Kreisel's Conjecture with minimality principle

Pavel Hrubeš*

November 9, 2008

Abstract

We prove that Kreisel's Conjecture is true, if Peano arithmetic is axiomatised using minimality principle and axioms of identity (theory $\left.P A_{M}\right)$. The result is independent on the choice of language of $P A_{M}$. We also show that if infinitely many instances of $A(x)$ are provable in a bounded number of steps in $P A_{M}$ then there exists $k \in \omega$ s.t. $P A_{M} \vdash$ $\forall x>\bar{k} A(x)$. The results imply that $P A_{M}$ does not prove scheme of induction or identity schemes in a bounded number of steps.

1 Introduction.

Kreisel's Conjecture ($K C$) is the following assertion:
Let $A(x)$ be a formula of $P A$ with one free variable. Assume that there exists $c \in \omega$ s.t. for every $n A(\bar{n})$ is provable in $P A$ in c steps. Then $\forall x A(x)$ is provable in PA.
The peculiarity of $K C$ is that it is very sensitive to the way $P A$ is axiomatised ${ }^{1}$. One natural axiomatisation, which we shall denote $P A_{I}$, is to formalise $P A$ using the scheme of induction

$$
A(0) \wedge \forall x(A(x) \rightarrow A(S(x))) \rightarrow \forall x A(x),
$$

and to axiomatise " $=$ " by identity schemes of the form

$$
x=y \rightarrow t(x)=t(y),
$$

where t is an arbitrary term of $P A$. However, this does not yet settle the question. Multiplication and addition can be formalised either as binary function symbols or as ternary predicates. It was shown in [6] and [5] that $K C$ is true in the theory $P A_{I}(S,+)$, where S and + are present as function symbols, and - is axiomatised as a predicate. On the other hand, $K C$ is false in the theory

[^0]$P A_{I}(S,+, \cdot,-)$ where - is a function symbol for subtraction (see [3]). The most interesting case, where exactly the function symbols $S,+, \cdot$ are present, is an open problem.

In this paper, we consider a different axiomatisation of $P A$, the theory $P A_{M}$. Instead of the scheme of induction, we take minimality principle

$$
\exists x A(x) \rightarrow \exists x(A(x) \wedge \forall y<x \neg A(y))
$$

and identity will be finitely axiomatised using identity axioms of the form

$$
x=y \rightarrow S(x)=S(y)
$$

for the function symbols of $P A$. We will show that $K C$ is true in $P A_{M}$ (A weaker result in this direction was given in [2] for minimality principle restricted to Σ_{1}-formulas.) The good news is that the result does not depend on the choice of the language: we can add any finite number of function symbols and axioms to $P A_{M}$ and $K C$ is still valid (see Theorem 12).

The sensitivity of $K C$ to the axiomatisation of $P A$ diminishes its attractiveness as a mathematical problem. However, it reveals an interesting question of the role of functions symbols in proofs; and our inability to solve $K C$ reveals how little we understand that role. An intuition behind $K C$ is that if we prove a formula $A(\bar{n})$ for a large n in a small number of steps then the proof cannot take advantage of the specific structure of \bar{n}. This intuition is in general false. In $P A_{I}$ we can prove for every even natural number that it is even, in a bounded number of steps (see [7]), and if we are given a sufficiently rich term structure than we can prove that n is a square number, for n being a square number (see [3]). None of those phenomena occur in the theory $P A_{M}$. Hence $P A_{M}$ can teach us little about the theory $P A_{I} . P A_{M}$ is rather a natural example of a theory where our intuitions do work. In $P A_{M}, K C$ is true, we cannot prove that a number is even in a bounded number of steps, and more generally, if many instances of $A(x)$ are provable in a small number of steps then the set of numbers satisfying A contains an infinite interval.

2 The system $P A_{M}$

Predicate logic

As the system of predicate logic we take a system of propositional calculus plus the generalisation rule

$$
\frac{B \rightarrow A(x)}{B \rightarrow \forall x A(x)},
$$

and the substitution axiom

$$
\forall x A(x) \rightarrow A(t)
$$

B not containing free x and t being substitutible for x in $A(x)$. For simplicity, we assume that the only rule of propositional logic is modus ponens. Identity $=$ is not taken as a logical symbol.

Robinson's arithmetic and Identity axioms

Q will denote a particular finite axiomatisation of Robinson's arithmetic, a theory in the language $<,=, 0, S,+, \cdots$ As we do not work in predicate calculus with identity, the axiomatisation of $"="$ is a part of Q. The standard way is to formalise " $=$ " using identity axioms, i.e., to have axioms stating that $=$ is an equivalence, plus finitely many axioms of the form

$$
\forall x, y x=y \rightarrow S(x)=S(y)
$$

for the symbols of Q. However, the relevant fact is that Q is axiomatised in a finite way.

$P A_{M}$ and minimality principle

$P A_{M}$ is a theory in the language $<,=, 0, S,+, \because$ The axioms are the axioms of Q plus minimality principle

$$
\exists x A(x) \rightarrow \exists x(A(x) \wedge \forall y<x \neg A(y))
$$

where A is a formula of $P A_{M}$ and y is substitutible for x in $A(x)$.

Notation

Let t be term and a A a formula not containing function symbols. We write

$$
t=t\left(x_{1}, \ldots x_{n}\right), \quad \text { resp. } \quad A=A\left(x_{1}, \ldots x_{n}\right)
$$

if t resp. A contains exactly the variables $x_{1}, \ldots x_{n}$, and for every $i, j=1, \ldots n$, $i<j$ implies that there exists an occurrence of x_{i} which precedes all the occurrences of x_{j} in t resp. A, where t resp. A is understood as a string ordered from left to right.

For a formula A, we write

$$
A=A\left(t_{1}, \ldots t_{n}\right)
$$

if there exists a formula $B=B\left(x_{1}, \ldots x_{n}\right)$ which does not contain any function symbol, and

$$
A=B\left(x_{1} / t_{1}, \ldots x_{n} / t_{n}\right)
$$

In this case, we say that the terms $t_{1}, \ldots t_{n}$ occur in A. Note that the term $S S(0)$ occurs in the formula $x=S S(0)$, whereas $S(0)$ does not.

3 Characteristic set of equations of a proof

Let S be a proof in $P A_{M}$. We shall now define R_{S}, the characteristic set of equations of S. The idea is to treat terms in S as completely uninterpreted function symbols, and we ask what information are we given about the function symbols in the proof S.

For every term s which occurs in a formula in S, or it has been substituted somewhere in S, we introduce a new n-ary function symbol f_{s}, where n is the number of variables occurring in s. We shall say that f_{s} represents s in R_{S}. For a formula A in S let us add to R_{S} equations in the following manner:

1. if A is an axiom of propositional logic, or has been obtained be a generalisation rule, or by means of modus ponens, add nothing.
2. If A is a substitution axiom of the form

$$
\forall x B\left(s_{1}(x), \ldots s_{n}(x)\right) \rightarrow B\left(s_{1}(s), \ldots s_{n}(s)\right)
$$

where $s_{i}(x)=s_{i}\left(\overline{z_{i}}, x, \overline{z_{i}^{\prime}}\right), s=s(\bar{z})$ and $s_{i}(s)=s_{i}(s)\left(\overline{y_{i}}\right)$, we add to R_{S} the equations

$$
f_{s_{i}(s)}\left(\overline{y_{i}}\right)=f_{s_{i}}\left(\overline{z_{i}}, f_{s}(\bar{z}),{\overline{z_{i}}}^{\prime}\right), \quad \text { for } i=1, \ldots n
$$

3. if A is an axiom of Q containing the terms $s_{i}=s_{i}\left(\overline{x_{i}}\right), i=1, \ldots n$, we add to R_{S} the equations

$$
f_{s_{i}}\left(\overline{x_{i}}\right)=s_{i}\left(\overline{x_{i}}\right), \quad \text { for } i=1, \ldots n .
$$

4. If A is an instance of the minimality principle of the form

$$
\exists x B\left(s_{1}(x), \ldots s_{n}(x)\right) \rightarrow \exists x\left(B\left(s_{1}(x), \ldots s_{n}(x)\right) \wedge \forall_{y<x} \neg B\left(s_{1}(y), \ldots s_{n}(y)\right)\right)
$$

where $s_{i}(x)=s_{i}\left(\overline{z_{i}}, x,{\overline{z_{i}}}^{\prime}\right)$ and $s_{i}(y)=s_{i}\left(\overline{y_{i}}\right)$, we add the equations

$$
f_{s_{i}(y)}\left(\overline{y_{i}}\right)=f_{s_{i}(x)}\left(\overline{z_{i}}, y,{\overline{z_{i}^{\prime}}}^{\prime}\right), \quad \text { for } i=1, \ldots n .
$$

4 The theory $P A_{M}(\mathcal{F})$

Let \mathcal{F} be a list of function symbols not occurring in $P A_{M}$. The theory $P A_{M}(\mathcal{F})$ is obtained by adding the function symbols \mathcal{F} to the language of $P A_{M}$, and extending the minimality principle to the language of $P A_{M}(\mathcal{F})$. We do not add the identity axioms for the symbols in \mathcal{F}. We do not have axioms of the form

$$
x=y \rightarrow f(x)=f(y),
$$

for $f \in \mathcal{F}$.
Convention and definition. In this paper, we denote the terms of $P A_{M}(\mathcal{F})$ by t_{1}, t_{2}, \ldots, and the terms of $P A_{M}$ by $s_{1}, s_{2}, \ldots . \mathcal{T}$ will denote the set of closed terms of $P A_{M}(\mathcal{F})$. Let $\mathcal{T}_{0} \subset \mathcal{T}$ be the set of closed terms of the form $f\left(t_{1}, \ldots t_{n}\right)$, where $f \in \mathcal{F}$. The elements of \mathcal{T}_{0} will be denoted by $\lambda_{1}, \lambda_{2}, \ldots$

The key connection between $P A_{M}(\mathcal{F})$ and the characteristic set of equations is given in the following proposition. πR_{S} is an abbreviation for the conjunction of universal closures of the equations in R_{S}.

Proposition 1 Let S be a $P A_{M}$ proof of the formula $A\left(s_{1}, \ldots s_{n}\right)$, where $s_{i}=$ $s_{i}\left(\overline{x_{i}}\right), i=1, \ldots n$. Let R_{S} be the characteristic set of equations of S. Then

$$
P A_{M}(\mathcal{F}) \vdash \pi R_{S} \rightarrow A\left(f_{s_{1}}\left(\overline{x_{1}}\right), \ldots f_{s_{n}}\left(\overline{x_{n}}\right)\right)
$$

Proof. Let $S=A_{1}, \ldots A_{k}$. For a formula A_{i}, let A_{i}^{\star} be the formula obtained by replacing terms $s=s(\bar{x})$ occurring in A_{i} by $f_{s}(\bar{x})$. It is sufficient to prove that every A_{i}^{\star} is provable in $P A_{M}(\mathcal{F})$ from πR_{S}. First note the following:
Claim. Let A be a formula s.t. the variable x occurs in A only in the context $s(x)$. Let t_{1} and t_{2} be $P A_{M}(\mathcal{F})$ terms with the same variables \bar{y}. Then

$$
P A_{M}(\mathcal{F}) \vdash \forall \bar{y}\left(t_{1}=t_{2}\right) \rightarrow\left(A\left(x / t_{1}\right) \equiv A\left(x / t_{2}\right)\right)
$$

The Claim is proved easily by induction with respect to the complexity of A; for atomic formulas we use identity axioms for $P A_{M}$ function symbols.

Let us use the Claim to prove the proposition. If A_{i} is an axiom of propositional logic then A_{i}^{\star} is also an axiom of propositional logic. Similarly if A_{i} has been obtained by means of generalisation rule or modus ponens.

Assume that

$$
A_{i}=A_{i}\left(s_{1}(\bar{x}), \ldots s_{n}\left(\overline{x_{n}}\right)\right)
$$

is an axiom of Q. Then

$$
A_{i}^{\star}=A_{i}\left(f_{s_{1}}(\bar{x}), \ldots f_{s_{n}}\left(\overline{x_{n}}\right)\right) .
$$

By the condition (3) of the definition of R_{S} and the Claim we have

$$
P A_{M}(\mathcal{F}) \vdash \pi R_{S} \rightarrow A_{i}^{\star} \equiv A_{i} .
$$

Since A_{i} is an axiom of Robinson arithmetic, then it is an axiom of $P A_{M}(\mathcal{F})$, and $P A_{M}(\mathcal{F}) \vdash \pi R_{S} \rightarrow A_{i}^{\star}$.

Assume that A_{i} is an instance of a substitution axiom of the form

$$
\forall x B(x) \rightarrow B(s)
$$

where B is as in part (2) of the definition of R_{S}. Then $A_{i}^{\star}=\forall x B(x)^{\star} \rightarrow B(s)^{\star}$. $B(x)^{\star}$ is the formula

$$
B\left(f_{s_{1}}\left(\overline{z_{1}}, x,{\overline{z_{1}}}^{\prime}\right), \ldots f_{s_{n}}\left(\overline{z_{n}}, x,{\overline{z_{n}}}^{\prime}\right)\right)
$$

and $B(s)^{\star}$ is the formula

$$
B\left(f_{s_{1}(s)}\left(\overline{y_{1}}\right), \ldots f_{s_{n}(s)}\left(\overline{y_{n}}\right)\right)
$$

Since the term $s(\bar{z})$ is substitutable for x in $B(x)$ then $f_{s}(\bar{z})$ is substitutible for x in $B(x)^{\star}$. Hence

$$
\forall x B(x)^{\star} \rightarrow B\left(f_{s_{1}}\left(\overline{z_{1}}, f_{s}(\bar{z}),{\overline{z_{1}}}^{\prime}\right), \ldots f_{s_{n}}\left(\overline{z_{n}}, f_{s}(\bar{z}),{\overline{z_{n}}}^{\prime}\right)\right)
$$

is an instance of the substitution axiom. By the Claim and part (2) of the definition of R_{S}, the formula

$$
B\left(f_{s_{1}}\left(\overline{z_{1}}, f_{s}(\bar{z}), \bar{z}_{1}^{\prime}\right), \ldots f_{s_{n}}\left(\overline{z_{n}}, f_{s}(\bar{z}),{\overline{z_{n}}}^{\prime}\right)\right) \equiv B\left(f_{s_{1}(s)}\left(\overline{y_{1}}\right), \ldots f_{s_{n}(s)}\left(\overline{y_{n}}\right)\right)
$$

is provable in $P A_{M}(\mathcal{F})$ from πR_{S}. Therefore

$$
P A_{M}(\mathcal{F}) \vdash \pi R_{S} \rightarrow\left(\forall x B(x)^{\star} \rightarrow B(s)^{\star}\right) .
$$

If A_{i} is an instance of the minimality principle, the proof is similar. QED

5 Models of $P A_{M}(\mathcal{F})$

By means of Proposition 1 one can transform the question about boundedlength provability in $P A_{M}$ to that of provability in $P A_{M}(\mathcal{F})$. Fortunately, it is not difficult to construct models of $P A_{M}(\mathcal{F})$, which makes the latter question easier.

For a model M and a predicate symbol P, P_{M} denotes the relation defined by P in M. Similarly $[\alpha]_{M}$ is the function defined by α in M, for α being a function symbol.

Let \mathcal{N} be a model of $P A_{M}$. We would like to "expand" the model to a model of $P A_{M}(\mathcal{F})$. By a suitable coding, we can define the set of closed terms \mathcal{T} and the set $\mathcal{T}_{0} \subseteq \mathcal{T}$ inside \mathcal{N}. (I.e., \mathcal{T} and \mathcal{T}_{0} contain non-standard elements, if \mathcal{N} is non-standard.) We extend the Convention above to terms defined in \mathcal{N}. The universe of our new model will be the set of closed terms \mathcal{T}. Let σ be a function from \mathcal{T}_{0} to \mathcal{N} definable in \mathcal{N}. Inside \mathcal{N} we can (uniquely) extend it to the function $\sigma^{\star}: \mathcal{T} \rightarrow \mathcal{N}$ in the following manner:

1. $\sigma^{\star}(0):=[0]_{\mathcal{N}}, \sigma^{\star}(\lambda):=\sigma(\lambda)$, and
2. $\sigma^{\star}(S t):=[S]_{\mathcal{N}}\left(\sigma^{\star}(t)\right), \sigma^{\star}\left(t_{1}+t_{2}\right):=\sigma^{\star}\left(t_{1}\right)[+]_{\mathcal{N}} \sigma^{\star}\left(t_{2}\right)$, and $\sigma^{\star}\left(t_{1} \cdot t_{2}\right):=$ $\sigma^{\star}\left(t_{1}\right)[\cdot]_{\mathcal{N}} \sigma^{\star}\left(t_{2}\right)$.

We will use the function σ^{\star} to define the model \mathcal{N}_{σ}. On \mathcal{T} we define the identity $=\mathcal{N}_{\sigma}$ by the condition

$$
t_{1}=\mathcal{N}_{\sigma} t_{2} \equiv \sigma^{\star}\left(t_{1}\right)=\mathcal{N} \sigma^{\star}\left(t_{2}\right)
$$

$<_{\mathcal{N}_{\sigma}}$ is defined as

$$
t_{1}<_{\mathcal{N}_{\sigma}} t_{2} \equiv \sigma^{\star}\left(t_{1}\right)<_{\mathcal{N}} \sigma^{\star}\left(t_{2}\right)
$$

The function symbols will be interpreted in \mathcal{N}_{σ} as follows: if α is an n-ary function symbol of $P A_{M}(\mathcal{F})$ then $[\alpha]_{\mathcal{N}_{\sigma}}$ is the function which to $t_{1}, \ldots t_{n} \in \mathcal{T}$ assigns the term $\alpha\left(t_{1}, \ldots t_{n}\right) \in \mathcal{T}$.

The model \mathcal{N}_{σ} is the set \mathcal{T} with $=,<$ interpreted by the relations $=\mathcal{N}_{\sigma},<\mathcal{N}_{\sigma}$, and the $P A_{M}(\mathcal{F})$ function symbols interpreted as $[0]_{\mathcal{N}_{\sigma}},[S]_{\mathcal{N}_{\sigma}},[+]_{\mathcal{N}_{\sigma}},[\cdot]_{\mathcal{N}_{\sigma}}$, and $[f]_{\mathcal{N}_{\sigma}}, f \in \mathcal{F}$.

Proposition 2 Let \mathcal{N} be a model of $P A_{M}$. Let $\sigma: \mathcal{T}_{0} \rightarrow \mathcal{N}$ be definable in \mathcal{N}. Then \mathcal{N}_{σ} is a model of $P A_{M}(\mathcal{F})$. The $P A_{M}$ part of \mathcal{N}_{σ} is elementary equivalent to \mathcal{N}.

Proof . Axioms of Robinson arithmetic and the identity axioms for $P A_{M}$ function symbols are satisfied by the definition of \mathcal{N}_{σ}. Take, for example, the axiom

$$
\forall x, y \quad x+S(y)=S(x+y)
$$

In order to prove that it is true in \mathcal{N}_{σ}, we must show that for every $t_{1}, t_{2} \in \mathcal{T}$

$$
t_{1}[+]_{\mathcal{N}_{\sigma}}[S]_{\mathcal{N}_{\sigma}}\left(t_{2}\right)==_{\mathcal{N}_{\sigma}}[S]_{\mathcal{N}_{\sigma}}\left(t_{1}[+]_{\mathcal{N}_{\sigma}} t_{2}\right)
$$

From the definition of $[S]_{\mathcal{N}_{\sigma}}$ and $[+]_{\mathcal{N}_{\sigma}}$, this is equivalent to

$$
t_{1}+S\left(t_{2}\right)=\mathcal{N}_{\sigma} S\left(t_{1}+t_{2}\right)
$$

where the equivalence is between elements of \mathcal{T}. From the definition of $=\mathcal{N}_{\sigma}$, this is equivalent to

$$
\sigma^{\star}\left(t_{1}+S\left(t_{2}\right)\right)=\mathcal{N} \sigma^{\star}\left(S\left(t_{1}+t_{2}\right)\right) .
$$

From the definition of σ^{\star}, this is equivalent to

$$
\sigma^{\star}\left(t_{1}\right)[+]_{\mathcal{N}}[S]_{\mathcal{N}}\left(\sigma^{\star}\left(t_{2}\right)\right)=_{\mathcal{N}}[S]_{\mathcal{N}}\left(\sigma^{\star}\left(t_{1}\right)[+]_{\mathcal{N}} \sigma^{\star}\left(t_{2}\right)\right)
$$

which is true in \mathcal{N}, since \mathcal{N} is a model of Robinson arithmetic.
The minimality principle is satisfied, for it was satisfied in the original model and the construction is defined inside \mathcal{N}.
$P A_{M}$-part of \mathcal{N}_{σ} is isomorphic to \mathcal{N}, if \mathcal{N}_{σ} is factorised with respect to $=\mathcal{N}_{\sigma}$. QED

Identity axioms and the scheme of induction are not in general true in \mathcal{N}_{σ}. To show that the identity axioms are not true, take the sentence

$$
f(0)=f(0+0)
$$

The sentence can be false in a model of $P A_{M}(\mathcal{F})$, for we can choose the value of $\sigma(f(0))$ and $\sigma(f(0+0))$ in an arbitrary way. Hence also the formula

$$
x=0 \rightarrow f(x)=f(0)
$$

is not valid in models of $P A_{M}(\mathcal{F})$. On the other hand, the formula can be proved by induction with respect to x, and hence the scheme of induction is not valid in models of $P A_{M}(\mathcal{F})$.

6 Solving R_{S} in models of $P A_{M}(\mathcal{F})$

Let R be the characteristic set of equations of a $P A_{M}$ proof. Let \mathcal{N} be a model of $P A_{M}$. We shall now argue inside the model \mathcal{N}.

Let R^{\prime} be the set of equations obtained from R by taking all possible substitutions of terms from \mathcal{T} into R. More exactly, R^{\prime} contains the equations

$$
t\left(t_{1}, \ldots t_{n}\right)=t^{\prime}\left(t_{1}, \ldots t_{n}\right)
$$

for $t\left(x_{1}, \ldots x_{n}\right)=t^{\prime}\left(x_{1}, \ldots x_{n}\right) \in R$ and $t_{1}, \ldots t_{n} \in \mathcal{T}$.
The general form of an equations in R^{\prime} is

$$
\lambda=s\left(\overline{\lambda^{\prime}}\right)
$$

Inside \mathcal{N}, we define R^{\star} as the smallest set of equations with the following properties:

1. $R^{\prime} \subseteq R^{\star}$,
2. i) $\lambda=\lambda \in R^{\star}$ for every $\lambda \in \mathcal{T}_{0}$, ii) if $t_{1}=t_{2} \in R^{\star}$ then $t_{2}=t_{1} \in R^{\star}$, and iii) if $t_{1}=t_{2}, t_{2}=t_{3} \in R^{\star}$ then $t_{1}=t_{3} \in R^{\star}$
3. if $t=s\left(t_{1}, \ldots, t_{i}, t^{\prime}, t_{i+1} \ldots t_{n}\right) \in R^{\star}$ and $t^{\prime}=s^{\prime}\left(t_{1}^{\prime}, \ldots t_{m}^{\prime}\right) \in R^{\star}$ then

$$
t=s\left(t_{1}, \ldots, t_{i}, s^{\prime}\left(t_{1}^{\prime}, \ldots t_{m}^{\prime}\right), t_{i+1}, \ldots t_{n}\right) \in R^{\star}
$$

(we allow the case that s^{\prime} is a variable),
4. if $s\left(t_{1}, \ldots, t_{n}\right)=s\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right) \in R^{\star}$ then

$$
t_{1}=t_{1}^{\prime} \in R^{\star}, \ldots t_{n}=t_{n}^{\prime} \in R^{\star}
$$

The general form of the equations in R^{\star} is

$$
s(\bar{\lambda})=s^{\prime}\left(\overline{\lambda^{\prime}}\right)
$$

On \mathcal{T}_{0} we define the relations \sim and \prec as follows:

1. $\lambda_{1} \sim \lambda_{2}$ iff $\lambda_{1}=\lambda_{2} \in R^{\star}$,
2. $\lambda^{\prime} \prec \lambda$ iff there exists s s.t. $\lambda=s\left(\lambda_{1}, \ldots, \lambda_{i}, \lambda^{\prime}, \lambda_{i+1}, \ldots \lambda_{n}\right) \in R^{\star}$. We require that s is not a variable.

For a term t of $P A_{M}(\mathcal{F})$ let t^{\star} denote the $P A_{M}$ term obtained by replacing the function symbols f_{s} by s. To be exact, i) $0^{\star}:=0$, ii) $\left(s\left(t_{1}, \ldots t_{2}\right)\right)^{\star}:=$ $s\left(t_{1}^{\star}, \ldots t_{n}^{\star}\right)$, and iii) $\left(f_{s}\left(t_{1}, \ldots t_{2}\right)\right)^{\star}:=s\left(t_{1}^{\star}, \ldots t_{n}^{\star}\right)$. The following Lemma is simple but important:

Lemma 3 1. If $t_{1}=t_{2} \in R^{\star}$ then t_{1}^{\star} and t_{2}^{\star} are the same terms.
2. If $\lambda_{1} \prec \lambda_{2}$ then λ_{1}^{\star} is a proper subterm of λ_{2}^{\star}.
3. Let α resp. α^{\prime} be $P A_{M}$ function symbols of arities i resp i^{\prime} (so $i, i^{\prime} \leq 2$) and let

$$
\alpha\left(t_{1}, \ldots t_{i}\right)=\alpha^{\prime}\left(t_{1}^{\prime}, \ldots t_{i^{\prime}}^{\prime}\right) \in R^{\star}
$$

Then $i=i^{\prime}, \alpha$ and α^{\prime} are the same function symbols, and R^{\star} contains the equations

$$
t_{1}=t_{1}^{\prime}, \ldots t_{i}=t_{i}^{\prime}
$$

Proof. Parts (1) and (2) follow from the definition of R^{\star}.
(3). That α and α^{\prime} are the same follows from part (1). That

$$
t_{1}=t_{1}^{\prime} \in R^{\star}, \ldots t_{i}=t_{i}^{\prime} \in R^{\star}
$$

follows from (4) of the definition of R^{\star}. QED
Lemma 4 1. \sim is an equivalence on \mathcal{T} and it is a congruence w.r. to \prec, i.e., if $\lambda_{1} \sim \lambda_{1}^{\prime}, \lambda_{2} \sim \lambda_{2}^{\prime}$ and $\lambda_{1} \prec \lambda_{2}$ then $\lambda_{1}^{\prime} \prec \lambda_{2}^{\prime}$.
2. \prec is transitive and antireflexive. Moreover, every descending chain in \prec is finite (in the sense of \mathcal{N}).

Proof. That \sim is an equivalence follows from the condition (2) in the definition of R^{\star}. That \sim is a congruence w.r. to \prec follows from conditions (2) and (3). For if R^{\star} contains the equations $\lambda_{1}=\lambda_{1}^{\prime}, \lambda_{2}=\lambda_{2}^{\prime}$ and the equation

$$
\lambda_{2}=s\left(\bar{\lambda}, \lambda_{1}, \overline{\lambda^{\prime}}\right)
$$

then it also contains the equation

$$
\lambda_{2}^{\prime}=s\left(\bar{\lambda}, \lambda_{1}^{\prime}, \overline{\lambda^{\prime}}\right)
$$

Transitivity of \prec follows from (3) of the definition.
Antireflexivity and finite chain property follow from Lemma 3, part (2). If $\lambda \prec \lambda$ then λ^{\star} is a proper subterm of itself, which is impossible, and if there exists an infinite decreasing \prec-chain then there exists a term with an infinite number of subterms (in the sense of \mathcal{N}). QED

1. $\lambda \in \mathcal{T}_{0}$ will be called trivial, if R^{\star} contains the equation $\lambda=s$, for a $P A_{M}$ term s.
2. λ is an atom, if it is \prec-minimal and non-trivial.
3. A basis $\mathcal{B} \subseteq \mathcal{T}_{0}$ is a set of atoms s.t. every \sim-equivalence class on \mathcal{T}_{0} which contains an atom contains exactly one element from \mathcal{B} (i.e., it is a set of representatives of \sim-classes of equivalence restricted to atoms).

Lemma 5

2. If R^{\star} contains an equation

$$
s\left(b_{1}, \ldots b_{n}\right)=s^{\prime}\left(b_{1}^{\prime}, \ldots b_{n^{\prime}}^{\prime}\right)
$$

where $b_{1}, \ldots b_{n}, b_{1}^{\prime}, \ldots b_{n^{\prime}}^{\prime}$ are in \mathcal{B} then $n=n^{\prime}, b_{i}$ and b_{i}^{\prime} are the same terms for every $i=1, \ldots n$, and the terms $s\left(x_{1}, \ldots x_{n}\right)$ and $s^{\prime}\left(x_{1}, \ldots x_{n}\right)$ are the same.
3. For every $\lambda \in \mathcal{T}_{0}$ there exists a unique s s.t. the equation $\lambda=s(\bar{b})$ is in R^{\star}, where $\bar{b} \in \mathcal{B}$. $s(\bar{b})$ will be called the expression of λ in \mathcal{B}

Proof. (1) is trivial.
(2). The depth of a term s will be the length of the longest branch in s, if s is understood as a tree. s has depth zero, if s is a variable or the constant 0 . The proof is by induction with respect to the sum of depths of s and s^{\prime}.

If both s and s^{\prime} have depth zero then the equation has one of the following forms: i) $0=0$, ii) $b=b^{\prime}$, iii) $b=0$, iv) $0=b^{\prime}$. i) and ii) agree with the statement of the lemma, since ii) is possible only if b and b^{\prime} are the same terms (no different elements of \mathcal{B} are \sim-equivalent). iii) and iv) are impossible, for otherwise b and b^{\prime} would be trivial.

The alternative that s has depth zero and s^{\prime} does not, or vice versa, is impossible. For then the equation has the form i) $b=s^{\prime}\left(\overline{b^{\prime}}\right)$, or ii) $0=s^{\prime}\left(\overline{b^{\prime}}\right)$. i) contradicts the assumption that b is an atom and ii) contradicts Lemma 3.

If both s and s^{\prime} have depth >0 then, by (3) of Lemma 3, there is a $P A_{M}$ function symbol α s.t. $s\left(b_{1}, \ldots b_{n}\right)$ is the term $\alpha\left(s_{1}\left(\bar{b}_{1}\right), \ldots s_{i}\left(\bar{b}_{i}\right)\right)$ and $s^{\prime}\left(b_{1}^{\prime}, \ldots b_{n^{\prime}}^{\prime}\right)$ is the term $\alpha\left(s_{1}^{\prime}\left(\bar{b}_{1}\right)^{\prime}, \ldots s_{i}^{\prime}\left(\bar{b}_{1}^{\prime}\right)\right)$, with $i \leq 2$. By the condition (4) of the definition of R^{\star}, R^{\star} contains the equations

$$
s_{k}\left(\bar{b}_{k}\right)=s_{k}^{\prime}\left(\bar{b}_{k}^{\prime}\right), \quad k=1, \ldots i
$$

The statement then follows from the inductive assumption.
(3). That every term can be thus expressed follows from the finite chain property. If λ is \prec-minimal then either it is trivial and $\lambda=s \in R^{\star}$ for some s, or it is non-trivial and $\lambda=b \in R^{\star}$ for some $b \in \mathcal{B}$. If λ is not minimal, use the finite chain property. Uniqueness is a consequence of part (2). QED

In the following Proposition, we use an expression like $\mathcal{N}_{\sigma} \models t_{1}=t_{2}$, where $t_{1}, t_{2} \in \mathcal{T}$. This requires an explanation since t_{1} and t_{2} can be nonstandard. However, by the definition of $\mathcal{N}_{\sigma}, \mathcal{N}_{\sigma} \models t_{1}=t_{2}$, is equivalent to $\sigma^{\star}\left(t_{1}\right)=\sigma^{\star}\left(t_{2}\right)$, which is meaningful inside \mathcal{N}.

Proposition 6 Let σ_{0} be a function from \mathcal{B} to \mathcal{N}. Then it can be extended to a function $\sigma: \mathcal{T}_{0} \rightarrow \mathcal{N}$ s.t.

$$
\mathcal{N}_{\sigma} \models R^{\star}, \quad \text { and hence } \quad \mathcal{N}_{\sigma} \models \pi R .
$$

Proof. For $\lambda \in \mathcal{T}_{0}$, let $s\left(b_{1}, \ldots, b_{n}\right)$ be its expression in terms of \mathcal{B}. We define σ by the condition

$$
\sigma(\lambda):=[s]\left(\sigma_{0}\left(b_{1}\right), \ldots, \sigma_{0}\left(b_{n}\right)\right),
$$

where $[s]$ stands for the function defined by s in \mathcal{N}.
Let us have $s\left(\lambda_{1}, \ldots \lambda_{n}\right)=s^{\prime}\left(\lambda_{1}^{\prime}, \ldots \lambda_{m}^{\prime}\right)$ in R^{\star}. We must show that

$$
\begin{equation*}
\left.s\left(\lambda_{1}, \ldots \lambda_{n}\right)=\mathcal{N}_{\sigma} s^{\prime}\left(\lambda_{1}^{\prime}, \ldots \lambda_{m}^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Let $\lambda_{i}=s_{i}\left(\bar{b}_{i}\right)$ resp. $\lambda_{i}^{\prime}=s_{i}^{\prime}\left(\bar{b}_{i}^{\prime}\right)$ be the expression of $\lambda_{i}, i=1, \ldots n$, resp. $\lambda_{i}^{\prime}, i=1, \ldots m$, in terms of \mathcal{B}. Let σ^{\star} be as in the definition of \mathcal{N}_{σ}. Then (1) is equivalent to

$$
\left.\sigma^{\star}\left(s\left(\lambda_{1}, \ldots \lambda_{n}\right)\right)=_{\mathcal{N}} \sigma^{\star}\left(s^{\prime}\left(\lambda_{1}^{\prime}, \ldots \lambda_{m}^{\prime}\right)\right)\right)
$$

By the definition of σ^{\star}, this is equivalent to

$$
\left.[s]\left(\sigma\left(\lambda_{1}\right), \ldots \sigma\left(\lambda_{n}\right)\right)=_{\mathcal{N}}\left[s^{\prime}\right]\left(\sigma\left(\lambda_{1}^{\prime}\right), \ldots \sigma\left(\lambda_{m}^{\prime}\right)\right)\right)
$$

which is in turn equivalent to (2):

$$
[s]\left(\left[s_{1}\right]\left(\sigma_{0}\left(\bar{b}_{1}\right)\right), \ldots\left[s_{n}\right]\left(\sigma_{0}\left(\left(\bar{b}_{n}\right)\right)\right)=[s]^{\prime}\left([s _ { 1 } ^ { \prime }] \left(\sigma_{0}\left(\left(\bar{b}_{1}^{\prime}\right)\right), \ldots\left[s_{m}^{\prime}\right]\left(\sigma_{0}\left(\left(\bar{b}_{m}^{\prime}\right)\right)\right)\right.\right.\right.
$$

From the definition of R^{\star}, the equation

$$
s\left(s_{1}\left(\bar{b}_{1}\right), \ldots s_{n}\left(\bar{b}_{n}\right)\right)=s^{\prime}\left(s_{1}^{\prime}\left(\bar{b}_{1}^{\prime}\right), \ldots s_{m}^{\prime}\left(\bar{b}_{m}^{\prime}\right)\right)
$$

is in R^{\star} But, from part (2) of Lemma 5 the equation is then trivial and hence (2) is true. QED

7 The proof of $K C$

Lemma 7 Let \mathcal{A} be an infinite set of formulas. Assume that the formulas contain exactly k terms, they have a bounded number of variables and that there exists $c \in \omega$ s.t. every A in \mathcal{A} is provable in c steps. Then there exists a (finite) set of equations R and an infinite $\mathcal{C} \subseteq \mathcal{A}$ s.t. every $A \in \mathcal{C}$ has a proof with the characteristic set of equations R. Moreover, if $A=A\left(s_{1}^{A}, \ldots s_{k}^{A}\right)$ then s_{i}^{A} is represented by the function symbol f_{i} in R, for every $A \in \mathcal{C}$ and $i=1, \ldots k$.

Proof. If formulas in \mathcal{A} contain a bounded number of terms and variables, and can be proved in a bounded number of steps, then there exists c^{\star} s.t. the formulas can be proved in c steps using at most c^{\star} terms, and the terms are of arity at most c^{\star}. However, there are only finitely many characteristic sets of equations for such proofs (ignoring renaming of the function symbols), and hence there exists an infinite subset of \mathcal{A} sharing the same characteristic set R. Similarly for the "moreover" part. QED

Lemma 8 Let $A_{1}\left(s_{1}\right)$ and $A_{2}\left(s_{2}\right)$ be formulas s.t. the terms s_{1} and s_{2} are different constant terms. Assume that the formulas have proofs with the same characteristic set of equations R where s_{1} and s_{2} are represented by the same (constant) function symbol f. Let \mathcal{N} be a model of $P A_{M}$, let R^{\star} and a basis \mathcal{B} be defined in \mathcal{N}. Let $s(\bar{b})$ be the expression of f in \mathcal{B}. Then f is non-trivial, i.e., R^{\star} does not contain an equation of the form $f=s$.

Proof. Assume the contrary. Than we have an equation $f=s$ in R^{\star} for a $P A_{M}$ term s. By Lemma 3, part (1), this implies that s_{1} and s_{2} are the same terms. QED

Theorem 9 Kreisel's conjecture is true in $P A_{M}$.
Proof. Let $A(x)$ be a formula of $P A_{M}$ with one free variable x. Without loss of generality we can assume that the only term in A which contains x is x itself. (Otherwise take the formula $\exists y y=x \wedge A(y)$). We write A as $A\left(x, s_{1}, \ldots s_{j}\right)$, where $s_{1}=s_{1}\left(\overline{x_{1}}\right), \ldots s_{j}=s_{j}\left(\overline{x_{j}}\right)$ are the other terms occurring in A. Assume that for every $n \in \omega$ the formula $A(\bar{n})$ is provable in $P A_{M}$ in c steps. Let us show that $\forall x A(x)$ is true in every model of $P A_{M}$.

By Lemma 7 there exist $n, m, n \neq m$ s.t. the formulas $A(\bar{n}), A(\bar{m})$ are provable by means of the same characteristic set of equations R, where \bar{n} and \bar{m} are represented by the same constant function symbol f. We can assume that R contains also the equations

$$
f_{s_{i}}\left(\overline{x_{i}}\right)=s_{i}\left(\overline{x_{i}}\right), \quad i=1, \ldots j .
$$

Let \mathcal{F} be the set of new function symbols occurring in R. Let \mathcal{N} be a model of $P A_{M}$. We construct the set R^{\star} and a basis \mathcal{B}, inside \mathcal{N}. Let $s(\bar{b})$ be the expression of f in terms of \mathcal{B}. By Lemma 8 , the term f is non-trivial. Hence there exists $k \leq m, n$ s.t. $s(\bar{b})$ has the form $S^{k}(b)$, and so R^{\star} contains the equation

$$
f=S^{k}(b), \quad b \in \mathcal{B}
$$

In particular, k is a standard number. Assume that there is $\eta \in \mathcal{N}$ s.t. $A(\eta)$ is false. Than η is non-standard, since the standard instances of $A(x)$ are true. Let us define the function $\sigma_{0}: \mathcal{B} \rightarrow \mathcal{N}$ by $\sigma_{0}(b):=\eta-k$, and $\sigma\left(b^{\prime}\right)=0$, if b^{\prime} is different from b. By Proposition $6, \sigma_{0}$ can be extended to $\sigma: \mathcal{T}_{0} \rightarrow \mathcal{N}$ in such a way that

$$
\mathcal{N}_{\sigma} \models \pi R .
$$

Since $\mathcal{N}_{\sigma} \models R^{\star}$ then

$$
\mathcal{N}_{\sigma} \mid=f=S^{k}(b)
$$

and

$$
\mathcal{N}_{\sigma} \neq f=\eta
$$

from the definition of σ_{0}. Hence $N_{\sigma} \models A\left(f, f_{s_{1}}, \ldots f_{s_{j}}\right)$ iff $\mathcal{N} \models A\left(\eta, s_{1}, \ldots s_{j}\right)$ and therefore

$$
N_{\sigma} \not \models A\left(f, f_{s_{1}}, \ldots f_{s_{j}}\right)
$$

This contradicts the Proposition 1. QED

8 Applications and generalisations

If we axiomatise $P A$ as $P A_{I}$, i.e., using the scheme of induction and schemes of identity, many unexpected propositions can be proved in a bounded number of steps. A nice example is the formula Even (x),

$$
\exists y x=y+y
$$

asserting that x is even. For every even $n \in \omega \operatorname{Even}(\bar{n})$ can be proved in a bounded number of steps. The reason is that every formula of the form

$$
S^{n}(0)+S^{m}(0)=S^{n+m}(0)
$$

can be proved in a bounded number of steps. Hence there exists a formula $A(x)$ s.t.

1. the set $X:=\{n \in \omega ; N \models A(\bar{n})\}$ is infinite but X does not contain an infinite interval, and
2. there exists c s.t. for every $n \in X, A(\bar{n})$ is provable in c steps in $P A_{I} .{ }^{2}$.

The following proposition shows that in $P A_{M}$ such a situation is impossible. If we prove infinitely many instances of A in a bounded number of steps then A provably contains an infinite interval. Hence $P A_{M}$ is quite a simple-minded theory, from the number of proof-lines perspective. It does not play tricks and it fulfils our expectations.

Note that the assumption " X is infinite" can be replaced by the assumption " X is large".

Theorem 10 Let $A(x)$ be a formula of $P A_{M}$. Assume that there exists $c \in \omega$ and an infinite set $X \subseteq \omega$ s.t. for every $n \in X A(\bar{n})$ is provable in c steps. Then there exists $k \in \omega$ s.t. $P A_{M} \vdash \forall x>\bar{k} A(x)$.

Proof. Assume that $A(x)$ is as in the proof of Theorem 9. By Lemma 7 there exist $n, m, n<m$ s.t. the formulas $A(\bar{n})$ and $A(\bar{m})$ are provable by proofs with the same characteristic set of equations R. We can assume that R contains also the equations

$$
f_{s_{i}}\left(\overline{x_{i}}\right)=s_{i}\left(\overline{x_{i}}\right), \quad i=1, \ldots j
$$

and that \bar{n} and \bar{m} are represented by the same constant function symbol f in R. Let \mathcal{F} be the set of new function symbols occurring in R.

Let \mathcal{N} be a model of $P A_{M}$. Let us show that

$$
\mathcal{N} \models \forall x>\bar{m} A(x)
$$

[^1]We construct the set R^{\star} and a basis \mathcal{B}, inside \mathcal{N}. As in Theorem 11 we can show that R^{\star} contains the equation

$$
f=S^{k}(b), \quad b \in \mathcal{B}
$$

for some $k \leq m$. Let $\eta \in \mathcal{N}, \eta>m$ be given. Let us define the function $\sigma_{0}: \mathcal{B} \rightarrow \mathcal{N}$ by $\sigma_{0}(b):=\eta-k(\eta$ is bigger than $k)$, and $\sigma\left(b^{\prime}\right)=0$, if b^{\prime} is different from b. By Proposition $6, \sigma_{0}$ can be extended to $\sigma: \mathcal{T}_{0} \rightarrow \mathcal{N}$ in such a way that

$$
\mathcal{N}_{\sigma} \models \pi R
$$

and hence $\mathcal{N}_{\sigma} \models A\left(f, f_{s_{1}}, \ldots f_{s_{j}}\right)$, by Proposition 1. Hence also

$$
\mathcal{N} \models A(\eta)
$$

since $\mathcal{N}_{\sigma} \models f=\eta$, and the $P A_{M}$ parts of \mathcal{N} and \mathcal{N}_{σ} are elementary equivalent. QED

Corollary The formulas Even $(\overline{2 n}), S^{n}(0)+S^{m}(0)=S^{n+m}(0)$ and $S^{n}(0)$. $S^{m}(0)=S^{n \cdot m}(0)$ are not provable in $P A_{M}$ in a bounded number of steps.
Proof. The assertion for $\operatorname{Even}(2 n)$ follows directly from the theorem. If $S^{n}(0)+S^{m}(0)=S^{n+m}(0)$ was provable in a bounded number of steps then also Even $(\overline{2 n})$ would be. Similarly for the formula $S^{n}(0) \cdot S^{m}(0)=S^{n \cdot m}(0)$. QED

The following proposition illustrates the fact that identity schemes are not provable in $P A_{M}$ in a bounded number of steps.

Proposition 11 There is no $c \in \omega$ s.t. for every $n \in \omega$

$$
S^{n}(0)=S^{n}(0+0)
$$

is provable in $P A_{M}$ in c steps.
Proof. Assume the contrary. Then by Lemma 7 there exist $n, m, n \neq m$ s.t. the formulas $S^{n}(0)=S^{n}(0+0)$ and $S^{m}(0)=S^{m}(0+0)$ are provable by proofs with the same characteristic set of equations R, where $S^{n}(0)$ and $S^{m}(0)$ are represented by a constant f_{1} and $S^{n}(0+0), S^{m}(0+0)$ by f_{2} in R. Let \mathcal{F} be the set of new function symbols occurring in R.

Let us work in the standard model N. We construct the set R^{\star} and a basis \mathcal{B}. Let $s_{1}\left(\bar{b}_{1}\right)$ and $s_{2}\left(\bar{b}_{2}\right)$ be the expressions of f_{1} and f_{2}, respectively, in terms of \mathcal{B}. The terms f_{1} and f_{2} are non-trivial. By Lemma 3, part (1), $s_{1}\left(\bar{b}_{1}\right)$ has the form

$$
S^{k}\left(b_{1}\right), \quad k \leq m, n, b_{1} \in \mathcal{B}
$$

and $s_{2}\left(\bar{b}_{2}\right)$ has the form

$$
S^{i}\left(b_{2}\right), \quad i \leq m, n, b_{2} \in \mathcal{B}
$$

where b_{2} is different from b_{1}. Let $c_{1}, c_{2} \in \omega$ be such that $c_{1}+k \neq c_{2}+i$. Let us define the function $\sigma_{0}: \mathcal{B} \rightarrow N$ as follows: $\sigma_{0}\left(b_{1}\right)=c_{1}, \sigma_{0}\left(b_{2}\right)=c_{2}$ and $\sigma_{0}(b)=0$ otherwise. Let us extend σ_{0} to $\sigma: \mathcal{T}_{0} \rightarrow N$ by means of Proposition 6. Let us have the model N_{σ}. As in Theorem 9, we obtain

$$
N_{\sigma} \models \pi R,
$$

and

$$
N_{\sigma} \not \models f_{1}=f_{2},
$$

which contradicts the Proposition 1. QED
Corollary There is no c s.t. every instance of the identity scheme is provable in $P A_{M}$ with c lines. There is no c s.t. every instance of the scheme of induction is provable in $P A_{M}$ with c lines.
Proof. The first statement is an immediate consequence of the theorem. The second follows from the fact that $x=0 \rightarrow S^{n}(0)=S^{n}(x)$ can be proved in a bounded number of steps, by means of the induction scheme. QED

As we have mentioned in the Introduction, validity of $K C$ in $P A_{I}$ depends on the function symbols present in the axiomatisation. In $P A_{M}$ this is again not the case, as we state in the last theorem.

Let L be the language $=,<, 0, S, \cdot, \alpha_{1}, \ldots \alpha_{k}$, where $\alpha_{1}, \ldots \alpha_{k}$ are new function or predicate symbols. Let $P A_{M}(L) \supseteq P A_{M}$ be the theory obtained by extending the minimality principle and the identity axioms to the language L. A theory T in L will be called a simple extension of $P A_{M}$, if T is an extension of $P A_{M}(L)$ by finitely many axioms.

Theorem 12 Let T be a simple extension of $P A_{M}$. Then $K C$ is true in T. I.e., for any formula $A(x)$ of T if there exists c s.t. for any $n \in \omega, A(\bar{n})$ is provable in T in c steps then $T \vdash \forall x A(x)$.

Proof. If T is inconsistent, the statement is immediate. For a consistent T, we can see that the proof of $K C$ for $P A_{M}$ does not use any specific properties of the language of $P A$, or the particular axiomatisation of Q, as long as it is finite. QED

References

[1] Friedman, H.: One hundred and two problems in mathematical logic. Journal of Symbolic Logic, 40, 113-129 (1975)
[2] Baaz, M., Pudlák, P.: Kreisel's conjecture for $L \exists_{1}$. Arithmetic, Proof Theory, and Computation Complexity, Papers from the Conference Held in Prague, July 2-5, 1991, New York: Oxford University Press, 30-60 (1993)
[3] Hrubeš, P.: Theories very close to PA where Kreisel's Conjecture is false. Journal of Symbolic Logic 2, vol.1, no. 6, 123-137 (2007)
[4] Krajíček, J., Pudlák, P.: The number of proof lines and the size of proofs in first order logic. Arch. Math. Logic 27, 69-84 (1988)
[5] Miyatake, T.: On the lengths of proofs in formal systems. Tsukuba Journal of Mathematics 4, 115-125 (1980)
[6] Parikh, R.: Some results on the length of proofs. TAMS 177, 29-36 (1973)
[7] Yukami, T.: A note on a formalized arithmetic with function symbols and + . Tsukuba Journal of Mathematics 7, 69-73 (1978)
[8] Yukami, T.: Some results on speed-up. Ann. Jap. Assoc. Philos. Sci., Vol.6, 195-205 (1984)

[^0]: *Written in Prague, Institute of Mathematics, with support from grant 1AA1019401. Completed at Institute for Advanced Study, NSF grant CCF 0832797.
 ${ }^{1}$ Kreisel's conjecture, as presented in [1] refers to $P A$ axiomatised by identity axioms and the scheme of induction. However, this seems purely accidental.

[^1]: ${ }^{2}$ Whether one can find an A with the property (2), s.t. X does not contain even an infinite arithmetical sequence is an interesting, and open, problem (see [4]).

