (J,A,B)

)
∧OK (7)

can occur. Here the event’s randomness is just the draw of M(J) ◦ V .

We prove the Uniqueness Lemma in a roundabout way. Specifically, we introduce a second
deterministic algorithm called Reconstruct, which takes as input a testimony (J,A,B) and fixed
values M(J) ◦ V , and outputs a solution x ∈ S (or possibly ‘FAIL’). Instead of the Uniqueness
Lemma as stated, we prove the following:

Uniqueness Lemma′. Let solution x ∈ S and value matrix V be such that x is Pareto op-
timal and such that event OK occurs. Assume further that Witness(x, V ) = (J,A,B). Then
Reconstruct((J,A,B), (M(J) ◦ V )) outputs x.

This immediately implies the Uniqueness Lemma, as follows: Fix a testimony (J,A,B) and an
outcome M(J) ◦ V = M(J) ◦ V . Suppose there exist solutions x, x′ ∈ S for which event (7) can
occur (with possibly different outcomes for M(J) ◦V ). Then Uniqueness Lemma′ tells us that the
output of Reconstruct((J,A,B), (M(J) ◦ V )) is both x and x′; hence x = x′.

The remainder of this section is devoted to the proof of Uniqueness Lemma′. We begin by
defining the algorithm Reconstruct.

Reconstruct((J,A,B), (M(J) ◦ V )) :

1. Set Rd+1 = S.

2. Initialize Y to the n× d matrix where every entry is ⊥.
3. For t = d, d− 1, d− 2, . . . , 1:

4. If Jt 6= ⊥,
5. Write b ∈ (ǫZ)t for the base point of Bt.

6. Set C′
t = {z ∈ Rt+1 : (M(J) ◦ V )1..tz > b and zj = Aj

t ∀ indices j ∈ J}.
7. Set Yt to be the y ∈ C′

t for which (M(J) ◦ V )t+1y is maximal.∗

8. Set Rt = {z ∈ Rt+1 : (M(J) ◦ V )t+1z > (M(J) ◦ V )t+1Yt and zJt 6= Yt
Jt}.

9. Else

10. Set Rt = Rt+1.

11. End If

12. End For

13. Output the x ∈ R1 for which (M(J) ◦ V )1x is maximal.

∗ Some comments about this line. First, if u = d then we interpret (M(J) ◦ V )d+1y to mean Objd+1(y). Second,

regarding maximality, we break ties by lexicographic order. Third, for some inputs to Reconstruct it is possible that

the set C′
t is empty; in this case one can think of Reconstruct as halting and outputting ‘FAIL’. However we will only
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be analyzing Reconstruct on inputs where this provably never happen. Finally, the first remark here also applies to

line (8) and the second and third remarks here also apply to line (13).

To prove Uniqueness Lemma′, we fix x and V such that x is Pareto optimal and such that event
OK occurs. We further suppose we have executed Witness(x, V ) producing (J,A,B), and then
executed Reconstruct((J,A,B), (M(J) ◦ V )) producing x. Our goal is to show that x = x. To
do this, we will analyze the internal variable assignments made in the executions of Witness and
Reconstruct. More specifically, the main task will be to show the following claim asserting that
Rt = Rt for all t ∈ [d+ 1]. Once we show this, it will be easy to conclude that x = x also.

Claim 5.1. Rt = Rt for all t ∈ [d+ 1].

Proof: The proof is by (downward) induction. The base case is clear, as Rd+1 = Rd = S. For the
induction we assume that Ru+1 = Ru+1 for some u ∈ [d]. We now show that Ru = Ru. In doing so,
we will also show that Yu = Yu. The set C

′
u will not necessarily equal Cu, but will be a subset of it.

We henceforth restrict attention to the the t = u iteration of the “For” loop in the execution of
Witness and Reconstruct, since this is when variables Ru and Ru were set. We consider two cases
depending on whether or not Ju = ⊥. In the easy case that Ju = ⊥, Witness must have assigned
Ru = Ru+1, and certainly Reconstruct assigned Ru = Ru+1. By induction, Ru+1 = Ru+1, and
hence Ru = Ru as required.

The remainder of the claim’s proof is devoted to the case that Ju 6= ⊥, in which case Witness

executed its lines (7)—(9) and Reconstruct executed its lines (5)—(8). The Bu referred to in
Reconstruct’s line (5) is defined at the end of Witness to be u-box containing V x−(M(J)◦V )Au.
By definition, this means the base point b ∈ (ǫZ)u used by Reconstruct is such that

V 1..ux− (M(J) ◦ V )1..uAu ∈ b+ [0, ǫ)u

⇒ V 1..ux ∈ b̂+ [0, ǫ)u,

where b̂ = (M(J) ◦ V )1..uAu + b.

Recall that Witness defines Cu = {z ∈ Ru+1 : V
1..uz > V 1..ux}. In fact, because we have assumed

V causes event OK to occur, we may deduce

Cu = {z ∈ Ru+1 : V
1..uz > b̂}. (8)

For if there were some z ∈ Ru+1 and i ∈ [u] with b̂i < V iz ≤ b̂i + ǫ, we would have |V iz−V ix| ≤ ǫ,
contradicting the occurrence of OK. (The reader may note that this deduction is precisely the
reason we introduced the event OK.)

Next, recall that Witness defines Yu to be the y ∈ Cu for which V u+1y is maximal (and this
maximizer is unique since we assume OK occurs). Since Y j

u = Aj
u for all indices j appearing in J ,

we must also have that Yu is the maximizer of V u+1y among all y within the following (nonempty)
subset of Cu:

C
′
u := {z ∈ Ru+1 : V

1..uz > b̂ and zj = Aj
u for all indices j ∈ J}. (9)

Observe that

V 1..uz > b̂ ⇔ (M(J) ◦ V )1..uz + (M(J) ◦ V )1..uz > (M(J) ◦ V )1..uAu + b.

Since all z ∈ C′
u agree with Au in the indices from J , and since M(J) is nonzero only in columns

whose indices are in J , we have that

(M(J) ◦ V )z = (M(J) ◦ V )Au for every z ∈ C
′
u. (10)
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Therefore an equivalent definition to (9) is

C
′
u = {z ∈ Ru+1 : (M(J) ◦ V )1..uz > b and zj = Aj

u for all indices j ∈ J}.
But Ru+1 = Ru+1 by induction, and hence C′

u = C′
u.

The remainder of the proof of the claim now follows fairly easily using the Masking Lemma
from Section 4. Recall that Yu is the maximizer of V u+1y among all y ∈ C′

u. On the other hand,
Reconstruct defines Yu to be the y ∈ C′

u = C′
u with maximal (M(J) ◦ V )u+1y. We claim that

Yu = Yu. If u = d then this is immediate, as both V d+1y and (M(J) ◦ V )d+1y are interpreted

as Objd+1(y). If u < d, this follows immediately from the Masking Lemma, using the fact that
C′
u ⊆ Ru+1.
Finally, we wish to show that Ru = Ru. Recall that

Ru = {z ∈ Ru+1 : V
u+1z > V u+1Yu and zJu = xJu},

and Ru = {z ∈ Ru+1 : (M(J) ◦ V )u+1z > (M(J) ◦ V )u+1Yu and zJu 6= Yu
Ju}

= {z ∈ Ru+1 : (M(J) ◦ V )u+1z > (M(J) ◦ V )u+1Yu and zJu = xJu};

in this last deduction we used Ru+1 = Ru+1 (by induction), Yu = Yu, and Y Ju
u = xJu (which

follows from the definition of Ju in Witness). If u = d then Ru = Ru again follows from the

interpretation V d+1z = (M(J) ◦ V )d+1z = Objd+1(z). If u < d then Ru = Ru again follows from
the Masking Lemma, noting that z, Yu ∈ Ru+1. This completes the proof of the induction and
hence the claim. �

Having proven Claim 5.1, it is easy to complete the proof of Uniqueness Lemma′, i.e., to show
x = x. Since the values matrix V is assumed to make x Pareto optimal and make OK occur,
the Testimony–Determines–PO Lemma from Section 4 implies that x is the solution z ∈ R1 with
maximal V 1z. On the other hand, x is defined to be the solution z ∈ R1 = R1 with maximal

(M(J) ◦ V )1z. But these maximizers are equal by the Masking Lemma.

6 The Boundedness Lemma

In this section we restate and prove the Boundedness Lemma.

Boundedness Lemma. For every fixed (J,A,B), outcome of M(J) ◦ V , and x ∈ S, it holds that

Pr
M(J)◦V

[Witness(x,V ) = (J,A,B)] ≤ φdim(B)ǫdim(B).

Proof: As in the proof of the Uniqueness Lemma we fix the testimony (J,A,B) and the outcome
M(J) ◦ V = M(J) ◦ V . Unlike the proof of that lemma, we also fix x ∈ S. By Proposition 4.2 we
may assume that matrix A diagonalizes x on J ; otherwise the probability of Witness(M(J)◦V ) =
(J,A,B) is 0.

Write B = (B1, . . . , Bd), where each Bt is either a t-box or is ⊥ (if Jt = ⊥). For each t ∈ [d]
with Jt 6= ⊥ we define the event

INt = “V x− (M(J) ◦ V )At ∈ Bt”,

where again, the randomness of these events is just the draw of M(J) ◦ V . We may complete the
proof by showing

Pr
M(J)◦V


 ∧

t∈[d]:Jt 6=⊥

INt


 ≤ φdim(B)ǫdim(B). (11)
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Recall that

M(J)ij =

{
1 if j = Jt ∈ [n] for some t ∈ [d] and i ≤ t,

0 otherwise.

We will imagine drawing the random entries of M(J)◦V in d stages. In the t’th stage we draw the
t entries M(J) ◦ V 1..t

Jt , unless Jt = ⊥ in which case we “skip” the t’th stage. By the independence
of the entries, the following claim immediately implies (11):

Claim: Assume t ∈ [d] has Jt 6= ⊥. Suppose we have completed the first t − 1 stages of drawing
M(J) ◦ V . Then whether the event INt occurs is determined in the t’th stage, and its probability
is at most φtǫt.

To prove the claim we we write b ∈ R
t for the base point of Bt and observe that

INt ⇔ V x− (M(J) ◦ V )At ∈ Bt

⇔ (M(J) ◦ V )1..tx+ (M(J) ◦ V )1..tx− (M(J) ◦ V )1..tAt ∈ b+ [0, ǫ)t

⇔ (M(J) ◦ V )1..t(x−At) ∈
(
b− (M(J) ◦ V )1..tx

)
+ [0, ǫ)t.

(12)

Recalling the definition of M(J) we see that for a fixed i ∈ [t],

(M(J) ◦ V )i(x−At) =
∑

i≤u<t:Ju 6=⊥

(M(J) ◦ V )iJu(x−At)
Ju (13)

+ (M(J) ◦ V )iJt(x−At)
Jt (14)

+
∑

u>t:Ju 6=⊥

(M(J) ◦ V )iJu(x−At)
Ju . (15)

Please note that in (13) we have written M(J) ◦ V rather than M(J) ◦ V because the entries
(M(J) ◦V )iJu for u < t have been fixed prior to the t’th stage. The entries of M(J) ◦V appearing
in (14) and (15), however, are still to be drawn.

At this point it may seem as though the event INt as given in (12) depends not only on the
entries (M(J) ◦ V )1..tJt

as stated in the claim, but also on the entries (M(J) ◦ V )1..tJu
for u > t.

But this is where we make a crucial observation; indeed, the one which explains why we defined
Witness to produce diagonalization matrices. By definition of A diagonalizing x on J ,

(x−At)
j =

{
±1 if j = Jt,

0 if j = Ju ∈ [n] for some u > t.

(If j = Ju ∈ [n] for some u < t then we cannot say anything about (x− At)
j, but we do not need

to.) Substituting this into (14) and (15), we deduce that

(M(J) ◦ V )i(x−At) = constant ± (M(J) ◦ V )iJt . (16)

In particular, the term (15) has dropped out; hence event (12) does not in fact depend on the
entries (M(J) ◦ V )1..tJu

for u > t, as claimed. Finally, substituting (16) into (12) we see that the
event INt is equivalent to a conjunction of t events of the form

±(M(J) ◦ V )iJt ∈ [ci, ci + ǫ)

where the ci’s are fixed constants. Since the random variables (M(J) ◦ V )iJt are independent and
have pdf’s bounded by φ, we conclude that the probability of INt is indeed at most (φǫ)t, as
claimed. �

16



7 The Counting Lemma

Here we restate and prove the Counting Lemma.

Counting Lemma. For a fixed n and ǫ, the quantity

∑

possible testimonies
(J,A,B)

φdim(B)ǫdim(B) (17)

is at most 2 · (4dφ)d(d+1)/2 · n2d.

Proof: For a given index vector J let us define the following quantities:

count(J) = #{t : Jt 6= ⊥}, sum(J) =
∑

{t : Jt 6= ⊥}, max(J) = max{t : Jt 6= ⊥}.

Observe that for a possible testimony (J,A,B), the quantity sum(J) is identical to dim(B). We
may therefore express (17) as

∑

possible J

φsum(J)ǫsum(J) ·#{(A,B) s.t. (J,A,B) is a possible testimony}. (18)

Let us now count the pairs (A,B) that form possible testimonies with J . By Proposition 4.2 we know
that A must diagonalize some solution x on J . There are 2count(J) choices for the values of xj , for j
appearing in J . These force some entries of A; the remaining

∑{t−1 : Jt 6= ⊥} = sum(J)−count(J)
entries are free. Thus there are

2count(J)2sum(J)−count(J) = 2sum(J) possible choices for A. (19)

As for B, let us first count the number of possibilities for Bmax(J) (assuming max(J) exists).
We write m = max(J) for brevity; on first reading, one should think of m as always being d. An
execution of Witness(x, V ) which is consistent with J and A defines Bm to be the m-box containing
the point p = V x− (M(J) ◦ V )Am. Since the entries of V are bounded in [−1, 1] always and since
M(J) contains at most d nonzero entries, the point p must lie in [−n − d, n + d)d.1 There are
therefore at most (2(n + d)/ǫ)m choices for the box Bm.

We could similarly upper-bound the number of choices for each remaining t-box by (2(n+d)/ǫ)t;
however, this would lead to a final count whose dependence on d was nd+d(d+1)/2, rather than n2d.
To get the much better dependence of n2d we observe that once Bm is chosen, the remaining t-boxes
cannot be “too far away” because, like Bm, they contain a point close to V x. More precisely, let
t < m be such that Jt 6= ⊥ and consider Bt. It is the t-box containing p̂ = V x − (M(J) ◦ V )At.
Now p− p̂ = (M(J)◦V )(At−Au), which means that ‖p− p̂‖∞ ≤ d. It follows that given the choice
of Bm, there are at most ((2d + 1)/ǫ)t choices for Bt. We conclude that the number of possible
choices for B is at most

(2(n + d)/ǫ)max(J) ·
∏

t<max(J):Jt 6=⊥

((2d + 1)/ǫ)t =

(
2(n + d)

2d+ 1

)max(J)

·
(
2d+ 1

ǫ

)sum(J)

≤
(
2(n+ d)

2d+ 1

)d

·
(
2d+ 1

ǫ

)sum(J)

.

1Proving that p cannot have any coordinate exactly equal to n+ d is an exercise for the reader.
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Combining this with (19) and substituting into (18), we upper-bound (17) by

∑

possible J

(
2(2d+ 1)φ

)sum(J)(
2(n + d)/(2d + 1)

)d
.

Finally, we simply upper-bound sum(J) by d(d + 1)/2 and the number of possible J by (n + 1)d.
We conclude that (17) is at most

(n+ 1)d
(
2(2d + 1)φ

)d(d+1)/2(
2(n+ d)/(2d + 1)

)d
= (4φ)d(d+1)/2(d+ 1/2)d(d−1)/2(n+ 1)d(n + d)d.

One may check that (d+1/2)(d−1)/2(n+1)(n+ d) ≤ 21/dd(d+1)/2n2 for any d ≥ 1 and n ≥ 3 (which
we may assume, as our final bound is always at least 23). Hence (17) is indeed at most

2(4dφ)d(d+1)/2n2d,

as claimed. �

8 Conclusion

There are several open problems that remain. One intriguing problem is to show a lower bound
for the expected number of Pareto optima in which the exponent on n grows with d. Currently we
cannot rule out the possibility of an upper bound of the form f(d,φ)n2; however we regard this
possibility as unlikely. We feel it is likely that there is a lower bound of at least Ω(nd) for constant
d and φ; our intuition is partly based on the known lower bound of Ω(nd) in the scenario of 2n

completely independent points uniformly distributed on [−1, 1]d+1.
Another interesting open problem is whether our methods can be used to give improved upper

bounds on the higher moments of the number of Pareto optima in the smoothed analysis model.
This is currently unclear; we know of no bounds that improve on those of Röglin and Teng [RT09].
Finally, one could ask about reducing the factor of (φd)d(d+1)/2 in our bound, as well as whether
our results extend to the case of solutions in {0, 1, 2, . . . , c}n for integer constants c > 1.
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[Bei04] René Beier. Probabilistic Analysis of Discrete Optimization Problems. PhD thesis,
Universität des Saarlandes, 2004. 1.3
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