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Abstract

We prove a separation between monotone and general arithmetic formulas for
polynomials of constant degree. We give an example of a polynomial C in n variables
and degree k which is computable by an arithmetic formula of size O(k2n2), but every
monotone formula computing C requires size (n/kc)Ω(log k), with c ∈ (0, 1). This also
gives a separation between monotone and homogeneous formulas, for polynomials of
constant degree.

1 Introduction

Facing the unyielding challenge of proving lower bounds on arithmetic circuit or formula
size, researchers have focused on several restricted models of computation. The first and
most notable of such restrictions is the case of monotone computation. For example, lower
bounds on monotone circuit size were proved in [2], and on monotone formula size in [3].
An exponential separation between monotone and general arithmetic circuits was given
in [4]; this implies an exponential separation between monotone and general formulas as
well.

An interesting class of polynomials is that of polynomials of constant degree. Proving
nontrivial lower bounds for constant degree polynomials is, apparently, a much harder
task. Nevertheless, Shamir and Snir proved a lower bound of nΩ(log k) on the monotone
formula size of a polynomial of degree k – multiplication of k n×n matrices. It is not known
whether this polynomial can be computed by a small arithmetic formula, and hence this
result does not imply a separation. Also note that Valiant’s construction in [4] involves a
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high degree polynomial and does not imply a separation for constant degree. The purpose
of this note is to fill this gap, and to give a separation between monotone and general
arithmetic formulas for constant degree polynomials.

2 Counting polynomials

We are interested in arithmetic formulas with fan-in at most two over the field of real
numbers (see, e.g., [1] for a formal definition). We define formula size as the number of
leaves in the formula. A monotone formula is a formula with only non-negative constants.
A monotone polynomial is a polynomial with only non-negative coefficients.

Let n, k, ` ∈ N and let S ⊆ [n], where [n] = {0, 1, . . . , n}. Denote by I(S, k, `) the set of
k-tuples 〈i1, i2, . . . , ik〉 ∈ Sk such that i1 + i2 + · · ·+ ik = `. Let Cn,k,` be a polynomial in
variables x0, . . . , xn defined as

Cn,k,` =
∑

I∈I([n],k,`)

xI , (2.1)

where xI denotes the monomial
∏

i∈I xi. We call Cn,k,` a counting polynomial. It is a
homogeneous polynomial of degree k in n + 1 variables.

The following theorem implies the separation between monotone and general formulas for
constant degree.

Theorem 1. Let C = Cn,k,n. Then

(i). every monotone formula for C has size at least (n/kc)Ω(log k), where 0 < c < 1 is a
universal constant, and

(ii). there exists a formula of size O(k2n2) for C; this formula is homogeneous.

2.1 Lower bound

We use some terminology from [1]. Let f be a homogeneous polynomial of degree k.
We say that f is balanced if there exist p homogeneous polynomials f1, . . . , fp such that
f = f1f2 · · · fp with

(i). (1/3)ik < deg fi ≤ (2/3)ik, i = 1, . . . , p− 1, and
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(ii). deg(fp) = 1 .

The following lemma shows that a small monotone formula can be written as a short sum
of balanced polynomials. It is a straightforward adaptation of the lemma from [1] to the
case of monotone formulas.

Lemma 2. Let Φ be a monotone formula of size s computing a homogeneous polynomial
f of degree k > 0. Then there exist balanced monotone polynomials f1, . . . , fs′ of degree k
such that s′ ≤ s and f = f1 + · · ·+ fs′.

The following proposition and Lemma 2 imply part (i) of Theorem 1.

Proposition 3. Let n, k ∈ N and let C = Cn,k,n. If C = f1 + · · · + fs with f1, . . . , fs

balanced monotone polynomials of degree k, then s ≥ (n/kc)Ω(log k), where 0 < c < 1 is a
universal constant.

Before proving the proposition we recall the following estimate from [1].

Lemma 4. Let n ≥ 2k and k1, . . . , kp be non-zero natural numbers such that k1+· · ·+kp =
k. Then for every natural numbers n1, . . . , np such that n1 + · · ·+ np = n,(

n1

k1

)
· · ·

(
np

kp

)
≤ 3k1/2(k1 · · · kp)

−1/2

(
n

k

)
.

Proof of Proposition 3. Since C is homogeneous of degree k and f1, . . . , fs are monotone,
f1, . . . , fs are homogeneous polynomials of degree k. Fix t = 1, . . . , s and denote f = ft.
Since f is a product polynomial, we can write f = g1g2 · · · gp.

Claim 5. There exist natural numbers n1, n2, . . . , np, k1, k2, . . . , kp such that n1+· · ·+np =
n and k1 + · · · + kp = k and for every j = 1, . . . p, all the monomials that occur in gj are
of the form xI with I ∈ I([nj], kj, nj).

Proof. Define kj to be the degree of gj. Since f is homogeneous of degree k, k1+· · ·+kp = k
and each gj is homogeneous. Hence if a monomial xI occurs in gj then |I| = kj. Let us fix
nj as some natural number such that there exists a monomial xI which occurs in gj and∑

i∈I i = nj. Monotonicity implies that for every monomial xL occurring in gj,
∑

i∈L i =
nj. For assume otherwise, and let xM be a monomial that occurs in g1 · · · gj−1gj+1, . . . gp.
Then both the monomials xIxM , xLxM occur in C, which is impossible since

∑
i∈I∪M i 6=∑

i∈L∪M i. For a similar reason, n1 + · · ·+np = n. Finally, since
∑

i∈L i = nj implies that,
as a set, L ⊆ [nj], we have L ∈ I([nj], kj, nj) for every xL occurring in gj. ut
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Claim 5 shows that for every j = 1, . . . , p, the number of monomials that occur in gj is at
most |I([nj], kj, nj)|. The size of I([nj], kj, nj) is(

nj + kj − 1

kj − 1

)
.

If kj = 1, gj contains exactly one monomial. Setting q to be the maximal j such that
kj ≥ 2, Lemma 4 shows that the number of monomials in f is at most(

n1 + k1 − 1

k1 − 1

)
· · ·

(
nq + kq − 1

kq − 1

)
≤ 3k1/2

∏
i=1,...,q

(ki − 1)−1/2

(
n + k − q

k − q

)
= 3k1/2

∏
i=1,...,q

(ki − 1)−1/2
∏

i=1,...,q−1

k − i

n + k − i
·
(

n + k − 1

k − 1

)
.

For every 1 ≤ i ≤ log k/(2 log 3)− 1, we have ki ≥ 3k1/2, and so ki − 1 ≥ k1/2. Hence

k1/2
∏

i=1,...,q

(ki − 1)−1/2 ≤ k−c1 log k+1

with a constants c1 > 0. Since q ≤ k, we have∏
i=1,...,q−1

k − i

n + k − i
≤

(k

n

)q−1

Since f is balanced, q is at least c2 log k − 2 with c2 > 0 a universal constant. Hence the
number of monomials in f = ft is at most

3k−c1 log k+1
(k

n

)c2 log k−3
(

n + k − 1

k − 1

)
≤

(kc

n

)−Ω(log k)
(

n + k − 1

k − 1

)
,

with an adequate constant c ∈ (0, 1). Since this holds for every t and since the number of
monomials in C is

(
n+k−1

k−1

)
, we have that s is at least (n/kc)Ω(log k). ut

2.2 Upper bound

We now construct polynomial size formulas for Cn,k,`.
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Proof of part (ii) of Theorem 1. The proof follows by interpolation. Fix n, k ∈ N. Let Z
be the polynomial

Z(t) = (x0t
0 + x1t

1 + · · ·+ xnt
n)k ,

where t is an auxiliary variable. Observe that

Z(t) =
∑

0≤`≤nk

t`Cn,k,`.

Evaluating at t = 0, . . . , nk, 
Z(0)
Z(1)
. . .

Z(nk)

 = A


Cn,k,0

Cn,k,1

· · ·
Cn,k,nk


with

A =


1 01 · · · 0nk

10 11 · · · 1nk

· · ·
(nk)0 (nk)1 · · · (nk)nk

 .

Since the matrix A is invertible, we can express every Cn,k,` as a linear combination of
Z(0), . . . , Z(nk). For a particular number a, Z(a) has a homogeneous formula of size
roughly kn computing it, hence we can compute Cn,k,` by a homogeneous formula of size
roughly k2n2. ut
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