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Abstract

Khrapchenko’s classical lower bound n2 on the formula size of the parity function f
can be interpreted as designing a suitable measure of subrectangles of the combinatorial
rectangle f−1(0)× f−1(1). Trying to generalize this approach we arrived at the concept
of convex measures. We prove the negative result that convex measures are bounded by
O(n2) and show that several measures considered for proving lower bounds on the formula
size are convex. We also prove quadratic upper bounds on a class of measures that are
not necessarily convex.

1 Introduction

Most proofs of lower bounds on the formula size can be viewed as inventing suitable formal
complexity measures of boolean functions which can be nontrivially bounded from below
at some explicitly given boolean function f : {0, 1}n → {0, 1}. Such measures are real
valued functions defined on all boolean functions and satisfying certain conditions. Formal
complexity measures were introduced by Paterson. He showed that Khrapchenko’s n2 lower
bound on the formula size of the parity function [6] can be recast in this formalism (see e.g.
[14], Sect. 8.8). Generalizing Khrapchenko’s argument for the parity function, Rychkov [13]
proved Ω(n2) lower bounds for error correcting codes. All these results are for the De Morgan
basis ¬,∨,∧. In principle this approach should give lower bounds for every basis, but no
results for other bases have been obtained in this manner. In this paper we will only consider
the de Morgan basis.

In order to obtain larger lower bounds, Razborov [11] proposed to look at rectangles as
matrices over some field and introduce appropriate measures on subrectangles in terms of the
corresponding submatrices. Razborov studied the measures based on the rank of matrices.
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He showed that the rank can only give linear lower bounds for the De Morgan basis, but it
gives superpolynomial lower bounds for the monotone basis ∨,∧.

More recently, a number of various matrix norms have been proposed for proving lower
bounds on communication complexity and formula size [7, 8, 10]. Unfortunately up to now
none of the proposed measures was able to prove more than quadratic lower bounds. Therefore
it is necessary to explain this failure before we attempt to break the n2 barrier for lower bounds
based on formal complexity measures. The only superquadratic lower bound, the lower bound
Ω(n3−o(1)) of [2], has not been translated into the formalism of measures yet.

In previous papers some limitations of the method used therein were proved. Here we
will introduce another general concept, convex measures. The reason for introducing this
concept is to capture a large class of measures that are defined using matrices on the rectangle
f−1(0)× f−1(1). We will prove that such measures are always at most O(n2) and show that
some measures considered before are of this type, hence the upper bound also applies to them.
Our upper bound on convex measures is based on the upper bound on the fractional cover
number of Karchmer, Kushilevitz, and Nisan [4]. Using a different technique we will also
prove linear and quadratic upper bounds on some other measures that are closely related to
convex measures.

2 Basic concepts

Let n be a fixed positive integer, let F denote the set of all boolean functions f : {0, 1}n →
{0, 1}. Literals are boolean variables and their negations. Let L(f) denote the formula size
complexity of f in the De Morgan basis, i.e., the minimal number of occurrences of literals in
a formula expressing f using connectives {∨,∧}. A function m : F → R is called a formal
complexity measure of boolean functions if it satisfies the following inequalities:

(a) Normalization: the measure of each literal is at most 1;

(b) Subadditivity : m(g∨h) ≤ m(g)+m(h) and m(g∧h) ≤ m(g)+m(h), for every g, h ∈ F .

It follows, by induction, that for every formal complexity measure m, we have that L(f) ≥
m(f) for all boolean functions f . On the other hand, L is a formal complexity measure, hence
we are not loosing anything by using formal complexity measures. The hope is that while
it is hard to compute L(f), we may be able to handle other complexity measures. With
this goal in mind, the following larger class of measures—so-called rectangle measures—were
considered by many authors.

Let Un = {0, 1}n × {0, 1}n. In this paper we shall define an n-dimensional combinatorial
rectangle, or just a rectangle, to be a non-empty Cartesian product S = S0 × S1 such that
S ⊆ Un and S0 ∩ S1 = ∅. (Note that Un itself is not a rectangle.) The sets S0 and S1 are
called sides of the rectangle S = S0 × S1. Vector pairs e = (x, y) with x 6= y will be referred
to as edges. A boolean function f : {0, 1}n → {0, 1} separates the rectangle S = S0 × S1 if

f(x) =

{
0 for x ∈ S0,
1 for x ∈ S1.

If the sets S0 and S1 form a partition of {0, 1}n, then the rectangle S = S0 × S1 is called
a full rectangle. Note that there is a one-to-one correspondence between boolean functions
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f : {0, 1}n → {0, 1} and full rectangles of the form

Sf := f−1(0)× f−1(1) ;

but there are much more rectangles than boolean functions.
Important class of rectangles are monochromatic rectangles which are the rectangles that

can be separated by single literals. That is, a rectangle M = M0 × M1 is monochromatic,
if there exists an i ∈ {1, . . . , n} and an ε ∈ {0, 1} such that for all (x, y) ∈ M , xi = ε and
yi = 1 − ε; here xi is the i-th bit in x. The smallest monochromatic rectangles are single
edges, i.e., rectangles of the form M = {(x, y)} with x 6= y. The largest ones are the so-called
canonical monochromatic rectangles

Mi,ε = {(x, y) | xi = ε and yi = 1− ε} .

These 2n rectangles cover every rectangle.[COMMENT: SK: I would prefer to give a more formal

definition here and in what follows. For example, what are (x, y) here? We are usually interested in

subrectangles of S only. So, why not define Mi,ε(S) = {(x, y) ∈ S . . . ?]
Instead of rectangles within the whole set Un, one can work only with rectangles R ⊆ S

within some fixed rectangle S, say, within the full rectangle Sf = f−1(0)× f−1(1) of a given
boolean function f . In this case we will call R a subrectangle of S. In what follows, R(S)
will denote the set of all subrectangles and M(S) the set of all monochromatic subrectangles
of S.

For the rest of this paper we shall assume that the dimension n and a rectangle S are
fixed. We shall call S the ambient rectangle.

2.1 Subadditive measures and communication complexity

A rectangle function is a real-valued function µ : R→ R.
A rectangle measure is a rectangle function µ : R → R satisfying the following two

conditions:

(i) Normalization: µ(M) ≤ 1 for every monochromatic rectangle M ∈M.

(ii) Subadditivity : µ(R) ≤ µ(R1) + µ(R2), for every rectangle R ∈ R and for every its
partition into disjoint union of rectangles R1, R2 ∈ R.

[COMMENT: pH. Changed ”weak subadditivity” to ”subadditivity”, and the latter to ”strong subaddi-

tivity”. The usage was inconsistent anyway.] The first condition is usually achieved by normaliza-
tion. That is, if a rectangle function ν is subadditive, we obtain a measure by defining

µ(R) =
ν(R)

maxM ν(M)
,

where M ranges over all monochromatic rectangles.
These two conditions already suffice for lower-bounding the formula size. Notice that

rectangles can be decomposed into disjoint unions of two rectangles in two ways—vertically
and horizontally. Subadditivity of rectangle measures corresponds to the two conditions of
subadditivity (b) in the definition of formal complexity measures of boolean functions.
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The connection between rectangle measures can be best seen [COMMENT: pH. On the

contrary, I would prefer not to get into this. Why dont we speak directly about formula size? SK: I still

think it is better to leave this part here. Of course, we can relate formula size to the number of rectangles

directly (as Rychkov did), but still. Note that Razborov also describes this connection in his paper.] in the
framework of communication games, as introduced by Karchmer and Wigderson [5]: having a
rectangle R, one of the players decomposes R either row-wise or column-wise, and the players
continue the game on one of the subrectangles R1 or R2. Let Γ(R) denote the minimal number
of leaves in a tree like communication protocol for a rectangle R in a Karchmer-Wigderson
game. Then L(f) = Γ(Sf ) [5]. The measure Γ(R) itself is a rectangle measure. Moreover, by
induction on Γ(R), it can be easily shown that Γ(R) ≥ µ(R) holds for any measure µ. Hence,
subadditive rectangle measures can reach L(f) as well. The advantage, however, is that now
we have a larger class of measures, and the subadditivity condition for rectangle measures is
weaker requirement than that for boolean functions.

We keep this important observation as

Proposition 2.1. For every boolean function f and every subadditive rectangle measure µ
we have that L(f) = Γ(Sf ) ≥ µ(Sf ).

The two concepts—rectangle measures and formal complexity measures—are related as
follows.

Observation 2.2. If m(f) is a formal complexity measure of boolean functions, then the rect-
angle function µ(R), defined by µ(R) := min{m(f) | f separates R}, is a rectangle measure.

2.2 Subadditive measures and the partition number

A more general condition than (ii) has also been considered:

(iii) Strong subadditivity : if µ(R) ≤
∑m

i=1 µ(Mi), for every rectangle R and every its partition
into disjoint union of monochromatic rectangles Mi ⊆ R.

In order to obtain a lower bound on L(f) it suffices to require this property only for R = Sf .
Note, however, that rectangle measures, satisfying the strong subadditivity condition (iii)
may not achieve L(f), because they lower bound a different quantity, namely, the partition
number of rectangles defined by:

D(R) = min{k | R can be decomposed into k disjoint monochromatic rectangles} .

This measure was implicitly used already in Khrapchenko’s proof [6]. Since D(R) is strongly
subadditive, it is also subadditive. Hence, L(f) ≥ D(Sf ) for any boolean function f . But in
the opposite direction we only know log2 L(f) ≤ (log2 D(Sf ))2 [1]. Still, the latter inequality
implies that boolean functions f in n variables such that D(Sf ) ≥ 2(1−o(1))

√
n exist. Hence, in

principle, the partition number D(S) can also achieve super-polynomial lower bounds on the
formula size. The problem how large the gap L(f)/D(Sf ) can actually be remains still open.

The measure D(R) has several nice properties.

Proposition 2.3. D(R) is the largest strongly subadditive measure, i.e., D(R) is strongly
subadditive and for every strongly subadditive measure µ, µ(R) ≤ D(R) for all rectangles R.
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We leave the proof to the reader as an easy exercise. Although D(R) is the largest strongly
subadditive measure, it makes sense to study other strongly subadditive measures, because it
is very difficult to compute D(R) for specific functions.

Other nice properties of D(R) include the following: it is defined independently of a
particular boolean function, can be naturally extended from rectangles to all subsets X ⊆ S,
by

D(X) = min{K | X can be covered by K disjoint monochromatic rectangles} ,

and is monotonic with respect to set-inclusion.[COMMENT: SK: Is it really important for us that

it can be extended in this way?] A consequence for lower bounds based on measures is that one
can use measures with all these nice properties and still obtain exponential lower bounds.

However, we cannot stretch the good properties too far. In particular, it is essential that
in the subadditivity conditions the rectangles in the partitions must be pairwise disjoint.
Would we not require them to be disjoint, then µ(S) ≤ 2n would hold for any n-dimensional
rectangle S, just because each such rectangle can be covered by 2n canonical monochromatic
rectangles. In the next section we will show another property, the convexity, that limits the
values of measures satisfying it.

3 Convex measures and the fractional partition number

For a rectangle R, let χR be its indicator function, that is, χR(e) = 1 for e ∈ R, and χR(e) = 0
for e 6∈ R.

Let R and R1, . . . , Rm be rectangles and r1, . . . , rm weights from [0, 1] such that

χR =
m∑

i=1

ri · χRi , (1)

Then we say that the rectangles R1, . . . , Rm with the weights r1, . . . , rm are a fractional
partition of the rectangle R. This is equivalent to the condition that for every edge e ∈ R,∑

e∈Ri

ri = 1 .

Notice that if all ri ∈ {0, 1} then a fractional partition is a partition. Instead of (1) we shall
use the following simpler notation

R =
∑

i

riRi .

In this paper we are mainly interested in the following strengthening of the strong subad-
ditivity condition (iii) for rectangle measures µ:

(iv) Convexity : A rectangle function µ is convex if, for every rectangle R and every fractional
partition R =

∑
i riRi

µ(R) ≤
m∑

i=1

ri · µ(Ri) . (2)
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Karchmer, Kushilevitz and Nisan in [4] introduced a modification of the partition number
which they called deterministic fractional cover number. In this paper we will call it fractional
partition number and denote it by D∗(R). To call it ‘cover number’ would be misleading,
because it is important that one uses partitions, not general coverings. This measure is
defined by:

D∗(R) = min
∑

i

ri ,

such that R has a fractional partition with monochromatic rectangles M1, . . . ,Mm and weights
r1, . . . , rm.

The following is a fractional version of Proposition 2.3

Proposition 3.1. D∗ is the largest convex measure, i.e., D∗ is convex and for every convex
measure µ, µ(R) ≤ D∗(R) for all rectangles R.

Proof. 1. First we will show that D∗ is convex. Let R =
∑

j∈J rjRj be a fractional partition
of R and, for every j, let Rj =

∑
i∈Ij

sijMij be a fractional partition of Rj such that Mij are
monochromatic and D∗(Rj) =

∑
i sij (such fractional partitions exist by definition). Then,

clearly, R =
∑

ij rjsijMij is a fractional partition of R into monochromatic rectangles. Hence

D∗(R) ≤
∑
ij

rjsij =
∑

j

rjD
∗(Rj).

2. Now we will show the second part. Let µ be a convex measure. Let R =
∑

i riMi be
a fractional partition of R into monochromatic rectangles such that D∗(R) =

∑
i ri. Using

convexity and normality of µ we get

µ(R) ≤
∑

i

riµ(Mi) ≤
∑

i

ri = D∗(R).

Theorem 3.2 ([4]). D∗ ≤ 4n2.

Consequently every convex measure is bounded by 4n2. For the sake of completeness we
will reproduce their proof. By more careful computation we will get the constant 9

8 instead
of 4. We will state and prove the bound for all convex measures.

Following Karchmer [3], and Karchmer, Kushilevitz and Nisan [4], associate with each
subset I ⊆ [n] = {1, . . . , n} the following two parity rectangles.

PI,ε = {x ∈ {0, 1}n | ⊕i∈I xi = ε} × {y ∈ {0, 1}n | ⊕i∈I yi = 1− ε} , ε = 0, 1 .

Hence, monochromatic rectangle correspond to the case when |I| = 1. There are exactly 2n+1

parity rectangles (including the empty one).

Lemma 3.3. Every edge (x, y) ∈ {0, 1}n × {0, 1}n s.t. x 6= y belongs to exactly 2n−1 parity
rectangles.
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Proof. For I ⊆ [n], let vI ∈ {0, 1}n be its incidence vector. Let e = (x, y) ∈ S. Since x 6= y,
the vector x ⊕ y is not a zero vector. Since each nonzero vector is orthogonal over GF (2)
to exactly half of the vectors in {0, 1}n, this implies that precisely 2n−1 of the vectors vI are
non-orthogonal to x ⊕ y. This means that each edge e belongs to precisely 2n−1 of the sets
PI = PI,0 ∪ PI,1. Since PI,0 ∩ PI,1 = ∅, we are done.

Lemma 3.4. Let µ be a rectangle measure defined on S. Then for every I ⊆ [n], ε = 0, 1,
we have µ(PI,ε ∩ S) ≤ 9

8 |I|
2.

Proof. A parity rectangle PI,ε can be viewed as a rectangle corresponding to the parity func-
tion in |I| variables, or its negation. If n = 2l + k then parity can be computed by a formula
of size c(n) = 2l(2l + 3k), see [9]. This gives

c(n) ≤ 9
8
n2.

To see that, observe that the function y(y+3x)
(y+x)2

, x ∈ (0, y) reaches maximum at the point x = y
3 ,

and it has value y(y+3 y
3
)

(y+ y
3
)2

= 9
8 . Hence µ(S∩PI,ε) ≤ 9

8 |I|
2, since µ is a lower bound to the formula

size.

Theorem 3.5. If µ is a convex rectangle measure then, for every n-dimensional rectangle S,

µ(S) ≤ 9
8
n2(1 + o(1)) .

Proof. Let S be a rectangle and µ a convex measure. For i = 1, . . . n, ε = 0, 1, let

Ri,ε := {PI,ε ∩ S | I ⊆ [n], |I| = i}

and let Rpar :=
⋃

i=1,...,n,ε=0,1Ri,ε. For technical reasons, we shall understand Rpar as a
multiset, elements ofRpar corresponding to different parity rectangles are considered different.
Under this provision, Lemma 3.3 implies that every edge in S is contained in exactly 2n−1

elements of Rpar. Hence Rpar form a fractional partition of S with each rectangle R ∈ Rpar

of weight rR = 2−(n−1).
By the previous lemma, we know that for every R ∈ Ri,ε, µ(R) ≤ cpi

2 , where cp = 9
8 .

For every i = 1, . . . n, ε = 0, 1, |Ri,ε| =
(
n
i

)
.

The convexity of µ implies that [COMMENT: pH. An additional factor of 2 comes from ε = 0, 1.

SK: Yes, I agree that 2 was missing in the previous version.]

µ(S) ≤
∑

R∈Rpar

rR · µ(R) = 2−(n−1)
∑

R∈Rpar

µ(R) = 2−(n−1)
∑
i,ε

∑
R∈Ri,ε

µ(R)

≤ 2−(n−1)
n∑

i=1

∑
ε=0,1

(
n

i

)
cpi

2 = 2−(n−1)2cp

n∑
i=1

(
n

i

)
i2 = 2−(n−2)cp

n∑
i=1

(
n

i

)
i2 .
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The identity
(
n
k

)
· k = n ·

(
n−1
k−1

)
gives [COMMENT: The 2 disappears here.]

n∑
i=1

(
n

i

)
i2 = n ·

n∑
i=1

(
n− 1
i− 1

)
i = n ·

n∑
i=1

(
n− 1
i− 1

)
+ n ·

n∑
i=1

(
n− 1
i− 1

)
(i− 1)

= n ·
n∑

i=1

(
n− 1
i− 1

)
+ n ·

n∑
i=2

(
n− 1
i− 1

)
(i− 1)

= n ·
n∑

i=1

(
n− 1
i− 1

)
+ n(n− 1) ·

n∑
i=2

(
n− 2
i− 2

)
= n2n−1 + n(n− 1)2n−2 = (n2 + n)2n−2 .

Hence, µ(S) ≤ 2−(n−2)cp(n2 + n)2n−2 = cp(n2 + n).

4 General construction of convex measures

In his seminal paper [6], Khrapchenko proved a general lower bound on formula size complexity
of the form

L(f) ≥ |{(x, y) ∈ R | dist(x, y) = 1}|2

|R|
,

where R is a subrectangle of Sf . Paterson interpreted this formula as a formal complexity
measure and reproved Khrapchenko’s n2 lower bound on the parity function in this formalism.
We will call the measure

κ(R) =
|R ∩ Y |2

|R|
, (3)

where Y = {(x, y) | dist(x, y) = 1} is the set of all vector pairs of Hamming distance 1, the
Khrapchenko measure. One can also interpret Rychkov’s lower bounds on error correcting
codes as lower bounds based on the Khrapchenko measure. There one uses pairs of distance
d + 1 instead of Y for codes of the minimal distance 2d + 1.[COMMENT: SK: it was pairs of

distance d for codes of the minimal distance d > 1.]
We can interpret Khrapchenko’s lower bound as follows. One starts with rectangle func-

tions s1(R), s2(R), which themselves do not give better than linear lower bounds. We define
a new rectangle function µ(R) = F (s1(R), s2(R)) by means of a real function F , and it is
this measure that allows us to prove quadratic lower bounds. In this scenario, subadditivity
is guaranteed by properties of F . This suggests the possibility of obtaining a new rectangle
measure from some given set of rectangle measures by means of a function F : Rm → R in
the hope that the new measure will be more apt to prove lower bounds. In this section, we
observe that if F has nice properties then F will produce a subadditve measure, but if F has
too nice properties, it will produce a convex measure.

Notice that the Khrapchenko measure has the form

µ(R) = s(R) · ϕ
(

w(R)
s(R)

)
with w(R) = |R ∩ Y |, s(R) = |R| and ϕ(x) = x2. Subadditivity of µ stems from the fact that
the used real function ϕ is convex. As will be stated in Corollary 4.3, convexity of ϕ implies
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that µ is a convex rectangle measure (if w(R), s(R) satisfy certain conditions), and hence µ
cannot give better than quadratic lower bounds.

We will need another condition (stronger than convexity):

(vi) Additivity : α(R) = α(R1) + α(R2), for all rectangles R,R1, R2 ∈ R such that R is the
disjoint union of R1 and R2.

Observe that, for every additive rectangle function α,

α(R) =
∑
e∈R

α(e). (4)

Thus an additive rectangle functions is defined by a matrix on the ambient rectangle S.
Examples of such rectangle functions are |R| and |R ∩ Y | that appear in the definition of the
Khrapchenko measure. The convexity of additive measures is a consequence of the following
stronger property:

α(R) =
m∑

i=1

ri · α(Ri) ,

for every fractional partition R =
∑m

i=1 riRi, which is an immediate consequence of (4).
The fractional partition number D∗ was introduced in [4] in order to apply the linear

programing duality for obtaining lower bounds on communication complexity of relations,
in particular for proving lower bounds on formula size complexity. Applying the duality for
linear programs, one can write this measure as

D∗(S) = max
w

∑
e∈S

w(e),

where the maximum is over all functions w : S → R satisfying the constraint
∑

e∈M w(e) ≤ 1
for all monochromatic rectangles M . Hence, in order to prove a lower bound D∗(S) ≥ t it
is enough to find at least one weight function w : S → R such that

∑
e∈S w(e) ≥ t, and the

weight of each monochromatic rectangle does not exceed 1. In our terminology this means to
find an additive measure w such that w(S) ≥ t.

In other words, whenever a lower bound can be proved using a convex measure, it can be
proved using an additive measure. However, in practice it may be easier to work with convex
measures rather than additive ones. Karchmer, Kushilevitz, and Nisan found a surprisingly
new proof of Khrapchenko’s n2 lower bound based on an additive measure. Their measure
uses positive and negative values. As we will see, it is necessary to use negative values in
order to obtain superlinear lower bounds. (This implies that D∗ is not additive.)

First, let us note two simple closure properties of subadditive and convex rectangle func-
tions.

Proposition 4.1. 1. A non-negative linear combination of subadditive resp. of convex
rectangle functions is a subadditive resp. convex rectangle function.

2. If µz, z ∈ J is a set of subadditive resp. convex rectangle functions then maxz∈J µz is a
subadditive resp. convex rectangle function.
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Proof. Immediate. (1. follows from the fact that
∑

i aixi is a non-decreasing subnorms and
Proposition 4.2.)

Let F (x) be a real function in m variables. We shall think of m-tuples of real numbers
as vectors in Rm. We assume that the domain of F is closed w.r. to addition of vectors, and
multiplication by a positive real number. We say that F is subadditive, if

F (x1 + x2) ≤ F (x1) + F (x2) . (5)

We say that it is a subnorm, if, in addition, for every a > 0

F (a · x) ≤ aF (x) . (6)

Proposition 4.2. Let a rectangle function µ be defined as follows:

µ(R) = F (w1(R), . . . , wp(R), s1(R), . . . , sq(R)) , (7)

where F is subadditive and si(R) are additive rectangle functions.[ COMMENT: SK: I would

say that this proposition is too heavy at the moment.]

1. If the weights wi(R) are additive, then µ is subadditive. If F (x1 . . . xp, y) is nondecreas-
ing in xi, i = 1, . . . , p and wi(R) are subadditive then µ is subadditive.

2. If F is a subnorm and wi(R) are additive then µ is convex. If F is nondecreasing in
xi, i = 1, . . . , p and wi(R) are convex then µ is convex.

Proof. We prove part 2., part 1. is easier. First note that if F is a subnorm and ai are
non-negative then

F (
∑

aixi) ≤
∑

aiF (xi) , (8)

where the sum is over i s.t. ai is nonzero. To prove the first claim of part 2., assume that
both wi(R) and si(R) are additive, and let

∑
i=1,...,m riRi be a fractional partition of R.

Set si
j = si(Rj) and wi

j = wi(Rj). By additivity, we have that wi(R) =
∑

j rj · wi
j and

si(R) =
∑

j rj · si
j . Hence

µ(R) = F (w1(R), . . . , wp(R), s1(R), . . . , sq(R)) (9)

= F

∑
j

rj · w1
j , . . . ,

∑
j

rj · wp
j ,

∑
j

rj · s1
j , . . . ,

∑
j

rj · sq
j


≤

∑
j

rjF (w1
j , . . . , w

p
j , s

1
j , . . . , s

q
j) (10)

=
∑

j

rjµ(Rj) .

If F is nondecreasing and w(R) is convex, then we can replace the equality in (9) by inequality,
and the desired inequality µ(R) ≤

∑
i ri · µ(Ri) still holds.
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Note that subadditivity of F guarantees subadditivity of µ, and hence µ can be (after
appropriate normalisation) used as a rectangle measure for proving lower bounds. But if F
is also a subnorm, µ will be convex and the lower bounds given by µ cannot exceed O(n2).
However, there are many subadditive real functions that are not subnorms. It is not clear
whether the function F can be chosen in such a way that µ will give better than quadratic
lower bounds. [COMMENT: pH. Note that we can replace the definition of subnorm by a single

weaker condition F (
∑

i rixi) ≤ (
∑

i ri)maxi F (xi), and the O(n2) upper bound still applies. ]

Corollary 4.3. Let a rectangle function µ be defined as follows:

µ(R) = s(R) · ϕ
(

w(R)
s(R)

)
, (11)

where ϕ : R → R is a convex real function and s(R) is additive and positive rectangle function.

1. If w(R) is additive, then µ is convex.

2. If ϕ is nondecreasing and w(R) is subadditive then µ is subadditive.

3. If ϕ is nondecreasing and w(R) is convex then µ is convex.

Proof. It is sufficient to prove that the function F (x, y) = yφ(x
y ) is a subnorm. The condition

F (ax, ay) ≤ aF (x, y) is immediate. (This is in fact equality and F is a norm.) Subadditivity
of F is an application of Jensen’s inequality.

ϕ

(
y1z1 + y2z2

y1 + y2

)
≤ y1ϕ(z1) + y2ϕ(z2)

y1 + y2
. (12)

Assume y1, y2 > 0. Setting z1 = x1
y1

, z2 = x2
y2

, we obtain that

ϕ(
x1 + x2

y1 + y2
) ≤

y1ϕ(x1
y1

) + y2ϕ(x2
y2

)

y1 + y2
.

Hence

(y1 + y2) · ϕ
(

x1 + x2

y1 + y2

)
≤ y1 · ϕ

(
x1

y1

)
+ y2 · ϕ

(
x2

y2

)
.

5 Polynomial rectangle measures

An important special case of measures considered above are rectangle measures µ of the form
(7) based on convex function of the form ϕ(x) = xk, k ≥ 1. That is,

µ(R) =
w(R)k

s(R)k−1
,

where s(R) is a positive additive rectangle function and w(R) is subadditive. We call them
polynomial measures of degree k.

Since ϕ = xk, k ≥ 1 is a nondecreasing convex function, Theorem 4.3 implies that poly-
nomial measures are subadditive measures. Moreover, if w(R) is convex then µ(R) is also
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convex. Therefore, by Theorem 3.5, polynomial measures with convex w(R) can yield at
most quadratic lower bounds.

On the other hand, every subadditive measure is a polynomial measure of degree one. This
shows that polynomial measures can in principle give exponential lower bounds. Similarly,
polynomial measures can attain exponential values for every 1 ≤ k < 2. [COMMENT: SK:

At this point, this is not obvious. Moreover, this is repeated (again, without explanation) in Remark . I

would suggest to eliminate this paragraph and to add the corresponding explanation in the Remark.]
Using w(R) additive, quadratic lower bounds were proved with k = 2, by Khrapchenko

[6], and with k = 1 by Karchmer, Kushilevitz and Nisan [4]. [COMMENT: ”We shall show

that, in a sense, the exponents k = 1 and k = 2 are the best possible.” If we use w non-negative additive

then k = 2 is best possible. If w can be negative, we do not have any statement for k < 2. pH]

5.1 Small degree: 1 ≤ k < 2 and additive weight

Note that the normalization condition µ(M) ≤ 1, for a monotone rectangle M implies that

w(M) ≤ (s(M))
k−1

k (13)

Since every n-dimensional rectangle can be (non-disjointly) covered by at most 2n rectangles,
we obtain that any polynomial measure of degree k cannot give lower bounds larger than
O(nk), as long as the used weight function w(R) is additive non-negative. In what follows, let
Sn stand for an arbitrary n-dimensional rectangle.

Proposition 5.1. Let µ be a polynomial measure of degree k ≥ 1. If the used weight function
w(R) is additive and non-negative, then µ(S) ≤ (2n)k.

Proof. Using (13) we have

w(S) ≤
∑
i,ε

w(Mi,ε) ≤
∑
i,ε

s(Mi,ε)
k−1

k ≤ 2ns(S)
k−1

k .

Dividing by s(S)
k−1

k and raising to the power k we get the inequality.

Hence, if the used weight function w(R) is non-negative, then no polynomial measure of
degree k < 2 can even reach the n2 lower bound.

Remark 5.2. The assumption that w(R) is non-negative cannot be omitted. An additive
(k = 1) measure is used in [4] to prove a quadratic lower bound. The assumption that w() is
additive also cannot be omitted. Every subadditive measure is a polynomial measure of degree
k = 1. Hence polynomial measures of degree k = 1 can yield exponential lower bounds. The
same applies to any 1 ≤ k < 2. [ COMMENT: SK: I would suggest here to explain that one gets

a measure L(R)k/|R|k−1 in order to obtain an exponential lower bound.]
There exist polynomial measures with 1 ≤ k ≤ 2 and w positive additive proving Ω(nk)

lower bounds: consider

µ(R) = c
w(R)k

|R|k−1
,

where w(R) is the number of pairs (x, y) ∈ R of Hamming distance 1, and c is a constant
which guarantees the normalization condition. [ COMMENT: SK: Why mot to give the exact

value of c here? (c = 2−(2−k)(n−1)) I think that we should also mention that this measure is used for

parity.]
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5.2 Large degree: k ≥ 2 and subadditive weight

We now show that every polynomial measure of degree k > 2, with w(R) subadditive and
s(R) = |R| can give at most linear lower bounds.

Theorem 5.3. Let µ be a rectangle measure of the form

µ(R) =
w(R)k

|R|k−1
,

where w(R) is a subadditive rectangle function.

1. If k = 2 then µ(S) ≤ n2.

2. If k > 2 then µ(S) = O(n).

We first prove the following lemma:

Lemma 5.4. Let a ≥ 1 and α ∈ [0, 1), and let

ha(x, y) = (xy)α + ((1− x)(1− y))α + a(x(1− y))α + a((1− x)y)α .

Define ξ(a) := maxx,y∈[0,1] ha(x, y). Then

1. ξ(a) = max
{

a(1 + a
1

α−1 )1−α, 21−2α(1 + a)
}

.

2. If α = 1
2 then for every d ≥ 1

d + 1 ≥ ξ(d) . (14)

3. If α > 1
2 then there exists a constant c s.t for every d ≥ 1,

c · (d + 1)1−α ≥ ξ(c · d1−α) . (15)

Proof. 1. Let a ≥ 1 be given. The function h(x, y) := ha(x, y) is continuous and hence it
attains maximum on the square P = [0, 1] × [0, 1]. The maximum can be reached either in
the interior of P , or on the boundary. The boundary itself consists of the corners and the
sides of P . We consider those cases separately.

The corners. We obtain

h(0, 0) = h(1, 1) = 1, h(0, 1) = h(1, 0) = a.

The sides. Let y := 1 and let us determine critical points of h(x, 1) on (0, 1). The
equation ∂h(x,1)

∂x = 0 gives
xα−1 − a(1− x)α−1 = 0.

Hence the only critical point is at

x =
a

1
α−1

1 + a
1

α−1

,

and the value of h(x) is
a(1 + a

1
α−1 )1−α.
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The other cases are symmetric.
The interior. Since h(x, y) = h(1−x, 1− y), h has a critical point at x, y = 1/2, 1/2. The

value of h(x, y) at this point is
21−2α(1 + a).

There are no other critical points, since the x-partial derivative is strictly monotone in x and
hence it can have at most one zero.

Altogether we get

max
P

h(x, y) = max
{

1, a, a(1 + a
1

α−1 )1−α, 21−2α(1 + a)
}

. (16)

Since a ≥ 1, this gives maxP h(x, y) = max
{

a(1 + a
1

α−1 )1−α, 21−2α(1 + a)
}

.

2. Let α = 1
2 . Then ξ(a) = max

{
a(1 + a−2)

1
2 , (1 + a)

}
. and we must show that

d + 1 ≥ max
{

d(1 + d−2)
1
2 , 1 + d

}
,

which is immediate.
3. Let α > 1

2 . We must find c ≥ 1 s.t.

c · (d + 1)1−α ≥ c · d1−α(1 + (c · d1−α)
1

α−1 )1−α ,

c · (d + 1)1−α ≥ 21−2α(1 + c · d1−α) .

The first inequality is satisfied by any c ≥ 1. Since 1− α > 0, it is equivalent to

d + 1 ≥ d · (1 + (c · d1−α)
1

α−1 )

and hence to d + 1 ≥ d + c
1

α−1 resp. to c
1

1−α ≥ 1. The second inequality will be satisfied, if

c · ((d + 1)1−α − 21−2α · d1−α) ≥ 21−2α.

We have
c · ((d + 1)1−α − 21−2α · d1−α) ≥ c · d1−α(1− 21−2α)

α > 1
2 implies 21−2α < 1, and it is sufficient to set

c =
21−2α

1− 21−2α
=

1
22α−1 − 1

.

If α ∈ (1
2 , 1) then c > 1.

Proof of Proposition 5.3. Let S = S0 × S1. Since µ is normalized, we have that

w(M) ≤ |M |1−1/k (17)

for every monochromatic rectangle M . Let α := 1−1/k. For k ≤ 2, α is in the interval (1
2 , 1).

We will prove the following claim:

Claim 5.5. 1. If k = 2 then w(S) ≤ n · |S|
1
2 .
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2. If k > 2 then w(S) ≤ c|S|αn1−α, where c is the constant from (15).

Note that the proposition is a direct consequence of this claim. In the case k = 2

µ(S) =
w(S)2

|S|
≤ (|S|

1
2 n)2

|S|
= n2 ,

and in the case k > 2

µ(S) =
w(S)k

|S|k−1
≤ (c · |S|αn1−α))k

|S|k−1
= ckn = O(n) .

It remains to prove the claim. Let dim(R) = |{i | ∃(x, y) ∈ R : xi 6= yi}|, and let

w(m, d) = max{w(R) | dim(R) ≤ d and |R| = m} .

Given a rectangle R with dim(R) = d + 1, we can split it into four disjoint rectangles, two
monochromatic ones and two remaining ones of a smaller dimension. More exactly, if R is
an a × b rectangle then, for some x, y ∈ [0, 1], the monochromatic rectangles will be of sizes
ax× by and a(1− x)× b(1− y), and the two remaining rectangles of size ax× (1− y)b and
a(1− x)× by. By (17), we have that

w(m, 1) ≤ mα .

Since w(R) is subadditive, we have a recurrent inequality

w(m, d + 1) ≤ sup
x,y∈[0,1]

((xym)α + ((1− x)(1− y)m)α + w(x(1− y)m, d) + w((1− x)ym, d)) .

We want to upper bound w(m, d). For this, it is sufficient to find a function g which satisfies
g(m, 1) ≥ mα and

g(m, d + 1) ≥ sup
x,y∈[0,1]

((xym)α + ((1− x)(1− y)m)α + g(x(1− y)m, d) + g((1− x)ym, d)) .

We look for a solution of the form

g(m, d) = mα · g(d) .

Hence g(d) is to satisfy the inequalities g(1) ≥ 1 and

g(d + 1) ≥ sup
x,y∈[0,1]

((xy)α + ((1− x)(1− y))α + g(d)(x(1− y))α + g(d)((1− x)y)α) .

Using the definition from the previous lemma, it is sufficient to have g(d) ≥ 1 and

g(d + 1) ≥ ξ(g(d)).

The lemma then asserts that for α = 1
2 (i.e., k = 2) g(d) = d is a solution, and for α ≥ 1

2 (i.e.,
k > 2), g(d) = c · d1−α is a solution. This completes the proof of the claim.
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6 More examples of measures

In this section we shall survey rectangle measures and show that several of the proposed
measures are convex. Most rectangle measures are based on some matrix defined on S, i.e.,
a mapping A : S → F , for some field. The idea of studying matrix parameters for proving
lower bounds on formula size complexity is due to Razborov [11].

Matrix rank

[COMMENT: pH. I removed the alternative proof of parity lower bound. If you want, add it back, but

with a hint why is it interesting.]
Razborov used the rank of matrices to prove lower bounds on monotone formula size. We

can view his approach as defining the subadditive measure

µ(R) = max
A6=0

rank(AR)
maxM∈M rank(AM )

, (18)

where A : S → R is a matrix corresponding to the ambient square and AR its restriction to
the square R. [COMMENT: SK: Note that there is also some ambiguity here. Do we mean M(S)
or M(R) here? It seems that both are possible. I always kept in mind the first one.] Subadditivity of µ
is a consequence of subadditivity of rank (and Proposition 4.1). Unfortunately, as Razborov
proved in [12], this measure cannot yield nonlinear lower bounds in the full de Morgan basis.
Specifically, he proved that the corresponding formal complexity measure defined on boolean
functions satisfies the condition of submodularity

m(g ∧ h) + m(g ∨ h) ≤ m(g) + m(h)

and that all measures satisfying this condition are bounded by a linear function in n.
However, rank is not a convex complexity measure, as we show in the following:

Proposition 6.1. Let µ(R) be defined as in (18). Then µ is not a convex rectangle measure.

Proof. [COMMENT: pH. I do not find this proof informative. If you think the argument is correct,

maybe we can delete it and leave it as an observation?] Let f : {0, 1}3 → {0, 1} be the parity
function with n = 3 variables. S = Sf is a 4 × 4 rectangle. It is covered by 6 canonical
rectangles Mi,ε, i = 1, 2, 3, ε = 0, 1.

Let us first show that µ(S) = 4. It is sufficient to find a 4×4 matrix A s.t. rank(A)
maxM∈M rank(AM ) =

4. For σ ∈ {0, 1}3, let σ? ∈ {0, 1}3 be defined by σ?
i = 1−σi+1, where i+1 is addition modulo

three. Let Aσ,µ = 1, if µ = σ? and Aσ,µ = 0 otherwise. Since the map σ → σ? is a bijection
between f−1(0) and f−1(1), A is a permutation matrix and hence rank(A) = 4. Let us show
that for every monochromatic rectangle M , rank(AM ) ≤ 1. Without loss of generality assume
that M ⊆ M1,ε with ε = 0, 1. Assume that 〈σ, σ?〉 ∈ M . Then σ1 = ε, σ?

1 = 1− ε. Definition
of σ? gives σ?

2 = 1− ε. Hence σ?
3 = 1, since the parity of σ? must be odd. Hence also σ2 = 0

and σ3 = ε. This shows that AM contains at most one non-zero entry and so rank(AM ) ≤ 1.
Let R be the set of canonical rectangles M, together with the rectangles of the form

S = {PI,ε ∩ S | |I| = 2, ε = 0, 1}. |M|, |S| = 6. Every edge in S is contained in exactly
three rectangles in R. If 〈σ1, σ2〉 ∈ S then σ1 and σ2 differ in an odd number of bits, i.e.,
one or three. In the latter case, the edge is contained in three rectangles from M, in the
former in one canonical rectangle and two from S. (Or apply Lemma 3.3, excluding S from
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the partition.) Hence R forms a fractional cover with weights 1/3. Since µ is normalised,
µ(R) ≤ 1 for R ∈M. Every R ∈ S is 2× 2 rectangle and hence µ(R) ≤ 2. This implies∑

R∈R

1
3
µ(R) ≤ 1

3
(

∑
R∈M

1 +
∑
R∈S

2) =
1
3
(6 + 2 · 6) = 3 < 4 .

[COMMENT: SK: As Pavel P. pointed out there is a miscalculation in the last line. It is not clear

to me whether it is possible to close this hole at the moment. But I think that we can use the proof from

a recent Stasys’ email. It works only for the original Razborov’s measure (without maximizing over all A),

but it is ok in my opinion.]

Matrix norms

Interesting measures can be obtained from matrix norms. A mapping A 7→ ‖A‖ is a matrix
norm if it satisfies all the properties of vector norms:

(i) ‖A‖ ≥ 0 with equality if and only if A = 0;

(ii) ‖rA‖ = |r| · ‖A‖ for all numbers r and all matrices A, and

(iii) ‖A + B‖ ≤ ‖A‖+ ‖B‖ for all matrices A and B.

In particular, every matrix norm is a subnorm in the sense of Section 4, and the rectangle
function µ(R) = ‖AR‖ is convex. By Corollary 4.3 3., if ϕ is a non-decreasing convex real
function and s is an additive rectangle function, then the rectangle function

µ(R) = s(R) · ϕ
(
‖AR‖
s(R)

)
, (19)

is also convex, and hence cannot give better than O(n2) lower bounds. We give examples of
several such measures that appear in literature.

Factorization norm. Factorization norm γ2(A), is mainly used in Banach space theory.
Linial and Shraibman used this norm to prove lower bounds on the quantum communication
complexity [10]. It has several equivalent definitions one of which is:

γ2(A) = max
‖B‖2=1

‖A ◦B‖2,

where A ◦B is the Hadamard (i.e. componentwise) product of matrices. Since γ2 is a norm,
any rectangle measure of the form (19) that uses γ2 can yield at most quadratic lower bounds.

Spectral norm. Recall that the spectral norm ‖A‖2 of a matrix A can be defined by

‖A‖2 = max
u,v 6=0

|utAv|
|u|2|v|2

.

Laplante, Lee and Szegedy [8] introduced the parameter of boolean functions f defined by

sumPI(f) := max
A6=0

‖AR‖2
2

maxM ‖AM‖2
2

.
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They showed that in spite of a rather nonconstructive definition, sumPI(f) is computable in
polynomial time from the truth table of f . They also proved that

sumPI(f) ≤ D(Sf ) and sumPI(f) ≤ n2.

This follows (with a worse constant 9
8) from the fact that sumPI is a convex rectangle function,

as we state in the following proposition: [COMMENT: pH. I did not see the merit of the original

proposition. On the other hand, I could not immediately see why sumPI is convex.]

Proposition 6.2. sumPI is a convex rectangle function and hence sumPI(S) = O(n2).

Proof. By Proposition 4.1, it suffices to show that µ1(R) = ‖AR‖2
2 is convex for any fixed

matrix A 6= 0, and by the definition of spectral norm, that

µ2(R) =
|ut

RARvR|2

|uR|22|vR|22
is convex for any fixed non-zero vectors u, v. Note that µ2 can be written as

µ2(R) = |uR|22|vR|22ϕ(
|ut

RARvR|
|uR|22|vR|22

) ,

with ϕ(x) = x2. The rectangle function |ut
RARvR| is convex, |uR|22|vR|22) additive, and we can

apply Corollary (4.3)

Laplante, Lee and Szegedy [8] also introduced another rectangle measure maxPI(f), also
based on the spectral norm of matrices, and showed that (sumPI(f))2 ≤ (maxPI(f)2) ≤ D(Sf ).
[COMMENT: I do not understand this long discussion. If maxPI is defined this way, it is useless for

proving lower bounds. Maybe the original definition is more informative? Besides, maxPI is not a rectangle

measure, and hence does not fit into our framework. Can the one who wrote this and read the paper do

something about it? pH]
Before considering maxPI(f), we shall explain a tricky way of normalizing rectangle func-

tions. Suppose we want to bound the partition number D(R) of a given rectangle R from
below. Let µ be a subadditive rectangle function (i.e., if {Mj}j∈J is a partition of R into
monochromatic rectangles, then µ(R) ≤

∑
j∈J µ(Mj)). In order to obtain a rectangle mea-

sure, we normalize µ by dividing it by maxM µ(M), where M ranges over all monochromatic
rectangles. If we have a set {µi}i∈I of subadditive rectangle functions, then there is a more
sophisticated way of normalization. Define a rectangle function µ by

µ(R) := min
{Mj}j∈J

max
i∈I

µi(R)
maxj µi(Mj)

,

where the minimum is over all partitions {Mj}j∈J of R into monochromatic rectangles. That
is, this time we normalize the measures {µi}i∈I not with respect to all monochromatic rect-
angles, but rather with respect to an apparently smaller set of such rectangles participating
in a given partition {Mj}j∈J of R. Notice the resulting rectangle function µ need not be nor-
malized or subadditive, yet it bounds the measure D(R) from below. Indeed, let {M∗

j }j∈J∗

be a partition of R into the least number of monochromatic rectangles. Then

µ(R) ≤ max
i

µi(R)
maxj µi(M∗

j )
≤ max

i

∑
j µi(M∗

j )
maxj µi(M∗

j )
≤ |J∗| = D(R).
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Now, maxPI(f) can be defined from the spectral norm applying such a normalization to
rectangle functions µA(R) = ‖A‖2:

maxPI(f) := min
{Mj}j∈J

max
A

‖ASf
‖2

maxj ‖AMj‖2
. (20)

(It should be noted that originally this function was defined in a completely different way.)
Laplante, Lee and Szegedy [8] proved an upper bound (maxPI(f))2 ≤ n2. We do not know if
a quadratic upper bound can be proved using convexity.

7 Open problems

Problem 7.1. Can we find a continuous function F : Rm → R s.t. F is subadditive and the
rectangle measure µ(R) = F (s1(R), . . . , sm(R)) can give better than quadratic lower bounds,
with si(R) additive? (cf. Section 4)

Problem 7.2. Is it possible to generalize the quadratic upper bound of Theorem 5.3 to mea-
sures of the form

µ(R) =
w(R)k

s(R)k−1
,

where s(R) is an additive positive measure?

We only have such upper bounds for w(R) subadditive and s(R) = |R|, or w(R) convex
and s(R) additive and positive. The problem is to find a common generalization of these two
cases.

Problem 7.3. Is it possible to prove superpolynomial lower bounds on monotone formulas
using convex measures?

This is equivalent to the problem of [4] whether the monotone fractional covering number
can be superpolynomial.

Problem 7.4. Prove the cubic lower bound of [2] using formal complexity measures.

Interpreting H̊astad’s proof in terms of measures may be a way to make progress in lower
bounds on the formula size complexity.
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