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Graph Homomorphisms with Complex Values:
A Dichotomy Theorem
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Abstract

Graph homomorphism problem has been studied intensively. Given an m X m symmetric matrix
A, the graph homomorphism function is defined as

ZaG) = > I Acw.ew:

&V —[m] (uw)EE

where G = (V,E) is any undirected graph. The function Z(G) can encode many interesting
graph properties, including counting vertex covers and k-colorings. We study the computational
complexity of Za (G) for arbitrary complex valued symmetric matrices A. Building on work by Dyer
and Greenhill [6], Bulatov and Grohe [2], and especially the recent beautiful work by Goldberg,
Grohe, Jerrum and Thurley [10], we prove a complete dichotomy theorem for this problem.

*University of Wisconsin-Madison: jyc@cs.wisc.edu
TPrinceton University: csxichen@gmail.com
¥Microsoft Research Asia: pinyanl@microsoft.com


http://arXiv.org/abs/0903.4728v1

Contents

1

2

Introduction

Preliminaries
2.1 Definitions of EVAL(A) and EVAL(C,®) . . . . . . . . . ..
2.2 Basic #P-Hardness . . . . . . . . ..

A High Level Description of the Proof

Pinning Lemmas and Preliminary Reductions

4.1 A Pinning Lemma for EVAL(A) . . . . . . . .
4.2 A Pinning Lemma for EVAL(C,D) . . . . . . . . . ..
4.3 Reduction to Connected Matrices . . . . . . . . . . . . . . . .
Proof Outline of the Case: A is Bipartite
5.1 Step 1: Purification of Matrix A . . . . . . . . . . ..o
5.2 Step 2: Reduction to Discrete Unitary Matrix . . . . . . . . .. .. .. ... ... ...
5.3 Step 3: Canonical Formof C,Fand ® . . .. .. .. .. ... ... ... ........
5.3.1 Step 3.1: Entries of D are either 0 or Powers of wy . . . . o o v v oo
5.3.2 Step 3.2: Fourier Decomposition . . . . . . .. . . .. ... .. ... ...
5.3.3 Step 3.3: Affine Support for ® . . . . ...
5.3.4 Step 3.4: Quadratic Structure . . . . . ... ...
5.4 Tractability . . . . . . . .
Proof Outline of the Case: A is not Bipartite
6.1 Step 1: Purification of Matrix A . . . . . . . . ..
6.2 Step 2: Reduction to Discrete Unitary Matrix . . . . . . . .. . ... ... ... .....
6.3 Step 3: Canonical Formof Fand® . . .. ... ... .. ... ... ... ........
6.3.1 Step 3.1: Entries of D"l are either 0 or Powers of wy . . . . . o oo oL,
6.3.2 Step 3.2: Fourier Decomposition . . . . . . ... ... ... ...
6.3.3 Step 3.3: Affine Support for ® . . . . ...
6.3.4 Step 3.4: Quadratic Structure . . . . . . . . ...
6.4 Tractability . . . . . . . . e
Proofs of Theorem [5.1] and Theorem
7.1 Equivalence between EVAL(A) and COUNT(A) . . . . .. ... ... ... ... .....
7.2 Step L1 . . . o
7.3 Step 1.2 . . L e
Proof of Theorem
8.1 Cyclotomic Reduction and Inverse Cyclotomic Reduction . . . ... ... ... .....
8.2 Step 2.1 . . . . e e
8.3 Step 2.2 . .
8.4 Step 2.3 . . . . e
8.4.1 The Vanishing Lemma . . . . . . . . . . .. ...
8.4.2 Proof of LemmalB8 . . . . . . . . ...
8.5 Step 2.4 . . . . e
8.6 Step 2.5 . . L

EEER] BEEER! Bl oam =



9 Proofs of Theorem [5.3] and Theorem [5.4]

9.1 The Group Condition . . . . . . . . . . . . . . . e
9.2 Proof of Theorem [B.3]. . . . . . . . . . . e
9.3 Decomposing F into Fourier Matrices . . . . . . .. . .. ... ... ... ... ...,

10 Proof of Theorem
10.1 Proof of Lemma[I0d] . . . . . . . o o o
10.2 Some Corollaries of Theorem 5.5 . . . . . . . . . . . . .

11 Proof of Theorem

12 Tractability: Proof of Theorem [5.7]

12.1 Step 1 . . . o o e
12.2 Step 2 . . o
12.3 Proof of Theorem [TZ.T] . . . . . . . . . . . o i
13 Proof of Theorem
13.1 Step 2.1 .« . o o e
13.2 Steps 2.2 and 2.3 . . . ... L e
13.3 Step 2.4 . . . L e
13.4 Step 2.5 . . . L e

14 Proofs of Theorem and Theorem
14.1 Proof of Theorem [631. . . . . . . . . . .
14.2 Proof of Theorem [6.4]. . . . . . . . . . . o e

15 Proofs of Theorem and Theorem

16 Tractability: Proof of Theorem
16.1 Step 1 . . . o o e e
16.2 Step 2 . . o o



1 Introduction

Graph homomorphism has been studied intensively over the years [16] 12} 6, 9, 2, 5]. Given two graphs
G and H, a graph homomorphism from G to H is a map f from V(G) to V(H) such that whenever
(u,v) is an edge in G, (f(u), f(v)) is an edge in H. The counting problem for graph homomorphism
is to compute the number of homomorphisms from G to H. For a fixed graph H, this problem is also
known as the # H-coloring problem. In 1967, Lovész [16] proved that H and H' are isomorphic iff for
all G, the number of homomorphisms from G to H and from G to H' are the same.

In this paper all graphs considered are undirected. We follow standard definitions: G is allowed to
have multiple edges but no loops; H can have loops, multiple edges, and more generally, edge weights.
Formally, let A be an m x m symmetric matrix with entries (4; ), i,j € [m] = {1,2,...,m}. For any
undirected graph G = (V, E), we define

Za@) = > I Acwew: (1)

&V—[m] (uw)eE

This is also called the partition function from statistical physics.

Graph homomorphisms can express many natural graph properties. For example, if we take H to
be a graph on two vertices {0, 1} with an edge (0,1) and a loop at 1, then a graph homomorphism from
G to H corresponds to a VERTEX COVER of GG, and the counting problem simply counts the number
of vertex covers. As another example, if H is the complete graph on k vertices (without self loops),
then the problem is exactly the k-COLORING problem for G. Many additional graph invariants can be
expressed as Za (G) for appropriate A. Consider the Hadamard matrix

H= G —11> 2)

where we index the rows and columns by 0,1. In Zy(G), every product

I Hewew = =1,
(u,w)EE

and is —1 precisely when the induced subgraph of G' on £71(1) has an odd number of edges. Therefore
(2" — Zu(@))/2 is the number of induced subgraphs with an odd number of edges. Also expressible as
ZA(G) are S-flows where S is a subset of a finite Abelian group closed under inversion [9]. If we take

1 -1
A= (4
then Za(G) = 2" if G is Eulerian and 0 otherwise. Further examples include (a scaled version of) the
Tutte polynomial T'(x,y) when (x —1)(y — 1) is a positive integer. In [9], Freedman et. al. characterized
what graph functions can be expressed as Za (G).

In this paper, we study the computational complexity of Za (G), where A € C™*™ is an arbitrary
fixed symmetric matrix over the compler numbers and G is an input graph. The complexity question
of Za(G) has also been intensively studied. Hell and Nesetril [11], [12] first studied the computational
complexity of the H-coloring problem (that is, given an undirected graph G, decide whether there exists
a graph homomorphism from G to H) and proved that for any undirected graph H, H-coloring is either
in P or NP-complete. Results of this type are called complexity dichotomy theorems. This includes the
well-known Schaefer’s theorem [18] and more generally the study on constraint satisfaction problems
(CSP in short) []. In particular, the famous dichotomy conjecture by Vardi and Feder [7] on Decision



CSP motivated much of subsequent work. In [6] Dyer and Greenhill studied the counting version of the
H-coloring problem and proved that for any 0-1 symmetric matrix A, computing Za (G) is either in P or
#P-hard. Bulatov and Grohe [2] generalized this result to all nonnegative symmetric matrices A. They
obtained an elegant dichotomy theorem, which basically says that Za (G) is computable in P iff each
block of A has rank at most one, and it is #P-hard otherwise. More precisely, decompose A as a direct
sum of A; which correspond to the connected components H; of the undirected graph H defined by the
nonzero entries of A. Then, Za(G) is computable in P if every Za,(G) is, and #P-hard otherwise. For
each non-bipartite H;, the corresponding Za,(G) is computable in P if A; has rank at most one, and
#P-hard otherwise. For each bipartite H;, the corresponding Za,(G) is computable in P if

0 B;
Ai—<Bf o)’

where B; has rank one, and #P-hard otherwise.

The result of Bulatov and Grohe is both sweeping and enormously applicable. It completely solves
the problem for non-negative symmetric matrices. However, the Hadamard matrix H in (2]) presents
an obstacle. In general, unlike non-negative A, when there are both positive and negative entries in
A there can be substantial cancelations in the exponential sum Za (G), which may yield surprisingly
efficient computations. This is not dissimilar to monotone versus non-monotone complexity. Indeed the
Hadamard matrix H turns out to be one such case. This is the starting point of the next great chapter
on the complexity of Za (G) by Goldberg et. al.

In a paper [10] comprising 73 pages of beautiful proofs of both exceptional depth and conceptual
vision, Goldberg, Jerrum, Grohe, and Thurley proved a complexity dichotomy theorem for all real-
valued symmetric matrices A. Their result is too intricate to give a short and accurate summary here,
but essentially it states that the problem of computing Za (G) for any real A is either in P or #P-hard.
Again, which case it is depends on the connected components of A. The overall statement remains that
Za(G) is tractable (computable in P) if every connected component of A is, and is #P-hard otherwise.
However, the exact description of tractability for connected A is much more technical and involved.
The Hadamard matrix H and its tensor products H® H® --- ® H play a major role in the tractable
case. If we index rows and columns of H by the finite field Zo, then its (z,y) entry is (—1)*. For the
non-bipartite case, there is another 4 x 4 symmetric matrix Hy, different from H ® H, where the rows
and columns are indexed by (Zs)?, and the entry at ((z1,72), (y1,92)) is (—1)*1¥2722¥1, These matrices,
and their arbitrary tensor products, all correspond to new tractable Za(G). In fact, there are some
more tractable cases, starting with what can be roughly described as certain rank one modifications on
these tensor products.

The proof of [10] proceeds by establishing a long sequence of successively more stringent properties
that a tractable A must satisfy. Ultimately it arrives at a point where satisfaction of these properties
implies that Za (G) can be computed as

Z (—1)f @ra2,tn)

21,22,..,Tn€L2

where f is a quadratic polynomial over Zg. This sum is known to be computable in polynomial time [15]
in n, the number of variables. In hindsight, the case with the simplest Hadamard matrix H which was
an obstacle to the Bulatov-Grohe dichotomy theorem and was left open for some time, could have been
directly solved, if one had adopted the polynomial view point of [10].

We independently came to the tractability of Zy(G) from a slightly different angle. In [3], we were
studying a certain type of Constraint Satisfaction Problems. This is motivated by investigations of
a class of counting problems called Holant Problems, and it is connected with the technique called
holographic reductions introduced by Valiant [19, [20]. Let us briefly describe this framework.



A signature grid Q = (G, F) is a tuple, where G = (V, E) is a graph, and each v € V is attached a
function F,, € F. An edge assignment o for every e € E gives an evaluation [[,cy Fo(0 | gvy), Where
E(v) denotes the incident edges of v. The counting problem on an input instance € is to compute

Holant(Q2) = Z H Fy(o | gw))-

edge assignments o veEV

For example, if we take o : E — {0,1}, and attach the ExAcT-ONE function at every vertex v € V,
then Holant(£2) is exactly the number of perfect matchings. (Incidentally, it was proved in [9] that
counting perfect matchings cannot be expressed as Za(G) for any matrix A over R. However, every
function Za (G) (vertex assignment) can be simulated by Holant(2) (edge assignment) as follows: A
defines a function of arity 2 at every edge of G. Consider the bipartite Vertex-Edge incident graph
G' = (V(G),E(G),E") of G, where (v,e) € E" iff e is incident to v in G. Attach the EQUALITY function
at every v € V(G) and the function defined by A at every e € E(G).) We denote a symmetric function
on Boolean variables z1,...,z, by [fo, f1,--., fn], where f; is the value on inputs of Hamming weight
i. Thus the ExacT-ONE function is [0,1,0,...,0], and H is just [1,1, —1].
We discovered that the following three families of functions

Fi={M[L,0% +i"0, 1®")|AeC, k=12,..., andr=0,1,2,3 };
Fo={ ML, 0% +i"[1,-1]®") [ A e C, k=1,2,..., and r = 0,1,2,3 };
Fy={A([L, i +i"[1, —]®**) | A eC, k=1,2,..., and r = 0,1,2,3 }

give rise to tractable problems: Holant(2) for any Q = (G,F; U F, U F3) is computable in P (here we
listed functions in F; in the form of truth tables on k Boolean variables). In particular, we note that by
taking r = 1, k = 2 and A = (1+4)~! in F3, we recover the binary function [1,1, —1] which corresponds
to exactly the Hadamard matrix H. If we take r = 0, A = 1 in F7, we get the EQUALITY function
[1,0,...,0,1] on k bits. This shows that Zy(G) is a special case of Holant(€2).

However, more instructive for us is the natural way in which complex numbers appeared in such
counting problems, especially when applying holographic reductions. One can say that the presence
of powers of i = /—1 in F; U Fp U F3 “reveals” the true nature of H (i.e., [1,1,—1]) as belonging to
a family of tractable counting problems, where complex numbers are the right language. In fact, the
tractability of Holant(2) for Q = (G, F; U F, U F3) boils down to an exponential sum of the form

Z jLitLlet-+Ls
)

x17x27"'7xn6{071}

where each Lj, j € [s], is an indicator function of an affine linear form of z1,zs,...,x, over Zy. Thus
the exponent of ¢ in the equation is a mod 4 sum of mod 2 sums of z1,xo,...,z,. From here it is only
natural to investigate the computational complexity of Za (G), for a complex matrix A.

Our investigation of complex-valued graph homomorphisms is also motivated by partition functions
in quantum physics. In classical statistical physics, the partition function is always real-valued. However
in a generic quantum system, for which complex numbers are the correct language, the partition function
is in general complex-valued [§]. In particular, if the physics model is over a discrete graph and is non-
orientable, then the edge weights are given by a symmetric complex matrix.

Our main theorem is the following

Theorem 1.1 (Dichotomy Theorem). Let A be a symmetric complex matriz. Then Za(-) either can
be computed in polynomial time or is # P-hard.



Due to the complexity of the proof of this theorem, both in terms of its overall proof structure and
in terms of technical difficulty, we will first give a high level description of the proof for the bipartite
case in Section Bl We then prove the First and Second Pinning Lemmas in Section @l A more detailed
outline of the proof for the two cases (bipartite and non-bipartite) with all the definitions and theorems,
is presented in Section [l and Section [, respectively. We prove all the theorems in the rest of the paper.

2 Preliminaries

We use Q, R, and C to denote the set of all rational, real, and complex numbers, respectively.

For a positive integer n, we use [n] to denote the set {1,...,n} (when n = 0, it is just the empty
set). We also use [m : n|, where m < n, to denote the set {m,m +1,...,n}. We use 1, to denote the
all-one vector of dimension n. We omit n when it is clear from the context.

Let x and y be two vectors in C”, then we use (x,y) to denote their inner product Y . ; z;7;, and
x oy to denote their Hadamard product: z = xoy € C", where z; = x; - y; for all ¢ € [n].

Let A = (A;;) be a k x £ matrix and B = (B;;) be an m x n matrix. We use A, i € [k], to
denote the ith row vector, and A, j, j € [¢], to denote the jth column vector of A. We let C = A ® B
denote the tensor product of A and B: C is a km x ¢n matrix whose rows and columns are indexed
by [k] x [m] and [¢] x [n], respectively, and satisfies

C(i17i2)7(j17]~2) = Ail,jl . Biz,jza for all i1 € [k], 19 € [m], Jj1 € [6] and Jo € [n]

Let A be an n x n symmetric complex matrix. We build an undirected graph G = (V, E) from A
as follows: V = [n], and ij € E iff A; ; # 0. We say A is connected if G is connected; and we say A
has connected components A,..., Ay, if the connected components of G are Vq,..., Vs and A; is the
[Vi| x |Vi| sub-matrix of A restricted by V; C [n], for all i € [s]. Moreover, we say A is bipartite if the
graph G is bipartite; otherwise, A is non-bipartite. Let 3 and II be two permutations from [n] to itself,
then we use Ay 11 to denote the n X n matrix whose (7, j)th entry, where 4, j € [n], is Ax;) (j)-

We say C is the bipartisation of a matrix F if

0 F
o= (0 5).

Note that C is always a symmetric matrix no matter whether F is or is not. For a positive integer N
we use wy to denote €2 /N | a primitive Nth root of unity. We say a problem A is tractable if it can be
solved in polynomial time. Given two problems A and B, we say A is polynomial-time reducible to B
(or A < B), if there is an algorithm that solves A in polynomial time using an oracle for .

One technical issue is the model of computation with complex numbers. We can take any reasonable
model of real or complex number computation, as long as arithmetic operations such as + and X are
computable, and equality is decidable [I], 13]. For the most part this issue of computation model seems
not central to this paper, in part because we consider the matrix A to be fixed and the complexity
measure is on the size of the input graph G. In the most restrictive sense we can require entries of A to
be algebraic numbers. Over the algebraic numbers, our dichotomy theorem gives a decidable criterion.

2.1 Definitions of EVAL(A) and EVAL(C, D)

Let A € C™*™ be a symmetric complex matrix with entries (A; ;). It defines a graph homomorphism
problem EVAL(A) as follows: Given an undirected graph G = (V, E), compute

Za(G) = Y wta(§), where wta(€)= [] Aeuew:
&V —|m] (uw)er



We call £ an assignment to the vertices of G, and wta (§) the weight of &.
To study EVAL(A), we define a new and larger class of EVAL problems. It is a generalization of the
edge-vertex weight problems introduced in [10]. See also [17].

Definition 2.1. Let C € C™*™ be a symmetric matriz, and
© = {D pll  pN-1}

be a sequence of diagonal matrices in C™*™ for some N > 1 (we use Dzm to denote the (i,1)™" entry of
D[T]). We define the following problem EVAL(C,®): Given an undirected graph G = (V, E), compute

Zco(G) = > wteo(l
£V —[m]
where

B [deg(v) mod N]
wte o(§) = H Ce(u) £(v) (H Ds(ﬁ ) ‘

(u,v)eE veV
Let G be an undirected graph, and 1, ..., G, be its connected components. Then
Lemma 2.1. ZC7@(G) = Z(lg(Gl) X ... X Z(lg(Gs).

Lemma 2.1l implies that, if we want to design an efficient algorithm for computing Z¢ o(-), we only
need to focus on connected graphs. Furthermore if we want to construct a reduction from one problem
EVAL(C, D) to another EVAL(C’,D’), we only need to consider input graphs that are connected. Also
note that, since EVAL(A) is a special case of EVAL(C,®) (in which every D[ is the identity matrix),
Lemma [2.7] and the remarks above also apply to Za and EVAL(A).

Now suppose C is the bipartisation of an m x n matrix F (so C is (m +n) x (m +n)). For any
graph G and vertex u in G, we define Zg (G, u) and Zg 5(G,u) as follows. Let =; denote the set of
€:V — [m+n| with {(u) € [m], and Z3 denote the set of £ with &(u) € [m + 1 : m + n|, then

€T I3

It then follows from the definition of Z¢ o, Za o and Z‘a o that
Lemma 2.2. For any graph G and vertez u € G, Zc o(G) = Zg o(G,u) + Zg o(G, u).

The reason we introduce Zg 5 and Zg 4 is because of the following useful lemma.

Lemma 2.3. For each i € {0,1,2}, Fll is an m; X n; complex matrix for some positive integers m;,n;;
Cll is the bipartisation of Fll; and

ol = (ptol pEN-1ly

is a sequence of (m; + n;) X (m; +n;) diagonal matrices for some positive integer N, where

. Pl
il =
b= < Q[m])

and P[i”’}, Q[i”‘} are m; X m;, n; X n; diagonal matrices, respectively. Suppose mg = mims, ng = Nina,

FO = rll o Fl  plorl—plilg Pl wnd QO =Q e Q" foralirefo: N—1].



Then for any connected graph G and any vertex u* in G, we have

ZaOJ,D[OJ(G u*) = 2 ol Dl y(G,u*) - Z []@[2](G u*) and (3)
Z&m,@m(G ut) = Zc[l] Dl (G u*) - Z []@[2](G u*).
Proof. We only prove () about Z7—. First note that, if G is not bipartite then Z~; cli @[z](Gv u*) =0 for

all 7 € {0,1,2}, and (3] holds trivially.

Now suppose G = (U UV, E) is a bipartite graph, u* € U, and every edge uv € E has one vertex u
from U and one vertex v from V. We let Z;, i € {0, 1,2}, denote the set of assignments &; from U UV
to [m; + n;] such that &(u) € [m;] for all u € U and &;(v) € [m; + 1 : m; + n;] for all v € V. Since G is
connected, we have

26l ol Z Wtom o (§i),  for i € {0,1,2}.
gleh’l

To prove (3)), we define the following map p : 1 X E9 — Zg: p(&1,&2) = &o, where for every u € U,
€o(u) is the row index of Fl% that corresponds to row & (u) of FI! and row &(u) of FI? in the tensor
product Fl0 = FI!l @ FI2; and similarly, for every v € V, &o(v) — mg is the column index of FO that
corresponds to column & (v) —m;y of FI and column & (v) — my of FZ in the tensor product. One can
check that p is a bijection, and

wtcio ool (§0) = Whom o (€1) - Wtz oei(€2),  if p(&1,&2) = o

Equation (3]) then follows. O

2.2 Basic #P-Hardness

We state the complexity dichotomy theorem of Bulatov and Grohe as follows:

Theorem 2.1 (Bulatov and Grohe [2]). Let A be a symmetric and connected matriz with non-negative
entries, then EVAL(A) is either in P or #P-complete. More precisely,

— If A is bipartite, then EVAL(A) is in polynomial time if the rank of A is 2; Otherwise
EVAL(A) is # P-complete.

— If A is not bipartite, then EVAL(A) is in polynomial time if the rank of A is at most 1;
Otherwise EVAL(A) is # P-complete.

Theorem 2.1] gives us the following useful corollary:
Corollary 2.1. Let A be a symmetric and connected matrix with non-negative entries. If
(Ai,k Ai,€>
Ajr Aje
is a 2 x 2 sub-matriz of A such that all of its four entries are nonzero and A; ,A; ¢ # Ai¢Ajk, then the
problem EVAL(A) is #P-complete.



3 A High Level Description of the Proof

The first step in the proof of Theorem [[I]is to reduce the problem to connected graphs/matrices.
Let A be an m x m symmetric complex matrix. It is clear that if G has connected components Gj,
then

Za(G) = HZA(Gi)E

and if G is connected and A has connected components A, then Zo(G) = 3_; Za,(G). Hence if every
Za, () is computable in P, then so is Za(-).

The hardness direction is less obvious: suppose Za,(-) is #P-hard for some j, we want to show that
Z (") is also #P-hard. We do this by showing that computing Za(-) is reducible to computing Za (-).
Let G be an arbitrary input graph. To compute Za ;(G) it suffices to compute Za,; (G;) for all connected
components G; of G. Therefore, we may assume that G is connected. Define a pinning version of the
ZA(-) function as follows. For any chosen vertex w € V(G), and any k € [m], let

Za(Gyw, k) = > I Aew.ew:

&V —[m], E(w)=k (uw)eE

Then we can prove a Pinning Lemma (Lemma [AT]) which states that the problem of computing Za ()
is polynomial-time equivalent to computing Za(-,,-). Note that if V; denotes the subset of [m| where
A is the sub-matrix of A restricted by Vj, then for a connected G, Za,(G) = Zkevj Za(G,w, k).

The proof of this Pinning Lemma (Lemma [4.1]) is a standard adaptation to the complex numbers
of the one proved in [I0]. However, for technical reasons we will need a total of three Pinning Lemmas
(Lemma [FT] and [8.2)) where some proofs are a bit more involved. We also remark that the Pinning
Lemma proves the ezistence of polynomial-time reductions between Za (-) and Za(-, -, ), but the lemma
does not constructively produce such a reduction, given A. The proof of the Pinning Lemma in [10]
uses a recent result by Lovész [17], which was proved for real matrices. We give a direct proof without
using this result of Lovész.

After this preliminary step, we restrict to connected A. As indicated, to our work the two most
influential predecessor papers are by Bulatov and Grohe [2] and by Goldberg et.al. [10]. In both papers
the polynomial-time algorithms for the tractable cases are relatively straightforward. The difficult part
of the proof is to show that in all other cases the problem is #P-hard. Our proof follows a similar
overall conceptual framework to that of Goldberg et.al. [I0]. However due to the difficulties introduced
by the complex numbers, both the overall organization and the substantive part of the proof have to be
done separately. This difficulty starts with the most basic proof technique called gadget constructions,
to be discussed shortly. Technically, it turns out that all our hardness proofs are reductions to the
non-negative case using Bulatov-Grohe [2] rather than to [10]. The difficulty with proving hardness for
complex matrices goes deeper than appearance. Intuitively, the complex numbers afford a much richer
variety of cancelations, which could lead to very efficient algorithms. It turns out that this is indeed the
case, and we obtain more non-trivial tractable cases. These boil down to certain exponential sums over
rings of a quadratic polynomial with a base that is a root of unity. While the corresponding sum for
finite fields is known [15], the corresponding result over rings appears to be new and is of independent
interest. (Odd prime powers behave somewhat differently than powers of 2. The dichotomy theorem of
[10] can be considered as the special case where the only root of unity is —1.)

We now briefly describe the proof structure for connected A. As has already been used many times
before, a key tool in the proof of hardness is to design graph gadgets, which takes any input graph G
and produces a modified graph G* with the following property: One can transform the fixed matrix A
to a suitably modified matrix A*, such that Za«(G) = ZA(G*). A simple example of this maneuver is

10



called thickening where one replaces each edge in G by t parallel edges to get G*. Then it is easy to see
that A* is obtained from A by replacing each entry A;; by its tt" power (A4; ;). In particular, if A is
real and t is even, this produces a non-negative matrix A*, to which one may apply the Bulatov-Grohe
result. The equality Za~(G) = Za(G*) shows that if Za-(-) is #P-hard then so is Za(+).

For Theorem [[.T] we immediately encountered the following difficulty. Any gadget construction will
only produce a matrix A* whose entries are obtained from entries of A by arithmetic operations + and
x. While for real numbers any even power guarantees a non-negative quantity, as was done in [10], no
obvious arithmetic operations on the complex numbers have this property. Pointedly, conjugation is
not an arithmetic operation. However, it is also clear that for roots of unity, one can always produce
conjugation by multiplication.

Thus, our proof starts with a process to replace an arbitrary complex matrix by a purified complex
matrix which has a special form. It turns out that we must separate out the cases where the graph
of the matrix A is bipartite or non-bipartite. A purified bipartite (and symmetric, connected) matrix

takes the following form
0 B
BT 0)’

where
M1 C1 G2 oo Clm—k\ [Hrs1
H2 CG1 22 - Cm—k M2
B = . . . . . 3
e) \Ck1 Ck2 -+ Chkm—k Hm

for some 1 < k£ < m, in which every p; > 0 and every (; ; is a root of unity.

The claim is that for every symmetric, connected and bipartite matrix A € C™*™, either we can
already prove the #P-hardness of computing Za (-) or there exists a symmetric, connected and purified
bipartite matrix A’ € C"™*™ such that computing Za/(-) is polynomial time equivalent to computing
ZA(-) (see Theorem [5.1]). For non-bipartite A, a corresponding statement holds (see Theorem [6.1]). For
convenience, in the discussion below, we only focus on the bipartite case.

Continuing now with a purified bipartite matrix A, the next step is to further regularize its entries.
In particular we need to combine those rows and columns of the matrix where they are essentially the
same apart from a multiple of a root of unity. This process is called Cyclotomic Reduction. In order
to carry out this process, we need to use the more general counting problem EVAL(C,®) defined in
Section Il We also need to introduce the following type of matrices called discrete unitary matrices:

Definition 3.1 (Discrete Unitary Matrix). Let F € C"™*™ be a matriz with entries (F; ;). We say F
1s an M-discrete unitary matrix, for some positive integer M, if it satisfies the following conditions:

1. Bvery entry F; ; of F is a root of unity, and M = lcm {the order of Fj ; 11,5 € [m]},
2. Fi1;=F;1 =1 forallie€ [m]; and
3. Foralli # j € [m], (Fi.«,Fj.) =0 and (F,;,F,;) =0.

Some simplest examples of discrete unitary matrices are as follows:

111 11
11 i i —11 —11 i Lo ¢h¢ ¢
e e P e B O B EI SR S R
1 -1 -1 1 1 w? w 1 ¢t o¢ ¢ ¢

1 ¢? ¢ ¢ -1
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where w = €2™/3 and ¢ = ¢¥™/%. Also note that any tensor product of discrete unitary matrices is also
a discrete unitary matrix. These matrices play a major role in our proof.

Now we come back to the proof outline. We show that Za (-) is either #P-hard or polynomial time
equivalent to Zc p(-) for some C € C?%27 and some ® of diagonal matrices from C2>"*?" where C
is the bipartisation of a discrete unitary matrix, for some positive integer n. In addition to requiring
C to be the bipartisation of a discrete unitary matrix, there are further stringent requirements for ®,
otherwise Zp is #P-hard. The detailed statements can be found in Theorem and [£.3] summarized
in properties (1) to (Us). Roughly speaking, the first matrix DI in ® must be the identity matrix;
and for any matrix DIl in @, every entry of D"l is either zero or a root of unity. We call all of these
requirements, with some abuse of terminology, the discrete unitary requirements.

Now assume that we have a problem (C,®) satisfying the discrete unitary requirements.

Definition 3.2. Let ¢ > 1 be a prime power, then the following q x q¢ matriz F, is called the g-Fourier
Y

matrix: The (z,y)th entry of F,, where z,y € [0:q — 1], is wg".

We next show that either Z¢ o(-) is #P-hard or after a permutation of rows and columns, C is the
bipartisation of a matrix which is a tensor product of suitable Fourier matrices. This tensor product
decomposition into Fourier matrices gives us a canonical way of writing the elements of the matrix C
in a closed form. After obtaining this canonical expression, we further inquire the structure of ®. The
canonical tensor product decomposition gives us a way to index the rows and columns of C and every
diagonal matrix in ® using elements from a suitable Abelian group. More precisely, the first half and
the second half of the entries of each D'} in © are indexed by (0,x) and (1,x) respectively, where x is
from the group. It turns out that there are two more properties that we can prove about ®; otherwise
the problem of computing Zc o(-) is #P-hard.

First, for each r, we define A, and A, to be the support of DI, where A, refers to the first half of
the entries and A, refers to the second half of the entries:

Ar={x| Dy, #0} and A, ={x|Dy  #0}.

We let S denote the set of subscripts  such that A, # () and 7 denote the set of r such that A, # (.
We can prove that for every r € S, A, = [[;_; A, is a direct product of cosets in the Abelian group,
where ¢ = 1,...,s correspond to the constituent prime powers of the group. Similarly for every r € 7,
A, = [[_; Ar; is also a direct product of cosets in the same Abelian group; Otherwise, Zc o(-) is
#P-hard.

Second we show that for each r € S and r € T, respectively, DIl on its support A, for the first half
of its entries and on A, for the second half of its entries, respectively, possesses a quadratic structure;
otherwise Z¢ () is #P-hard. We can express this quadratic structure as a set of ezponential difference
equations over bases which are appropriate roots of unity of orders equal to various prime powers.

After all these necessary conditions, we prove that if C and ® satisfy all these requirements, then
there is a polynomial-time algorithm to compute Z¢ o(-) and thus, the problem of computing Za(-) is
in P. As remarked earlier this tractability result may be of independent interest.

4 Pinning Lemmas and Preliminary Reductions

In this section, we prove two pinning lemmas, one for EVAL(A) and one for EVAL(C,®) where (C,D)
satisfies certain conditions. The proof of the first lemma is very similar to [10], but the second one has
some complications.
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4.1 A Pinning Lemma for EVAL(A)

Let A be an m x m symmetric complex matrix. We define EVALP(A) as follows: The input is a triple
(G,w,i), where G = (V, E) is an undirected graph, w € V' is a vertex, and i € [m]; The output is

ZA(G,w,i) = Z WtA(f).
&V —[m], {(w)=i

It is easy to see that EVAL(A) < EVALP(A), but the following lemma shows that the reverse direction
is also true.

Lemma 4.1 (First Pinning Lemma). EVALP(A) = EVAL(A).

We define the following equivalence relation over [m] (Note that we do not know, given A, how to
compute this relation efficiently, but we know it exists. The lemma only proves, non-constructively, the
existence of a polynomial-time reduction. Also see [I7]):

i ~ j if for any undirected graph G = (V, E) and w € V, ZA(G,w,i) = Za(G,w, j).

This relation divides the set [m] into s equivalence classes Aj, ..., As, for some positive integer s. For
any t # t' € [s], there exists a pair P,y = (G,w), where G is an undirected graph and w is a vertex
in G, such that (Again, we do not know how to find such a pair efficiently, but it always exists by the
definition of the equivalence relation ~.)

ZA(G7w>Z) = ZA(G,’LU,]) 75 ZA(G7w7i/) = ZA(G7w7j/)7 for all ,] € A; and i/vj/ € At’-

Now for any subset S C [s], we define a problem EVAL(A,S) as follows: The input is a pair (G, w),
where G = (V| E) is an undirected graph and w is a vertex in G; The output is

ZA(G,w, S) = > wta (€).
&V—[m], §(w)€U,e s At
Clearly, if S = [s], then EVAL(A, S) is exactly EVAL(A). We prove the following claim:
Claim 4.1. If S C [s] and |S| > 2, then there exists a partition {S1,...,Sk} of S for some k > 1 and
EVAL(A, Sy) < EVAL(A, S), for all d € [K].
Before proving this claim, we use it to prove the First Pinning Lemma.

Proof of Lemma[{.1 Let (G,w,i) be an input of EVALP(A), and i € A; for some t € [s]. We will use
Claim A.] to prove that EVAL(A, {t}) < EVAL(A). If this is true, then we are done because

Za(G,w,1) Za(G,w, {t}).

_ 1
| Al
To prove EVAL(A, {t}) < EVAL(A), we apply Claim (1] above to S = [s]; if s = 1, then Lemma
[4.1lis trivially true. By Claim [£.1] there exists a partition {S,...,Sg} of S, for some k > 1, such that
EVAL(A,S;) < EVAL(A,S) =EVAL(A), for all d € [k].

Without loss of generality, assume ¢ € Sy. If S; = {t}, then we are done; otherwise we have ¢t € S7 and
|S1] > 2. In this case, we just rename S; to be S and repeat the process above. Because |S]| is strictly
monotonically decreasing after each iteration, this procedure will stop at some time, and we conclude
that EVAL(A, {t}) < EVAL(A). O
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Proof of Claim[{.1]. Lett # ¢’ be two integers in S (as |S| > 2, such t # ¢’ exist). We let P,y = (G*, w*),
where G* = (V*, E*). It defines the following equivalence relation ~* over S: For a,b € S,

a~"b if Zo(G*,w*,i) = ZA(G*,w",j), wherei € A, and j € A,.

This equivalence relation ~* is clearly well-defined, being independent of our choices of i € A,,j € Aj.
It gives us equivalence classes {S1,..., Sk}, a partition of S. Because (G*,w*) = P, y, by the definition
of ~* t and ¢’ belong to different classes and thus, k > 2. For each d € [k], we let X, denote

Xq=ZA(G"w" i), wherei € A, and a € Sy.

This X, is well-defined, being independent of the choices of a € S; and i € A,. The definition of the
equivalence relation ~* implies that X4 # Xy for all d # d’ € [k].

Next, let G be an undirected graph and w be a vertex. We show that, by querying EVAL(A, S) as
an oracle, one can compute Za (G,w, Sy) efficiently for all d.

For each p € [0 : k — 1] we construct a graph GIP! = (V[P B[P} as follows. Graph G[) is the disjoint
union of G and p independent copies of G*, except that the w in G and the w*’s in all copies of G* are
identified as one single vertex w’ € VP! (thus [VIPI| = |V| 4 p - [V*| — p). In particular, Gl = G.

We have the following collection of equations: For every p € [0: k — 1],

ZA(GP ', 8) = " (Xa)” - Za(G,w, S).
de(k]

Because X4 # Xy for all d # d', this is a Vandermonde system and we can solve it to get Za (G, w, Sy)
for all d € [k]. As both k and the size of the graph G* are constants that are independent of G, this
gives us a polynomial-time reduction from EVAL(A, S;) to EVAL(A,S), for every d € [k]. O
4.2 A Pinning Lemma for EVAL(C, D)

Let C be the bipartisation of F € C™*™ (so C is 2m x 2m). Let ® = {Dl%, ..., DIV-1} be a sequence
of N 2m x 2m diagonal matrices. We define EVALP(C,D) as follows: The input is a triple (G, w, 1),
where G = (V, E) is an undirected graph, w € V' is a vertex, and i is an integer in [2m]; The output is

Zco(G w,i) = > wtco(§).
&V —[2m], E(w)=1

It is easy to see that EVAL(C,®) < EVALP(C,®). However, unlike problems EVALP(A) and EVAL(A)
we can only prove the reverse direction when (C,®) satisfies the following condition:

(Pinning) Every entry of F is a power of wy, for some positive integer N; \/—% - F is a unitary
matrix; and DI is the 2m x 2m identity matrix.

Lemma 4.2 (Second Pinning Lemma). If (C,®) satisfies (Pinning), then EVALP(C,®) = EVAL(C, D).

Corollary 4.1. If (C,D) satisfies (Pinning), then the problem of computing function Zc o (or function
Zg.) is polynomial time reducible to EVAL(C,D).

We define the following equivalence relation over [2m]:

i ~ j if for any undirected graph G = (V, E) and w € V, Z¢c »(G,w,i) = Zc o(G,w, j).
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N-1edges
1 edge

Figure 1: Graph G”!, p € [0: k —1].

This relation divides [2m] into s equivalence classes A1, As, ..., A, for some positive integer s. For any
t #t' € [s] there exists a P,y = (G,w), where G is an undirected graph and w is a vertex, such that

Zoo(Gw,i) = Zeo(Gyw, ) # Zeo(G,w,i') = Zco(G,w,j"), foralli,je A and 5 € Ap.

Now for any subset S C [s]|, we define EVAL(C,®,S) as follows: The input is a pair (G, w), where
G = (V, E) is an undirected graph and w is a vertex in G; The output is

Zco(G,w,S) = > wie.o(8).
&V —2m], f(w)EU, e 5 At

Clearly, when S = [s], EVAL(C,®, S) is exactly EVAL(C,®). We prove the following claim:

Claim 4.2. If S C [s] and |S| > 2, then there ezists a partition {Si,...,Sk} of S for some k > 1, such

that
EVAL(C,®D, S,;) < EVAL(C,®,S), foralld € [k].

Lemma [4.2] then follows from Claim Its proof is exactly the same as the one of Lemma [£.1] using
Claim 4.1} so we omit it here.

Proof of Claim[{.2 Let t # t' be two integers in S (as S| > 2, such t # t’ exist). We let P,y = (G*,w"),
where G* = (V*, E*). It defines the following equivalence relation over S: For a,b € S,

a~"b if Zco(G*,w*,i) = Zco(G*,w", j), where i€ A, and j € A.

This gives us equivalence classes {Si,..., S}, a partition of S. Since (G*,w*) = Py, t and t' belong
to different classes and thus, k > 2. For each d € [k], we let Y; denote

Yy = Zco(G*,w",i), whereiec A, and a € 5.

The definition of the equivalence relation implies that Yy # Yy for all d # d' € [k].

Now let G be an undirected graph and w be a vertex. We show that, by querying EVAL(C,®, S) as
an oracle, one can compute Zg o(G,w, Sq) efficiently for all d € [k].

For every integer p € [0 : k — 1], we build a graph GI?! = (VI ElP) as follows: GP! contains G and
p independent copies of G*. The vertex w in G is then connected appropriately to the w* of each G*
(see Figure [T). More precisely, we have V[Pl as a disjoint union:
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P
viel=vuy (U{vm ‘v S V*}> U1, ..., 2p, U1, Ypts

i=1
where x1,...,2p,Y1,...,Yp are new vertices, and E [P contains precisely the following edges:
1. If wv € E, then wv € EP!; If uv € E*, then up|vp) € E! for all i € [p];
2. One edge between (wf‘i},azi) and (y;,w) for each i € [p]; and
3. N —1 edges between (z;,w) and (wf, y;) for each i € [p].

In particular, we have Gl = G.
We have the following collection of equations: For p € [0 : k — 1], ZC,@(G[Z’], w, S) is equal to

P

p
Z Z(lg(G,’w,Z') HZC7®(G*,’LU*,Z']') H Z WC’M Z mci,y

i€UaesAa Jj=1 J=1 \z€[2m)] y€[2m)]
i1,...,ip€[2m]

By condition (Pinning), > Cij,rm = (Fij,*, F; ) is 0 unless i = ij. Therefore, we have

z€[2m)]

Zeo(GPLw,8) =m™ - Y Zco(Gw,i)(Zeo(GF w*, i)’ =m™ - > (Yo - Zco(G,w, Sg).

1€UgesAq de(k]

Since Yy # Yy for all d # d', this is a Vandermonde system, and we can solve it to get Zc o(G,w, Sq)
for all d. As both k and the size of the graph G* are constants that are independent of GG, this gives us
a polynomial-time reduction from EVAL(C,D, S;) to EVAL(C,®, S) for every d € [k]. O

4.3 Reduction to Connected Matrices
The following lemma allows us to focus on the connected components of A:
Lemma 4.3. Let A € C™*™ be a symmetric matriz with components A1, Ao, ..., A;. Then
— If EVAL(A,;) is #P-hard for some i € [s], then EVAL(A) is # P-hard;
— If EVAL(A;) is polynomial-time computable for every i € [s], then so is EVAL(A).
Proof. Lemma (3] follows directly from the First Pinning Lemma (Lemma [A.T]). O

The main Dichotomy Theorem [L.T] will be proved by showing that for every connected A € C™*",
the problem EVAL(A) is either solvable in polynomial-time, or #P-hard.

5 Proof Outline of the Case: A is Bipartite

We now give an overview of the proof of Theorem [[LT] for the case when A is connected and bipartite.
The proof consists of two parts: a hardness part and a tractability part. The hardness part is further
divided into three major steps in which we gradually “simplify” the problem being considered. In each
of the three steps, we consider an EVAL problem passed down by the previous step (Step 1 starts with
EVAL(A) itself) and show that

— either the problem is #P-hard; or
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— the matrix that defines the problem satisfies certain structural properties; or

— the problem is polynomial-time equivalent to a new EVAL problem, and the matrix that
defines the new problem satisfies certain structural properties.

One can view the three steps as three filters which remove #P-hard EVAL(A) problems using different
arguments. Finally in the tractability part, we show that all the EVAL problems that survive the three
filters are indeed polynomial-time solvable.

5.1 Step 1: Purification of Matrix A

We start with EVAL(A), in which A € C™*™ is symmetric, connected, and bipartite. It is easy to see
that if m = 1, then EVAL(A) is tractable. So in the discussion below, we assume m > 1.

In this step, we show that EVAL(A) is either #P-hard or polynomial-time equivalent to EVAL(A'),
in which A’ is also an m x m matrix but has a very nice structure.

Definition 5.1. Let A € C™*™ be a symmetric, connected and bipartite matriz. We say it is a purified
bipartite matrix if there exist positive rational numbers pi, ..., m and an integer 1 < k < m such that

- A ;=0 foralli,je[k]; Ajj =0 foralli,j € [k+1:m]; and
— A/ (pipg) = Aji/(ipes) is a root of unity for all i € [k] and j € [k+1:m].

In other words, there exists a k x (m — k) matrix B of the form

M1 C1 G2 oo Clm—k\ [Het1
2 G1 22 - Cm—k k2
B = . . . . 5
e) \Cka1 Ck2 - Ckm—k Hom

where every p; > 0 and every (; ; is a root of unity, and A is the bipartisation of B.

Theorem 5.1. Let A € C™*™ be a symmetric, connected and bipartite matriz, for some m > 1, then
either EVAL(A) is #P-hard or there exists an m X m purified bipartite matriz A’ such that

EVAL(A) = EVAL(A').
(By Definition[51), A’ is symmetric and thus, EVAL(A') is well defined.)

5.2 Step 2: Reduction to Discrete Unitary Matrix

Now let A € C™*™ denote a purified bipartite matrix. We prove that EVAL(A) is either #P-hard or
polynomial-time equivalent to EVAL(C,®) for some C and ©, where the matrix C is the bipartisation
of a discrete unitary matrix, which is to be defined in the next definition.

Definition 5.2. Let F € C™*™ be a (not necessarily symmetric) matric with entries (F; ;). We say F
1s an M-discrete unitary matrix, for some positive integer M, if it satisfies the following conditions:

1. Every entry F; ; of F is a root of unity, and M = lcm {the order of F; ; 11,5 € [m]},
2. F1;=F;1 =1 forallie€ [m]; and

3. For alli # j € [m], (Fi.«,Fj.) =0 and (F,;,F,;) =0.
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Some simplest examples of discrete unitary matrices are as follows:

1 1 1 1 1
1 1 1 1 _ _
1 1 1 1 -1 -1 tid Loc ¢ ¢ ¢
H, = , Hy = ,Fs=(1 n n*|, Fs=|1 ¢ ¢ ¢t ¢ |,
1 -1 1 -1 1 -1 ) > P
1 -1 -1 1 L 7 n 1 ¢ ¢ ¢
1 ¢ ¢ ¢ (¢t
where n = €2™/3 = w3 is a third root of unity, and ¢ = €*™/> = ws is a fifth root of unity. Note that

the tensor product of any two discrete unitary matrices is also a discrete unitary matrix.

Theorem 5.2. Let A € C"™ ™ be a purified bipartite matriz. Then either 1). EVAL(A) is tractable; or
2). EVAL(A) is #P-hard; or 3). there exists a triple (M, N),C, D) such that EVAL(A) = EVAL(C, D),
and ((M,N),C,D) satisfies the following conditions (Uy)-(Usy):

(Uy) M and N are positive integers that satisfy 2| N and M |N. C € C*2" for some n > 1, and
© ={Dl pltl DN}
is a sequence of N 2n x 2n diagonal matrices over C;

(Us) C is the bipartisation of an M -discrete unitary matrix F € C"*". (Note that matrices C and
F uniquely determine each other);

(Us) For alli € [2n], DZ[O} =1. For allr € [N — 1], we have

Ji € [n], Dzm #0 = 3¢ €[n], DZ[T] =1, and
Jic [n—l—l:Qn],Dl[T]yéO = 3’ e [n+1:2n],D£ﬂ:1;

(Uy) For all r € [N — 1] and all i € [2n], DZ[T] € Q(wn) and |D2m‘ € {0,1}.

5.3 Step 3: Canonical Form of C, F and ®

After the first two steps, the original problem EVAL(A) is shown to be either tractable; or #P-hard; or
polynomial-time equivalent to a new problem EVAL(C,®). We also know there exist positive integers
M and N such that (M, N),C,D) satisfies conditions (U;)-(Us).

For convenience, we still use 2m to denote the number of rows of C and DU, though it should be
noted that this new m is indeed the n in Theorem [5.2], which is different from the m used in the first
two steps. We also denote the upper-right m x m block of C by F.

In this step, we adopt the following convention: Given an n x n matrix, we use [0 : n — 1], instead
of [n], to index its rows and columns. For example, we index the rows of F using [0 : m — 1] and index
the rows of C using [0 : 2m — 1].

We start with the special case when M = 1. Because F is M-discrete unitary, we must have m = 1.
In this case, it is easy to check that EVAL(C,®) is tractable: C is a 2 by 2 matrix

(1 o)

Zc,»(G) is 0 unless G is bipartite; For connected and bipartite G, there are at most two assignments
¢:V —{0,1} which could yield non-zero values; Finally, for graph G with connected components G,
Zc,»(G) is the product of Z¢ o(G;)’s.
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For the general case when parameter M > 1, we further study the structures of matrix F and the
diagonal matrices in D, and derive several necessary conditions on them for the problem EVAL(C,D)
to be not #P-hard. In the tractability part, we prove that these conditions are actually sufficient for it
being polynomial-time computable.

5.3.1 Step 3.1: Entries of DIl are either 0 or Powers of wy

Suppose ((M, N),C,D) satisfies conditions (U;)-(Us) and M > 1. In the first step, we show that either
EVAL(C,®) is #P-hard or every entry of DIl (in @), € [N — 1], is either 0 or a power of wy.

Theorem 5.3. Suppose ((M,N),C,D) satisfies (U1)-(Us) and integer M > 1, then either the problem
EVAL(C,®) is #P-hard or (M,N),C,®) satisfies the following additional condition (Us):

(Us) Forallr € [N —1] andi€ [0:2m —1], DZ[T] is either 0 or a power of wy.

5.3.2 Step 3.2: Fourier Decomposition

Second, we show that either problem EVAL(C,9) is #P-hard or we can permute the rows and columns
of F, so that the new F is the tensor product of a collection of Fourier matrices, to be defined in the
next definition.

Definition 5.3. Let ¢ > 1 be a prime power, and k > 1 be an integer such that ged (k,q) = 1. We call
the following q x q matriz F, a (g,k)-Fourier matrix: The (x,y)" entry, where z,y € [0: ¢ — 1], is

w(l;my _ e27ri(kxy/q) )

In particular, when k =1, we use F, to denote F g1 for short.

Theorem 5.4. Suppose (M, N),C,D) satisfies conditions (U1)-(Us), and integer M > 1. Then either
EVAL(C,®) is #P-hard or there exist

1. two permutations ¥ and IT from [0:m — 1] to [0 : m — 1]; and

2. a sequence q1,q2,--..,qq of d prime powers, for some d > 1,
such that
Fon= Q) Fo (4)
1€[d]
Suppose there do exist permutations X, IT and prime powers gz, ..., gq such that Fy, i satisfies (),

then we let Cyx; 11 denote the bipartisation of Fy, ;1 and Dy, ;1 denote a sequence of N 2m x 2m diagonal
matrices in which the 7 matrix is

[7]
Dy )

B(m—1) , T€0:N-1].

=IE)

(m—1)+m
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It is clear that permuting the rows and columns of matrices C and every DIl by the same permutation
pair (3,1II) does not affect the complexity of EVAL(C,®), so EVAL(Cx 11, D% 1) = EVAL(C, D). From
now on, we let F, C and © denote Fy 11, Cx. 11 and Dy, 11, respectively. By (), the new F satisfies

F=() F,. (5)

Before moving forward, we rearrange the prime powers g1, ¢qo,...,qq and divide them into groups
according to different primes. We need the following notation.

Let p = (p1,...,ps) be a sequence of primes such that p; < ps <...< ps and t = (t1,...,ts) be a
sequence of positive integers. Let Q = {q; |i € [s]} be a collection of s sequences in which each q; is a
sequence (g1, ..., @iz, ) of powers of p; such that ¢;; > ... > g;,. We let ¢; denote ¢; ; for all i € [s],

HZq”: gin X X Lq,,., foralli€[s],
JE[ti]

and

ZQ = H Zf]i,j = H Z(h' = Zth,l X X qu,tl X
Z

i€[s],j€[ts] i€[s] N/ X

q2,1 X q2,tg

Lggy X -+ X 1L

Qs,ts

be the Cartesian products of the respective finite Abelian groups. Both Zg and Zq, are finite Abelian
groups, under component-wise operations. This implies that both Zg and Zg, are Z-modules and thus
kx is well defined for all £ € Z and x in Zg or Zq,. As Z-modules, we can also refer to their members
as “vectors”. When we use x to denote a vector in Zg, we denote its (i, )" entry by Tij € Ly; ;- We
also use x; to denote (z;; : j € [ti]) € Zq,, s0 X = (X1,...,X;). Given X,y € Zg, we let x -y denote
the vector in Zg whose (4, ) entry is z;; + y;; (mod g; ;). Similarly, for each i € [s], we can define
x +y for vectors X,y € Zg,.
By (B), there exist p,t, Q such that (M, N),C,D, (p,t,Q)) satisfies the following condition (R):

(R1) p = (p1,-..,ps) is a sequence of primes such that p; < -+ < ps; t = (t1,...,ts) is a sequence of
positive integers; @ = {q; |7 € [s]} is a collection of s sequences, in which every q; is a sequence
(Gijs---+qy;) of powers of p; such that ¢;1 > -+ > g;4,;

(R2) C € C?™*2™ is the bipartisation of F € C™*™, and ((M,N),C,D) satisfies (Uy)-(Us);
(Rs) There is a bijection p from [0 :m — 1] to Zg (so m = [];¢(5) je,) %.j) such that
Fop= H wg Y, for all a,b € [0:m — 1], (6)
i€ls],jElt:]

where (z;;:1 € [s],j € [ti]) =x = p(a) and (y;; : ¢ € [s],j € [ti]) =y = p(b). Note that (@) above
also gives us an expression of M using Q. It is the product of the largest prime powers ¢; = ¢; 1
for each distinct prime p;: M = Hie[s] qi-

For convenience, we will from now on directly use x € Zg to index the rows and columns of F:

Fey =Fpax)p1(y) = H w;’jy”, for all x,y € Zo, (7)
i€[s],j€lti]
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whenever we have a tuple (M, N),C, D, (p,t, Q)) which is known to satisfy condition (R). We assume
that F is indexed by (x,y) € Zg x Zg rather than (a,b) € [0 : m — 1] x [0 : m — 1], and (R3) refers to
([@. Correspondingly, to index the entries of matrices C and DU, we use {0,1} x Zg: (0,x) refers to
the p~1(x)"" row (or column), and (1,x) refers to the (m + p~!(x))"" row (or column).

5.3.3 Step 3.3: Affine Support for ©

Now we have a 4-tuple ((M,N),C,D, (p,t,Q)) that satisfies condition (R). In this step, we prove for
every r € [N — 1] (recall that DI is already known to be the identity matrix), the nonzero entries of
the 7 matrix DIl in © must have a very nice coset structure, otherwise EVAL(C,®) is #P-hard.

For every r € [N — 1], we define A, C Zg and A, C Zg as

A ={x€Zg| D, #0} and A, ={xeZo|D[, #0}.

We let S denote the set of r € [N — 1] such that A, # () and 7 denote the set of r € [N — 1] such that
A, # (). We recall the following standard definition of a coset of a group, specialized to our situation.

Definition 5.4. Let ® be a nonempty subset of Zg (or Zgq, for some i € [s]). We say ® is a coset in
Zg (or Lg,) if there ezists a vector xg € ® such that {x —xg|x € ®} is a subgroup of Zg (or Zg,).

Given a coset ® (in Zg or Zg,), we let @ denote its corresponding subgroup {x — x'|x,x’ € ®}.
Being a subgroup, clearly ®" = {x — x'|x,x' € ®} = {x — x| x € ®}, for any xo € .

Theorem 5.5. Let (M, N),C,D, (p,t,Q)) be a 4-tuple that satisfies (R). Then either EVAL(C, D) is
#P-hard or sets A, C Zgo and A, C Zg satisfy the following condition (L):

(L1) For everyr € S, Ay =[[;_; Ari, where for every i € [s], A,; is a coset in Zq,; and

(L2) For everyr e T, A, =[]7_; Ayi, where for every i € [s], Ay; is a coset in L.

Suppose EVAL(C,®) is not #P-hard, then by Theorem 5.5 tuple ((M,N),C, D, (p,t, Q)) satisfies
not only condition (R) but also condition (£). Actually, by condition (Us), ®© satisfies the following
additional property:

(L3) For every r € S, 3 al’l € A, such that Dy(;],a[f'l) =1; for every r € 7, 3 pll e A, Dg{b[f'l) =1.

From now on, when we say condition (£), we mean all three conditions (£1)-(L3).

5.3.4 Step 3.4: Quadratic Structure

In this final step within Step 3, we prove that, for every r € [N — 1], the nonzero entries of D"} must
have a quadratic structure, otherwise EVAL(C,®) is #P-hard.

Given a vector x in Zg, for some i € [s], we use ext,(x), where € S, to denote the vector x' € Zg
such that in the expression x' = (x},...,X}) € Zg = [[;¢[s) Zq;- its i component x, = x, the vector
given in Zg,;, and
x;- = ay], for all j # 1.

Recall that al"l is a vector we picked from A, in condition (£3). Similarly we let ext’.(x), where r € T,
denote the vector x’ € Zg such that x; = x and

x;» = bgd, for all j # 1.
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Let a be a vector in Zg, for some i € [s], then we use a to denote the vector b € Zg such that b; = a
and b; = 0 for all other j # i. Also recall that we use gi, where k € [s], to denote gy, ;.

Theorem 5.6. Let (M,N),C, 9, (p,t,Q)) be a tuple that satisfies both (R) and (L) (including (L3)),
then either EVAL(C,®) is #P-hard or ® satisfies the following condition (D):

(Dy) For everyr € S, we have

D (7]

0 = Do Dl ... Dl for all x € A, (8)

(0,ext,(x1))" (0,ext,(x2)) 7 (0,ext,(xs))’
(Dy) For every r € T, we have

D (7]

(1) = Dl Dl .. pl" forallx € A,. 9)

(Lext,.(x1) " (Lextl(x2)) " (Lext. (x.))’

(D3) Forallr €S, k € [s] anda € Al}‘l}t C Zq,, there exist b € Zq, and o € Zy such that

a _ plrl
(UNF B—D (0,x)’

N (0x+3) for all x € A, ; (10)

(Dy) Forallr €T,k €[s] anda € Ai}‘zz C Zqy,, there exist b € Zqg, and o € Zy such that

wy - By = D@,x-ﬁ-'&i) DK],X)’ for allx € Ar; (11)

Note that in (D3) and (Dy), the expressions on the left-hand-side do not depend on all other components
of x except the k" component x;,, because all other components of b are 0.

The statements in conditions (D3)-(D4) are a technically precise way to express the idea that there
is a quadratic structure on the support of each matrix DI"l. We express it in terms of an exponential
difference equation.

5.4 Tractability

Theorem 5.7. Let (M,N),C, D, (p,t,Q)) be a 4-tuple that satisfies all three conditions (R), (L) and
(D), then problem EVAL(C,®) can be solved in polynomial time.

6 Proof Outline of the Case: A is not Bipartite

The definitions and theorems of the case when matrix A is not bipartite are similar to, but also have
significant differences with, those of the bipartite case. We will list these theorems.

6.1 Step 1: Purification of Matrix A

We start with EVAL(A), in which A € C™*™ is symmetric, connected and non-bipartite. It is easy to
see that if m = 1, then EVAL(A) is tractable. So in the discussion below, we assume m > 1.

Definition 6.1. Let A € C™*™ be a symmetric, connected, and non-bipartite matriz. We say A is a
purified non-bipartite matrix if there exist positive rational numbers pu1, . .., pm such that A; ;/(pip;) is
a root of unity for all i,j € [m].
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In other words, A has the form

M1 Ci1 G2 - Cim M1
A o | C2.,1 42.,2 B szm 2 ,
M, gm,l gm,2 e <m,m Hm

where (; ; = (j; are all roots of unity. We prove the following theorem:

Theorem 6.1. Let A € C™*™ be a symmetric, connected, and non-bipartite matriz, for some m > 1.
Then either EVAL(A) is #P-hard or there exists a purified non-bipartite matriz A’ € C™*™ such that

EVAL(A) = EVAL(A).

6.2 Step 2: Reduction to Discrete Unitary Matrix

In this step, we prove the following theorem:

Theorem 6.2. Let A € C"™*™ be a purified non-bipartite matriz. Then either 1). EVAL(A) is tractable;
or 2). EVAL(A) is #P-hard; or 3). there exists a triple (M, N),F,®) such that

EVAL(A) = EVAL(F, D)
and (M, N),F,D) satisfies the following conditions (U5)-(U}):

(Uy) M and N are positive integers that satisfy 2|N and M |N. F is an n X n complex matrixz for
somen>1, and D = {D[m7 .. ,D[N_H} is a sequence of N n x n diagonal matrices;

(US) F is a symmetric M-discrete unitary matriz;
(UL) For alli € [n], DZ[O} = 1. For all 7 € [N — 1], we have D'l £0 = 3i € [n], DZ[T] =1;

(U}) For allr € [N —1] and all i € [n], DI € Q(wy) and [D| € {0,1}.

6.3 Step 3: Canonical Form of F and ©

Now suppose we have a tuple ((M, N),F,D) that satisfies (U;)-(U}). For convenience we still use m to
denote the number of rows and columns of F and each DIl in ©, though it should be noted that this
new m is indeed the n in Theorem [6.2] which is different from the m used in the first two steps.

As in the bipartite case, we adopt the following convention in this section: Given any n X n matrix,
we use [0 : n — 1], instead of [n], to index its rows and columns.

We start with the special case when M = 1. Since F is M-discrete unitary, we must have m = 1
and F = (1). In this case, the problem EVAL(C,®) is clearly tractable. So in the rest of this section,
we always assume M > 1.

6.3.1 Step 3.1: Entries of D'l are either 0 or Powers of wy

Theorem 6.3. Suppose (M, N),F,D) satisfies (U;)-(U}) and integer M > 1. Then either EVAL(F,D)
is #P-hard or ((M,N),F,D) satisfies the following additional condition (Uf):

(UL) For allr € [N —1] and i € [0:m — 1], D" is either zero or a power of wn.

7
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6.3.2 Step 3.2: Fourier Decomposition

Let ¢ be a prime power. We say W is a non-degenerate matrix in Z?]XQ if Wx #£0 forall x #0 € Zg.
The following lemma gives some equivalent characterizations of W being non-degenerate. The proof is
elementary, so we omit it here.

Lemma 6.1. Let g be a prime power and W € Zgw. Then the following statements are equivalent:
1. W is non-degenerate;
2. x — Wx is a bijection from Zg to Zg; and

3. det(W) is invertible in Zj,.

Definition 6.2 (Generalized Fourier Matrix). Let g be a prime power and W = (W;;) be a symmetric
non-degenerate matrix in Zgw. Fq,w is called a (¢, W)-generalized Fourier matrix, if it is a q> % ¢?
matriz and there is a one-to-one correspondence p from [0: ¢* — 1] to [0: ¢ — 1)?, such that

(Tq,W)i,j — wlTI/V11:c1y1+W12:c1y2+W21:c2y1+W22:c2y2’ fOT all i,j c [0 . (]2 _ 1],

where x = (x1,x2) = p(i) and y = (y1,y2) = p(j)-
Theorem 6.4. Suppose (M, N),F,D) satisfies (U})-(UE), then either EVAL(F,D) is # P-hard or there

exist a permutation ¥ from [0 :m — 1] to [0 : m — 1] and

1. two sequences d = (di,...,dg) and W = (W, ... W), for some non-negative g (Note that the
g here could be 0, in which case both d and W are empty): For every i € [g], d; > 1 is a power of
2, and WU is a 2 x 2 symmetric non-degenerate matriz over Zg;; and

2. two sequences q = (q1,-..,q¢) and k = (k1,...,k¢) (Again € could be 0, in which case both q and
k are empty), in which for every i € [{], g; is a prime power, k; € Zg,, and ged(g;, ki) =1,

such that

g )4
Fey= <® j:di,W[i]> X <® fqi,ki> :
=1

i=1

Suppose there does exist a permutation ¥ (together with d, W, q, and k) such that Fy; y; satisfies
the equation above (otherwise, EVAL(F,®) is #P-hard). Then we apply X to DIl r e 0: N —1], to
get a new sequence Dy, of N diagonal matrices in which the r** matrix is

It is clear that permuting the rows and columns of F and DIl in © by the same permutation ¥ does
not affect the complexity of EVAL(F,®), so EVAL(Fy », ©x) = EVAL(F,®). From now on, we simply
let F and ®© denote Fy 5; and Dy, respectively. Thus we have

g ¢
F = (@fdi,W[i]> ® <®‘7:qz,kz> . (12)
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Before moving forward to Step 3.3, we rearrange the prime powers in d and q and divide them into
groups according to different primes.

By (I2)), there exist d, W, p, t, @ and K such that tuple ((M,N),F,D,(d, W, p,t, Q,K)) satisfies
the following condition (R'):

(R}) d = (di,...,dy) is a sequence of powers of 2 for some non-negative integer g, such that if g > 0,
then dy > ... > dg; W = (Wm, . ,W[g]) is a sequence of matrices. Every Wl is a symmetric
non-degenerate 2 x 2 matrix over Zg4, (Note that d and W could be empty);

p = (p1,-..,ps) is a sequence of s primes, for some s > 1, such that 2 = p; < ... < ps; t = (¢4,

..,ts) is a sequence of integers: ¢t > 0 and ¢; > 1 for all i > 1; Q = {q; |7 € [s]} is a collection
of sequences in which q; = (¢i1,...,¢+,) is a sequence of powers of p; such that ¢; 1 > ... > giy,
(Only q; could be empty. We always fix p; to be 2 even when no powers of 2 occur in Q);

K ={k;|i € [s]} is a collection of s sequences in which each k; = (k;1,...,ki+,) is a sequence of
length t;. For all ¢ € [s] and j € [t;], k; j € [0 : ¢;; — 1] and ged(k; 5, gi ;) = ged (ki j,pi) = 1;

(RS) (M,N),F,D) satisfies condition (Uj)-(UL), and

m:H(di)2X H Qi

i€[g] i€[s],j€[ts]

(R%) There is a one-to-one correspondence p from [0 : m — 1] to Z3 x Zg, where

2= [[ 2P and Zo— [[ Za,

i€[g] i€[s],jEt]
such that (For every a € [0:m — 1], we use
(moﬂ-J c1€g],j € {1,2}) € Za and (mlm- c1 € [s],j € [tz]) € Zo
to denote the components of x = p(a) € Zfi X Lo, where wo; j € Zq;, and x1;j € Zy; ;)
Fop = H wfifo’i"l #0.i.2) W (yo,i.1 v0.1.2)" H w];fj'xl'i’jyl’i’j, for all a,b € [0:m — 1],
i€[g] i€[s],jE[ti]
where ((z0,,5), (1,5,5)) = x = p(a) and ((0,i,7); (y1,i,5)) =y = p(b).
For convenience, we will from now on directly use x € Za x Zg to index the rows and columns of F:
Fry = Fpax)pity) = H wgfo’i’l 70..2) W (0.6 v0.1.2)" H wgfy’jf'xl’i’jyl’i’j, for all x,y, (13)
i€lg] i€[s],j€ti]

whenever we have a tuple ((M, N),F,D,(d, W, p,t,Q,K)) that is known to satisfy condition (R’). We
assume the matrix F is indexed by (x,y) rather than (a,b) € [0: m — 1]2, and (R}) refers to (I3).

6.3.3 Step 3.3: Affine Support for ©

Now we have a tuple (M, N),F,D,(d,W,p,t, Q,K)) that satisfies condition (R’). In the next step we
show for every r € [N — 1] (for r = 0, we already know DI is the identity matrix), the non-zero entries
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of the r*" diagonal matrix D"} (in ©) must have a very nice coset structure, otherwise EVAL(F,®) is
#P-hard.

For every r € [N — 1], we use I'; C Z% x Zg to denote the set of x such that D,[:} # 0. We also use
Z to denote the set of » € [N — 1] such that T, # 0.

For convenience, we let Zqi, i € [s], denote the following set (or group, more exactly): When ¢ > 1,
Z(h' = ZLq;; and when ¢ = 1, qu = Za X Zq,- This gives us a new way to denote the components of

x €2 xTg = H Zg;: X = (X1, ...,Xs), where X; € Zg,.
1€[s]

Theorem 6.5. Let (M,N),F,D,(d,W,p,t,Q,K)) be a tuple that satisfies condition (R'), then either
EVAL(F,D) is #P-hard; or © satisfies the following condition (L}): For everyr € Z,

(L4) Ty =TI:_, Tyi, where Ty; is a coset in Zq,, for all i € [s).

Suppose EVAL(F,®) is not #P-hard, then by Theorem [6.5] tuple (M, N),F,9,(d,W,p,t, Q,K))
satisfies not only (R’) but also (£}). By condition (U43), © satisfies the following additional property:

(L4) For every r € Z, there exists an al"l € T, C Z2 x Zg =[] }Zqi such that DLT[]T] =1

i€[s

From now on, when we say condition (£’), we mean both conditions (£}) and (L5).

6.3.4 Step 3.4: Quadratic Structure

In this final step within Step 3 for the non-bipartite case, we show that, for any index r € [N — 1], the
non-zero entries of DIl must have a quadratic structure, otherwise EVAL(F,®) is #P-hard.
We need the following notation: Given x in Zg, for some ¢ € [s], we let ext,(x), where r € Z, denote

the vector x' € Z3 x Zg such that in the expression x' = (x1,...,%}) € [;es Zaq;» its it" component
X, = x, the vector given in Zg,, and

x;» = agﬂ, for all j # 1.
Recall that al”l is a vector we picked from I, in condition (L}).

Let a be a vector in Zg, for some i € [s]. Then we use & to denote the vector b € []
that b; = a and b; = 0 for all other j # 1.

A~

jels] qu such

Theorem 6.6. Suppose (M,N),F,D,(d,W,p,t,Q,K)) satisfies conditions (R') and (L). Then either
EVAL(F,®) is #P-hard or © satisfies the following condition (D'):

(D)) For every r € Z, we have

pll _ pll — plrl ...pl" for allx € T,. (14)

ext,(x1) extr(x2) ext,(xs)’

(DS) Forallr € Z, k € [s] and a € 1“1}1;C C Zq,, there exist b € Zq, and o € Ly such that

W Fy = pr_.pl forallxeT,; (15)

x+a

Note that in (D), the expressions on the left-hand-side do not depend on all other components of
x except the k" component xj, € Zq,,, because all other components of b are 0.
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6.4 Tractability

Theorem 6.7. Let (M,N),F,D,(d,W,p,t,Q,K)) be a tuple that satisfies conditions (R'), (L), and
(D), then EVAL(F,D) can be solved in polynomial time.

7 Proofs of Theorem [5.1] and Theorem

In this section, we prove Theorem [B.1] and Theorem

Let A = (A; ;) denote a connected and symmetric m x m matrix (at this moment, we do not make
any assumption on whether A is bipartite or not. A could be either bipartite or non-bipartite). In the
first step, we construct a new m x m matrix B from A, which satisfies the following conditions:

1. B is also a connected and symmetric m x m matrix (so EVAL(B) is well-defined);
2. EVAL(B) = EVAL(A);
3. Every entry of B can be expressed as the product of a non-negative integer and a root of unity.

We let B’ be the non-negative matrix such that B; ;= |B; j|. Then in the second step, we show that,
EVAL(B’) < EVAL(B).

Since B’ is a connected, symmetric and non-negative matrix, we can apply the dichotomy theorem of
Bulatov and Grohe [2] to B’ and show that either EVAL(B') is #P-hard or B is a (either bipartite or
non-bipartite, depending on A) purified matrix. When EVAL(B’) is #P-hard, we have

EVAL(B') < EVAL(B) = EVAL(A),

which implies that EVAL(A) is also #P-hard. This proves both Theorem [5.1] and Theorem

7.1 Equivalence between EVAL(A) and COUNT(A)

We start with the definition of a class of counting problems COUNTY(-), which is very closely related to
problems EVAL(A). It has been used in previous work [10] for establishing polynomial-time reductions
between different EVAL(-) problems.

Let A € C™*™ denote a symmetric matrix. Then the input of problem COUNT(A) is a pair (G, ),
where G = (V| E) is an undirected graph, and x is a complex number. The output is

#A(G,z) = ‘{assignment £:V — [m]|wta(§) = x}‘,
a non-negative integer. The following lemma shows that EVAL(A) = COUNT(A).

Lemma 7.1. Let A € C™*™ be a symmetric matriz, then EVAL(A) = COUNT(A).

Proof. To prove EVAL(A) < COUNT(A), recall that the matrix A is considered fixed. Let G = (V, E)
and n = |E|. We use X to denote the following set of complex numbers:

x| 11
]

1,J€[m

integers k; ; > 0 and Z kij=mnp. (16)

i,5€[m]

It is easy to see that |X| is polynomial in n, being (":gf;l) counting multiplicity, (we note that m is

a constant here), and the elements in X can be enumerated in polynomial time (in n). It then follows
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from the expression in the definition of wta (§) that for any x ¢ X, #4(G,z) = 0. This gives us the
following relation:

ZA(G) = Z x-#(G,x), for any undirected graph G,
zeX

and thus, EVAL(A) < COUNT(A).

For the other direction, we construct, for any p € [|X|] (Recall that |X| is polynomial in n), a new
undirected graph GIP! from G by replacing every edge uv of G with p parallel edges between u and v.
It is easy to check that for any assignment &, if its weight over G is z, then its weight over GI?! must be
aP. This gives us the following collection of equations: For every p € [|X|],

Za(GP)y = Z aP - #4(G,z), for any undirected graph G.
zeX

Note that this is a Vandermonde system. Since we can query EVAL(A) for the values of Za (GP)), we
can solve it and get # 4 (G, x) for every non-zero x € X. To obtain #, (G,0) (if 0 € X), we note that

Z #A(G7x) = le\
zeX

This gives us a polynomial-time reduction and thus, COUNT(A) < EVAL(A). O

7.2 Step 1.1

We now show how to build the desired B from A. We need the following notion of a generating set.

Definition 7.1. Let &/ = {a;};e|n) be a set of n non-zero complex numbers, for some n > 1. Then we
say {9gi}ielq), for some integer d > 0, is a generating set of </ if

1. Fvery g; is a non-zero complex number;

2. For all (ky,... kq) € Z% such that (ki,...,kq) # 0, we have

glfl "-gsd is mot a root of unity.

3. For every a € o/, there exists a unique (ky,. .. kq) € Z% such that

a

T is a root of unity.

k
gll...gd

Clearly d = 0 iff the set & consists of roots of unity only. The next lemma shows that every </ has
a generating set.

Lemma 7.2. Let & = {aj}je[n} be a set of non-zero complex numbers, then it has a generating set.

Proof. We construct a generating set ¢ for o7, which consists of two parts: ¥ = BUE.

First, let a; = log, |a;|, for every j € [n]. We let {a;,,...,q;,}, for some s > 0, denote a maximal
linearly independent subset of {c};cpn over Q. By definition, for any j € [n], there exist rj1,...,7s
in Q such that s

0 =D ey,
(=1
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For each ¢ € [s], we use N, to denote the smallest positive integer such that Ny - rj. is an integer for all
j € [n]. Then we define 2 as {br,...,bs} where by = 2%/Ne_for all £ € [s].
Second, we let 3}, for every j € [n], denote the unique real number in [0,1) such that

e B—_ (where 7% = —1).

|aj]
Consider the set {f1,..., 0, 1}. Extend, from the set {1} consisting of a single non-zero value 1, to a
maximal linearly independent subset {5]'{7 s B 1} of {B1,...,Bn, 1} over Q. Here t > 0. It implies

that for every j € [n], there exist rational numbers r;-71, . ,r;t, ré—i 41 € Q, such that

¢
Bi =D rhe By e
=1
Similarly, for each ¢ € [t], we let M, denote the smallest positive integer such that M, - r;’z is an integer
for all j € [n]. Then we define € as {c1,...,c:} where

2mi-B. | M,
67”5]2/ ‘3,

cp = for all ¢ € [t].

It is easy to check that 4 = ZU % is a generating set of «7. Briefly: (1) Being exponentials, clearly
every member in ¢ is non-zero. (2) If ,
S
k ky
H b/ . H c/
(=1

(=1

is equal to some root of unity w, then by taking norm, we get -, b?‘ = 1. By linear independence of
{aj, }ee[s) We get all kg = 0. On the other hand, szl ¢," = w gives all k;, = 0 by linear independence of
{ﬂj{, . 75]';7 1}. (3) To express any aj € &/ as an integral power from ¢ together with a root of unity,
first we express a;/|a;| as such from € together with a root of unity, and then express |a;| as an integral
power from 8. The uniqueness of the expression follows from (2). O

Now we use ./ to denote the set of all non-zero entries A;; in the matrix A. By Lemma [.2], we
know that it has a generating set 4 = {¢1,..., 94}

The matrix B = (B; ;) € C™*™ is constructed as follows. Let p; < --- < pg denote the d smallest
primes. For every i,j € [m], we define B; ;. If A; ; =0, then B; ; = 0. Suppose A; ; # 0, since ¥ is a

generating set, we know there exists a unique (ki,...,kq) € Z% such that
A .
ﬁ is a root of unity.
gl e gd

Then we set B; ; to be 4
_ .k k J
Bi,j _pll pdd . ﬁ
gl gd

So what we did in constructing B is just replacing each g; in ¢4 with a prime p;. B; ; is well-defined
by the uniqueness of (kq, ..., kq) € Z% and conversely by taking the prime factorization of |B; ;| we can
recover (ki,...,kq) uniquely, and then recover A; ; by

kR B;;
AZ?] _gl gd : k1 kd'
pl ...pd

The next lemma shows that such a replacement does not affect the complexity of EVAL(A).
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Lemma 7.3. Let A € C™™ be a symmetric and connected matriz, and B € C™*™ be the matriz we
built above, then EVAL(A) = EVAL(B).

Proof. By Lemma [T1] it suffices to prove that COUNT(A) = COUNT(B). Here we only prove one of
the two directions: COUNT(A) < COUNT(B). The other direction can be proved similarly.

Let (G,z) be an input of COUNT(A), where G = (V, E) and n = |E|. We use X to denote the set
of complex numbers defined earlier in (I6). Recall that |X| is polynomial in n (since m is a constant),
and can be enumerated in polynomial time. Furthermore, if x ¢ X, then #4 (G, ) must be zero.

Now suppose © € X, then we can find a particular sequence of non-negative integers {k;k j}z‘,je[m} in
polynomial time, such that . =n and

ij K3 g
z= [] 47 (17)
i,j€[m]
This sequence {k] ;}; je[m is in general not unique for the given z. Using {k;;}, we define y by
k.
y= [ By (18)
i,j€[m]

It is clear that x = 0 iff y = 0. This happens precisely when some k7 ; > 0 for some entry A; ; = 0.
The reduction COUNT(A) < COUNT(B) then follows from the following claim

#A(Gv$) = #B(G7 y) (19)

To prove this claim, we only need to show that, for any assignment & : V' — [m],

wta(§) =2 <— wtg(&) =v.

We only prove wta (§) =z = wtp(§) = y here. The other direction can be proved similarly.
Let £ : V — [m] denote any assignment. For every i,j € [m], we use k; ;j to denote the number of
edges uv € E such that (§(u),£(v)) = (4,7) or (j,4), then for both A and B,

wta (€ H A and  wtp(e)= [ B (20)

i,j€[m. i,5€[m]

For x = 0, we note that the weight wta (§) is 0 iff for some zero entry A; ; = 0 we have k; ; > 0. By
the construction of B, A4; ; = 0 iff B; ; = 0, so wtg(&£) must also be 0.

In the following we assume both x,y # 0, and we only consider assignments & : V' — [m] such that
its k; ; = 0 for any A; j = 0 (equivalently k; ; = 0 for any B; ; = 0). Thus we may consider the products
in (20) are over non-zero entries A; ; and B; ;, respectively.

Now we use the generating set 4 = {g1,...,94} chosen above for the set o7 of all non-zero entries
A; j in the matrix A. There are integer exponents ey (i), €2 (ij), - - -5 €d,(ij), Such that

d d
A= Hg;l’(”) ‘wij, and B = szz’(m -wjj, for all 4,j such that A;; # 0,
/=1

where w; ; is a root of unity. The expression of B; ; follows from the construction. By (I7) and (20,

d
e 1 . .
wta (§) H KELC) is a root of unity.
—1
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Here the sum ), ; in the exponent is over all 7, j € [m] where the corresponding A; ; is non-zero. This
last equation is equivalent to (since ¢ is a generating set)

> (kij — ki) - eqp =0, forall € € [d], (21)
1]

which in turn implies that

[T(wip)ks =T J(wig)*a. (22)

i3 4,3
It then follows from (I8), 20), (2I)) and ([22) that wtg(§) = y. O
7.3 Step 1.2

Now we let B’ denote the m x m matrix such that B]; = |B; j| for all i,5 € [m]. We have (note that
Lemma [7.4] holds for any symmetric matrix B and B, as long as B; ; = |B, ;| for all 4, j)

Lemma 7.4. EVAL(B') < EVAL(B).

Proof. By Lemma [Tl we only need to show that COUNT(B’) < COUNT(B).
Let (G, x) be an input of COUNT(B’). Since B’ is non-negative, we have #p/(G,z) = 0 if x is not
real or z < 0. Now suppose x > 0, G = (V, E) and n = |E|. We let Y denote the following set

Y = H Bf;] integers k; ; > 0 and Z kij=n

i,j€[m] i,j€[m)

Again, we know |Y'| is polynomial in n and can be enumerated in polynomial time in n. Once we have
Y, we remove all elements in Y whose complex norm is not equal to z. We call the subset left Y.
The lemma then follows directly from the following statement:

#B’(Gv$) = Z #B(G7 y)

yEYy

This is because for every assignment & : V' — [m], wtg/(§) = z if and only if |wtg(£)| = x. This gives
us a polynomial reduction since Y, C Y, |Y,| is polynomially bounded in n, and Y, can be enumerated
in polynomial time. O

Finally we prove Theorem [5.1] and Theorem

Proof of Theorem[5 1. Let A € C™*™ be a symmetric, connected and bipartite matrix. We construct
matrices B and B’ as above. Since we assumed A to be connected and bipartite, both matrices B and
B’ are connected and bipartite. Therefore, we know there is a permutation II from [m] to itself such
that By py is the bipartisation of a k x (m — k) matrix F, for some 1 <k < m:

0 F

and Bf; 1 is the bipartisation of F', where I ; = [F; ;| for all i € [k] and j € [m — k]. Since permuting
the rows and columns of B does not affect the complexity of EVAL(B), we have

EVAL(B{1 1) < EVAL(Bin1) = EVAL(B) = EVAL(A). (23)

We also know that Bi‘[,n is non-negative. By Bulatov and Grohe’s theorem, we have the following cases:
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— First, if EVAL(Byy ) is #P-hard, then by (23), EVAL(A) is also #P-hard.

— Second, if EVAL(BY; ) is not #P-hard then the rank of F/ must be 1 (it cannot be 0 since By
is assumed to be connected and bipartite). Therefore, there exist non-negative rational numbers
[41, - -« s My - - - 5 i such that Fy ;= ppujip, for all 4 € [k] and j € [m — k]. Moreover, p;, for all
i € [m], cannot be 0 since otherwise Bi‘[,l‘[ is not connected.

As every entry of B is the product of the corresponding entry of Bi‘[,n and some root of unity,
B is a purified bipartite matrix. The theorem is proven since EVAL(B) = EVAL(A). O

Proof of Theorem [6.1. The proof is similar.

Let A € C™*™ be a symmetric, connected and non-bipartite matrix. We construct B and B’ as
above. Since A is connected and non-bipartite, both B and B’ are connected and non-bipartite. Also,
B’ is non-negative. We consider the following two cases. If B’ is #P-hard, then EVAL(B’) < EVAL(B)
= EVAL(A) implies that EVAL(A) must also be #P-hard. If B is not #P-hard then it follows from the
dichotomy theorem of Bulatov and Grohe [2] that the rank of B is 1 (it cannot be 0 since we assumed

m > 1, and B is connected). Since B is symmetric, it is a purified non-bipartite matrix. The theorem
then follows since EVAL(B) = EVAL(A). O

8 Proof of Theorem

We start by introducing a technique for establishing reductions between EVAL(A) and EVAL(C, D). It
is inspired by the Twin Reduction Lemma proved in [10].
8.1 Cyclotomic Reduction and Inverse Cyclotomic Reduction

Let A be an m x m symmetric complex matrix (Note that A is not necessarily bipartite). Let (C,D)
be a pair that satisfies the following condition (7):

(77) Cis an n x n symmetric complex matrix;

(T) © = {D, ... DIV-1is a sequence of N n x n diagonal matrices for some positive integer N;
(73) Every diagonal entry DZ[O] in DI is a positive integer. Furthermore, for every i € [n], there exist
nonnegative integers o; o, ...,o; y—1 such that
N-1 N-1 _
DZ[O] = Z a;; and Dlm = Z wj-wy, forallre[N-—1].
j=0 j=0
In particular, we say tuple (a0, ..., N—1) generates the ith entries of .

We show that if A and (C, D) satisfy certain conditions, then EVAL(A) = EVAL(C, D).

Definition 8.1. Let Z = {Ri0,Ri1,-.., RiN-1,---,Rno,...,Rnn—1} be a partition of [m] (note that
each R, here need not be nonempty). We say A can be generated by C using % if

1. Z satisfies Upepo.n—1) Rap # 0 for all a € [n];
2. For alli,j € [m], suppose i € Rqp and j € Ry, then

A,’J’ = Ca,a’ . w?\}"b,. (24)
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Note that for any pair (C,®) that satisfies (7), one can build a matrix A € C™*™ for some m > n,
together with a partition % of [m], such that, A can be generated by C using % and the a'" entries of
D can be generated by (|Raol,|Ra1l;---,|Ran-1]), for all a € [n]. We prove the following lemma:

Lemma 8.1 (Cyclotomic Reduction Lemma). Suppose matriz A can be generated by C using partition
# = {Rup}, and for any a € [n], the a' entries of ® can be generated by (|Raol, ... ,|Ran-1]), then

EVAL(A) = EVAL(C, D).
Proof. Tt suffices to prove for any undirected graph G = (V, E),
ZA(G) = Z WtA(f) and Zc¢ @ Z wtc @
&V —[m] n:V—In]

are exactly the same.
To prove this, we define a surjective map p from {£}, the set of all assignments from V' to [m], to
{n}, the set of all assignments from V to [n]. Then we show for every n: V — [n],

wtoo(n) = Y, wta(é). (25)
&:p(&)=n

We define p(§) as follows. Since & is a partition of [m], for any v € V, there exists a unique pair (a,b)
such that £(v) € Ry p. Let &1(v) = a and &»(v) = b, then we set p(§) =n =& from V to [n]. It is easy
to check that p is surjective.

To prove (28)), we write wta (§) as

a B WSO LS G
wia(€) = I Acwew) = T Comwme -8 = 1T Cowymey - 5™ - wi™.

weFE wel wel

It follows that

WtA(S) = H Cn(u),n(v) X Z ( H w 62(1))

&p(§)=n wek &p(§)=n \uwveE

_ )-deg(v)

= I Gy x D (H wir e )
weE &p(&)=n \veV

_ bdo (v)

= 11 Chwmw x (H (Z |Ryw)| - wy® ))
uwveFR veV

de mod N

= ]I G (H Dr[;(ﬁ() ]> = wtc,o(n),

uwveFE veV
and the lemma follows. O

By combining Lemma Bl Lemma [(.4], and the dichotomy theorem of Bulatov and Grohe, we have
the following handy corollary for dealing with EVAL(C,D):

Corollary 8.1 (Inverse Cyclotomic Reduction Lemma). Let (C,®) be a pair that satisfies condition
(7). If C has a 2 x 2 sub-matriz
<Cz’,k Ci,é)
Cir Cje
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such that all of its four entries are nonzero and
|CikCie| # |CieCjkl,
then the problem EVAL(C,®) is #P-hard.

Proof. By the Cyclotomic Reduction Lemma, we know there exist a symmetric m x m matrix A, for
some positive integer m, and a partition Z of [m|, where

%:{Rm”ae [n],b e [O:N—l]} and U Rop # 0, for all a € [n], (26)
be[0:N—1]

such that EVAL(A) = EVAL(C,®). Moreover, matrices A and C satisfy (24)).

Now suppose there exist i # j,k # £ € [n] such that |C; x|, |C; (|, |C; k| and |C;,| are non-zero and
|Ci xCjel # |CieCji|. We arbitrarily pick an integer ¢’ from |J, R; (which is known to be nonempty),
a j' from |, Rjp, a k' from |J, Ry, and an ¢ from (J, Ry p. Then by (24]), we have

| Ay | = |Cikl, |Aie] =1Ciel, |Ayar| =1Cikls |Aje] =1Cjel, and |AypAjp| # |Ay o Ajs g

Let A’ = (|A;;|) for all 4,5 € [m], then A’ has a 2 by 2 sub-matrix of rank 2 and all of its four entries
are non-zero. By the dichotomy theorem of Bulatov and Grohe (Corollary 2.1]), EVAL(A) is #P-hard.
It then follows that EVAL(C,®) is also #P-hard, since EVAL(C,®) = EVAL(A), and by Lemma [7.4]
EVAL(A’) < EVAL(A). O

By combining Lemma Rl Eq. (25]), and the First Pinning Lemma (Lemma [.T]), we have

Corollary 8.2 (Third Pinning Lemma). Let (C,®) be a pair that satisfies (T), then
EVALP(C, D) = EVAL(C, D).

In particular, the problem of computing Zg 5 (or Zai)) is polynomial-time reducible to EVAL(C, D).

Proof. We only need to prove that EVALP(C,®) < EVAL(C, D).
By the Cyclotomic Reduction Lemma, we know there exist a symmetric m x m matrix A, for some
m > 1, and a partition Z of [m], such that, # satisfies (26) and EVAL(A) = EVAL(C,®). A, C and #

also satisfy (24]).
By the First Pinning Lemma, we have EVALP(A) = EVAL(A) = EVAL(C, D). So we only need to

reduce EVALP(C,®) to EVALP(A).
Now let (G, w,i) be an input of EVALP(C,®), where G is an undirected graph, w is a vertex in G
and i € [n]. By (23]), we have

Zeo(Giw,i) = Z Wtcsa Z wta(§) = Z ZA(G,w, j).

men(w)=1 §:61(w)=i JEU R p
This gives us a polynomial-time reduction from EVALP(C,®) to EVALP(A). O

Notice that, compared to the Second Pinning Lemma, the Third Pinning Lemma does not require
the matrix C to be the bipartisation of a unitary matrix. It only requires (C, D) to satisfy (7).
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8.2 Step 2.1

Let A be a purified bipartite matrix. Then after collecting its entries of equal norm in decreasing order
(by permuting the rows and columns of A), there exist a positive integer N and four sequences p, v, m
and n such that (A, (N, u,v,m,n)) satisfies the following condition:

(S81) Matrix A is the bipartisation of an m x n matrix B so A is (m+n) X (m+n). u = {u1,...,ps}
and v = {vq,...,14} are two sequences of positive rational numbers, of lengths s > 1 and ¢ > 1,
respectively. p and v satisfy pug > po > ... > ps and v; > vp > ... > 1. m = {mq,...,ms} and
n = {ni,...,n;} are two sequences of positive integers such that, m = > m; and n = > n;. The
rows of B are indexed by x = (21, z2) where 1 € [s] and z3 € [myg,], while the columns of B are
indexed by y = (y1,y2) where y; € [t] and y2 € [n,,]. For all x,y, we have

Bxy = B(x17502),(y17y2) = luwlyylsvaﬁ

where S = {Sxy} is an m x n matrix in which every entry is a power of wy.

p1lm, S5 Sam.2) - Se,ax\ [V1ln
B_ 173 S@x.ax S@e.x - S@s).e voln,
PsIm, ) \S(sp),(1%)  S(s),25) -+ S(s),(t0) viln,

where I denotes the k x k identity matrix.

We let
I=J{Gi)]jelml} and J=|J{G5)]j€ [},

1€[s] i€(t]

respectively. We use {0} x I to index the first m rows (or columns) of A, and {1} x J to index the last
n rows (or columns) of A. Given x € I and j € [t], we let

va(jv*) = (va(jvl)’ e ’va(jvnj)) G (an

denote the 5% block of the x** row vector of S. Similarly, given y € J and i € [s], we let
Sty = (Sany: - Simy) €C™

denote the i*" block of the y*" column vector of S.

Lemma 8.2. Suppose (A, (N, p,v,m,n)) satisfies (S1), then either EVAL(A) is #P-hard or (A, (N, w,
v,m,n)) satisfies the following two conditions:

(S2) For all x,x' € 1, either there exists an integer k such that Sx . = wk; - Sy . or for every j € [t],
(Sx.7.0) Sx () = 05
(S3) For ally,y’ € J, either there exists an integer k such that S,y = w]k\, - S,y or for every i € [s],

<S(i7*)7y7 S(i,*),y’> =0.
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pN-1 edges
be ——— 1 edge

Figure 2: Gadget for constructing graph G, p > 1.

Proof. Assume EVAL(A) is not #P-hard. We only prove (S2) here. (S3) can be proved similarly.

Let G = (V, E) be an undirected graph. For each p > 1, we construct a new graph el by replacing
every edge uv in F with a gadget which is shown in Figure 2l

More exactly, we define graph GIP) = (V[p}, E [1”]) as follows:

vl =vu {ae,b !e € E}
and EP! contains exactly the following edges: For each e = uv € E,
1. one edge between (u,a.) and (be,v);
2. (pN — 1) edges between (a.,v) and (u, be).
The construction of GIP!, for each p > 1, gives us an (m + n) x (m + n) matrix AP such that
Zam(G) = Zao(GP)),  for all undirected graphs G.

Thus, we have EVAL(AP)) < EVAL(A), and EVAL(AP!) is also not #P-hard.
The entries of APl are as follows. First,

A[p} A[p}

©0.u),(1v) = A(Lv),00) = =0, foraluelandvelJ.

So APl is a block diagonal matrix with 2 blocks of m x m and n x n, respectively. The entries in the
upper-left m x m block are

[p] _ N—1 N—1
Aow.o0v) = <Z Ao,u),(1,8) (A0,v),(1,0)" ) (Z(A(O,u),(l,b))p A(o,v),(l,b))

acJ beJ
= (Z Bu,a(Bv,a)pN_1> (Z(Bu,b)pN_le,b>
acJ beJ
for all u,v € I. The first factor of the last expression is
1 N
Z ,uu1Va1Su,a(,uv1Va1)pN 1Sv,a = ,Umugfv ! Z VPNS Sv a — ,Umugfv ! Z Vp u Sy (z,*)>
acJ acJ i€(t]

Similarly, we have for the second factor

— N
Z(Bu,b)pN 1BV b = N;Z]lv lluvl Z Vp 11 Sy (Zv*)>
beJ 1€(t]
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As a result,

[p] N
Ay o) = W o PN 1D P (S (505 S i)
1€(t]

It is clear that the upper-left m x m block of AP is a nonnegative real matrix. Similarly one can prove
that the same holds for its lower-right n x n block, so APl is a nonnegative real matrix.
Now let u # v be two indices in I (note that if [I| = 1, then (Ss) is trivially true), then we have

4
[p] [p] _ 2pN N
A, 0 A o) = W)V | Y mae o]
1€[t]
which is positive, and
4
[p] [p] _ 2pN N
A(Ié,u),(o,v)A(%N),(o,u) = (Huy po )P Z Vé'n <Su,(i,*)7sv,(i,*)>
1€]t]

Since EVAL(AP)) is not #P-hard, by the dichotomy theorem of Bulatov and Grohe (Corollary 21]),

> v (Su i) S i)

i€(t]

is either 0 or 3,y ni - 1

Now suppose vectors Sy« and Sy . are linearly dependent, then because entries of S are all powers
of wy, there must exist an integer k € [0 : N — 1] such that Sy . = wfv Sy «, and we are done.
Otherwise, assuming Sy« and Sy . are linearly independent, we have

Zl/ (S, (i) (2* <an Z-N, for any p > 1. (27)

i€[t] i€t]

This is because, if the left-hand side is equal to the right-hand side, then [(Sy ¢ . Sv7(i7*)>| = n,; for all
i € [t] and thus, Sy (;.) = wjk\, Sy, (i« for some k; € [0 : N —1]. Moreover, these k;’s must be the same
since we assumed (7)) is an equality:

N
E vy wN = E n; - Z-
i€(t] i€(t]

As a result, Sy . and Sy , are linearly dependent, which contradicts the assumption. By (27)), we have

ZV w, (i) Sv,iw)) = 0, forallp> 1.
i€(t]

Since 11 > ... > 14 is strictly decreasing, by using the Vandermonde matrix, we have
(Su,(’i7*)7 SV7(1'7*)> — 0, fOI‘ al]. Z & [t]

This finishes the proof of (S2). O
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We then have the following corollary:

Corollary 8.3. For alli € [s] and j € [t], the rank of the (i,7)" block matriz S(i,%),(j,x) of S has exactly
the same rank as S.

Proof. Without loss of generality, we prove rank(S . (1,5)) = rank(S).
First, we use Lemma to show that

S(1,%),(1,%)
S(2,4),(1,%)

rank . = rank(S).

S(s,*),(l,*)

To see this, we take any h = rank(S) rows of S which are linearly independent. Since any two of them

Sx,(+,+) and Sy (, ,) are linearly independent, by condition (Sz), the two subvectors Sy (1 ,) and Sy (1 4

are orthogonal. Therefore, the corresponding h rows of the matrix on the left-hand side are pairwise

orthogonal, and the left-hand side is at least h. Of course it cannot be larger than h, so it is equal to h.
By using condition (S3), we can similarly show that

g(l,*x(l,*)
rank(S(L*)’(L*)) — rank (2, ?,(1,*)
S(S,*)7(17*)
As a result, we have rank(S(; .y (1,4)) = rank(S). .

Now suppose h = rank(S), then by Corollary B3] there must exist indices 1 < iy < ... < ip < my
and 1 < j; < ... < jn < nq, such that, the {(1,41),...,(1,4x)} x {(1,51),...,(1,4x)} sub-matrix of S
has full rank h. Without loss of generality (if this is not true, we can apply an appropriate permutation
IT to the rows and columns of A so that the new S has this property) we assume i, = k and j; = k for
all k € [h]. We use H to denote this h x h matrix: H;; = S(1) 1,5)-

By Corollary B3] and Lemma [8.2] for every index x € I, there exist two unique integers j € [h| and

k€ [0: N — 1] such that )
Sx,* =WpN - S(l,j) % (28)

)

This gives us a partition of index set {0} x I:
%0 = {R(O,i,j),k‘i € [3],j € [h]7k7 € [0 N — 1]}7
as follows: For every x € I, (0,x) € R ), if i = 21 and x, j, k satisfy ([28)). By Corollary B3] we have

U R,ijyk 70, forallic[s]and j€ [h].
ke[0:N—1]

Similarly, for every y € J, there exist two unique integers j € [h] and k € [0 : N — 1] such that
Siy =Wk - Su 1), (29)

and we partition {1} x J into

% = {Raigx|i€lthjeblke: N -1},
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as follows: For every y € J, (1,y) € R ) if i = y1 and y, j, k satisfy 29). Again by Corollary B.3]

U R 70, forallic[t] and j € [h].
kE[0:N—1]

Now we define (C,®) and use the Cyclotomic Reduction Lemma (Lemma [B1]) to show that
EVAL(C,®) = EVAL(A).

First, C is an (s +t)h X (s + t)h matrix which is the bipartisation of an sh x th matrix F. We use set
I' = [s] x [h] to index the rows of F, and J' = [t] X [h] to index the columns of F. We have

Fyy = pa vy, Hyy yy = Nw1Vy15(1,m2),(1,y2)v forallxe I,y e J,

or equivalently,

,ull H H ... H V11
[LQI H H H 7/2]:
F = ,
sl HH ... H A |
where I is the h x h identity matrix. We use ({0} x I') U ({1} x J') to index the rows/columns of C.
Second, ® = {D[O}, ..,DIV _1]} is a sequence of N diagonal matrices of the same size as C. We use
{0} x I' to index the first sh diagonal entries, and {1} x J’ to index the last th diagonal entries. Then
the (0,x)"" entries of D are generated by ([R0,21,22),005 - - » [ (0,21 20),n—1]) and the (1, y)t" entries of D
are generated by (|R(1,y, )00 5 [R(1,y1,90),5-1]):
. N-1 . N-1
T kr r kr
Diox) = Z | Ro01,02),k] - wN  and Dy = Z | R1,1,00).6] - N
k=0 k=0

forallr € [0: N —1],x = (z1,22) € I' and y = (y1,y2) € J'.
The following lemma is a direct application of the Cyclotomic Reduction Lemma (Lemma [81]).

Lemma 8.3. EVAL(A) = EVAL(C,D).
Proof. First we show that A can be generated from C using %y U ;.
Let x,x’ € I, (0,x) € Rg, ), and (0,x') € R0.4/ jn),k'» then we have
A0,0x) = Clo.21,),04.5) = 05
since A and C are the bipartisations of B and F, respectively. As a result,

k+k'
A050,005) = Cl0,21.),(0.2.57) WA

holds trivially. Clearly, this is also true for the lower-right n x n block of A.
Let x € I, (0,%) € Rigz, j)k> ¥ € J, and (1,y) € Ry, jo) i for some j, &, j', k', then by 28)-(29),

o _ kE _ k+k" k-+k’
A(0,x),(1y) = Ha1Vy Sxy = HarVyi S(1j)y *WN = Har Yy S(15),(1,5) " WN - = Clo,e1,9),(Lun i) " WN -

A similar equation holds for the lower-left block of A, so it can be generated from C using %y U %;.
On the other hand, the construction of ® implies that ® can be generated from partition %y U Z;.
The lemma then follows directly from the Cyclotomic Reduction Lemma. O
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8.3 Step 2.2
We first summarize what we proved in Step 2.1. We showed that problem EVAL(A) is either #P-hard
or equivalent to EVAL(C, D), where (C,®) satisfies the following condition (Shape):

(Shape;): C € C™*™ (note that this m is different from the m used in Step 2.1) is the bipartisation
of an sh x th matrix F (thus m = (s +¢)h). F is an s x t block matrix and we use I = [s] x [h],
J = [t] x [h] to index the rows and columns of F, respectively.

(Shapes): There are two sequences g = {1 > ... > us >0} and v = {v; > ... > 1y > 0} of rational
numbers together with an h x h full-rank matrix H whose entries are all powers of wy, for some
positive integer N. For all x € [ and y € J, we have

Fxy = N:U1Vy1Hx27y2'

(Shapes): © = {D, ... DIN=11 is a sequence of m x m diagonal matrices. ® satisfies (73), so

D%}X) = D%V;)T] and Dg}y) = DEZIV;)T], forall r € [N — 1], x € [s] x [h] and y € [t] x [h].

We use ({0} x I) U ({1} x J) to index the rows and columns of matrices C and DU"J,
Now in Step 2.2, we prove the following lemma:

Lemma 8.4. Either EVAL(C,®) is #P-hard, or H and D satisfy the following two conditions:

(Shapey): ﬁ -H is a unitary matrix: (H;,,H;,) = (H,;,H, ;) =0 for all i # j € [h].

: 0 0 0 0
(Shapes): DI satisfies DEO{X) = DEO],(scl,l)) forallx eI, and DEI}’y) = Dgl{(yl’l)) forally € J.

Proof. We rearrange the diagonal entries of DI% indexed by {1} x J into a t x h matrix X:

Xij =D, forallic[t]and je[nl,

and its diagonal entries indexed by {0} x I into an s x h matrix Y:

0 ; ‘
Y= DEO},(Z'J))’ for all i € [s] and j € [h].

Note that by condition (73), all entries of X and Y are positive integers.
The proof has two stages: First, we show in Lemma R that, either EVAL(C,®) is #P-hard, or

(Hi o Hj ., X} ) for all k € [t] and ¢ # j € [h], and (30)

= 07
(Hy;joH,;, Y. =0, forallke/[s]andi#j€ [h]
We use U to denote the set of h-dimensional vectors that are orthogonal to
HL* e} H27*, Hl,* o Hg’*, “oey Hl,* e} Hh’*.

The above set of h — 1 vectors is linearly independent. This is because

h h
Z a;(Hi.oH;.) = Hy .o (Z aiHi,*> ;
i=2

1=2

40



and if Z?:z a;(Hy« oH;,) =0, then Z?:z a;H; ., = 0 since all entries of H; , are nonzero. Because H
has full rank, we have a; = 0,7 =2,...,h. As a result, U is a linear space of dimension 1 over C.
In the second stage, we show in Lemma 8.0 that, assuming (30) and (B1I), either

(H; . oHj,, (X;+)?) =0, forallkel|t]andi+#je[h], and (32)
(H.;oH. ,(Yr«)?) =0, forallke[s]andi#j€ [h], (33)

or EVAL(C,®D) is #P-hard. Here we use (Xj.)? to denote Xy . o Xy ..

B0) and (B32) then imply that both Xy, . and (X «)? are in U and thus, they are linearly dependent
(since the dimension of U is 1). On the other hand, by (73), every entry in Xy, , is a positive integer.
Therefore, X}, . must have the form wu - 1, for some positive integer u. The same argument works for
Y, . and the latter must also have the form «’ - 1. By (B0) and (BII), this further implies that

(H;+,H;,) =0 and (H,; H,;) =0, foralli#jelhl.
This finishes the proof of Lemma [R.4l O
Now we proceed to the two stages of the proof. In the first stage, we prove the following lemma:
Lemma 8.5. Either matrices H, X and Y satisfy (3Q) and (31, or EVAL(C,D) is #P-hard.

Proof. Suppose problem EVAL(C,®) is not #P-hard, otherwise we are already done. We let ©* denote
a sequence of N m x m diagonal matrices in which every matrix is a copy of DI (as in D):

o* = {D . . DI}

It is easy to check that ©* satisfies condition (73).
Let G = (V, E) be an undirected graph. For each p > 1, we build a new graph G} = (VP! EPPl) in
the same way as we did in the proof of Lemma This gives us an m x m matrix C[?! such that

Zaw o+ (G) = ZC,@(G[p]), for all undirected graphs G,

and thus, EVAL(CP], ©*) < EVAL(C, D), and EVAL(CP!, ©*) is also not #P-hard.
Matrix CP! is a block matrix which has the same block dimension structure as C. The upper-right
and lower-left blocks of C[P! are zero matrices. For x, y € I, we have

C([g],x)v(O,Y) - (Z vaa(Fy,a)pN_lXal,@) (Z(FX,b)pN_le,bthbz) .
acJ beJ

By (Shapey) and the fact that all entries of X are positive integers, we can rewrite the first factor as

Moy (:uy1 )pN_l Z(Vm )pNHm,azHyz,asz,az = Hazy (/‘y1 )pN_l Z (Va)pN<Hac2,* oHy, «, Xax)-
acJ a€lt]

Similarly, we have

(Nm)pN_l:“yl Z (Va)pN<Hx2,* o Hy, +, Xq4)
a€lt]

for the second factor. Since v, > 0 for all a, we have
2

C([g},x),(o,y) = (Lo iy, )pN Z(Va)pN<Hmz,* oHy, «, Xax)| » (34)
a€lt]
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so the upper-left block of CI?! is a nonnegative real matrix. Similarly one can show that the same holds
for its lower-right block, so CIP! is a nonnegative real matrix.
Now for any x #y € I, we have

2 2
C([g],X),(O,X) = ()" Z(V“)pN Z Xap | and C([O}y) Oy) = (p1y, ) PN Z va)’N Z Xap |
a€lt] be(h] a€lt] be(h]
which are positive, and
4
[p] [p] _ 2pN N
o050 Cloy)0y) = Wariy) N | D ()N Y- Xap | >0,
aclt] be(h]

Since EVAL(CIPl, ®%) is not #P-hard and (CPl, ©*) satisfies (7), by the Inverse Cyclotomic Reduction
Lemma (Corollary [B1]), we have

or CH

: [p] 2 _ Aol [p]
either (C C C (0,5),(0,)

(O,X),(O,Y)) — 7(0.%),(0,%) 7 (0,y),(0,y)

We claim that if the former is true, then we must have x5 = y». This is because, in this case, we have

=0.

> )N (Hape 0 Hip o, Xa) | = D )™ Y Ko,

aclt] a€lt] be(h]

and the norm of (Hy, .o H,, ., X,,«) must be Zbe[h} X,,p- However the inner product is a sum of X, ;’s
weighted by roots of unity, so the entries of H,, » o Hy, , must be the same root of unity. Thus, Hg, .
and H,, , are linearly dependent. Since H is a matrix of full rank, we conclude that xo = 5.

In other words, if x5 # y9, then we have C([o} ) 0y) = 0 and thus,

Z(Va)pN<Hx27* oHy, ., X,.) =0, forallp>1and all zg # yo,
a€lt]

since the argument has nothing to do with p. By using the Vandermonde matrix, we have
(Hy, « o Hy, «, X)) =0, forall a € [t] and all 25 # ys.
This finishes the proof of (30]). ([BII) can be proved similarly. O
In the second stage, we prove the following lemma:

Lemma 8.6. Suppose matrices H, X and Y satisfy both [B0) and @BI). Then either they also satisfy
B2) and B3), or EVAL(C,D) is #P-hard.

Proof. We will only prove ([B3]). (B2) can be proved similarly. Again, we let ©* to denote a sequence of
N m x m diagonal matrices in which every matrix is a copy of DI (D* satisfies (73)).

Before starting the proof we note the following property of the matrix C[! which we used in the
proof of Lemma [85] since we need it to prove ([B3]) here: When x4 = vy, by (B4]), we have

2

1
C([0]7x)7(07y) = (Nﬂclﬂw)N Z Z Xap )

a€lt] belh]
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N-1 edges
pN-1 edges
—— 1 edge

Figure 3: Gadget for constructing G®, p > 1.

and is equal to 0 when x5 # yo. We use L to denote the second factor on the right-hand side, which is
independent of x and y, so the right-hand side becomes (i, ;)" - L.

Additionally, because of (31l), we have Y}, , and Y , are linearly dependent for every k. Thus there
exists a positive rational number \; such that

Yk7* = A - Yl’*, for all k£ € [S] (35)

Because of this, we only need to prove (33)) for the case when k = 1.

Now we start the proof of (33]). Suppose EVAL(C, ) is not #P-hard. We use G = (V, E) to denote
an undirected graph, then for each p > 1, we build a new graph G® = (V(p), E(p)) by replacing every
edge e = wv € E with a gadget which is shown in Figure [3l

More exactly, we define G®) = (V) E®)) as follows:

VP =V U {ac, be, ce, de, al, b, ¢l d., | e € B},

and E® contains exactly the following edges: For every edge e = uv € E,

1. One edge between (u,a.), (a,,v), (ce,be), (de,ac), (c,,b.) and (d,,al);

2. pN — 1 edges between (a.,v) and (u,al);
3. N — 1 edges between (ac,ce), (be,de), (al,c.) and (b, d.).

e’r e

It is easy to check that the degree of every vertex in G® is a multiple of N.
Moreover, the construction of G gives us a new m x m matrix R®) which is symmetric since the
gadget is symmetric, such that

Zrw o+ (G) = Zco(GP),  for all undirected graphs G

and thus, EVAL(R®), ©*) < EVAL(C,®), and EVAL(R(®), ©*) is also not #P-hard.
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The matrix R® is a block matrix which has the same block dimension structure as C. The upper-
right and lower-left blocks of R(®) are zero matrices. The entries in its lower-right block are as follows:

1 A1 1
R = | 22 Fax(Fay)™ ™ Cloly o1 YoraaYorta | | D2 (Fas)™ ™ Fay g o Yar.aa Yo
a,bel a,bel
for x,y € J. Firstly, by (), we have Yy, 0, Y5, b, = Aa; by Y1,00 Y1 5,- Secondly, we have
C([(l)],a),(o,b) =0, whenever as # bs.
As a result, we can simplify the first factor to be

Vi, (Vyl )pN_lL ) Z (Hay )pNHamrz Hay y, (Ha, :ub1)N/\t11 Aby Y1,05 Y1,

a,bel,ax=b>
= V:c1(Vy1)pN_1L’ Z (Nm)(pH)N(Nbl)N)‘m)‘bl Z ];[az,ﬂcz];[aayz(Yl,az)2
a1,b1€[s] az€[h]

= V-'El(yyl )pN_lL/ ) <H*,w2 o H, y,, (Y17*)2>7

where

=L Z DFTIN (i YN Nay A,
al,ble[ ]

is a positive number that is independent from x,y. Similarly the second factor can be simplified to be

(V:c1)pN_1Vy1 L. (H*,x2 o Hy y,, (Y17*)2>-

As a result, we have

2

Rglly,)x)v(l,)’) = (L,)2 ’ (leyyl )pN ’ <H*,r2 © H*7y2 ) (Yl,*)2>

Thus the lower-right block of R® is non-negative. Similarly one can prove that the same holds for its
upper-left block, so R®) is non-negative.
We now apply Corollary Bl to (R®),D*). Since EVAL(R®) D*) is not #P-hard, we have

: (p) _ p (p) (p) _
either (R(€7X)7(17y)) R(l O, X)R(Iiy),(l,y) or R(ix)’(l’y) =0, foranyx#yelJ.

We claim that if the former is true, then we must have xo = 9. This is because, in this case,
‘(H*wQOH*yw Yl* ‘ Zylz
i€[h]

However, the left-hand side is a sum of (Y17,-)2’s, which are positive integers, weighted by roots of unity.
To sum to a number of norm ;¢ Yfz the entries of H, ;, o H, ,, must be the same root of unity. As
a result, H, ;, and H, ,, are linearly dependent. Since H is of full rank, we conclude that xo = y2. In
other words, we have shown that

(H, 4, 0 .y, (Y13 =0, for all o # yo.

By combining it with (35]), we have finished the proof of ([B3)). O
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8.4 Step 2.3

Now we have a pair (C,®) that satisfies conditions (Shape;)-(Shapes) since otherwise, by Lemma [8.4]
EVAL(C,®) is #P-hard and we are done.

In particular, by using (Shapes) we define two diagonal matrices K% and LI as follows. K[ is an
(s+1t) x (s +t) diagonal matrix. We use (0,7), where i € [s], to index the first s rows, and (1, j), where
j € [t], to index the last ¢ rows of K%, The diagonal entries of K[ are

(0]
(1.9)

KO — plol E(ﬂ(j,l))’ for all i € [s] and j € [t].

04 =Py and K

=D

The matrix L% is the 2k x 2h identity matrix. We use (0,4), where i € [h], to index the first h rows,
and (1,7), where j € [h], to index the last h rows of L. By (Shapes), we have

Dgg{x) = K([g{m : LE%]M) and Dg(ﬂy) = K([(ﬂyl) : Lg‘i{yz), forall x € I and y € J. (36)
or equivalently,
plol _ <D£%}7*> ) _ <KE%],*> ®Lg.) ) . (37)
DE?],*) KE?],*) ® LET,*>

The main target of this step is to prove a similar statement for D'l r € [N — 1]. These equations will
allow us to decompose, in Step 2.4, the problem EVAL(C,®) into two subproblems.

In the proof of Lemma [84] we crucially used the property (from (73)) that all the diagonal entries
of DO are positive integers. However, for » > 1, (73) only gives us some very weak properties about
DUl For example, the entries are not guaranteed to be real numbers. So the proof that we are going
to present here is, as one might expect, much more complicated. We prove the following lemma:

Lemma 8.7. Let (C,D) be a pair that satisfies conditions (Shape;)-(Shapes), then either the problem
EVAL(C,®) is #P-hard, or it satisfies the following condition:

(Shapeg): There exist diagonal matrices K[ and L% such that DI K[ and Ll satisfy &7). Every
entry of K9 is a positive integer, and L% is the 2h x 2h identity matrix. For every r € [N —1],
there exist two diagonal matrices: K"l and LI"l. K"l is an (s 4+ t) x (s + t) matrix, and LI is a
2h x 2h matrix. We index K[l and L' in the same way we index KO and L), respectively, and

[r] [r] [r]
Dl = <D(O’*) 7] > = (K(Q*) ®L(07*) [7] 7] ) ’
D ) K(l,*) ®L

Moreover, the norm of every diagonal entry in LI} is either 0 or 1, and for any r € [N —1],

[l _ [l _ [l _ 1 _ Q.
K(o,*) =0 — L(07*) =0 and K(L*) =0 < L(L*) = 0;

L, #0 = Jiclh, Ly =1 ad L #0 = 3Jiep), Ly, =1

We now present the proof of Lemma [R.7 Fix an r € [N — 1] to be any index. We use the following
notation. Consider the diagonal matrix D). This matrix has two parts:

D 7]

o c Cshxsh and Dz},*) c Cthxth,

The first part has s blocks where each block is a diagonal matrix with A entries. We will rearrange the
entries indexed by (0, %) into another matrix which we will denote as D (just like what we did to DI
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in the proof of Lemma B4)), where its i-th row D, ., for i € [s], denotes the values of the i-th block and
the j-th entry of the i-th row D, ;, for j € [h], denotes the j-th entry of that i-th block. More exactly,

Dyj =Dy, foralli€[s]and ;€ [A]

We prove the following lemma in Section 842l A similar statement can be proved for DEE]*).
Lemma 8.8. Either problem EVAL(C,®) is #P-hard; or

— rank(D) is at most 1, and for any i, j,j' € [h], if D;; #0 and D; j; # 0, then |D; ;| = |D; j|.

We now use it to prove the first half of Lemma [R7], that is, there exist KEB] 9 and LES} 9 such that
[rl  _ gelrl [r]
Do, = Ko, ® Lo, (38)

Assume DEB] ,) s non-zero (otherwise, the lemma is trivially true by setting KEB] 9 and LEB] 9 to be zero).
Let a be an index in [s] and b be an index in [h] such that D, # 0. By Lemma 8.8, we know the rank
of Dis 1,80 D; « = (D;p/Dayp) - Do, for any i € [s]. Then it is clear that, by setting

"l _ n. =S,
K(O,i) = D;p, and L(OJ) " Dy’
we have [r] [r] I
D(07(m—)) — Dy = K(O,i) ) L(O,j)’ for all i € [s] and j € [h],

and ([B8) follows. The existence of matrices K[q]*) and LZ}* can be proved similarly.
One can also check that K"l and LI satisfy all the properties stated in (Shapeg). This finishes the
proof of Lemma [B7] (assuming Lemma [B.§]).

8.4.1 The Vanishing Lemma
We will use the following Vanishing Lemma in the proof of Lemma B8]

Lemma 8.9 (Vanishing Lemma). Let k be a positive integer and {x; n}n>1, for 1 <i <k, be k infinite
sequences of non-zero real numbers. For notational uniformity we also denote by {xon}n>1 the sequence
where xg, =1 for alln > 1. Suppose
lim 24— 0 for0<i<k.
n—oo :I;‘i’n
Part A: Let a; and b; € C, for 0 < i < k. Suppose for some 1 < <k, a; =b; for all 0 <1i < £ and
ag = by = 1. Also suppose Im(ap) = Im(by). If for infinitely many n,

k k
E a;Tin E biTin
=0 i=0

)

then ap = by.

Part B: Let a; € C, for 0 <i < k. Suppose for infinitely many n,

k
§ AiT4n
=0

=0,

then a; =0 for all 0 < i < k.
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Proof. We first prove Part B, which is simpler. By taking n — oo (Technically we take a subsequence
of n approaching co where the equality holds; same below), we get immediately ag = 0. Since x1, # 0,
we can divide out |z |, and get for infinitely many n,

k
> " aiin/T1 0
i=1

=0.

Now the result follows by induction.
Next we prove Part A. Multiplying by its conjugate, we get

k k k k
i=0 §=0 i=0

=0

Every term involves a product z; ,x;,. If max{i, j} < ¢, then the terms a;a;z; ,x;, = b,-b_jxi,na:j,n and
they cancel (since a; = b; and a; = b;). If max{i, j} > ¢, then both terms a;a;x; n2;, and bib_jzni’nxjm
are o(|xg,|) as n — oo. This is also true if max{7, j} = ¢ and min{é, j} > 0. The only remaining terms
correspond to max{i, j} = ¢ and min{7, j} = 0. After canceling out identical terms, we get

(ar + @p)zen + o(|zenl) = (be + be)xn + o(|zeml),
as n — oo. Dividing out xy,, and then taking limit n — oo, we get the real part
Re(as) = Re(by).
It follows that ay = by since Im(ay) = Im(by). O

We remark that Part A of the Vanishing Lemma above cannot be extended to arbitrary sequences
{a;} and {b;} without the condition that Im(a;) = Im(by), as shown by the following example: Let

1
a1 = 3+ V/3i, a2:3<§+§i>, and by = by = 3.

Then the following is an identity for all real values x,
|1 + a1z + a2x2| = ‘1 + bz + bga:2| .

In particular this holds when z — 0. We note that a; # b;.

8.4.2 Proof of Lemma 8.8

Without loss of generality, we assume 1 = pq > ... > pus > 0and 1 =11 > ... > 1y > 0 (otherwise, we
can multiply C with an appropriate scalar so that the new C has this property. This operation clearly
does not affect the complexity of EVAL(C,D)). We assume EVAL(C, D) is not #P-hard.

Again, we let ©* denote a sequence of N m x m diagonal matrices in which every matrix is a copy
of the matrix D% in ©. Tt is clear that D* satisfies condition (73).

Recall that 7 is a fixed index in [N — 1], and the definition of the s x h matrix D from DU, Let
G = (V, E) be an undirected graph. For each n > 1, we construct a new graph G by replacing every
edge uv € F with a gadget which is shown in Figure [l
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== p, edges

—-=—-- (, edges
N-1 edges
—— 1 edge

Figure 4: Gadget for constructing GI™, n > 1 (Note that the subscript e is suppressed).

More exactly, we define G} as follows. Let p, = n?N + 1 and ¢, = nN — 1 (when n — oo, ¢, will
be arbitrarily large, and for a given gy, p, will be arbitrarily larger). Then

vl =y uy {ae,me,,ye,,be,ce,ae,mel,yel,bé,ce ‘ e € E,ier]},
and EM contains exactly the following edges: For every edge e = uv € E,
1. One edge between (u, ac), (v,a), (ac, ye;:) and (ag,y, ;), for all i € [r];
2. N — 1 edges between (v, a.), (u, a), (ae, Te,i) and (ag, x, ;), for all i € [r];
3. pn edges between (b, z.;) and (b, ;), for all i € [r];
4. gy edges between (ce,¥ye) and (c,,y, ;), for all i € [r].

It is easy to check that the degree of every vertex in graph G is a multiple of N except for b, and b,
which have degree » mod N, and ¢, and ¢,, which have degree N —r mod N.
Since the gadget is symmetric with respect to vertices u and v, the construction of GI" gives us a

symmetric m x m matrix R (recall m = (s +t) x h) such that

Zpim o+ (G) = ZC@(G["]), for all undirected graphs G.

As a result, EVAL(R[", ©*) < EVAL(C,®), and EVAL(R!",©*) is also not #P-hard.
The entries of R are as follows: For allu e I and v € J,

[n] _ plnl _
R(O,u),(l,v) R(l u),(0,v) 0.
For u,v € J, we have
[n] _ N—1pn 1[0] n N-1 0] Al [N—r]
R(l,u),(l,v) - Z (ZF Fé’ xD(l x)> ZF 7qu F F D(O a)D(O b)D( c)
a,b,cel \xeJ yeJ
N—-1gpn 1[0] n N 1 [0] [r] [N—r]
<[> (ZF Dy x)> > FayFénD F¥a " Fan Doy Diomy Poe)
a,b,cel \xeJ yeJ
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Let us simplify the first factor. By using (Shapes) and (Shapes), we have

n mn n 0
ZFN 1Fllsngl]x) - Mé\i 1M€1 Z(le)N o Ha?’mez’xzDEl},(xhl))
xeJ xeJ
n —14p, [0
= T Y )N D L (H,  H, ). (39)
z1€[t]

We use L to denote the following positive number which is independent of u,v,a,b and c:

_ N—14pn 0]
L=h- Y )" D 0 1)y
x1€[t]

Then by (Shapey), (B9) is equal to L - ,uN 1 p " if a9 = by; and 0 otherwise. Similarly,

Z F, ,qu" (1 v) = L. Pay prdy s if ag = eo;
yeJ

and 0 otherwise, where L’ is a positive number that is independent of u,v,a,b and c.
By (Shapes), we have
[N—r]

-
(0 =P

(0,¢)
[n]

Combining these equations, the first factor of R( w),(1,v) becomes

D = D¢, -

T
. . )0 5
Vuluf,\lf 1 Z (L ,uN 1,u§> (L/',ualug ) Mé\iHa27u2Ha2,U2D£0}’(al’1))Db,a2Dc,a2.
acl,b,ce[s]

Let Z denote the following positive number that is independent of u and v:
_ N-1 / " N o]
Z = Z (L Mgy ) (L ‘Ma1) NalD((),(al,l))'
a1 €ls]
Let P, = rp, and Q.,, = rq,, then the first factor becomes
Zoni Y @ Y Dy Dty
b,c€|s] a€lh]

We can also simplify the second factor so that RE?}U) (1v) is equal to

Z2(VU1VU1)N Z Mbn Qn Z Db aDC aHa qua va Z lubfnlugn Z Db’,aDC,,aHO/,’LLQHa,UQ
b,c€[s] a€lh] b, c'€ls] a€lh]

Since EVAL(R[" ©*) is not #P-hard and (R[", ©*) satisfies (7) for all n > 1, the necessary condition
of the Inverse Cyclotomic Reduction Lemma (Corollary §1]) applies to RI™.

In the proof below, for notational convenience, we suppress the index n > 1 and use P, @ and R to
represent sequences {P,}, {Q,} and {RI"}, respectively. Whenever we state or prove a property about
R, we mean R[™ has this property for any large enough n (sometimes it holds for all n > 1). Moreover,
since we only use the entries of RI" indexed by ((1,u), (1,v)) with u; = v; = 1, we let

Ruﬂ) = R(l,(l,u)),(l,(l,v))7 for all u,v € [h]
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As a result, we have (note that v; = 1)

Ru,v = Z2 Z :u'bPNcQ Z Db,aDc,aHa,uHa,v Z N5M3 Z Db’,aDc’,aHa,uHa,v . (40)
b,c€[s) a€lh] b, els] a€lh]

We will consider the above expression for R, , stratified according to the order of magnitude of

1 1@ G = (opir )" (pepser)

Since P = O(n?) and Q = ©(n), when n — oo, Q is arbitrarily and sufficiently large, and P is further
arbitrarily and sufficiently large compared to ). Thus, the terms are ordered strictly first by uppuy, and
then by pcpier.

Inspired by this observation, we define the following total order <,, over 7, where

T={(y )

by c by ¢
=) mm= (i)

we have T1 <, Tb if either Wby My, < Hbo Mply5 OF [y [y, = by [, and Mer fel, < Heyfhey- For convenience,
whenever we denote a 2 x 2 matrix in 7 by T; or T, we denote its entries by

bi C;

bi <
Using <, we can divide 7 into classes 71,7y, ...,7; ordered from the largest to the smallest, for some
positive integer d, such that

bt ,c,c € [s]}

For T} and 15 in 7', where

<b c) respectively.
bl C, ) .

L. Ty, T, € T, for some i € [d], then we have puy, puy; = pn, piyy, and pie, fher = ficyfey,- Note that this
is an equivalence relation which we denote by =;

2. tTh € T;, T € Tj and i < j, then either pp, puy > poy pipy; OF fi, [y, = fby iy, a0 fhey fler > P Hes,-

For each i € [d], we arbitrarily pick a T' € 7; and let U; denote pppuy and W; denote pep (note that U;
and W; are independent of the choice of T'). It is clear that there is exactly one matrix G %) in 77.
Now we can rewrite (40]) as follows

Ru,v — Z2 Z UiPWZ’Q Z XU,U,T7 (41)
i€ld) TeT;

where

Xu,v,T = Z Db,aDc,aHa,uHa,v Z Db’,aDc’,aHa,uHa,v ) for T' = <£)/ CC/> .
a€lh] a€lh]

Clearly, the term with the maximum possible order in the sum (41l corresponds to the choice of
T = (} }) € Ty, since p is strictly maximum among all py, ..., ps. This is true for every (u,v), and it
will be the actual leading term of the sum, provided the coefficient of Ulp WlQ = M%PHQ is non-zero.

Consider the diagonal entries where u = v: First, we notice that, by (40), we have R, , = R; for
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all u € [h]; Second, the coefficient of the leading term U{’ WlQ is

2

Xy = | 2 1Pal | =D,

11
a€lh]

which is, again, independent of u. Without loss of generality, we may assume D1 , is not identically 0;
otherwise, we can remove all terms involving p; in Eq. (0) and pe will take its place, and the proof is
completed by induction. (If all D; , = 0, then the statement that D has rank at most one is trivial.)

Assuming that Dy , # 0, we have R, , = Ri1 # 0, for all u € [h] (and sufficiently large n). This is
because, ignoring the positive factor Z2, the coefficient | Dy .||* of the leading term U{ WlQ is positive.
By using Corollary RB1], we have

Property 8.1. For all sufficiently large n, |R1 1| > 0 and |Ry | € {0, |R11|} for all u,v € [h].

From now on, we focus on v = 1 and denote by H. , = H, 1 ocH,,. We note that {’H*,U}Ue[h} forms
an orthogonal basis, with each H’HMH2 = h. We also denote X , 1 by X, 1, so

XU,T = Z Db,aDc,aHa,v Z Db’,aDc’,aHa,v for T = <£/ CC/> . (42)
a€lh) a€lh]

We need to make two more definitions. Let K = {i € [h] | D1, # 0}. By our assumption above, we
have K # (). Define
A ={v € [h] | Vi,j € K,Hi» =H;»} and B =[h]—A.
Note that if |[K| = 1 then A = [h]. The converse is also true which follows from the fact that {H. . fve[n)
forms an orthogonal basis. Also since H, 1 is the all-one vector, 1 € A and A is non-empty. Moreover,
if K = [h], then A = {1}. This, again, follows from the fact that {H, ,} forms an orthogonal basis.

Now we consider the coefficient X, 7 of U1P WlQ in Ry, where T' = (% }) For every v € A, it has
norm ||Dy .|| > 0. It then follows from Property Bl and Part B of the Vanishing Lemma that

Property 8.2. For any v € A and sufficiently large n, |Ry | = |R11].

If B # (), then for any v € B, the coefficient of T = G D in Ry, is

XU,T - (Z ‘Dl,alea,v> (Z ‘Dl,a’2m> = Z ’Dl,a‘2Ha,v

aeK aeK aeK

2
cR.

Since we assumed v € B, Y, i |D17a|2Ha,U is a sum of positive terms |D1,a|2 weighted by non-constant
Ha,v, for a € K, each with complex norm 1. Thus its absolute value must be strictly less than || D1 .2,
which is only achieved when all H, ,, for a € K, are equal to a constant. It follows that X, 7 < ||D « ||4.
Therefore, for v € B (and n sufficiently large), we have |R;,| < |R1,1|. By using Property 81l and Part
B of the Vanishing Lemma, we have the following property:

Property 8.3. If v € B, then for all sufficiently large n, Ry, = 0 and thus,

> Xor=0, forallicld]
TeT;
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In particular, by applying Property 8.3l to 7; = {(} })}, we have

Z |D1,a|2Ha,v = Z |D1,a|2m = <|D1,*|27H*,U> = 07 for every v € B>

acK aeK
since | Dy 4| is real. Furthermore, because {H. ,} forms an orthogonal basis, |D; .|? must be expressible
as a linear combination of {H..,|v € A}, over C. From such an expression, we have |Dy ;> = | Dy ;|*
for all 4,j € K, by the definition of K. Since D , is only non-zero on K, |D; 4| is a constant on K, and
D;; =0 for any i € [h] — K. (The above proof does not actually assume B # (; if B = (J, then A = [h]
and by {H.,} being an orthogonal basis, |K| = 1. Then the above statement about Dy , is still valid,
namely D1 , has a unique non-zero entry and zero elsewhere.)

We summarize the above as follows:

Claim 8.1. |D1.|? L H.,, for allv € B, and |D14|? is a constant on K and 0 elsewhere. In particular

the vector xr, which is 1 on K and 0 elsewhere, is in the span of {H. | v € A}, and is orthogonal to
all {H.,|v € B}.

Our next goal is to show that on set K, Dg, is a constant multiple of D; .. Clearly if B = (), then
|K| =1 as noted above and thus, it is trivially true that Dy . is a constant multiple of Dy, on K. So
we assume B # (). We now consider

21 1 2
T1—<1 2> and T2—<2 1>

Ty and T belong to the same 7, for some g € [d]. By Property B3], we have ZTGTQ Xy = 0 for every
v € B. So we focus on terms X, 7, where T' € 7, (i.e., T'=, T1). Suppose T' =, T1, then by definition,
we have ppuy = pipe and pepie = pipg. Thus, {b,0'} = {c, '} = {1,2}. As a result,

1 1 2 2
%:{T17T27T3:<2 2>7T4:<1 1)}

However, due to the presence of a row (1 1), the sum 3'_ | Dy o|*Han = 3" |D1 o|*Han = 0 for any
v € B as shown above. Therefore, the coefficients X, 1,, X, 1, corresponding to 73 and 7 are both 0.
We make one more observation:

Observation: We say a matrix T' € 7 is of a Conjugate-Pair form if it is of the form

T:@ g).

For a matrix T" in Conjugate-Pair form, the corresponding coefficient X, 7 is of the form

h 2
Z Db,aDc,aHa,v

a=1

XU,T =

Y

which is always non-negative.

Now the remaining two matrices 77 and 75 in 7, both have this form, so both X, 7, and X, 1, are
non-negative. Since X, 7, + X, 1, = 0, both X, , and X, 7, must be zero. This gives us

> DiaD2ogHapn =0, forallveB.
aclh]
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Hence the vector D—l* oDy, L H,, for all v € B. It follows that the vector D—l* o Dy, is expressible
as a linear combination of H, , over v € A. By the definition of A, this expression has a constant value
on entries indexed by a € K, where |D; 4| is a positive constant. Therefore, over K, Dy, is a constant
multiple of Dy .. This accomplished our goal stated above, which we summarize as

Claim 8.2. There exists some complex number A, such that Dy, = AD1 4, for all a € K.

Let Ky = {i € [h] | D2, # 0}. Note that the A above could be 0 so it is possible that K ¢ K. Our
next goal is to show that for every v € A, H, , takes a constant value on K. This means that for all
v €A Hiy=Hj, for all 4,5 € Ko. Without loss of generality, we assume Dy, # 0 since otherwise
K5 = ) and everything below regarding Dg . and regarding H. , on Ky are trivially true.

Toward this end, we will consider the class

- {n- (2 Na-(2 ) m-(3 - (2 2)

and their corresponding coefficients X, 7 for any v € A. We will apply the more delicate Part A of the
Vanishing Lemma on R, and R i, for an arbitrary v € A. Our target is to show that

Z Xor = Z Xir, foranywveA. (43)
TeT,y Tel,

By Property B.2] we already know that |R; | = |Ry 1| for any sufficiently large n. So in order to apply
the Vanishing Lemma, we need first to show that terms which have a higher order of magnitude satisfy

Z Xo1 = Z X7, foralll< ¢ < gand v € A. (44)
TE'Tg/ TETg/

We also need to show that

Im (> Xpr|=Im| > Xir|. (45)

TeTy TeT,

By definition, any 1" >, T1 must satisfy uppy > p1p2. Thus the first column of T' is

aan () (3 ()

Firstly, consider those matrices T' >, T1 where each row of 7" has at least one 1’s. For every v € A,
the two inner product factors in (42]), namely, Zgzl Dy oDeoHaw, and 22:1 Dy oDy o Ha,p, must be
actually a sum over a € K, since D1 , is zero elsewhere. But for a € K, H,, is just a constant o, of
norm 1 (a root of unity), independent of a € K. Thus

h h
5 Db,aDc,aHa,v = Qy 5 Db,aDc,a and 5 Db’,aDc’,a Ha,v = Qy 5 Db’,aDc’,a-
a=1 aeK a=1 acK

Since a, @, = |a,|? = 1, it follows that their product is

h h
<Z Db,aD—c,aHa,v> (Z Db’,aDc’,aHa,v> = (Z Db,aD—c,a> (Z Db’,aDc’,a> )

a=1 a=1 aeK aeK
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which is the same as the coefficient X 7 corresponding to T" for vg = 1 € A. Thus for all such T, their
respective contributions to Ry, and to Ry are the same, for any v € A.
Such matrices T' >, T1 with at least one 1’s in each row include any matrix of the form

(o) G (00)

These exhaust all 7' >, T, and (@) follows.
Such matrices T' >, T also include T and 15 in 7;. So X, 1, = X1, and X, 1, = X1 13, for any
v € A. Now we deal with matrices 75 and T;. We note that the sum of X, 1, and X, 1, at any v, is

h h
(z wl,aem,v) (z wz,ae—m,v) N (z wz,aem,v) (z wl,ae—m,v) )
a=1 a=1

acK aeK

which is a real number. ([45]) then follows.
Now we can apply Part A of the Vanishing Lemma which gives us ([43]). Because X, 7n = X; 1, and
Xov1 = X115, We have

Xoy + Xom, = X, + X1 = 2 |[Dys Doy

However this is clearly the maximum possible value of ({@6) (By our assumption, |[D1 ||?||D2.||* > 0).
The only way the sum in (40]) also achieves this maximum at v € A is for H,, to take a constant value
By for all a € Ko, and H,, to take a constant value «, for all a € K, for some two complex numbers
a, and 3, of norm 1. Moreover, by (@f]), we have

avE + a_vﬁv = 2.

It follows that o, = 3,. Thus, H,, is a constant on a € K U K for each v € A.
We summarize it as follows:

Claim 8.3. For every v € A, there exists a complex number o, of norm 1, such that Hq, = o, for all
a in KU Ks.

We eventually want to prove Ko = K. Our next goal is to prove that |D2,*|2 1L H, ., forallve B.
Of course if B = () then this is vacously true. We assume B # ().
For this purpose we will examine
N 2 2
m=(33),

and the class 7 it belongs to. By Property B3] we have

Z Xy =0, foranywveB.
TeT,

Thus we will examine T' € 7y, namely, pppy = piefler = 3.

Now there might be some other pair (b,b") # (2,2) such that ppuy = pope. If such a pair exists, it
is essentially unique, and is of the form (1,s) or (s,1), where s > 2. Then 7, consists of precisely the
following matrices, namely each column must be either

C) w () o (). )
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Let’s examine such a matrix T = <£, ;) in more detail. Suppose T' € 7, has a row that is either
(I11)or (12)or(21). Then,

h h
XU,T = (Z Db,aDc,aHa,v) (Z Db’,aDc’,a Ha,v) = 07 for any v € B.

a=1 a=1

This is because the following: The presence of D , restricts the sum to a € K. By Claim Bl we know
that for every v € B, |D1«|> L H.,. Moreover, on set K, we know from Claim B2} that both vectors
D—l,* oDy, and Dy, 0 Dy, can be replaced by a constant multiple of the vector ‘Dl,*‘2 (the constant
could be 0), thus also perpendicular to H., (and to H, ).

Now suppose 7' is a matrix in 7, and yet it does not have a row which is either (1 1) or (1 2) or
(2 1). By ({@0), it is easy to check that the only cases are

« (2 2 (1 s (s 1
T _<2 2), T1_<s 1) and T2_<1 )

Thus X, 7+ + Xy, + Xo1, = 0 for all v € B. However, as noted above, all three matrices 7,77 and
T5 have the Conjugate-Pair form, so their contributions

2 2

and

h
Z Dl,amHa,v

a=1

,D2,aHav ) s,a Ha,v

are all non-negative. It follows that all three sums are simultaneously zero. In particular, from X, 7+,
we get ’DQ’*P 1 H,, forallve B.

It follows that the vector |Ds.|? is in the span of {H.,|v € A}. This linear combination produces
a constant value at any entry |D27a|2, for a € K U Ky. This is because each vector ‘H, , for v € A has
this property by Claim R3]

As we assumed Dg , # 0, and D, is 0 outside of Ky (by the definition of K3), this constant value
produced at each entry ]ngaF for a € K U K5 must be non-zero. In particular, Dy, # 0 at a € K. It
follows that K C K». It also implies that the vector, which is 1 on K U K9 = K5 and 0 elsewhere, is in
the span of {H.,|v € A}.

Next we prove that K = K, by showing that |K| = |K3| (since we already know K C Ks). Let xx
denote the h-dimensional characteristic vector for K, which is 1 for any index a € K and 0 elsewhere.
Similarly denote by x k., the characteristic vector for Ko. We know that both vectors xx and xg, are
in the linear span of {H., |v € A}. Write xx = >, c 4 TvHs 0, Where z,, € C, then

xv”H*,vH XK;H* v ZXK a,v = Z Ha,v = ‘K’a_va

acK
by Claim B3l It follows that |z,|h = |K| for each v € A. Thus
K1\ JAKP
KL= Ixil? = 3 2ol - [1Heul? = 4] ( p— HIKE
vEA

and it follows that |K| = h/|A|. Exactly the same argument gives also |Ks| = h/|A|. Hence |K| = |Ks|,
and K = K. At this point the statement in Claim can be strengthened to

Claim 8.4. There exists some complex number A, such that Do, = AD1 ..
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Our final goal is to generalize this proof to all Dy, for £ =1,2,...,s. We prove this by induction.

Inductive Hypothesis: For some ¢ > 2, all rows D ,,...,Dy_; , are linearly dependent:
D; .= A Dy,
for some \;, and 1 <i < /4.

The proof below will mainly follow the proof for the case £ = 2 above, except for one crucial argument
at the end. We presented the special case £ = 2 alone for ease of understanding.

We now prove that Dy, = A¢- D1 4 for some A\;. Clearly we may assume Dy, # 0, for otherwise the
inductive step is trivial. To start with, we consider the following two matrices

{1 1 7/
T1:<1 E) and T2:<£ 1>,

and the corresponding class 7, they belong to. By Property 8.3 we have for every v € B,

> Xur =0

TeT,

We only need to examine each T' € 7, with exactly the same order as that of 11, To: pppy = pepte =
p1pte. To satisfy this condition, both columns (;’,) and (5) of T must have entries {1,¢} or have both
entries < £. Clearly, no entry in {b,b',¢,c'} can be > . There are two cases now: Case 1: There is a
row (b ¢) or (b' ¢) (or both) which has both entries < ¢; Case 2: Both rows have an entry = £.

In Case 1, at least one of the inner product sums in the following product

h h
XU,T = (Z Db,aDc,aHa,v) (Z Db’,aDc’,a Ha,v)
a=1 a=1

actually takes place over a € K. This follows from the Inductive Hypothesis. In fact that inner product
is a constant multiple of ) |D1.4|*Ha, or its conjugate Y wck |D1.4|?*Han which are 0 according to
Claim Bl for all v € B.

In Case 2, it is easy to verify that to have the same order uiu;, T must be equal to either T} or T5.
Now observe that both T} and T have the Conjugate-Pair form. Therefore, their contributions X, 1,
and X, 1, are both non-negative. Since X, 1 + X, 1, = 0, both of them have to vanish:

> Di1aDyoHaw =0, and Y Di,DggHay =0, forallveB.
]

a€lh a€(h]

Hence the vector Dy 4 0Dy, L H, ,p, for all v € B. It follows that the vector D1, o Dy, belongs to the
linear span of {H.,|v € A}. By the definition of A, this expression has a constant value on entries
indexed by a € K. Therefore, on K, Dy, is a constant multiple of Dy ,. We summarize this as follows

Claim 8.5. There exists some complex number \¢, such that Do = Ao - D14, for all a € K.

Let Ky = {i € [r] | D¢, # 0}. Next, we prove that for every v € A, H, , takes a constant value on
Ky, ie., H;, = Hj., for all indices 7,5 € K,. We had assumed Dy, # 0, since otherwise the induction
is completed for £. Then K, # 0.

To show that H, , is a constant on Ky, we consider
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[ 11
T3:<1 1> and T4:<€ €>,

and the class 7, they belong to. We want to apply Part A of the Vanishing Lemma to show that

Z Xor = Z Xir, foranywveA. (48)
Tel, Tel,

For this purpose, we need to compare the respective terms of the sum (41l), for an arbitrary v € A and
for the particular vg = 1 € A. More exactly, we will show that

Y Xyr= Y Xy, and Im| > Xyp|=Im| > Xir|, (49)

TeTy, TeTy, TeT, TeTy

for all v € A and ¢’ < g. Then ) follows from Part A of the Vanishing Lemma.
To this end, we first consider any matrix 7" which has an order of magnitude strictly larger than
that of T3 and T4. We have

either pppy > papg, or [pppy = pape and  piepier > furjre).

The first alternative implies that both b and & < £. The second alternative implies that ¢ and ¢’ < £.

In both cases, each row of T has at least one entry < £. By the Inductive Hypothesis, both inner
products in (42)), namely, 22:1 Dy oDeoMHaw and ZZZI Dy oDer o Ha,p, must be actually a sum over K
since Dy  is zero elsewhere. However for any a € K, H,, is a constant o, of norm 1 (a root of unity),
independent of a € K. Thus

Z Db,aDc,aHa,v = Qy Z Db,aDc,a and Z Db’,aDc’,a Ha,v =y Z Db’,aDc’,a-
a€lh] acK a€lh] acK

Since a, @, = |ay|? = 1, it follows that their product

XU,T = (Z Db,aﬁ,a) (Z Db’,aE) ’

aeK aeK

which is exactly the same as the coefficient X 7 for vg = 1 € A. Thus for any 7', where each row has
at least one entry < ¢, X, 7 = Xy, for any v € A. This includes all matrices T' >, T3 (as well as some
matrices T' =, T3 € 7,), and the first part of ([@9) follows.

Now we consider any matrix 17" € 7,. If each row of T" has at least one entry < ¢, then by the proof
above, we know X, 7 = X 1 for any v € A. Suppose T' € 7, does not have this property. Then each
column of such a matrix must consist of {1,¢}. We have four such matrices: 71,75, T3 and T;. But the
former two matrices already belong to the case covered above. So we have

Z XU,T — Z X17T = XU,T3 + Xv,T4 — (X17T3 + X17T4) , for any v € A.
TeT, Tel,

Now to the matrices 73,7y themselves. We note that the sum of their coefficients X, 1, + X, 7, is

h h
(Z \DLGPHQ,U> (Z \Dg,a\2Ha,v> - <Z yDg,aPHa,U) (Z \Dl,alea7v> , atanyve A (50)
a=1 a=1

acK aeK
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This is a real number, and the second part of ([@9) follows.
Now we can apply Part A of the Vanishing Lemma to conclude that

Xor, + Xon =Xinn +Xu1, =2+ \|D1,*H2||Dg7*\|2, for any v € A.

This is the maximum possible value of (50). By our assumption || D1 .||?||Dg.||?> > 0. The only way the
sum in (50) also achieves this maximum at v € A is for H, , to take a constant value v, for all a € K,
(and we already know that H, , takes a constant value a,, for all a € K), where «, and 7, are of norm
1. Moreover, by (50]), we have

Yy + Oy = 2.

It follows that an, = ,. Thus H, , is a constant on K U K, for each v € A. We summarize it as

Claim 8.6. For every v € A, there exists a complex number o, of norm 1, such that H,, = o, for all
a€ KUK,

Our next goal is to show that |ng*|2 1 H,, for all v € B. Of course if B = {) then this is vacously
true. We assume B # (). For this purpose, we examine

" L/
=i 1)
and the class 7, it belongs to. By Property B3l we have ZTeTg Xy, =0 for any v € B, and our target
is to show that X, 7« = 0. To prove this, we need to examine terms X, 7 for all T' =, T™* € 7.

It is now possible to have a number of pairs, (a1, b1), (ag,b2),..., (ag,by), for some k > 0, such that
Ha; b, = u?, for 1 <i < k. (When ¢ = 2, such a pair, if it exists, is essentially unique, but for ¢ > 2
there could be many such pairs. This is a complication for £ > 2). For every matrix T € 7, it must
have each column chosen from either (g) or one of the pairs (ZZ) or (Z:) Note that if such pairs do not

exist, i.e., k =0, then 7, = {T™} and we have .

h h
Xo+ = <Z |nga|2Ha,U) <Z |Dg7a|2Ha,v) =0, atanywveB.
a=1 a=1

The following proof is to show that even when such pairs exist (k > 1), we still have X, p- = 0. For
this purpose, we show that ZTGTQ’T#T* Xyr > 0.

Suppose k > 1. We may assume a; < { < b;, for all i € [k]. Let’s examine all the matrices T' € 7,
other than T%. If T has at least one row, say (b ¢), with max{b, c} < ¢ and min{b,c} < ¢, then by the
Inductive Hypothesis and Claim [R5 the corresponding inner product actually takes place over K. In
fact, the inner product is a constant multiple of the projection of ‘Dl,*‘2 on either H, , or ’H—*v But
we already know that this projection is zero for all v € B.

For the remaining 7" where both rows satisfy [max{b,c} > ¢ or min{b,c} > ¢], if T # T™* then one
of its two columns # (g), and one entry of this column is a; < ¢, for some i € [k]. It then follows that
the other entry in the same row as a; must be b; > ¢, for some j € [k]. As a result, the only matrices
remaining are of the form

a; bj bl aj .o
< <k.
(bi aj> or <<li bj> , forsomel<i,j<k

We consider the first type <Z’ aj->' The total contribution of these matrices is
i 4j
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k h
= Z Z A—%Dl,anJ.,aHam : Afli Dbz‘,a’Dl,a’ Ha’7v

i,j=1a,a’=1
h k h k
= ZDl,aHa,v Z )\aj Dbj,a : [Z Dl,a’ Ha’,v (Z )\aiDbi,a’>]
a=1 j=1 a’'=1 i=1
h k 2
= Z Dl,aHa,v Z )\aj Db],a >0
a=1 j=1

Here in the first equality we used the Inductive Hypothesis for a;,a; < £.

The argument for the second type of matrices is symmetric.

Note also that the matrix 7™ has the Conjugate-Pair form, and therefore its contribution X, 7+ at
any v € B is also non-genative. Then it follows from ZTeTg Xy 1 =0 (Property B3) that X, 7« must

be zero. Hence
A 2
g
Z |Dé,a| Ha,v
a=1

This means that |Dy.|> L H.,, for all v € B and thus, Dy .|? is in the linear span of {H., |v € A}.
Now by exactly the same argument as for £ = 2 we obtain K = K,;,. We summarize as follows

=0, forallveB.

Claim 8.7. There exists some complex number A¢, such that Dy, = Xy - D1 ;.

This completes the proof by induction that D has rank at most one.

8.5 Step 2.4
After Step 2.3, we get a pair (C,D) that satisfies conditions (Shape;)-(Shapeg). By (Shapesz), we have

Cc_ 0 F\ 0 M H
“\FT 0)  \MoH)T 0 :
where M is an s x ¢t matrix of rank 1: M; ; = p;v;, and H is the h x h matrix defined in (Shapes). By
(Shapes) and (Shapeg), we have

K[T] L[T]

[r]
D ®
DIl = (0,%) ] = (0.%) (0%) ] ] , foreveryrel0: N —1],
D Ki.,®L

L (7]

g
K (0,%)

(7]
where K (14)°

(0,%)

and LEl] 5 are all diagonal matrices.
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Moreover, every entry in LIl either is 0 or has norm 1, and L% is the 2/ x 2k identity matrix.

Using these matrices, we define two new pairs (C’, ) and (C”, £), which give rise to two problems
EVAL(C’, 8) and EVAL(C”, £): First, C’ is the bipartisation of M, so it is (s +¢) X (s +¢); and K is a
sequence of N diagonal matrices of the same size: {K%, ... KMN=1}  Second, C” is the bipartisation
of H, so it is 2h x 2h; and £ is a sequence of N diagonal matrices: {L[O}, ..., LIV _1]}. The following
lemma shows that EVAL(C,D) has the same complexity as EVAL(C”, £).

Lemma 8.10. EVAL(C,®) = EVAL(C”, £).

Proof. Let G be a connected undirected graph and u* be one of its vertices, then by Lemma and
Lemma 2.3 we have Zc o(G) = Zg (G, u") + Zg 5(G,u"),

ZEQ(G, 'LL*) = 287§(G, 'LL*) . Za’,Q(G7 u*), and ZEQ(G, 'LL*) = ZC(?/“@(G, 'LL*) . ZE’,,Q(G7 u*)

Because M is of rank 1, both Zg, g and Zg, ¢ can be computed in polynomial time. We only prove for
Zgr g here: If G is not bipartite, then Z5, (G, u*) is trivially 0; Otherwise let U UV be the vertex set
of é, u* € U, and every edge uv € E has one vertex u from U and one vertex v from V. We use = to
denote the set of assignments ¢ which maps U to [s] and V' to [t]. Then we have (note that we use K]
to denote K['m°d Nl for any r > N)

— *\ [deg(u)] [deg(v)]
Zg g(Gu*) = Z < H NE(u)'”&(v)) (H K(o,f@))) (H K(Lf(@)))

£€eE \wveE uclU veV

_ Ndeg(u [ng dc [deg(v)]

= T { Dottt G | o I | ooy K5 |
uelU \i€[s] veV \jelt]

which can be computed in polynomial time.
Moreover, because pair (C”, £) satisfies (Pinning), by the Second Pinning Lemma (Lemma[£.2]), the
problem of computing Zg, o and Zg, o is reducible to EVAL(C”, £). It then follows that

EVAL(C, D) < EVAL(C”, £).

We now prove the reverse direction. First note that, by the Third Pinning Lemma (Corollary [8.2),
computing ZC o and Zg o is reducible to EVAL(C,®). However, this does not finish the proof since
Zai g (or Zg, g) could be 0 at (G,u*). To deal with this case, we prove the following claim:

Claim 8.8. Given any connected bipartite graph G = (U UV, E) and u* € U, either we can construct
a new connected bipartite graph G' = (U’ UV’ E") in polynomial time such that uv* € U C U’,

ZGn oG u*) = RV ZG, o(GuY), (51)

and Zg, ¢(G',u*) # 0; or we can show that Zg, o(G,u*) = 0.

It is clear that Claim [B.§] gives us a polynomial-time reduction from Zcn o 10 Z5 5. One can prove
a similar claim for 7, and Lemma B0 follows. We now prove Claim [B.8]

For every u € U (and v € V), we let r,, (and r,) denote its degree in graph G. To construct G’, we
need an integer £, € [s] for every u € U, and an integer ¢, € [t] for every v € V', such that

Z MiuN-i-?“u X K([guj) ?é 0’ and Z VfuN-H“v K[T” ?é 0. (52)

1€[s] i€[t]
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Assume there exists a v € U such that no ¢, € [s] satisfies (52)). In this case, note that the s equations
for £, =1, ..., s form a Vandermonde system since pq > ... > us > 0. As a result, we have
[ru] _ [ru]l _
Koy=0 = Lg,) =0,

by (Shapeg). It follows that ZE?,’E(G, u*) = 0, and we are done. Similarly, we have 28,72(G,u*) =0if
there exists a v € V such that no ¢, € [t] satisfies (52]).

Otherwise, suppose there exist an ¢, € [s] for every u € U, and an ¢, € [t] for every v € V, which
satisfy (52). We construct a bipartite graph G’ = (U’ U V', E’) as follows: First,

U'=UUV, and V' =VUU, where ‘7:{1’)\\06‘/’} and ﬁ:{ﬁ\ueU}.

Edge set E’ contains FE over U UV, and the following edges: ¢, N parallel edges between v and @, for
every u € U; and £, N parallel edges between v and v, for every v € V.

It is clear that G’ is a connected and bipartite graph. The degree of u € U (or v € V) is 1, + £, N
(or 7y + £,N), and the degree of u (or v) is £, N (or £,N). We now use G’ to prove Claim B8]

First, Zg q(G',u”) is equal to (the summation is over all { that maps U’ to [s] and V” to [t])

> ( IT Meweor TT My e TT Mo, g@) (HKw&(u s > (HK[ &(v)))

13 wel uelU UEV uelU veV

_H ZNZUNJM K(S“Z H Zyemm_ [rv H Z (N K[O H Z LN K(oZ

uclU \i€[s] veV \i€[t] aeU \:€[t] veV \4€[s]

It is non-zero: the first two factors are non-zero because of the way we picked ¢, and £,; the latter two
factors are non-zero because p;,v; > 0, and by (Shapeg), every entry of K% is a positive integer.

The only thing left is to prove (G1l). We let  be any assignment over U U V', which maps U to [s]
and V to [t]. Given 7, we let = denote the set of assignments & over U’ U V'’ which map U’ to [s], V' to
[t], and satisfies {(u) = n(u), {(v) =n(v) for all w € U and v € V. We have

S wtene(€) = (H Hywy ey [T Hogy )™ H(Hw),n(v))g”]v)

(eE £eE \wveFE uelU veV
<L I 263 6
(0,n(u)) (1 £(w) (1,n(v)) 7 (0,£(0))
uelU veV

= Y wiere(n) = WUV wiar o(n).
(€=

The second equation uses the fact that every entry of H is a power of wy (thus (H; ;)N = 1) and L[’
is the identity matrix. (5Il) then follows. O

8.6 Step 2.5

We are almost done with Step 2. The only conditions (i4;)’s that are possibly violated by (C”, £) are
(Ur) (N might be odd), and (Uz) (H; 1 and Hy ; might not be 1). We deal with (Us) first.

What we will do below is to normalize H (in C”) so that it becomes a discrete unitary matrix for
some positive integer M that divides N, while not changing the complexity of EVAL(C”, £).
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First, without loss of generality, we may assume H satisfies H1; = 1 since otherwise, we can divide
H with H; 1, which does not affect the complexity of EVAL(C”, £). Second, we construct the following
pair (X,9)): X is the bipartisation of an h x h matrix over C, whose (i, §)* entry is

Hyj-Hi H;, foralli,je [h);
and 9 = {Y .. YIN=1} is a sequence of 2h x 2h diagonal matrices: Y% is the identity matrix; Let

S={ref0:N-1]|L

0 #0} and T={ref0:N-1]|L{, #0},

then

YK){*) =0, forall7¢S; and YZ{*)

For every r € § (and r € T), by (Shapeg), there must exist an a, € [h] (and b, € [h], resp.) such that

=0, foralré¢T7.

rl rl
L(O,ar) =1 (and L(l,br) =1, resp.).

Set

SR
Y.y = Loy

Hiy \' e yP g (g :
. (Har,1> , for all i € [h]; Yoyn=Laj: o) for all j € [h].

We show that EVAL(C”, £) = EVAL(X,9).

First, we prove that EVAL(X,9)) < EVAL(C”,£). Let G = (U UV, E) be a connected undirected
graph and u* be a vertex in U. For every r € S (and r € 7), we use U, C U (and V,, C V, resp.) to
denote the subset of vertices with degree »r mod N. It is clear that if U, # ) for some r ¢ S or if V. #
0 for some r ¢ T, both Zg, o(G,u*) and Zx (G, u*) are trivially zero. Otherwise, we have

ZGn (G u*) = (H(Har,l)fw) (H(Hl,br)”v”) 7% (G, u). (53)

res reT

So the problem of computing zx g Is reducible to computing Zg, . By combining it with the Second
Pinning Lemma (Lemma [A.2)), we know that computing Zx’ o Is reducible to EVAL(C”, £). A similar
statement can be proved for Zx 2 and it follows that

EVAL(X,9) < EVAL(C”, £).

The other direction, EVAL(C”, £) < EVAL(X,92)), can be proved similarly.

One can check that (X,9)) satisfies (U;)-(Uy) except that N might be odd. In particular the upper-
right h x h block of X is an M-discrete unitary matrix for some positive integer M | N; and ) satisfies
both (Us) and (Uy) (which follow from the fact that every entry of H is a power of wy).

If N is even then we are done with Step 2; otherwise we extend ) to be

9 = YO, oy oy y BNy
where Yl = Y[I=N for all » € [N : 2N — 1]. We have EVAL(X,9)) = EVAL(X,9)’), since
Zx.9(G) = Zx 9¢(G), for all undirected graphs G,

and the new tuple ((M,2N),X,2)’) now satisfies conditions (U )-(Uy).
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N-1 edges
—— 1 edge

dy
Figure 5: The gadget for p = 1 (Note that the subscript e is suppressed).

9 Proofs of Theorem [5.3 and Theorem [5.4]

Let ((M,N),C,®) be a tuple that satisfies (U)-(Uy) and F € C™*™ be the upper-right block of C. In
this section, we index the rows and columns of an n x n matrix with [0:n — 1].

9.1 The Group Condition
We first prove that either F satisfies the following condition or EVAL(C,®) is #P-hard:

Lemma 9.1. Let ((M,N),C,D) be a tuple that satisfies (Uy)-(Us), then either F satisfies the following
group condition (GC):

1. (row-GC): Vi,j€[0:m—1], 3k € [0:m — 1] such that F , =F; , o F; ,;
2. (column-GC): Vi,j € [0:m —1], 3k € [0:m — 1] such that F,;, = F, ;o F, ;,
or EVAL(C,®) is # P-hard.

Proof. Suppose EVAL(C,®) is not #P-hard.

Let G = (V, E) be an undirected graph. For every integer p > 1, we construct a new graph GIP by
replacing every edge uv € E with a gadget. The gadget for p = 1 is shown in Figure Bl

More exactly, we define GIPl = (VP ElP]) as

VI =V U {ac,be,cet, .. coprden,... dey | e € B},
and E!P! contains exactly the following edges: For each e = uv € E, and for every 1 < i < p,
1. One edge between (u,ce,i), (Cei,be), (de,i,ae), and (de;, v);
2. N — 1 edges between (c¢;,v), (Cei,Ge), (dei,be), and (de,i,u).
It is easy to check that the degree of every vertex in GIP! is a multiple of N, so
Zoo(GP) = Zo(GP),

since ® satisfies (Us). On the other hand, the way we build G gives us, for every p > 1, a symmetric
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matrix AP} e C2m*2m which only depends on C, such that
Zaw (G) = Za(GP)y = Zg »(GP, for all G.

As a result, we have EVAL(AP!) < EVAL(C,®) and thus, EVAL(AP!) is not #P-hard for all p > 1.
The (i, )" entry of AlP) where 4,5 € [0:2m — 1], is

2m—12m—1 /2m—1 P som—1 p
AE)]} = Z Z (Z Ci,c@,ccb,c@) <Z mca,dmcj,d) .

a=0 b=0 \ c=0 d=0
2m—12m—1 |2m—1 2p
= 5 E 5 Ci,cCa,ch,ch,c
a=0 b=0 c=0

To derive the first equation, we use the fact that M|N and thus, e.g., (Coe)¥ ™! = C, . since C, . is a
power of wys. Note that AP is a symmetric non-negative matrix. Furthermore, it is easy to check that

AP =0, Yie[0o:m—1,Yje[m2m—1]; and AP =0, Vie[m,2m—1),¥j€[0:m—1].

For i,j € [0 : m — 1], we have

m—1m—1 L o,
AZ[;?]] = Z Z ‘(F%* © Fj,*yFa,* OFb,*>‘ p, and
a=0 b=0
m—1m—1 L S
Agﬂm,j—l-m = Z Z |<F*7Z o F*,j7 F*,a © F*,b>| i . (54)
a=0 b=0

It is clear that all these entries are positive real numbers (by taking a =i and b = j). Now let us focus
on the upper-left m x m block of AlP!. Since it is a non-negative symmetric matrix, we can apply the
dichotomy theorem of Bulatov and Grohe.

On the one hand, for the special case when j =i € [0 : m — 1], we have

m—1m—1 o m—1m—1
AE{JZ] = Z Z ‘<17Fa,* OFb,*>| P = Z Z |<Fa,*,Fb,*>|2p-
a=0 b=0 a=0 b=0

As F is a discrete unitary matrix, we have AZ[-”’ZJ = m -m?P. On the other hand, assuming EVAL(C,D)
is not #P-hard, then by using Bulatov and Grohe’s dichotomy theorem (Corollary 2.1]), we have

APl AP = AP AP = (APD2 foralli#je[0:m - 1],

JJ ,J Jyt

and thus A% =m?H for all i,j € [0:m — 1].
Now we use this condition to show that F satisfies (row-GC). We introduce the following notation:
For i,j € [0:m — 1], let

Xij = {|<Fi,* oF;2, FaroFp)| | abe0:m— 1]}.

Clearly set X; ; is finite for all 4, j, with cardinality |X; ;| < m? Each z € X; ; satisfies 0 < z < m. For
each x € X ;, we let s; j(x) denote the number of pairs (a,b) € [0 : m — 1] x [0 : m — 1] such that

[(Fiw o Fju, Fo o Fo )| =
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(]

We can now rewrite A, ; as
9,

Al[lj- = Z si () - z?P, (55)

IEGXZ'J‘
and is equal to m?P*! for all p > 1. Also note that sij(x), for all x € X; j, do not depend on p, and

Z SZ'J'(QL‘) = mz. (56)

Z‘EXZ‘,J'

We can view (B5]) and (56 as a linear system of equations in the unknowns s; j(x). Fix i, j, then there
are | X; ;| many variables s; j(x), one for each distinct value € X; ;. Equations in (55]) are indexed
by p > 1. If we choose (B6]) and (B5]) for p = 1,...,]|X; ;| — 1, this linear system has an |X; ;| x | X; ;|
Vandermonde matrix ((z?)P), with row index p and column index z € X; ;. It has full rank. Note that
by setting (a,b) = (i,) and (¢, j), where ¢’ # i, respectively, we get m € X; j and 0 € X; ;, respectively.
Moreover, s;;(0) = m? —m, s; j(m) = m, and all other s; j(z) = 0 is a solution to the linear system.
Therefore this must be the unique solution. As a result, we have X; ; = {0, m},
sij(m)=m and s;;(0)=m*—m, foralli,je[0:m—1].

This implies that for all 4,j,a,b € [0:m — 1], [(F; . 0 Fj ., Fq. 0 Fyp )| is either m or 0.
Finally, we prove (row-GC). Set j = 0. Because F . = 1, the all-1 vector, we have

(Fiv01,Fy,o0Fy )| = [(FixoFy.,Fou)| €{0,m}, foralliabel0:m—1].

As {Fg.,a € [0:m — 1]} is an orthogonal basis, where each ||Fy .||> = m, by Parseval, we have
S I o By Fo) = m- By o B
I

= m. Hence

Z| ix 0 Fpy, F *>|2:m2-

Since every entry of F; , o Fy , is a root of unity, |F; . o Fy

As a result, for all 4,0 € [0 : m — 1], there exists a unique a such that [(F; .o Fp ., Fo.)| =

By property (Z/[g), every entry of F; ., Fy ., and F, , is a root of unity. The inner product (Fixo
Fy ., F,.) is a sum of m terms each of complex norm 1. To sum to a complex number of norm m, each
term must be a complex number of unit norm with the same argument, i.e., they are the same complex
number €. Thus, Fi.oF, = eif . F, .. We assert that in fact e =1, and F;.oF,,=F,, Thisis
because F; 1 = F,1 = Fy; = 1. This proves the group condition (row-GC).

One can prove (column-GC) similarly using (54) and the lower-right m x m block of AlP!, O

We prove the following property concerning discrete unitary matrices that satisfy (GC): (Given an
n x n matrix A, we let A® denote the set of its row vectors {A; .}, and A® denote the set of its column
vectors {A,;}. For general matrices, it is possible that |Af|,|AY| < n, since A might have duplicate
rows or columns. However, if A is M-discrete unitary, then it is clear that |A®| = |A®| = n.)

Property 9.1. Let A € C™*" be an M-discrete unitary matriz that satisfies (GC). Then both A% and
AC are finite Abelian groups (of order n) under the Hadamard product.

65



Proof. The Hadamard product o gives a binary operation on both A and A®. The group condition
(GC) states that both sets A and A® are closed under this operation, and it is clearly associative and
commutative. Being discrete unitary, the all-1 vector 1 belongs to both A" and A®, and serves as the
identity element. This operation also satisfies the cancelation law: if x oy = x 0 z then y = 2. From
general group theory, a finite set with these properties already forms a group. But here we can be more
specific about the inverse of an element. For each A, ., the inverse should clearly be A—Z* By (GC),
there exists a k € [0: m — 1] such that Ay . = (A;.)™~! = A, .. The second equation is because 4; ;,
for all j, is a power of wjyy. O

9.2 Proof of Theorem [5.3]

In this section, we prove Theorem 5.3l Suppose EVAL(C,®) is not #P-hard (otherwise we are already
done), then by Lemma[@.1] ((M, N), C,D) satisfies not only (U;)-(Us), but also (GC). Let us fix r to be
any index in [N — 1]. We will prove (U5) for DZ[T] where i € [m : 2m — 1]. The proof for the first half of
D" is similar. For simplicity, we let D be the m-dimensional vector such that
D, = D£21+i, for alli e [0:m —1].

We also need the following notation: Let K = {i € [0: m — 1] | D; # 0}.

If |K| = 0, then there is nothing to prove; If |K| = 1, then by (U3), the only non-zero entry in D
must be 1. So we assume |K| > 2.

We claim that D;, for every i € K, must be a root of unity otherwise problem EVAL(C,D) is #P-
hard, which contradicts the assumption. Actually, the lemma below shows that, such a claim is all we
need to prove Theorem [(.3t

Lemma 9.2. If D € Q(wy) is a root of unity, then D must be a power of wy.

We delay the proof to the end of the section. Now we use it to show that every D;, i € K, is a root
of unity. Suppose for a contradiction that this is not true. We start by proving the following lemma
about Z = (Zy, ..., Zm_1), where Z; = (D;)"N for all i:

Lemma 9.3. Assume there exists some k € K such that Zy, is not a root of unity, then there exists an
infinite integer sequence {P,} such that, when n — oo, the vector sequence ((Zy)™" : k € K) approaches
to, but never equals to, the all-one vector of dimension |K]|.

Proof. Since Zy, for k € K, has norm 1, there exists a real number ), € [0,1) such that, Z = ",
We will treat 05 as a number in the Z-module R 44 1, i.€., real numbers modulo 1. By the assumption
we know that at least one of the 6;’s, k € K, is irrational.

This lemma follows from the well-known Dirichlet’s Box Principle. For completeness, we include a
proof here. Clearly, for any positive integer P, ((Z;)" : k € K) does not equal to the all-one vector of
dimension |K|; Otherwise, every 6 is rational, contradicting the assumption.

Let n* = nl&l 41, for some positive integer n > 1. We consider (L -0y : k € K) for all L € [n*]. We
divide the unit cube [0,1)/%] into n* — 1 sub-cubes of the following form

{al a1+1> [‘IIK a|K+1>
—, X oo X |t ———— ]|
n’ n

where a;, € {0,...,n — 1} for all k € |K|. By cardinality, there exist L # L' € [n*] such that

n n

(L-0ymodl:keK) and (L'-6ymodl:keK)
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N-1 edges
1 edge

Figure 6: The gadget for p = 1 (Note that the subscript e is suppressed).

fall in the same sub-cube. Assume L > L', then by setting P, = L — L' > 1, we have

‘Pn-Hk mod 1| = |(L—L')-9k mod 1‘ < %, forall k e K.

It is clear that by repeating the procedure for every n, we get an infinite sequence {P,} such that
(20 =m0 1 c )
approaches to, but never equals to, the all-one vector of dimension |K|. O

Let G = (V, E) be an undirected graph. Then for each p > 1, we build a graph G| by replacing
every edge e = uwv € E with a gadget which is shown in Figure [6l Recall that r € [N — 1] is fixed.
More exactly, we define GIP! = (VP ElPl) as follows:

vl = VU {ae, be i, Ceijr ap, by i e”‘eeEze[pN] j €]},

and EP! contains the following edges: For each edge e = uv € F,

1. One edge between (u,a.) and (v, al);

2. N — 1 edges between (ae,v) and (u,al);

3. One edge between (ce,ij, be,i) and (c ; ;,b] ;), for all i € [pN] and j € [r];
4. N — 1 edges between (ac, cc; ;) and (ag, ¢, ; ;), for all i € [pN] and j € [r].

It is easy to check that the degree of every vertex in GP! is a multiple of N except b, i and b, ,, which
have degree r mod N.

As the gadget is symmetric, the construction gives us a symmetric 2m x 2m matrix AP such that

62’

Zam(G) = ZC,@(G[p]), for any undirected graph G,

and thus, EVAL(AP!) < EVAL(C,®), and EVAL(AP)) is also not #P-hard.
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The entries of AP are as follows: First, for all u,v € [0:m —1],

A[p} _ A[p}

u,m+v — “ m4u,v =0.

The entries in the upper-left m x m block of APl are

r\ pN
Ale = | 2 BB 2 D | 20 FesFea
a€[0:m—1] €[0:m—1] c€[0:m—1]
r\ pN
X Z Fu,aFv,a Z D +b Z Fc,bﬁ,a )
a€[0:m—1] €[0:m—1] €[0:m—1]

for all w,v € [0: m — 1]. Since F is discrete unitary,

Z Fchca— F*b7F*a>:07
c€[0:m—1]

unless @ = b. As a result, the equation can be simplified to be

Aq[ﬂ; =L, <Z (Dk)pNFu,km) (Z (Dk)meFv,k> , forall u,v €[0:m—1].

keK keK

where L, is a positive constant that is independent of w and v.

Assume for a contradiction that not all the Dy’s, k € K, are roots of unity, then by Lemma [0.3] we
know there exists a sequence {P,} such that ((D;)¥* : k € K) approaches to, but never equals to, the
all-1 vector of dimension |K|, when n — oco. Besides, by (U3) we know there exists an ¢ € K such that
D; = 1. Now consider GI» with parameter p = P, from this sequence. We have

2
A[uI,DZ} =Lp, - <Z(Dk)NP”> , foranywel0:m—1].
keK

We let T), denote the second factor on the right-hand side, then |T},| could be arbitrarily close to |K|?
if we choose n large enough. By using the dichotomy theorem of Bulatov and Grhoe (and Lemma [7.4))
together with the assumption that problem EVAL(AUD ”]) is not #P-hard, we know the norm of every
entry of AlP»] in its upper-left block is either 0 or Lp, - [T},|.

Now we focus on the first row by fixing u = 0. Since F¢ . = 1, we have

A([)IzL] =Lp, - (Z(Dk)NP"m> (Z(Dk)NP7LFv7k> , foranyve[0:m—1].
kEK keK
By Property @1, F® = {Fy,+} is a group under the Hadamard product. We let
S={vel0:m—1]|Vij€ K, F,;=F,;}

and denote {F, . : v € S} by FS, Then it is clear that F'¥ is a subgroup of F'. Also note that, 0 € S
since Fy . is the all-one vector of dimension m.

68



For any v ¢ S, when n is sufficiently large, we have \Ag;f]\ < ]A[ff}]

T, — |K[> but (Z(Dk)NP"m> (Z(DR)NP"FU,k) — <Z F—k) (Z Fk)

keK keK keK keK

. This is because when n — o0,

which has norm strictly smaller than |K|? (since v ¢ S). So when n is sufficiently large, A([)IzL] must be

0 for all v ¢ S. We denote ((Dy)NPr : k €[0:m — 1]) by D", then for v ¢ S and sufficiently large n,
either (D", F,.,)=0 or (D", F,.) =0. (57)

Next, we focus on the characteristic vector x (of dimension m) of K: x; = 1if k € K and x; =0
elsewhere. By (57) and the definition of S, we have

(X,Fps) =0, forallv¢g S and |[(x,Fos)|=]|K| forallves. (58)

To prove the first equation, we note that by Eq. (57)), either there is an infinite subsequence {D"} that
satisfies (D™, F, ,) = 0 or there is an infinite subsequence that satisfies (D", F, ,) = 0. Since D" — x

when n — oo, we have either (x,F, ) or (x,F, ). The second case still gives us (x,F, ) = 0 since x
is real. The second equation in (58)) follows directly from the definition of S. As a result, we have

1
X = E Z(Xa Fv7*> : Fv,*-

veS
Now we assume the expression of vector D", under the orthogonal basis {F, .}, is

m—1
D" = g z;nFi, where z;, =
i=0

1
E <Dn7 FZ7*> .

If for some n we have z;,, = 0 for all ¢ ¢ S, then we are done because by the definition of S, every F; ,,
i € S, is a constant over K and thus, the vector D™ is a constant over K. Since we know there exists

an i € K such that D; = 1, every Dj, j € K, must be a root of unity.
Suppose this is not the case. Then (here consider those sufficiently large n so that (57) holds)

x=D"oD" = <Z xi,nF@*) o Zijv* = Z YonFo %, where y,, = Z TinTj -
g J v F; .oF; .=Fy .
The last equation uses the fact that F'® is a group under the Hadamard product (so for any i, j there
exists a unique v such that F, , =F; , o F]*)
Since the Fourier expansion of x under {F, .} is unique, we have y, , = 0, for any v ¢ S. Because
D" — x, by (58), we know that when n — oo, z;,, for any ¢ ¢ S, can be arbitrarily close to 0, while
|z; | can be arbitrarily close to |K|/m, for any ¢ € S. So there exists a sufficiently large n such that

4|K]|

foralli¢ S, and |z;,| >——, foralliesS.
’ om

4|1 K|S
5m2 '

|in| <
We pick such an n and will use it to reach a contradiction. Since we assumed that for any n (which is

of course also true for this particular n we picked here), there exists at least one index ¢ ¢ S such that
xin # 0, we can choose a w ¢ S that maximizes |z; | among all i ¢ S. Clearly, |z, ,| is positive.
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We consider the expression of ¥, , using z;,. We divide the summation into two parts: the main
terms z; ,Z;, in which either i € S or j € S and the remaining terms in which ¢,j ¢ S (note that if
Fu«=F;. om, then 4 and j cannot be both in S. Otherwise, since F*¥ is a subgroup, we have w € S
which contradicts the assumption that w € S.)

. 1 1 —
The main terms of y,,, = — ;(D”, Fy.oF,;)(D"F;,)+ poo EZS(D", F;.)(D",F;,oF,.)
J (2

Note that zo, = (1/m)(D",Fq ) and Fy, = 1. Also note that (by the definition of S), when j € S,
Fj . = aj for all k € K, for some complex number «; of norm 1. Since D™ is only non-zero on K,

<Dn7 Fw,* © Fj,*><Dn7 Fj,*> = <Dn7 O‘ij7*><Dn7 aj1> = MmIon <Dn7 Fw,*>'

Similarly, we can simplify the other sum so that

|51

The main terms of v, = — (m(D", Fu.) + xo,n<w, Fw*>)
m

By (57) we have either (D", F,, ) or (D™, F,, ) is 0. But since we assumed that z,,, = (D", F,, ) # 0,
the latter has to be 0. Therefore, the main terms of v, ,, equal to Tg %y ,|S|. Since 0 € S, we have

41K||S
Fomualsl] = 2K
m

|Zaw,n-

Now we consider the remaining terms. Below we show that the sum of all these terms cannot have
a norm as large as |9,y »|S|| and thus, y,, , is non-zero and we get a contradiction. To prove this, it
is easy to check that the number of remaining terms is at most m, and the norm of each of them is

LS
5m2 w,n|s

i nTjm] < |Twnl? <

since 4,7 ¢ S. So the norm of their sum is < %]ww,nl. This finishes the proof of Theorem 5.3

Proof of Lemmald2. Assume D = w%,, for some positive integers k and M with ged(k, M) = 1. Since
D € Q(wy), we have wk, € Q(wy). By ged(k, M) = 1, we have wy € Q(wy) and

Q(wn) = Qwn, wir) = QWiem(M,N))-

The field degree extension is [Q(wy) : Q] = ¢(NV), the Euler function [14].

When N | N’, and ¢(N) = ¢(N'), by expanding according to the prime factorization for ¢, we can
get (and indeed this is all there is to be had) that if N is even, then N’ = N; if N is odd, then N' = N
or N’ =2N. Since by (U;) N is even, we have lem(M,N) =N, M| N, and D is a power of wy. O

9.3 Decomposing F into Fourier Matrices

Assume that ((M, N),C,D) satisfies not only conditions (U;)-(Us) but also the group condition (GC);
since otherwise EVAL(C,®) is #P-hard.

To prove a decomposition for F (recall that F is the upper-right m x m block matrix of C) we first
show that if M = pq and ged(p, ¢) = 1, then up to a permutation of rows and columns, F must be the
tensor product of two smaller matrices, both of which are discrete unitary and satisfy (GC). Note that
P, q here are not necessarily primes or prime powers.
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Lemma 9.4. Let F € C"™*™ be an M-discrete unitary matriz that satisfies (GC). Moreover, M = pq,
p,q > 1 and ged(p,q) = 1. Then there exist two permutations 1,3 : [0 :m — 1] — [0 : m — 1] such that

FH’E — F/ ® F//,
where F' is p-discrete unitary, F" is q-discrete unitary, and both of them satisfy (GC).

Proof. By Property @1l both F and FC are finite Abelian groups. Since F is M-discrete unitary, the
order of any vector in F® and FC€ is a divisor of M.
By the fundamental theorem of Abelian groups, there is a group isomorphism

p:FR Ty X o X Ly, = L,

where ¢g1,..., g, are prime powers, and g; | M for all i. As ged(p,q) = 1, without loss of generality, we
may assume there exists an integer A’ such that g;|p for all i € [W/] and g; | ¢ for all other i.
We use p~! to define the following two subsets of F*:

SP = {p~1(x) | x € Zg, z; =0for all i > b’} and S? = {p~1(x) | x € Zg, x; =0 for all i < h'}.
Then it is easy to show the following four properties:

1. Both SP and S9 are subgroups of F;

2. P ={ue FE|(u)P =1} and 87 = {v € FF|(v)I =1};

3. Let m’ =|SP|, m"” = |59, then m =m’-m”, ged(m/, q) = 1, ged(m”,p) = 1, ged(m’,m”) = 1;

4. (u,v) — uov is a group isomorphism from S? @ S onto F'%.

Let SP = {ug =1,uy,...,upy_1} and S? = {vg = 1,vy,...,Vyr_1}. Then by 4) there is a one-to-one
correspondence f :i— (f1(i), f2(i)) from [0:m — 1] to [0 :m’ — 1] x [0 : m” — 1] such that

Fi« =y ;) 0Vya), forallie[0:m—1]. (59)

Next we apply the fundamental theorem to F¢. We use the group isomorphism, in the same way,
to define two subgroups TP and T¢ with four corresponding properties:

1. Both T? and T are subgroups of F¢;

2. TP ={w e FC|(w)? =1} and T9 = {r € F|(r)? = 1};

3.m = [TP|- |17, ged(|T7], q) = 1, ged(|T|, p) = 1, and ged(|T7], |T]) = 1;
4. (w,r) — wor is a group isomorphism from 7?7 & T onto FC.

By comparing item 3) in both lists, we have |TP| = |SP| = m’ and |TY| = |SI| = m".
Let TP = {wg =1,w1,...,wWyy_1} and 7?7 = {rg = 1,rq,...,r,»_1}. Then by item 4), we have a
one-to-one correspondence g from [0:m — 1] to [0 : m/ — 1] x [0 : m” — 1] and

F*,j = ng(j) o) I'g2(j), fOI‘ all ] c [0 m — 1] (60)
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Now we are ready to permute the rows and columns of F to get a new matrix G that is the tensor
product of two smaller matrices. We use (z1,22), where 1 € [0: m’ — 1], 29 € [0 : m” — 1], to index the
rows and columns of G. We use II(x1,z2) = f~ (21, 22), from [0:m’ — 1] x [0:m” —1] to [0 : m — 1],
to permute the rows of F and X(y1,y2) = ¢~ (y1,y2) to permute the columns of F, respectively. As a
result, we get G = Fr »; where

G (21,29),(y1,y2) = FT1(21,02), 551 ,92)>  TOT all 21,91 € [0 m’ — 1] and xo,y2 € [0 : m” — 1].
By (B9), and using the fact that ugp = 1 and vo = 1, we have
Ga1,00)0 = G(21,0),% © G(0,20), forallzy €[0: m' — 1] and x5 € [0 : m” —1].
Similarly by ([60) and wy = 1 and ro = 1, we have

G = G 1,0) © Gy forall yy € [0:m' — 1] and yo € [0: m” —1].

Y1,Y2) 0,y2)»

Therefore, applying both relations, we have

Glay,22),(51,92) = G(@1,0),(51,0) * G(@1,0),0,82) * G0,22),11,0) * G(0,22),0,2)-

We claim
G@1,0),042) =1 and  G(oz5),1,0) = 1- (61)
Then we have
Gy w2).(1.92) = Ga1.0).1.0) - G(0.22).02) (62)
To prove the first equation in (61]), we realize that it appears as an entry in both u,, and ry,. Then
by item 2) for SP and T, both of its pth and gth powers are 1. Thus it has to be 1. The other equation

in (6I) can be proved the same way.
As a result, we have obtained our tensor product decomposition G = F/ @ F”, where

F = (Fl, = Geono) and F' = (F, = Gom,om):

The only thing left is to show that ¥’ and F” are discrete unitary, and satisfy (GC). Here we only
prove it for F/. The proof for F” is the same. To see F’ is discrete unitary, for all z £y € [0: m’ — 1],

0 = (G206 Go)) = Z G (2,0),(21,22) G (4,0),(21,22)

21,22

= Y C0.0).(:1.0G0,0).0.22) G (1,0).(21.0 G (0,0).(022)
Z1,22
= m" - (F, ., F,.).

T,x)

Here we used the factorization (62)) and up = 1 and v = 1. Similarly, we can prove that F), , and F/,
are orthogonal for x # y. F/ also satisfies (GC) because both SP and TP are groups and thus, closed
under the Hadamard product. Finally, F’ is exactly p-discrete unitary: First, by definition, we have

pg =M =lem{order of Gz, a) (g1 4) %,y } = lem{order of Gz, 0),(51.0) * Gw2,0).00.0) * % ¥

Second, the order of G (4, 0),(y,,0) divides p and the order of G4, ¢y (y,,0) divides g. As a result, we have
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p= lcm{order of G(30),(y,0) * Ts y}

and by definition, F/ is a p-discrete unitary matrix. O
Next we prove Lemma, which deals with the case when M is a prime power.

Property 9.2. Let A be an M-discrete unitary matriz that satisfies the group condition (GC). If M is
a prime power, then one of its entries is equal to wyy.

Lemma 9.5. Let F € C™ ™ be an M-discrete unitary matriz that satisfies (GC). Moreover, M = p*
is a prime power for some k > 1. Then there exist two permutations I and X such that

Fnxy=Fu® F/,
where F' is an M'-discrete unitary matriz, M’ = p¥ for some k' < k, and ¥’ satisfies (GC).

Proof. By Property [0.2] there exist a and b such that F,,;, = wy;. Thus both the order of Fy , (in F'?)
and the order of F.; (in F¢) are M. Let

Sl = {17 Fa,*7 (Fa,*)27 sy (FIL*)M_l}

denote the subgroup of F generated by F, .. Since the order of F, . is M, we have |S;| = M.

Let So denote the subset of Ff such that u € Sy iff its b*" entry u, = 1. It is easy to see that S
is a subgroup of F®. Moreover, one can show that (Wi, Wg) — Wi 0 wy is a group isomorphism from
S1 @ Sy onto F®. As a result, |Sy| = m/M which we denote by n.

Let So = {up = 1,uy,...,u,_1}, then there exists a one-to-one correspondence f from [0 : m — 1]
to [0: M —1] x [0:n — 1], where i — f(i) = (f1(¢), f2(7)), such that

Fi.= (Fo.)1Wo uy,), forallie[0:m—1]. (63)

In particular, we have f(a) = (1,0).

Similarly, we use 71 to denote the subgroup of F© generated by F., (|T1| = M), and T5 to denote
the subgroup of FC© that contains all the v € FC such that v, = 1. (w1, wsg) — wp o wo also gives us
a natural group isomorphism from 77 @ Ty onto FY, so |Ty| = m/M =n

Let Ty = {vg = 1,vy,...,V,_1}, then there exists a one-to-one correspondence g from [0 : m — 1]
to [0: M —1] x [0:n—1], where j — g(j) = (91(4),92(j)), such that

F.j=(F.)"Dov,,;, foralje[0:m-—1]. (64)

In particular, we have ¢g(b) = (1,0).

Now we are ready to permute the rows and columns of F to get a new m x m matrix G. Again we
use (x1,22), where 21 € [0 : M — 1] and 23 € [0 : n — 1], to index the rows and columns of matrix G.
We use H(z1,22) = f~ (z1,22), from [0: M — 1] x [0 : n— 1] to [0 : m — 1], to permute the rows and
Y(y1,v2) = g7 (y1,y2) to permute the columns of F, respectively. As a result, we get G = Fpy s

By equations (G3) and (©4]), and up = 1 and vy = 1, we have

G(xl,l‘z),* = (G(lvo)v*)xl © G(07x2)7* and G*v(ylny) = (G*v(lvo))yl © G*,(07y2)'

Applying them in succession, we get

G (21,29),(1.w2) = (G1,0),(w1,52) " G(0,22),(w1,m2) = (G(1,0),1,0))Y (G (1,0),0,92)) " (G (0,22),(1,0)) 7 G (0,02),(0,)-
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We can check that Gy 0y,(1,0) = Fa,p = wum. Indeed, by f(a) = (1,0) and g(b) = (1,0), we have

G(1,0),(1,0) = Fr1(1,0,21,0) = Fr-1(1,0),9-1(1,0) = Fap = wm-

By (64]), and a similar reasoning, we have
G1.0),02) = Fag=1(02) = (Fap)’ - Vyia = Vg0 = 1,

where vy, , denotes the ath entry of Vy,, Which is 1 by the definition of T5. By (E3]), we also have
G0,02),10) = Fr-1(0,0) 0 = (Fap)” Uy p = Uy =1,

where u,, ; denotes the bt entry of Uy,, which is 1 by the definition of S5.
Combining all these equations, we have

Z1Y1

Glarwo)mrw) = a1 - G(0.02),(02)- (65)

As aresult, G = Fy @ F', where F' = (F , = G(0.2),(0,y)) I8 an n x n matrix.
To see F’ is discrete unitary, by (G5]), we have

0= (G00) Glog)«) = M- (F, ., F,,), foranyz#ye[0:n—1].

T, %)

Similarly we can prove that Ffw and Ffw are orthogonal for x # y. F’/ also satisfies the group condition
because both S5 and T5 are groups and thus, closed under the Hadamard product. More precisely, for

(row-GC), suppose F;, , and F} , are two rows of F’. The corresponding two rows G g ). and Gyqy)

in G are permuted versions of u, and u,, respectively. We have, by (53,
Foo = Fr1(02)9710) = Yag02) a0d Fyo = Froi(g),9-1(0.) = Uy (0.2)
Since S5 is a group, we have some w € [0 : n — 1] such that u, o u, = u,, and thus
Fyp Fye = tug-1002) = Fuz

The verification of (column-GC) is similar. Finally, it is also easy to see that F’ is pF'-discrete unitary,
for some integer k' < k. O

Theorem [5.4] then follows from Lemma and Lemma

10 Proof of Theorem

Let (M,N),C,®,(q,t,Q)) be a 4-tuple that satisfies condition (R). Also assume that EVAL(C,D) is
not #P-hard (since otherwise, we are done). For every r in 7 (recall that 7 is the set of r € [N — 1]
such A, # (), we show that A, must be a coset in Zg. Condition (£2) then follows from the following
lemma which we will prove at the end of this section. Condition (£1) about A, can be proved similarly.

Lemma 10.1. Let ® be a coset in G1 ® Go, where G1 and Gy are finite Abelian groups such that
ng (‘Gl‘, ’Gg‘) = 1.

Then for both i = 1,2, there exists a coset ®; in G; such that ® = &1 x Ps.
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r edges

=+=-= N-r edges
N-1 edges

1 edge

Figure 7: The gadget for constructing graph G’ (Note that the subscript e is suppressed).

Let G = (V, E) be an undirected graph. We build a new graph G’ by replacing every e = uv € E
with the gadget as shown in Figure [l More exactly, we define G' = (V', E') as

Vi=Vu {ae,bevi,cm,de’i,a' b'e’i,c' d |e € Fandi e [N]}

e’ e, Ve,
and F’ contains exactly the following edges: For each e = uv € F,

1. One edge between (u,d.,1), (v,d; 1), (u,d,;) and (v,de ;) for all i € [2: NJ;
2. For every i € [N], one edge between (ae,be,i), N — 1 edges between (be,i, de,i);
For every i € [N], N — r edges between (a, c.i), r edges between (c¢;,dc.i);

For every i € [N], one edge between (al,b, ), N — 1 edges between (b, ,,d.,);

e’ Ve, 0 eyt

otk W

For every i € [N], N — r edges between (a.,c, ), r edges between (¢, ,,d. ).

e’ ~e,i e, e,

It is easy to check that the degree of d.; and d. ,, for all e € E,i € [N], is exactly r (mod N) while all

e,
other vertices in V' have degree 0 (mod N). It is also noted that the graph fragment which defines the

gadget is bipartite, with all u,v, b, cci, b, ;, . ; on one side and all ac, ar, de i, d, ; on the other side.

The way we construct G’ gives us a 2m X 2m matrix A such that
ZAa(G) = Zcn(G'), for all G,

and thus, EVAL(A) < EVAL(C,®), and EVAL(A) is also not #P-hard. We use {0,1} x Zg to index the
rows and columns of A. Then for all u,v € Zg, we have

A,u),(1,v) = Atu),(0,v) = 0.

This follows from the bipartiteness of the gadget.
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We now analyze the upper-left m x m block of A. For u,v € Zg, we have

N N N
— E E N— TET
A(Ovu)v(ovv) - Fu7d1 H Fv7di H Fb’“an’“d’L Fclv Czy 7 H (1 d
a,dy,...,dNEZg =2 i=1 \ b;EZg c;E€Zo i=1
N N N
> > — N—r ]
X FV,dl H Fll,di H Fbuani,di Fq7 ci,d; H D(l,di)
a,dy,...,dNEZg =2 i=1 \ b;EZg c; €29 i=1

Note that in deriving this equation, we used the fact that M | N and entries of F are all powers of wyy.
Since F is discrete unitary,
Z Fbi7ani,di = <F*,a7 F*,dz>
bi€Zg
is 0 unless d; = a. When d; = a for every i € [N], the inner product (F, a,F, q,) = m, and likewise so
are the sums over ¢;. Also the product

H D(ld ( £1}3)>N =1,

i€[N]

when each d; = a € A, and 0 otherwise. This is because by (Us), DZ} a) is a power of wy when a € A,

and 0 otherwise.
As a result, we have

A (0m) = <Z FuaFua- m2N) % (Z FyaFua-m? ) =m'V| > Ry, aFva (66)
aEAr aEAr aEA'P
By using condition (R3), we can further simplify (G0l to be
2 2
A0 =M™ | Y Faoval = m4N‘<x7Fu—v,*> : (67)
acA,

where x is a 0-1 characteristic vector such that yo =0ifa¢ A, and ya =1 ifa € A,, for all a € Zg.
Since F is discrete unitary, it is easy to show that

0 < Apu),0v) < miN A2 and A,u),0u) = miN A2, for all u,v € Zg.

Asr € T, we have |A,| > 1 and let n denote |A,|. Using the dichotomy theorem of Bulatov and Grohe
(Corollary [[1.T]) together with the assumption that EVAL(A) is not #P-hard, we have

A,u),0,v) € {0,m*Nn?}, for all u,v € Zog.

As a result, we have for all u € Zg,

|0 Fun)| € 0.}, (68)

The inner product (x, Fy ) is a sum of n terms, each term a power of wy;. To sum to a complex number
of norm n, each term must have exactly the same argument; any misalignment will result in a complex
number of norm < n, which is the maximum possible. This implies that

<X7 Fu,*> € {O,n,an,nwﬁ/[, .- an } (69)

76



Next, let a denote a vector in A,. We use ® to denote a + (A, — a), where
Ar—az{x—cﬂxEAr}

and (A, — a) is the subgroup generated by A, — a. Clearly A, C ®. We want to prove that A, is equal
to ®, which by definition is a coset in Zg. This statement, together with Lemma [I0.], will finish the
proof of Theorem

To this end we use k to denote the characteristic vector of ®: kx =0if x ¢ ® and kx =1 if x € D.
We will show for every u € Zo,

i)
(Ha Fll,*> = | | (X?Fu,*>- (70)
A
Since F is discrete unitary, {Fy ., u € Zg} is an orthogonal basis. From (70) we have
el
A7

which implies x = x (since both of them are 0-1 vectors) and thus, A, = ® is a coset in Zg.
We now prove (70]). We make the following observations:

1. If [(x, Fux)| = n, then there exists an o € Zy such that F, x = wf; for all x € A,;

2. Otherwise, (which is equivalent to (x,Fy ) = 0 from (G8])), there exist y and z in A, such
that Fyy # Fuz-

Observation 1) has already been noted when we proved (69). Observation 2) is obvious since if Fyy =
Fuz for all y,z € A,, then clearly (x,Fy.) # 0.
Equation (70 then follows from the following two lemmas.

Lemma 10.2. If there exists an o such that Fyy x = wf; for all x € A, then Fyx = wf; for all x € ®.
Proof. Let x be a vector in @, then there exist x1,...,xx € A, and hq,...,h € {£1} for some k > 0,
such that x = a—l—Zf:l hi(x; —a). By using (R3) together with the assumption that Fy, o = Fux, = wfy,

Fyx = FU,CH-Z@- hi(xi—a) = FuquFu,hi(xi—a) = Fu,a H (Fu,xiqu) = wiy-
i i O

Lemma 10.3. If there exist y,z € ® such that Fyy # Fuy, then erfb Fux =0.

Proof. Let [ be the smallest positive integer such that [(y — z) = 0, then [ exists because Zg is a finite
group, and [ > 1 because y # z. We use ¢ to denote mem. By using condition (R3) together with
the assumption, we have ¢ = Fui(y-z =1 but c # 1.

We define the following equivalence relation over ®: For x,x’ € @,

x ~ x' if there exists an integer k such that x — x' = k(y — z).
For every x € @, its equivalence class contains the following [ vectors:
X, X+ (y—2), ..., x+ (1 —1)(y —2),
as ® is a coset in Zg. We conclude that ) 4 Fux = 0 since for every class, we have (by using (R3))

-1

-1 !
. 1—c
E Fu,x-i—i(y—z) = Fu,x § = Fu,x 1 =0.
X X —C
=0 =0 O
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Now (0 can be proved as follows: If |(x,Fy )| = n = |A,|, then by 1) and Lemma [10.2]
(&, Fux)| = [®].
If |[(x, Fux)| # |Ar], then (x,Fy.) =0. By 2) and A, C ®, Lemma [[0.3] implies
(k,Fux) =0.

This concludes that A, is a coset in Zg. To get the decomposition (L2) for A, = []7_; A, ;, we use
Lemma [T0.11

10.1 Proof of Lemma [10.1]

First, we show that if u = (uj,u2) € ® and v = (v1,v3) € @, for u;,v; € Gy, i = 1,2, then (uj,v9) € P.
On the one hand, since ged(|G1],|G2|) = 1, there exists an integer k such that |G| |k and k = 1
(mod |G2|). On the other hand, since ® is a coset, we have u + k(v —u) € ®. Since

U] + k‘(vl — ’LL1) = U1 and U + k(UQ - 'LL2) = V2,

we conclude that (ui,v9) € .

This implies the existence of subsets ®; C G; and 3 C G5 such that & = ¢ x 5. Namely we let
¢ ={zr € Gy|Ty € Go,(x,y) € P}, and P2 = {y € Ga |z € Gy, (z,y) € P}. It is easy to check that
both ®; and @4 are cosets (in G and Go, respectively), and & = &1 x Ps.

10.2 Some Corollaries of Theorem

Now that we have proved Theorem [5.5], we know that unless the problem is #P-hard, we may assume
that condition (£) holds. Thus A, and A, are cosets.

Lemma 10.4. Let H be the m x |A,| submatriz obtained from F by restricting to the columns indexed
by A,. Then for any two rows Hy and Hy ., where u,v € Zg, either there exists some o € Zps such
that Hy . = w§; - Hy x, or (Hy ., Hy ) = 0.

Similarly we denote by G the |A,| x m submatriz obtained from F by restricting to the rows indexed
by A.. Then for any two columns Gy and Gy v, where u,v € Zg, either there exists an o € Zys such
that Gy u = Wi - Guv, 07 (Gyu, Gyv) = 0.

Proof. The rows of H are restrictions of F. Any two rows Hy, ., Hy . satisfy
Hu,* o Hv,* = Fu—v,* |AT: Hu—v,*7

which is a row in H. If this Hy,_y . is a constant, namely w; for some a € Zys, then Hy » = wq, Hy .«
holds. Otherwise, Lemma [[0.3] says (Hy «, Hy «) = 0.
The proof for G is exactly the same. O

As part of a discrete unitary matrix F, all columns {H, 4 |u € A} of H must be orthogonal and
thus rank(H) = |A,|. We denote by n the cardinality |A,|. There must be n linearly independent rows
in H. We may start with by = 0, and assume the following n vectors by = 0,b1,...,b,,_1 € Zg are the
indices of a set of linearly independent rows. By Lemma [I0.4] these must be orthogonal as row vectors
(over C). Since the rank of the matrix H is exactly n, it is clear that all other rows must be a multiple
of these rows, since the only alternative is to be orthogonal to them all, by Lemma [10.4] again, which
is absurd. A symmetric statement for G also holds.
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11 Proof of Theorem

Let (M, N),C,®,(p,t,Q)) be a tuple that satisfies both conditions (R) and (£) (including (L3)). We
also assume that EVAL(C,®) is not #P-hard. By (£), we have

A= H A,; foreveryreS, and A= H A,; for every r €7,

i=1 i=1

where both A,.; and A,; are cosets in Zg, .

Let r be an integer in S. Below we will prove (D;) and (Ds) for A,. The other parts of the theorem,
that is, (Dg) and (Dy), can be proved similarly.

Let G denote the |A,| x m submatrix of F whose row set is A, C Zgo. We start with the following
simple lemma about G. In this section we denote by n the cardinality |A,| > 1. A symmetric statement
also holds for the m x |A,| submatrix of F whose column set is A,, where we replace n = |A,| by |A,],
which could be different.

Lemma 11.1. There exist vectors by = 0,by,...,b,_1 € Zo such that
1. {Gyp, | i €[0:n—1]} forms an orthogonal basis;
2. For allb € Zg, there exist i € [0:n — 1] and o € Zpr such that Gy p = Wy - Gy p,; and

3. Let A; denote the set of b € Zg such that Gy, is linearly dependent with Gy p,, then
m
Aol = |A1| = ... = |Ap_1| = —.
n

Proof. By Lemma [[0.4], and the discussion following Lemma [[0.4] (the symmetric statements regarding

A, and G), there exist vectors by = 0,b1,...,b,_; € Zg such that Properties 1) and 2) hold.
We now prove property 3). By condition (R3), fixing b;, for any i, there is a one-to-one correspon-
dence between A; and Ag, by b — b — b;. This is clear from Gp_p, » = G« © Gp, «. Hence we have
Ag={b—1b;|b € A;} for all sets A;. It then follows that |Ag| = |A1| = ... =|4n—1| = m/n. O

Now let G = (V, E) be an undirected graph. For every positive integer p, we can build a new graph
Gl from G by replacing every edge e = uv € E with a gadget. We will need G2 in the proof. But it
is more convenient to describe GIY first and illustrate it only with the case p = 1. (The picture for et
will be too cumbersome to draw.) The gadget for G is shown in Figure Bl

More exactly, we have Gl = (VI Bl) where

/

V[l] =Vu {$67yeyae,ba/e,ivb67b/e7ce,i7ce,i7de,jvd/e,j7we7w/e7ze7zé ‘ €€ E7Z € [N - 1]7] € [7" + 1]}7

and E contains exactly the following edges: For every edge e = uv € F,
1. one edge between (u,d. ;) for all j € [r + 1] — {2};

N — 1 edges between (v,d, ;) for all j € [r+1] — {1};

one edge between (de 1, we), (de2, ze), (We, Ye) and (2e, Te);

N — 1 edges between (de 1, zc), (de,2, We), (We, ) and (ze, ye);

one edge between (e, de ;) for all i € [N — 1] and j € [r + 1] — {2};

AR AN  C

one edge between (be,d. ;) for all j € [r + 1] — {1};
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7. N — 1 edges between (ce,n—1,ae,1) and (e, Geit1) for all i € [N — 2];
8. one edge between (ac,i, ce;) for all i € [N — 1];
9. N — 1 edges between (u,d., ) for all j € [r + 1] — {2};

7@]

10. one edge between (v,d. ;) for all j € [r + 1] — {1};

) e ]

11. one edge between (d. . 1525), (d/e72,w’e), (wl,ze) and (21, ye);

12. N — 1 edges between (d, 1, w}), (di,2), (e, ye) and (2, zc);

e

13. one edge between (a., ,,d. ;) for all i € [N — 1] and j € [r + 1] — {1};

ez’ e,j

14. one edges between (b, d, ) for all j € [r+ 1] — {2};

e’ e]

15. N — 1 edges between (c;, y_1,0a, ;) and (c;,a;, ;) for all i € [N —2];

16. one edge between (a! for all i € [N —1].

6Z7 BZ)

As indicated earlier, the graph we really need in the proof is GI2. The gadget for GI? can be built from
the one for G in Figure R as follows: First, we make a new copy of the subgraph spanned by vertices

{u,v,2,y,w, 2,dj,a;,¢;,b|i € [N —1],j € [r+1]}.
All vertices are new except x,y,u and v. Second, make a new copy of the subgraph spanned by

{u,v,2,y,0", 2, d;,a}, ¢, b | i € [N —1],5 € [r+1]}.
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Again all vertices are new except x,y,u and v. In this way, we get a new gadget and we use it to build
G by replacing every edge e = uv € E with this gadget.
It is easy to verify that the degree of every vertex in G/ is a 0 (mod N) except both copies of ac;,

a, ;,be and b, whose degree is 7 (mod N). The construction gives us a 2m x 2m matrix A such that

ZA(G) = ZC,@(GM), for any undirected graph G,

and thus, EVAL(A) (< EVAL(C, D)) (right now it is not clear whether A is a symmetric matrix, which

we will prove later) is not #P-hard. We index the rows (columns) of A in the same way as we do for

C: The first m rows (columns) are indexed by {0} x Zg and the last m rows (columns) are indexed by

{1} x Zg. Since C is the bipartisation of F, we have Ao u) 1,v) = A(1,u),00,v) = 0, for all u,v € Zo.
We now analyze the upper-left m x m block of A. For u,v € Zg, we have

- E Auvxy u,v,x,y’

X,YEZo
where
N-1
A = Dl Dl Fd, Fory Fov ay
uvxy = (0,b) (0,a;) w,di H'wyf'w,da Fw,x
ai,..,an—1,b€Ar,d1,d2€Zg =1 wEZg
N—-2
X Z Foa, FoxFad Fay H Z FaiciFairei Z an—1.en—1Faren s
VASY/Nfo) i=1 ¢;€Zg cN_1€Zg
r+1
< [ T] Y. FuaFoaFva, HFaJ, Fua, 1_[1*?%,(11 Fyd,Fba,, and
=3 d;E€Zo
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BU7V7X,y = Z [T] H D[z]ab) Z FW7d2 FWyXFW,dl Fw,y

ay,..,any_1,b€EA,,d1,d2€Zg wWEZg
x E : Fodi Faylza,Fax H E : a;,c; az+1ycz § : Fan_1en 1 Faren s
z€Z9 1=1 c;EZg CN—_1€Zg
r+1
X H E Fya,Fpa,Fua; HFaJ, Fyd, HFaJ,dz Fua, Foa,-
i=3 d;€Zo

We simplify Ay x,y first. Since F is discrete unitary and satisfies (R3), we have

E Fw,dl Fw,yFw,dng,x = <F*,d1+y7 F*,d2+x>
WEZQ

is zero unless d; —dy = x —y. When this equation holds, the inner product (F, q,+y, Fsdo+x) = m.
Also when d; — dy = x — y the sum ZZEZQ F, q,F, xFya,F,y = m as well. Similarly,

: : a;,Cq az+17cz = <Fai7*’Fai+17*>
ci€Zo

is zero unless a; = a; 41, for i =1,..., N — 2. Also, we have

E : FaN71,CN71Fa17CN71 = (FaN717*7Fa1,*>

CN71EZQ

is zero unless ay_1; = a;. When a; = ... = ay_1, all these inner products are equal to m. So now we
may assume d; —dz = x —y and all a;’s are equal, call it a, in the sum for Ay v x y.
Let x —y = o, then A, v xy is equal to

mNt ST pll il H > FuaFbaFeaFad, | FudioFoas P Fadro  (T1)
a,beA,,d2€Zg =3 d;€Zo

Again,

E : Fuvdin7diFV,diFa,di = <FU+b,*7 FV+a7*> =0
d;cZ¢g

unless u+b = v +a. When u+ b = v + a, the inner product (Fyyp s, Fvia«) = m. As a result, if
v—ud¢ A= {x—x'|x,x €A},

then Au,v,x,y =0sincea,be A, andb—ac Ai«in-
For every vector h € Al (e.g., h = v — u), we define a |A,|-dimensional vector T!? as follows:

D (7]

(h] _ plr]
Tx'=D (0.%)?

(0,x+h) for all x € A,.

By (£), A, is a coset in Zg, so for any x € A,, we also have x + h € A,. Therefore every entry of Tk
is non-zero and is a power of wy.
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Now we use TV to express Auvx,y- Suppose v —u € Alnthen

— N+ [rl plrl N R
Auyxy = m-"" > D o.p)D(0,a)Fu.d2tolb.dr Fv.dy Fadato
acA,,d2€Zg,b=a+v—u

= mN+T+1 Z D%},a—l—v—u)D%},a)Fu,oFa,o = mN+T+1Fu,x—y<T[V_u}7G*7x—Y>'
acA,

Here we used (R3) in the second equality, and we recall the definition of 0 = x —y.
Similarly, when v — u ¢ A" we have Byvx,y =0; and when v —u € Alin

N r r
BU,V,va = m" " Z DE] )Dgo}a)dengd2+x yFadgFud2+x y
beAr,d2€Zg,a=b+v—u

N+7‘+1F

= miVtr Z DET] )Dgz]b—i-v u)Fb,x—yFu,x—y = u,x— Y<T[V_U}’G*7x_y>'

beAr 7d2 EZQ

To summarize, when v —u ¢ Al A(0,u),00,v) = 0; and when v —u € Alin

4 4
Apuow = m VST [TV, Gy | =tV ST G| (72)

We now show that A is a symmetric non-negative matrix. Let a = v — u € A", Then by (R3), we
have for every b € Zo,

(T[_a],G*,—b>‘ = Z D)[:}_aDl:]Gx,—b‘ Z DY D[T]
XEA, xEA,
= Z Dg-]i-aD[r]Gy bFa,b = Z Dg-]l-aD[r]G = ‘(T[a}v G*,b>‘ )
YEA, yEA,

where the second equation is by conjugation, the third equation is by the substitution x = y + a and
the fourth equation is because Fap, is a root of unity. It then follows that A u) (0,v) = A(0,v),(0,u)- The
lower-right block can be proved similarly. Hence A is symmetric.

Next, we further simplify (72) using Lemma [[T.1}

mAN+ar+6  n71 4
A(o,u»(o,v):T'ZVT[V_"]vG*,bJ : (73)
=0

For the special case when u = v, we know exactly what A y) (0,u) is: Since TO =1 = G by, we have
(T, Gopy) = 1

By Lemma [T, {G. p,,---,Gxp, ,} is an orthogonal basis, hence

4
Z ‘(T[O]7 G.p,)| =n* and Au),(00) = L - n,  where L = m*N 46 /.
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Our next goal is to prove (75). Note that if |[A"| = 1 then (75) is trivially true. So below we assume
|Ali"| > 1. Because A is symmetric and non-negative, we can apply the dichotomy theorem of Bulatov
and Grohe. For any pair u # v such that u — v € A", we consider the following 2 x 2 submatrix

(A(O,u),(O,u) A(O,u),(O,v))
Aov),0m) A, 0v)
of A. Since EVAL(A) is assumed to be not #P-hard, by Corollary 2.1}, we have

4
Au),0) = Ao, 0 € 10, L-n'},
and thus from (73), we get

n—1

4 ,
Z ‘(T[V_“], G*,bﬂ‘ € {0,n*}, for all u,v such that u—v € Alin, (74)

However, the sum in (74)) cannot be zero. This is because the following: By Lemma[ITT], {G., |i €
[0:7n — 1]} is an orthogonal basis, with each ||G. p,|> = n. Then by Parseval,

n—1

>

1=0

G*vbi

Thv—ul
T G

2
>1 T2 =

since each entry of TV is a root of unity. Hence, Y7 [(TV=4 G, p,)|? = n?. This shows that for
some 0 < i < n, (TV™9 G, ,)| # 0, and therefore, the sum in (74)) is non-zero, and thus in fact

=n* for all u,v such that u—v € AE“.

n—1 n—1
g 7 =n? and E zf =nt
=0 1=0

By taking the square, we have

n—1 2 n—1

4 _ 2| _ 4 :

n- = x; = r; + non-negative cross terms.
i=0 i=0

It follows that all cross terms must be zero. Thus, there exists a unique term x; # 0. Moreover, this x;
must equal to n while all other x; = 0. We conclude that, for all u and v € Zg such that u —v ¢ Alin,
there exists a unique ¢ € [0 : n — 1] such that

‘<T[v—u]’ G*,hi> =n.

Again apply the argument that (T[V_“}, G, p;) is a sum of n terms, each of which is a root of unity,
we can conclude the following: For all a € A", there exist b € Zg and a € Zy such that

TR = 0% - G,y (75)

Below we use ([70) to prove (D3). Note that, if s = 1, then (D3) follows directly from (75]). So below
we assume s > 1. First, (75]) implies the following useful lemma:
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Lemma 11.2. Let a be a vector in A}}rl; for some k € [s]. Then for every c € Aﬁn, where ¢ # k,

XJFC/T[Z’I for all x € A,

is a power of wg,. (Rfcall we use qp to denote qq 1. Also note that for every x € A, the translated point
X +¢C is in A, so TP is defined at both x and x + €. Since they are roots of unity, one can divide one
by the other.)

Proof. By ([75), there exists a vector b € Zg such that

T,[:_C/Ta]— x+cb/be cb7

which, by (R3), must be a power of w,. O

Let a still denote an arbitrary vector in A}}r}g, and c € Al,“l}, where ¢ # k and ¢,k € [s]. By writing
out the definition of T[ I in term of DL }, we have

7@l plEE _ ol

x+a x+c X

15/ = 13/

By Lemma [[T.2] the left hand side of the equation is a power of w,,, while the right hand side of the
equation is a power of wg,. Since k # ¢, ged (g, q¢) = 1, we have

and thus,

XJFC/T[Z’I 1, forall ce AE’% such that ¢ # k. (76)
This implies that T,[{a], as a function of x, only depends on x;, € A, . It then follows from (73] that

T)La] = Te[i]tr(xk) =wh Gextr(xk) b = WN ol Ff;;l’)vk - woc-i-ﬁ F b’ for any x € A,,

and for some constants «, § € Zy and by, € Zg, that are independent of x. This proves condition (Ds).
Finally we prove (D;) from (Ds).

Recall that, in condition (L3), we have DEZ] alrl) = 1. Let al”l = (aj,ag,...,as) € A, then
rl  _ plr] [r]
D(O,x) - D(O,(xl,xz,...,xs)) (0,(a1,az,...,as))

_ [r] (7]
- <D(0,(x1 ,xz,...,xs,l,xs))D(O,(xl ,xz,...,xsl,as))>

[r] [r]
X <D(o,(xl,x27...7xs1,as>)D(o,(xl,...,xsz,asLas)))

[7] [7]
X <D(0’(X1’aQ’m’aS))D(O’(al732’“.738))> , for any x € A,.

We consider the k" factor

D[T] D (7]

(0,(X1, Xk — 1, Xk Bk 15+-5A5)) T (0,(X1 ey X —1,8k,8k4-1,++,85))
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By ([76]) this factor is independent of all other components in the starting point (xi,...,Xg_1, a8k, k11,
...,as) except the k" component ay. In particular we can replace all other components, as long as we
stay within A,. We choose to replace the first £ — 1 components x; by a;, then

[r] [r]
D(O,(x1,...,xk,l,xk,ak+1,...,as))D(O,(xl,...,xk,l,ak,ak+1,...,as))
_ plrl [r] _ plr] [r] _ plrl
- (0,(a1,...,ak,l,xk,ak+1,...,as))D(0,(a1,...,ak,l,ak,ak+1,...,as)) - D(O,extr(xk))D(Qu[T]) - D(O,extr(xk))'

(Dy) is proved.

12 Tractability: Proof of Theorem (5.7

Let (M,N),C,9,(p,t,Q)) be a tuple that satisfies all the three conditions (R), (£) and (D). In this
section, we reduce EVAL(C, D) to the following problem:

EVAL(q): Let g = p* be a prime power for some prime p and positive integer k. The input
of EVAL(q) is a quadratic polynomial f(z1,x2,...,2,) = Zme[n} a; jx;xj, where a;; € Z,
for all 7, j; and the output is

Z(fH)= D wilrem),

Ty, €2g

We postpone the proof of the following theorem to the end of this section.
Theorem 12.1. Problem EVAL(q) can be solved in polynomial time (in n: the number of variables).

The reduction goes as follows: First, we use conditions (R), (£), and (D) to show that EVAL(C, D)
can be decomposed into s smaller problems (recall s is the number of primes in the sequence p):

EVAL(CH o) . EVAL(CE, Dby,

If every EVAL(CU, ®) is tractable, then so is EVAL(C,®). Second, for each problem EVAL(C[, D)
where i € [s], we reduce it to EVAL(q) for some prime power ¢ which will become clear later, and thus,
by Theorem [I2.1] all EVAL(C[i], ’Dm)’s can be solved in polynomial time.

12.1 Step 1

For every integer i € [s], we define a 2m; x 2m; matrix Cl!l where m; = |Zq,|: Cl is the bipartisation
of the following m; x m; matrix FlI where (we index the rows and columns of Fl! using x € Zq; and
index the rows and columns of Cll using {0,1} x Z,)

F,[f]y = H wgi{?j, for all x = (x1,...,24,),y = (W1, -, Yt,) € Lg,- (77)
JE[ti]

Here we use xj, where j € [t;], to denote the 4t entry of x in Zg, ;- 1t then follows from (Rj3) that
_pltlopl2 gl
Fry = Fxiy, - Fxoys - Fxoy,, forall x,y € Zo. (78)
On the other hand, for each integer i € [s], we define a sequence of N 2m; x 2m,; diagonal matrices

ol = (pbo  pbiN-1y.
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D[ is the 2m; x 2m; identity matrix; and for every r € [N — 1], we set

Dgio’ri) =0,ifr¢S, and D%T}) Dgz]ext ) for all x € Zg,, if r € S; and
Dgllrl) =0,ifr¢7, and D&’j{) = DETl]ext /(%)) for all x € Zg,, if r e 7.
By conditions (D;) and (D3), we have
EZ]X) = Dgllv’:jl) e DEZ’;}S), for all b € {0,1} and x € Zg. (79)

Eq. ([79) is valid for all x € Zg: For example for b = 0 and x € Zg — A,, the left-hand side is 0 because
x ¢ A,. The right-hand side is also 0, since there exists an index i € [s] such that x; ¢ A,; and thus,

ext,(x;) ¢ A, and DEZ 7] o = 0. It then follows from (D), (M) and the following lemma that

EVAL(CH, ©l) is in polynomial time for all i € [s] = EVAL(C,®) is in polynomial time.
Lemma 12.1. For each i € {0,1,2}, FlU is an m; x m; complex matriz, for some positive integers m;;

Clil is the bipartisation of Fll: and Dl = {D[i’o], . ,D[’VN_”} 1 a sequence of N 2m; X 2m; diagonal
matrices for some positive integer N, where

. [3,7]
il _ (P
D = < Q[iﬂ“]>

and both P and QU1 are ml X my; diagonal matrices.
For each i € {0,1,2}, (CH, D) satisfies (Pinning). Moreover, mg = my - ma,

Pt plil g Bl plos] = plbn) g pl2rl, Qi) = QUirl @ Q2 for allr e [0: N — 1]
Then if both EVAL(CY, ©1) and EVAL(CE, ®2)) are tractable, EVAL(CO, D) is also tractable.

Proof. By the Second Pinning Lemma (Lemma [£.2)), we can compute Z g i ol and Zg; ol for both

i =1 and 2, in polynomial time. The lemma then follows from Lemma m U

[i.7]

We now use condition (Dy) to prove the following lemma about D(l e where r € 7.

Lemma 12.2. For anyr € 7, i € [s] and a € A% there exist b € Zg, and o € Zy such that

T’

Dy DUy = WS- Py for allx € Ay

Proof. By the definition of DI"), we have

[,7] [i,7] 7]
D D" =D (1 ext!.(x)+a) 7 (1,extl(x))"

(Lxra) * (10 = PlLext,(era)) P (Lext,(x) —

Recall that we use a to denote the vector x € Zg such that x; = a and x; = 0 for all other j # i.
Then by condition (Dy), we know there exist b € Zq, and o € Zy such that

[i.7] [ir] _ [4]
D(Zl,:(—i-a) -D(Zl;) = wjy - FB,ext;(x) = wy - Fblx, for all x € A, 4,
and the lemma is proven. O

[i7]

One can also prove a similar lemma for D(0 g TE S, using condition (Ds).
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12.2 Step 2

For convenience, in this subsection we abuse the notation slightly and use EVAL(C,®) to denote one of
the subproblems we defined in the last step: EVAL(CU, ©[1) i € [s]. Then by using conditions (R), (£)
and (D), we summarize the properties of this new (C,®) that we need in the reduction as follows:

(F1) There exist a prime p and a sequence w = {7 > w3 > ... > m} of powers of the same p. F is an
m X m complex matrix, where m = myms ... 7, and C is the bipartisation of F. We let m denote
1. We use Zg = Zy, X -+ X Ly, to index the rows and columns of F, then

Fx,y = H wfr::yi7 for all x = (xlw i 7‘Th) and y= (y17’ .. 7yh) € ZTU
i€[h]

where we use z; to denote the i*" entry of x in Z,, i € [h].

(F2) ® ={D ... DIN-1 is a sequence of N 2m x 2m diagonal matrices, for some positive integer
N with 7| N. DI is the identity matrix, and every diagonal entry of DI}, r € [N — 1], is either
0 or a power of wy. We use {0,1} X Z to index the rows and columns of matrices C and DU"].
(The condition 7| N is from the condition M | N in (U;), and the expression of M in terms of the
prime powers, stated after (R3). The 7 here is one of the ¢; = ¢;; there.)

(F3) For each r € [0: N — 1], we let A, and A, denote
Ar={X€Zp| D #0} and A, ={x€Z| D #0}.

We let S denote the set of 7 such that A, # (), and 7 denote the set of r such that A, # (). Then
for every r € S, A, is a coset in Z,; and for every r € T, A, is a coset in Z,. Moreover, for every
r €S (and r € 7, resp.), there exists a vector al’l e A, (and bl e A, resp.) such that

[r] _ [r] _
D(O,u[ﬂ) =1 (and D(me) =1, resp.).

(F4) For all r € S and a € AlI", there exist b € Z, and « € Zy such that

D[’“]

]
D (0.)

(0,x-+a) =wy - Fxp, forall x €Ay

Forallr €7 andac AE“, there exist b € Z, and o € Zp such that

plrl DK]X) =wy - Fpx, forall xeA,.

(1,x+a)
Now let G be a connected graph. Below we will reduce the computation of Z¢ o(G) to EVAL(T),
where T =7mif p#2; and 7 =2r if p = 2.

Given a € Zg, for some i € [h], we let @ denote an element in Zz such that @ = a (mod 7;). As 7|
Th—1]| ...|m = 7|7, this lifting of a is certainly feasible. For definiteness, we can choose a itself if we
consider a to be an integer between 0 and m; — 1.

First, if G is not bipartite, then Z¢ »(G) is trivially 0. So from now on in this section, we assume
G = (UUV, E) to be bipartite: every edge uv € E has one vertex in U and one vertex in V.

Let u* be a vertex in U, then we can decompose Zc o(G) into

Zeo(G) = 25 5(G,u") + Zg (G, u™).
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We will give a reduction from the computation of Zg’ o(G,u*) to EVAL(7). The other part concerning
Z~ can be proved similarly.

We use U,., where r € [0: N — 1], to denote the set of vertices in U whose degree is r (mod N), and
V, to denote the set of vertices in V' whose degree is p (mod N). We further decompose E into U B j
where E; ; contains the edges between U; and V.

It is clear that if U, # () for some r ¢ S or if V,, # () for some p ¢ T, then Zg5 o(G) = 0. Therefore
we assume U, = () for all r ¢ S and V, = ) for all p ¢ 7. In this case, we have 7

s (o) 1 (o )| | 1 ss]

(f,g9) |reS \ueU: peT \veV, (r,p)ESXT wveky, ,

Here the sum ranges over all pairs (f, g), where

f=Urpres)e][W, =) and g=(gipeT)e [[ (V, =4,
res peT

such that f(u) = x, and g(v) = y,.
The following lemma gives us a convenient way to do summation over a coset.

Lemma 12.3. Let ® be a coset in Zy and ¢ = (c1,...,cp) be a vector in ®, then there exist a positive
integer s and an s X h matric A over Zz such that the following map 7 : (Zz)° — Zg, X -+ X L,

T(x) = (Tl(x), .. ,Th(X)), where T;j(x) = (xA*,j +¢; (mod 7Tj)) € Ly, for all j € [h], (81)

is a uniform map from Z& onto ®. This uniformity means that for all b,b’ € ®, the number of x € 72
such that T7(x) = b is the same as the number of x such that 7(x) = b'.

Proof. By the fundamental theorem of finite Abelian groups, there is a group isomorphism f from Zg
onto ®™ where g = (g1,...,gs) is a sequence of powers of p and satisfies 7 > 7 =71 > g1 > ... > gs,
for some s > 1. Zg = Zg, X ... X Zg, is a Zz-module. This is clear, since as a Z-module, any multiple
of @ annihilates Zg. Thus f is also a Zz-module isomorphism.

Let a; = f(e;) € ®, for each i € [s], where e; € Zg is the vector whose " entry is 1 and all other
entries are 0. Let a; = (a;;1,...,a:n) € Zx where a;j € Zy,, i € [s], j € [h]. Let @; = (@;1,...,0in) €
(Z )h be a lifting of a; component-wise. Similarly let € be a hftlng of ¢ component-wise. Then we claim
that A = (@;;) and ¢ together give us a uniform map 7 from Z2 to ® defined in (&I)).

To prove that 7 is uniform, we consider the linear part of the map 7' : Z% — Plin,

7' (x) = (1(x), ..., 74,(x)), Where 7/(x) = (xA.; (mod 7})) € Zg,, for all j € [h].
Clearly we only need to show that 7/ is a uniform map.
Let o be the natural projection from Z2 to Zg:

x = (21,...,25) — (21 (mod ¢1),...,zs (mod gs)).

o is certainly a uniform map, being a surjective homomorphism. Thus every vector b € Zg has exactly
|ker o| =7 /(g1 - - - gs) many preimages. We show that the map 7’ factors through o and f: 7/ = foo.
Since f is an isomorphism, this implies that 7/ is also a uniform map.

Since g;e; = 0 in Zg, the following is a valid expression in the Zz-module for o(x)

(ml (mod g1),...,zs (mod gs)) =37 wie.
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Apply f as a Zz-module homomorphism
= Z :Eif(ei)7
i=1

which has its j** entry >, wia; ;. This is an expression in the Zz-module Z, ;» Which is the same as

s

Z (z; (mod 7j)) - a;j = Zxﬁi,j (mod 7j) = 7/(x).
i=1 i=1 O

By applying Lemma [12.3] to coset A;., we know for every r € S, there exist a positive integer s, and
an s, x h matrix Al"l over Z= which give us a uniform map Al (x) from ZZ" to A,, where

)\Z[T] (x) = (xAg +ﬁlm (mod 7;)), for all i € [h] and x € ZZ'. (82)

Similarly for every r € T, there exist a positive integer ¢, and an ¢, x h matrix BI"l over Z= which give
us a uniform map 6" from Zf{ to A, where

s (y) = (yBI 48 (mod m;)), foralli e [h] and y € ZL. (83)

)

Using (F3), we have

=1, whenr € S; andDH

i
D (1,61(0))

oAy = =1, whenr e 7. (84)

Because both A"l and 6] are uniform, and we know the multiplicity of each map (cardinality of inverse
images), to compute (80), it suffices to compute the following

= T (T 5 ) T (T 2] T (T Ao ] 69

(xu),(yv) 7€ES \u€Ur reT \veV, r1€S,72€T \wvEE; rqy

where the sum is over pairs of sequences

<xu;u € U Ur) S H (Z%T)IU"I and (yv;v € U Vr) € H (Z%T)WT'.

reS res reT reT
If we can show for all r € S, there is a quadratic polynomial fI"l over Z- such that
DU = w%m (x), for all x € Z'; (86)
and for all » € 7, there is a quadratic polynomial gm over Zz such that
—w?"® | forally e Zt; (87)
and for all 7; € S and r9 € 7, there is a quadratic polynomial fI't72 over Z= such that
F\ir1) () slr2] (y) = w?{[rll’flz](x’w, for all x € Zf{l and y € Zf{?, (88)

then we can reduce the computation of the summation in (83]) to problem EVAL(7).
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We start by proving the existence of the quadratic polynomial f'72! Let r; € S and ry € T then
by (F1), the following map f['2] satisfies (88):

~

Frrtey) = 3 (Z) A6 o) = 3 () (xal) al) (vBi +50).

i T
i€lh) i€[h]

Note that the presence of the integer 7/m; is crucial to be able to substitute the mod 7; expressions for
/\Z[-Tﬂ(x) in (82) and 5Z[T2](y) in (83)) respectively, as if they were mod 7 expressions. Now it is clear that
f r1r2] ig indeed a quadratic polynomial over Z.

Next, we prove the existence of a quadratic polynomial fI"l for A,, r € S, in (86), which is a little
more complicated. One can prove the same result for (7)) similarly.

Let 7 € S and e; denote the vector in Z2" whose it" entry is 1 and all other entries are 0. Then by
(F4), for each i € [s,], there exist o; € Zy and b; = (bi1,...,b; ) € Zx, where b; j € Zy,, such that

bi ;AT ()

[r] [r] Y sr
D(OAM (x+ei))D(0’)\[r](x)) = wy Wr; , forall x € Z2. (89)
j€lh]

We have this equation because A"l(x + ;) — Al"l(x) is indeed a vector in Z, that is independent of x.
To see this, its j* entry in A (x + e;) — All(x) is

e,-AE:}j = AZ[T]] (mod 75),

and thus the displacement vector A"l(x + e;) — A"l(x) is independent of x, and is in A by definition.
This is the a € A" in the statement of (F;) which we applied.

Before moving forward, we show that wy/ must be a power of wz. This is because

T—1
_ 7] 7] (i b A (0e)) 4 A (F-1)er)
1= H D (ovm((ﬁl)ei))D (O (jey)) — (W) H wry § : (90)
J=0 kelh]

For each k € [h], the exponent of wr, is b; xQk € Zx, where @y, is the following summation:

71 7-1 -1
>N Ge) = 3 ((Ge) AL+ (mod m)) = | 3 jei | Al (modm) =0. (91)
j=0 7=0 i=1

%_11 j =0 (mod m), and this is due to our definition of 7. When

The last equality comes from J = ) i
| 7; When p = 2, J is a multiple of 7/2. However in this case, we

p is odd, J is a multiple of 7 and m
have 77/2 = w1 and 7y | .
As a result, (wy)™ =1 and wy is a power of wz. So there exists 3; € Zz for each i € [s,] such that

i ] _ B bij A ()
D(o,w'l (x+ei))D(07)\[T] ) = Yz H wr, 7, forall x € ZZ. (92)
Jjelh]

]

It follows that every non-zero entry of DIl is a power of wz. This uses (F3): the (0, al"”))"" entry of DI
is 1, and the fact that A" is surjective to A,: any point in A, is connected to the normalizing point al”’
by a sequence of moves A"l(x) — \"(x + e;), for i € [s,].

Now we know there is a function fI": 72 — Lz satisfying (86). We want to show that we can take
a quadratic polynomial fl"} for this purpose. To see this, by [@2), we have for every i € [s,],
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f(x + ) — fM(x) BZJFZ(( > ) )\[r] 5Z+Z< ) xAH [?“]). (93)

J€Eh]

We should remark that, originally b; ; is in Z;; however with the integer multiplier (7/7;), the quantity
(w/mj) - b; ; is now considered in Zz. Furthermore,

~

gi,j =b;; (mod m;) implies that (;) 8” = <7T1> b;j (mod 7).
j

j
Thus the expression in (93) happens in Zz. It means for any ¢ € [s,], there exist ¢;0,¢i1,...,¢i s, € Zz,
Mt e) = 1) = o+ 3 ey (94)
J€lsr]
Since D! =1, fI"1(0) is 0. The case when the prime p is odd follows from the lemma below.

(0,71 (0))

Lemma 12.4. Let f be a map from Z3., for some positive integer s > 1, to Zr, and 7 is a power of an
odd prime. Suppose for every i € [s], there exist ¢i0,¢i1,...,Cis € Ly such that

fx+e)—f(x)=co+ Z cijxj, forallx e Z;,
JEls]
and f(0) = 0. Then there exist a; j,a; € Zx such that
Z a; jxiT; + Z a;z;, forallx € Z;.
1<j€ls] 1€]s]

Proof. First note that f is uniquely determined by the conditions on f(x+e;) — f(x) and f(0). Second
we show that ¢; j = ¢;; for all 4,5 € [s]; otherwise f does not exist, contradicting the assumption.
On the one hand, we have

flei+ej) = flei+e;) — fle;) + f(e;) — f(0) =cio+cij + cjo-
On the other hand,
flei+e;) = f(ei+ej)— fle)+ fle) — f(0) =cjo+cji+cip

As a result, we have ¢; ; = ¢j;.
Finally, we set a; ; = ¢; ; for all i < j € [s];

a;; = ci7,~/2, for all i € [s];

(Here ¢;,;/2 is well defined because 7 is odd) and a; = ¢; 0 — a;; for all ¢ € [s]. We now claim that

E Q4 T x]+§ a;x;

1<j€ls] 1€[s]

satisfies both conditions and thus, f = g. To see this, we check the case when ¢ = 1 and the other cases
are similar:

g(X + e1) — g(X) = 2a1,1a:1 + Zaw—xj + (CL171 + CL1) =c1,121 + Z C1,;T; + €10
j>1 Jj>1 O
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The case when p = 2 is a little more complicated. We first claim for every i € [s], the constant ¢; ;
in ([@4) must be even. This is because

0= fI@e) — fI(@ —e) + ...+ fll(e) = fIO)=F - cio+cis(@—1+F—2+...+140).

This equality happens in Zz. So

~

cmg(% ~1)=0 (mod 7).
When 7 — 1 is odd we have 2|¢; ;. It follows from the lemma below that f ") is a quadratic polynomial.

Lemma 12.5. Let w be a power of 2 and f be a map from Z: to Z,, for some positive integer s > 1.
Suppose for every i € [s], there exist ¢;,¢in,-..,Cis € Lx, where 2| ¢;;, such that

f(x+e)— f(x)=cio+ Z cijxj, forallx e Z;,
J€ls]
and f(0) = 0. Then there exist a; j,a; € Zr such that
flx)= Z a; jT;xj + Z a;zi, forallx € Z;.
1<j€ls] 1€]s]

Proof. The proof of Lemma [[2.5] is essentially the same as in Lemma [I2.4l The only thing to notice is
that, because 2| ¢;;, a;; = ¢;;/2 is well defined (in particular, when ¢; ; = 0, we set a;; = 0). O

12.3 Proof of Theorem [M12.71]

Now we turn to the proof of Theorem [[2.It EVAL(q) is tractable for any prime power q.

Actually, there is a well-known polynomial-time algorithm for EVAL(q) when ¢ is a prime (see [15].
The algorithm works for any finite field). In this section we present a polynomial-time algorithm that
works for any prime power q. We start with the easier case when ¢ is odd.

Lemma 12.6. Let p be an odd prime, and g = p* for some positive integer k. Let f € Lylzy, ... zy] be
a quadratic polynomial over n variables x1,...,x,. Then the following sum

Zif) = 3w

T1,..,Tn€2Lq

can be evaluated in polynomial time (in n). Here by a quadratic polynomial over n variables we mean
a polynomial where every monomial term has degree at most 2.

Proof. In the proof, we assume f(x1,x2,...,x,) has the following form:
f(xy,.xn) = Z Ci jTiT5 + Z CiT;i + Cp. (95)
1<j€[n] 1€[n]

where all the ¢; ; and ¢; are elements in Z,.

First, as a warm up, we give an algorithm and prove its correctness for the case £ = 1. In this case
q = p is an odd prime. Note that if f is an affine linear function, then the evaluation can be trivially
done in polynomial time. In fact the sum simply decouples into a product of n sums

n
1
E wl (@122, 520) § quzﬂ CiTitco WO x H E WCiti
q q q :

T1,22,...,LnELg T1,T2,..,TnE€Lg =1 x;E€%q
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This sum is equal to 0 if any ¢; € Z, is non-zero, and is equal to ¢"wg® otherwise.

Now assume f(z1,...,x,) is not affine linear. Then in each round (which we will describe below),
the algorithm will decrease the number of variables by at least one, in polynomial time.

Assume f contains some quadratic terms. There are two cases: f has at least one square term; or f
does not have any square term. In the first case, without loss of generality, we assume that c; 1 € Zj is

non-zero. Then there exist an affine linear function g € Zy[z2, 3, ..., 2], and a quadratic polynomial
'€ Zylxo, x3, ..., z,], both over n — 1 variables xg,x3, ..., Z,, such that
2
f($173327 s axn) =C1,1 (:El + g(ﬂ?g,:ﬂg, s axn)) + f/(ﬂj‘Q,ZEg, s axn)-

Here we used the fact that both 2 and c¢;,; € Z, are invertible in the field Z, (Recall we assumed that
g = p is an odd prime). Thus we can factor out a coefficient 2¢; ; from the cross term zyz;, for every

i > 1, and from the linear term z1, to get the expression c¢; 1 (z1 + g(z2,. .. ,Tn))2.
For any fixed x9,...,z, € Z;, when x; goes over Zg, x1 + g(z2,...,xy) also goes over Z,. Thus,
T1,22,Tn) _ "(z2,....w c1,1(z14g(x2,..mn))? c1,12? /
S ufmem Y ) ¥ = S0,
T1,T2,..,nE€Lg 2,...,kn€2Lq T1€Zq TEZLq

The first factor can be evaluated in constant time (which is independent of n) and the computation of
Z4(f) is reduced to the computation of Z,(f’) in which f’ has at most n — 1 variables.

Remark: The claim of ) wgl’z being “computable in constant time” is a trivial statement,
since we consider ¢ = p to be a fixed constant. However, for a general prime p, we remark
that the sum is the famous Gauss quadratic sum, and has the closed formula

2 c x
W =p, if ¢=0, and it is <—> -G, if ¢ # 0, where G = <—> w”.
> ) Gite > (2

T E€Lp T E€Lp

Here <I—C)> is the Legendre symbol, which can be computed in polynomial time in the binary

length of ¢ and p, and G has the closed form G'= +,/p if p = 1 mod 4 and G = +i,/p if
p =3 mod 4 .

The second case is that all the quadratic terms in f are cross terms (in particular this implies that
n > 2). In this case we assume, without loss of generality, that ¢; 2 is non-zero. We apply the following
transformation: z; = 2} 4+ 2% and xy = 2} — x%. As 2 is invertible in Z,, when 2 and % go over Z2, x;
and x9 also go over Zg. Therefore, we have

! !/ ! !
E flz1,@,.xn) _ () +ag,2) —a5,.. ., 2n)
wq b b b — wq .
1,22, ZnE€Lg &) ,xh e T €Lg
If we view f(x} 4+ ab, 2 — ), ..., z,) as a new quadratic polynomial f" of ), 2}, ..., z,, its coefficient

of 27 is exactly c1,2 # 0, so f’ contains at least one square term. This reduces our problem back to the
first case, and we can use the method above to reduce the number of variables.
By repeating this process, we get a polynomial-time algorithm for computing Z,(f) when ¢ = p is

an odd prime. Now we consider the case when ¢ = p.

Tt had been known to Gauss since 1801 that G? = (%1) p. Thus G = +/pif p=1(mod 4) and G = +i,/pif p=3
(mod 4). The fact that G always takes the sign 4+ was conjectured by Gauss in his diary in May 1801. Four years later,
on Sept 3, 1805, he wrote, ... Seldom had a week passed for four years that he had not tried in vein to prove this very
elegant theorem mentioned in 1801 ... “Wie der Blitz einschlégt, hat sich das Réthsel gelost ...” (“as lightning strikes was
the puzzle solved ...”).
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For any non-zero a € Zy, we can write it as a = pla’, where t is a unique non-negative integer, such
that pta’. We call ¢ the order of a (with respect to p). Again, if f is an affine linear function, Z,(f) is
easy to compute, as the sum factors into n sums as before. Now we assume f has non-zero quadratic
terms. Let ¢y be the smallest order of all the non-zero quadratic coefficients ¢; ; of f. We consider the
following two cases: there exists at least one square term with coefficient of order ¢y or not.

In the first case, without loss of generality, we assume c;,; = pc and pt ¢ (so c is invertible in Zqg).
Then by the minimality of ¢g, every non-zero coefficient of a quadratic term has a factor p'®. Now we
factor out ¢ ; from every quadratic term involving 1, namely from x%, 129, ..., T1Z, (clearly it does
not matter if the coefficient of a term xyz;, i # 1, is 0). We can write

2 . -
flxy, o, ... xy) = 6171(331 + g(xa,. .. ,:En)) + c1x1 + a qurdratic polynomial in (xa, ..., zy),

where g is a linear form over zs,...,z,. By adding and then subtracting ¢y g(x2,...,z,), we get

2
flxy, o, ... xy) = 0171(x1 +g(x2,...,xn)) —1—01(:171 +g(m2,...,xn)) + fl(x9, ... 1),

where f'(z2,...,2n) € Zglxa, ..., xy] is a quadratic polynomial over s, ... Zy.
For any fixed x9,...,z, € Z;, when x; goes over Zq, x1 + g(z2,...,xy) also goes over Z,. Thus,

2 2
flx1,....zn) _ ci1z”+teix f(za,...,.x _ c1,1z”+c1x /
E wq( n) = Wy w; ( n | = Wy ~Zg(f).

1, Zn€Zq T€ZLq T2,...,Tn€2lq T€ZLq

The first term can be evaluated in constant time and the problem is reduced to Z,(f’) in which f’ has
at most n — 1 variables.

In the second case, all the square terms of f are either 0 or have orders larger than ¢3. Then we
assume, without loss of generality, that ci 2 = pc and p t c. We apply the following transformation:
xy =2} + 24 and 9 = x| — . Since 2 is invertible in Zg, when 2} and x go over Z2, 21 and z also
go over Zg. After the transformation, we get a new quadratic polynomial over x}, 2%, z3,...,x, such
that Z,(f') = Z,(f). It is easy to check that ¢ is still the smallest order of all the quadratic terms of
f": The terms x? and 23 (in f) produce terms with coefficients divisible by p®*1 the term z;z5 (in f)
produces terms x’12 and :E/22 with coefficients of order exactly tg, and terms xyx; or xox;, for i # 1,2,
produce terms x)z; and zhx; with coefficients divisible by p'e. In particular, the coefficient of (w’1)2 in
/! has order exactly tg, so we can reduce the problem to the first case.

To sum up, we have a polynomial-time algorithm for every ¢ = p¥, when p # 2. O

Now we deal with the more difficult case when ¢ = 2" is a power of 2, for some k > 1. We note that
the property of an element ¢ € Zqr being even or odd is well-defined. We will use the following simple
but important observation, the proof of which is straightforward:

Lemma 12.7. For any integer x and integer k > 1, (x 4+ 2812 = 22 (mod 2F).

Lemma 12.8. Let ¢ = 2% for some positive integer k. Let f € Zqlx1, ..., Ty) be a quadratic polynomial
over n variables x1,...,x,. Then Zy(f) can be evaluated in polynomial time (in n).

Proof. If k=1, Z,(f) is computable in polynomial time according to [I5] so we assume k£ > 1. We also
assume f has the form as in ([©5]).
The algorithm goes as follows: For each round, we can, in polynomial time, either

1. output the correct value of Z,(f); or
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2. construct a new quadratic polynomial g € Z, /2[331, ..., Zp] and reduce the computation
of Z,(f) to the computation of Z,5(g); or

3. construct a new quadratic polynomial g € Z,[z1,...,z,—1], and reduce the computation
of Z,(f) to the computation of Z,(g).

This gives us a polynomial-time algorithm for EVAL(q) since we know how to solve the two base cases
when k =1 or n = 1 efficiently.

Suppose we have a quadratic polynomial f € Z,[x1,...,xy]. Our first step is to transform f so that
all the coefficients of its cross terms (c; j, where ¢ # j) and linear terms (¢;) are divisible by 2. Assume
f does not yet have this property. We let ¢ be the smallest index in [n] such that one of {c;, ¢y ;:7 > t}
is not divisible by 2. By separating out the terms involving x;, we rewrite f as follows

f - ct,t ‘Tt2 +‘Tt : fl(xlu"' 7@7"' 7xn) +f2($1,... 7@7"'71.71)7 (96)
where fi is an affine linear function and f5 is a quadratic polynomial. Both f; and f are over variables
{z1,...,2,} — {x:}. Here the notation z; means that x; does not appear in the polynomial. Moreover,

fl(ml, . ,Li'\t, e ,a;n) = Z Ci tT; + Z Ct jTj + ¢ (97)
i<t j>t

By the minimality of ¢, ¢;; is even for all i < ¢, and at least one of {c; j,¢; : j > t} is odd.
We claim that

2D DI A b wyeren), (98)

xlr“vmneZq xlr“vmneZq
fi(x1,...,ZT¢,...,2n) =0 mod 2

This is because

2
Z +axefit
E wé‘(rl,m,wn) _ § ' w;’;’wt ztf1 fz.

xlv"'vxnezq 5517...733\t7---7xn62q IteZq
f1=1mod 2 fi=1mod 2
2
~ ct +Tri+xT + . .
However, for any fixed 1,...,%,...,Tn, thezq ok thitf2 g equal to wgi times

Z w;ztw?-ﬁ--’ﬂtfl +w;;t(l‘t‘f‘Qk*l)2+(xt+2k*1)‘f1 _ (1 n (_1)f1> Z w;ztw?-i--’ﬂtfl -0,

x¢€[0:2k—1 1] x¢€[0:2k—1 1]

since f; = 1 mod 2, and 1 + (—1)f1 = 0. Note that we used Lemma [I2.7in the first equation.

Recall f; (see ([@7)) is an affine linear form of {z1,...,%,...,2,}. Also note that ¢;; is even for all
i < t, and one of {¢;j,c; : j >t} is odd. We consider the following two cases.
In the first case, ¢ is even for all j > t and ¢; is odd. Then for any assignment (z1,...,2,...,2y)

in Z7~1, f1is odd. As a result, by @), Z,(f) is trivially zero.

In the second case, there exists at least one j >t such that ¢; ; is odd. Let £ > t be the smallest of
such j’s. Then we substitute the variable x, in f with a new variable x2 over Zg,, where (since ¢ g is
odd, ¢ ¢ is invertible in Zg)

Ty = cgzl 21y — Zcmxi + Z crjxj + o ) (99)
i<t >l
and let f’ denote the new quadratic polynomial in Zg[x1,...,2),...,2y].
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We claim that
Zo(f)=2-Z(f)=2- Y wflereen),

X150, €2g

f1=0mod 2

To see this, we define the following map from Zy to Zj:

P e €2 PRV AU o B
where x satisfies (@9). It is easy to show that the range of the map is the set of (x1,...,z¢,...,2,) in
Zgy such that f1 is even. Moreover, for every such tuple (z1,...,%y,...,z,) the number of its preimages

in Zg is exactly two. The claim then follows.
So to compute Zy(f), we only need to compute Z,(f’). The advantage of f’ € Zg[x1,...,2),...,2y]
over f is the following property that we are going to prove:

(Even): For every cross term and linear term that involves x1, ..., its coefficient in f’ is even.

To prove this, we divide the terms of f’ (that we are interested in) into three groups: Cross and linear
terms that involve z;; linear terms x4, s < t; and cross terms of the form z,xy, where s < s',s < t.
Firstly, we consider the expression (@) of f after the substitution. The first term c; 27 remains the
same; The second term x;f; becomes 2z;z), by (Q9)); and x; does not appear in the third term, even
after the substitution. Therefore, condition (Even) holds for z;.
Secondly, we consider the coefficient ¢ of the linear term z, in f/, where s < t. Only the following
terms in f can possibly contribute to ¢:

2
CsTs, CoTy, CsoTsTy, and cpxyp.

By the minimality of ¢, both ¢, and ¢, ¢ are even. For cux% and cyxp, although we do not know whether
cge and ¢y are even or odd, we know that the coefficient —ct_glcs,t of x5 in ([@9)) is even since ¢ ¢ is even.
As a result, for every term in the list above, its contribution to ¢, is even and thus, ¢, is even.

Finally, we consider the coefficient ¢, , of the term xsxsr in f/, where s < s’ and s < t. Similarly,
only the following terms in f can pOSSlbly contribute to c o (Here we consider the general case when
s' # L. The special case when s’ = { is easier)

2
Cs,s'Lssy Cpyly, CsfTsly, and Cp,s' Ty st (OI‘ cs’,fxs’xé)-

Again, by the minimality of ¢, ¢, ¢ and c, ¢ are even. Moreover, the coefficient —c, glc&t of zg in (Q9)) is
even. As a result, for every term listed above, its contribution to c’s’ « 1s even and ‘éhus, c’s’ o 1s even.

To summarize, after substituting z, with zj, using (99), we get a new quadratic polynomial f” such
that Z,(f") = 2- Z4(f), and for every cross term and linear term that involves x1, ..., xy, its coefficient
in f’is even. We can repeat this substitution procedure on f’: Either we show that Z,(f’) is trivially 0,
or we get a quadratic polynomial f” such that Z,(f") =2 - Z,(f’) and the parameter ¢ increases by at
least one. As a result, given any quadratic polynomial f, we can, in polynomial time, either show that
Z4(f) is zero, or construct a new quadratic polynomial g € Zy[z1, ..., 2,] such that Z,(f) = 2% - Z,(g),
for some known integer k € [0 : n], and every cross term and linear term has an even coefficient in g.

Now we only need to compute Z;(g). We will show that, given such a polynomial g in n variables,
we can reduce it to either EVAL(2¥~1) = EVAL(q/2), or to the computation of Z,(g'), in which ¢’ is a
quadratic polynomial in n — 1 variables.

Let
Z Q; jT; X5 + Z a;x; + a,

1<j€[n] i€[n]
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then we consider the following two cases: a;; is even for all i € [n]; or at least one of the a;;’s is odd.
In the first case, we know a; ; and a; are even for all i < j € [n]. We let a; ; and al; denote integers
in [0: 21 — 1] such that a; ; = 2a; ; (mod ¢) and a; = 2a; (mod g), respectively. Then,

2 . Loxixs ) !
Zq(g) — . Z wq(ZlSJE[n] az,]l‘zl‘J+Z@E[n] GZSCZ) —on, WZ . Zqu(g/),

where , , ,
g = E a; ;TiTj + E a;x;
i<j€n] i€[n]

is a quadratic polynomial over Z,/y = Zgx—1. This reduces the computation of Z,(g) to Z,/2(g').
In the second case, without loss of generality, we assume a; ; is odd. Then we have

f= al,l(ﬂf% +2x191) + 92 = a1 (r1 + 9)’+d,

where ¢; is an affine linear form, and ¢o, ¢’ are quadratic polynomials, all of which are over xo, ..., z,.
We are able to do this because a1 ; and ay, for all j > 2, are even. Now we have

2. 7 , 2 2
Zy(g) = Z wgl,l(l'l'f‘gl) +9' _ Z Wy - Z wgl,l(l'l'f‘gl) _ Z wgl,lx ACS)

Z1,..,2n€Lq 2,...,2n€Lq 1€Zq TE€ZLq

The last equation is because the sum over x; € Z, is independent of the value of g;. This reduces the
computation of Z,(g) to Z,(¢') in which ¢’ is a quadratic polynomial in n — 1 variables.

To sum up, given any quadratic polynomial f, we can, in polynomial time, either output the correct
value of Z,(f); or reduce one of the two parameters, k or n, by at lease one. This gives us a polynomial
time algorithm to evaluate Z,(f). O

13 Proof of Theorem

Let A be a symmetric, non-bipartite and purified matrix. After collecting its entries of equal norm in
decreasing order (by permuting the rows and columns of A), there exist a positive integer N, and two
sequences k and m such that (A, (N, k, m)) satisfies the following condition:

(87) Matrix A is an m x m symmetric matrix. K = {Kk1,K2,...,Ks} is a sequence of positive rational
numbers of length s > 1 such that k1 > ky > ... > ks > 0. m = {my,...,ms} is a sequence of
positive integers such that m = > m;. The rows (and columns) of A are indexed by x = (x1,x2)
where z1 € [s] and xy € [my,]. For all x,y, we have

Axy = A(xhxz),(yhyz) = K Ky, Oxy

where S = {Sxy} is an m x m symmetric matrix in which every entry is a power of wy:

k1L, S, (1% Sae,2%) - Sesn\ [ F1lm
A_ K2 lm, Sa,(10) S@m,24) o SEa)s%) F2lm,
Kslm, Ss,), (1) Sen),(2%) -+ S(s),(s,%) Kslm,

where I,,,, is the m; X m; identity matrix.
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We use [ to denote
I={(i,3) i€ [sh,d € fmil}.

The proof of Theorem [6.2], just like the one of Theorem [5.2], consists of five steps. All the proofs, as
one will see, use the following strategy: We construct, from the m x m matrix A, its bipartisation A’
(which is a 2m X 2m symmetric matrix). Then we just apply the lemmas for the bipartite case to A/,
and show that A’ is either #P-hard or has certain properties. Finally, we use these properties of A’ to
derive properties of A.

We need the following lemma:

Lemma 13.1. Let A be a symmetric matriz, and A’ be its bipartisation, then EVAL(A') < EVAL(A).

Proof. Suppose A is an m X m matrix. Let G be a connected undirected graph. If G is not bipartite,
then Za/(G) is trivially 0, since A’ is the bipartisation of A. Otherwise, we assume G = (UUV, E) to
be a bipartite and connected graph, and u* be a vertex in U. It is easy to show that

ZA(G,u*i) = Za/(G,u*,i) = Za/(G,u™,m +1), for any i € [m].

It then follows that Za/(G) =2 - Za(G), and EVAL(A') < EVAL(A). O

13.1 Step 2.1

Lemma 13.2. Suppose (A, (N, k,m)) satisfies (S1), then either EVAL(A) is #P-hard or (A, (N, Kk, m))
satisfies the following condition:

(S}) For all x,x' € I, either there exists an integer k such that Sx . = wk; - Sy .; or for every j € [s],
{Sx,(j.%)» Sx, () = 0-

Proof. Suppose EVAL(A) is not #P-hard.

Let A’ denote the bipartisation of A. Then by Lemma I3 EVAL(A’) < EVAL(A), and EVAL(A)
is also not #P-hard. It is easy to check that (A’ (N, k, k, m, m) satisfies condition (S;), so by Lemma
together with the assumption that A’ is not #P-hard (also note that the S matrix in Lemma [82]is
exactly the same S we have here), S satisfies (Sy) which is exactly the same as (S5) here (note that in
Lemma[82] S also need to satisfy (S3), but since S is symmetric here, (S3) is the same as (Sz)). O

We also have the following corollary. The proof is exactly the same as the one of Corollary B3]
Corollary 13.1. For alli,j € [s], the (i,)" block matriz S(ie),(j,x) has the same rank as S.

Next, we apply the Cyclotomic Reduction Lemma on A to build a pair (F,®) such that
EVAL(A) = EVAL(F, D).

Let h = rank(S). By Corollary [I3.1] it can be easily proved that there exist 1 <1y < ... <ip <my
such that, the {(1,i1),...,(1,in)} x {(1,41),...,(1,iy)} submatrix of S has full rank A (using the fact
that S is symmetric). Without loss of generality (if this is not the case, we can apply an appropriate
permutation IT to the rows and columns of A so that the new S has this property), we assume i, = k
for all k € [h]. We use H to denote this h x h symmetric matrix: H;; = S(14),(1,)-

By Corollary [3I] and Lemma [I3.2] for any index x € I, there exist two unique integers j € [h] and
k€ [0: N — 1] such that

Sx =wh Sy and  S.x=wk S, 1) (100)
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This gives us a partition of the index set [
#={Rijrliclsl,jelhl,kel0: N—-1]},
as follows: For every x € I, x € R(; ;) iff i = 21 and x, j, k satisfy (I00). By Corollary [3.1], we have

U Rk #0, forallic[s]and j € [h].
k€[0:N—1]

Now we define (F,®) and use the Cyclotomic Reduction Lemma together with % to show that
EVAL(F,®) = EVAL(A).
First, F is an sh x sh matrix. We use I’ = [s] x [h] to index the rows and columns of F. Then
Fyy = b by Hyy yo = /ixlfiylS(Lmz),(l,yz), for all x,y € I'.

or equivalently,

I{ll HH .. H I{ll
HQI HH ... H HQI
F — . . . )
Kl HH ... H Kl
where I is the h x h identity matrix.
Second, ® = {D[O], ..., DIV _1}} is a sequence of N diagonal matrices of the same size as F. We use
I’ to index its diagonal entries. The x* entries of © are generated by (B2 ,22).00 - 5 [ Ry ,20),N—1]):
N-1
D,:} = ‘R(x17x2)7k|-w%’, forallr €[0: N —1],xe I
k=0

The following lemma is a direct application of the Cyclotomic Reduction Lemma (Lemma [BT]).
Lemma 13.3. EVAL(A) = EVAL(F, ).

Proof. First we show that matrix A can be generated from F using #Z. Let x,y € I, x € R(
y € Ry, jnw for some j, &, ', k', then by (I00),

Il,j),k and

— - E _ k4K _ k4K
Axy = Ko Ky Sxy = Ko by S(1j)y - WN = Ko Ky S15),(157) " WN - = Flayg)(m.g) " @ON

On the other hand, the construction of ® implies that ® can be generated from the partition Z.
The lemma then follows directly from the Cyclotomic Reduction Lemma. O

13.2 Steps 2.2 and 2.3
Now we get a pair (F,D) that satisfies the following condition (Shape'):

(Shapé)): F € C™*™ (note that this m is different from the m used in Step 2.1) is an symmetric s X s
block matrix and we use I = [s] x [h] to index its rows and columns.

(Shapé,): There is a sequence kK = {k1 > ... > ks > 0} of rational numbers together with an h x h
matrix H of full rank, whose entries are all powers of wy, for some positive integer N. We have

Fyy = kg by Hyy o, forall x,y € 1.
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(Shapel): ® = {DI0 ... DIN=11 is a sequence of N m x m diagonal matrices. D satisfies (73), so

DYV =D forallr € [N —1], andx € I.

Now suppose EVAL(F,®) is not #P-hard. ) ) )
We build the following pair (C,®): C is the bipartisation of F and © = {DI% ... DIN=1} where

. ]
DIl — (D DW> , forallre[0: N —1].

The proof of the following lemma is the same as the one of Lemma [I3.11
Lemma 13.4. EVAL(C,®) < EVAL(F,®).

By Lemma [[34] above, we have EVAL(C,®) < EVAL(F,®), and EVAL(C,®) is also not #P-hard.
Using (Shape))-(Shape}), one can check that (C, D) satisfies (Shape )-(Shapes). Therefore, by Lemma
R4 and Lemma R, (C,®) must also satisfy (Shapey)-(Shapeg). Since (C,D) is built from (F,D), we
have the latter must satisfy the following conditions:

(Shapé,): % -H is unitary: (H; ., H;,) = (H,;,H, ;) =0 for all i # j € [h];

(Shapef): DY = Dgl ) forall x € I;

(Shapéj;): For every r € [N — 1], there exist two diagonal matrices: KI"l € C*** and LI"l € Ch*".
The norm of every diagonal entry in LI is either 0 or 1. We have

DI =KoL, for any r e [N —1].
Moreover, for any r € [N — 1],

Kl=0 < LM=0 and LIM#£0 = ZJie] LI'=1.

(]
In particular, (Shapel) means by setting

K~ plo

; (1) and LE-O} =1, forallie [s]and je€ [h].

we have DI% = K0l @ L%, where L% is the h x h identity matrix. By (73) in (Shape}), every entry of
K9 is a positive integer.

13.3 Step 2.4

Suppose (F,®) satisfies conditions (Shape,)-(Shapeg;). By (Shape,), we have F = M ® H, where M is
the s x s matrix of rank 1: M; ; = k;k; for all ¢,j € [s].
We now decompose EVAL(F,®) into two problems EVAL(M, R) and EVAL(H, £), where

R = {K[O]7 .. ,K[N—l}}7 and £ = {L[O]7 o ,L[N_l}},
The proof of the following lemma is essentially the same as the one of Lemma IO

Lemma 13.5. EVAL(F,®) = EVAL(H, £).

101



13.4 Step 2.5

We normalize the matrix H, in the same way we did for the bipartite case, to obtain a new pair that
1). satisfies conditions (U])-(U}); and 2). is polynomial-time equivalent to EVAL(H, L).

14 Proofs of Theorem and Theorem

Let ((M,N),F,®) be a triple that satisfies (U;)-(U}). We prove Theorem and in this section.
We first prove that, if F does not satisfy the group condition (GC), then EVAL(F,®) is #P-hard.
This is done by applying Lemma [0.1] (for the bipartite case) to the bipartisation C of F:

Lemma 14.1. Let ((M,N),F,D) be a triple that satisfies conditions (U;)-(U}), then either the matric
F satisfies the group condition (GC), or EVAL(F,®) is #P-hard.

Proof. Suppose EVAL(F,®) is not #P-hard.
Let C and € = {E[O}, ...,EINV _1]} denote the bipartisations of F and ©, respectively:

C—<F 0>, and E —<0 pir ) - forall € [0: N —1].

By using (Uj)-(U}), one can show that ((M, N), C, €) satisfies (U )-(Uy). Furthermore, by Lemma[13.4]
we have EVAL(C, ¢) < EVAL(F,®) and thus, EVAL(C, €) is also not #P-hard. It then follows from
Lemma [0.1] that F satisfies the group condition (GC). O

14.1 Proof of Theorem

We prove Theorem [6.3] again, by using C and €: the bipartisations of F and ©, respectively.

Suppose EVAL(F,®) is not #P-hard. On the one hand, EVAL(C, €¢) < EVAL(F,®) and EVAL(C, €)
is also not #P-hard. On the other hand, ((M, N), C, &) satisfies conditions (U )-(Uy). As a result, by
Theorem 53] & must satisfy (Us): Every entry of EIl| r € [N — 1], is either 0 or a power of wy. It then
follows directly that every entry of DIl r ¢ [N — 1], is either 0 or a power of wy.

14.2 Proof of Theorem

In this section, we prove Theorem

However, we can not simply reduce it, using pair (C, &), to the bipartite case (Theorem [5.4]). The
reason is because, in Theorem [6.4] we are only allowed to permute the rows and columns symmetrically,
while in Theorem [5.4] one can use two different permutations to permute the rows and columns. But
as we will see below, for most of the lemmas we need here, their proofs are exactly the same as those
for the bipartite case. The only exception is the counterpart of Lemma [9.5] in which we have to bring
in the generalized Fourier matrices (see Section 4.3 for the definition).

Suppose F satisfies (GC) (otherwise we already know that EVAL(F, D) is #P-hard).

We let F'® denote the set of row vectors {F; .} of F and F'“ denote the set of column vectors {F,;}
of F. Since F satisfies (GC), by Property 0.1}, both F and F are finite Abelian groups of order m,
under the Hadamard product.

We start the proof by proving a symmetric version of Lemma [9.4] stating that when M = pq and
ged(p,q) = 1 (note that p and g are not necessarily primes), F (after an appropriate permutation) is
the tensor product of two smaller discrete unitary matrices, both of which satisfy the group condition.
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Lemma 14.2. Let F € C"™*™ be a symmetric M -discrete unitary matriz that satisfies (GC). Moreover,
M =pq, p,q > 1 and ged(p,q) = 1. Then there is a permutation IL: [0 : m — 1] — [0 : m — 1] such that

Fun=F @F",

where F' is a symmetric p-discrete unitary matriz, F" is a symmetric q-discrete unitary matriz, and
both of them satisfy (GC).

Proof. The proof is almost the same as the one of Lemma The only thing to notice is that, as F is
symmetric, the two correspondences f, g that we defined in the proof of Lemma [0.4], from [0 : m — 1] to
[0:m' —1] x [0:m” — 1], are exactly the same. As a result, the row permutation II and the column
permutation ¥ that we apply on F are the same. O

As a result, we only need to deal with the case when M = p? is a prime power.

Lemma 14.3. Let F € C"™*"™ be a symmetric M -discrete unitary matriz that satisfies (GC). Moreover
M = p? is a prime power, p # 2, and 8 > 1. Then there must exist an integer k € [0: m — 1] such that
Fir= w?\[j’k and p{ oy -

@,

Proof. For i,j € [0: m — 1], we let o; ; denote the integer in [0 : M — 1] such that F; ; = w,,”.
Assume the lemma is not true, that is, p|ay; for all k. Since F is M-discrete unitary, there must
exist ¢ # j € [0 : m — 1] such that p{ a; ;. Without loss of generality, we assume p{as1 = aq 2.
As F satisfies (GC), there must exist a k € [0 : m — 1] such that Fy, , = Fy , o Fg .. However,

Qg k a1, 1ta2 2+2a0 2
Wyt = Fep=Fipbog = Fp1Fpo = Frilo 1 F1olbhe = wy, ,

and o = 1,1 + @22 + 201 2 (mod M) implies that 0 = 0+ 0+ 2y 2 (mod p). Since p # 2 and p{ a2
we get a contradiction. O

The next lemma is the symmetric version of Lemma showing that when there exists a diagonal
entry Fjj such that p { apk, then F is the tensor product of a Fourier matrix and a discrete unitary
matrix. Note that this lemma also applies to the case when p = 2. So the only case left is when p = 2
but 2|a;; for all i € [0:m —1].

Lemma 14.4. Let F € C"™*™ be a symmetric M -discrete unitary matriz that satisfies (GC). Moreover,
M = p® is a prime power. If there exists a k € [0 : m — 1] such that Fi ), = w§; and p 1 «, then one can
find a permutation II such that

Fin=Fuma®F,

where ¥’ is a symmetric M'-discrete unitary matriz, M' = p? for some ' < 3, and ¥’ satisfies (GC).

Proof. The proof is exactly the same as the one of Lemma by setting a = k and b = k. The only
thing to notice is that, as F is symmetric, the two correspondences f and g that we defined in the proof
of Lemma are the same. As a result, the row permutation II and the column permutation ¥ that
we apply on F are the same. Also note that, since Fj, ;, = wf;, (G3]) becomes

G(m,m%(yl,yz) = wg/flyl ) G(O,xg),(O,yz)‘

This explains why we need to use Fourier matrix F s, here. O

Finally, we deal with the case when p =2 and 2|, ; for all i € [0 : m — 1].
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Lemma 14.5. Let F € C"™*™ be a symmetric M -discrete unitary matriz that satisfies condition (GC).
Moreover, M = 27 and 2| ;; for alli € [0 : m — 1]. Then one can find a permutation 11 together with
a symmetric non-degenerate matric W in Zﬁ;z (see Section 4.3 for definition) such that

Frin=Fuw®F,
where ¥’ is a symmetric M'-discrete unitary matriz, M' = 2°" for some ' < 3, and ¥’ satisfies (GC).

Proof. By Property [0.2] there exist two integers a # b such that F,, = F}, , = wy. Let F, , = w® and
Fyp = w®. The assumption of the lemma implies that 2 | o, ap.
We let S%* denote the following subset of F:

S“’b:{uEFR|ua:ub:1}.

It is easy to see that S*’ is a subgroup of F. On the other hand, let S¢ denote the subgroup of FF
that is generated by F, ., and S denote the subgroup generated by Fy .

S ={(Fu)’ (Fo)ts .o, (Fa)™™1} and  S° = {(Fp.)%, (Fp.)ts .o, (Fp) M)

We have |S%| = |S®| = M, because Fop = wy. It is clear that (uj,uz,u3) — u; oup o ug is a group
homomorphism from S* @ S® @ S%° to FE. We now prove that it is a surjective group isomorphism.
Toward this end, we first note that the matrix W, where

(ag 1
W_<1 Ozb>’

is non-degenerate. This follows from Lemma [6.1] since det(W) = agap — 1 is odd.
First, we show that (uj,us,us3) — u; o ug o ug is surjective. This is because for any u € FE there
exist integers ki and ko such that (since W is non-degenerate, by Lemma [6.1] x — Wx is a bijection)

Uy = Fr 'sz aaki+ke

= wyp and wup = Fk1 Fk2 k1+°"’k2

bbh — WM

and thus, uo Fa « O Fk2 € 8%t Tt then follows that u = Fk1 oF, 2 o ug for some uz € S%°.
Second, we show that it is injective. Suppose this is not true Then there exist ki1, ko, k), Ky € Zr,
and u,u’ € S such that (ki, k2,u) # (K}, k5, u’) but

(Fa7*)k1 ° (Fb,*)k2 ou= (Fa7*)k/1 o (Fb,*)lCé ou'.

If k1 = K} and ko = k), then u = u/, which contradicts with our assumption. Therefore, we may assume
that £ = (¢1,02) = (k1 — ki, ko — k5)T # 0. By restricting on the a'® and b!" entries, we get W£ = 0.
This contradicts with the fact that W is non-degenerate.

Now we know that (uy,us, uz) — uj o up o u3 is a group isomorphism from S® @ S° @ S%* to FE.
As a result, |S*?| = m/M? which we denote by n. Let S** = {vy = 1,v1,...,v,_1}, then there exists
a one-to-one correspondence f from [0:m —1]to [0: M —1] x [0: M — 1] x [0:n —1], f(2) = (f1(i),
fa(i), f3(i)), such that

Fi,.= (Fa,*)fl(i) o (Fb7*)f2(i) oV, forallie[0:m—1]. (101)
Since F is symmetric, this also implies that

F. ;= (Fo)'9 o (F )20 ovy ), forall je0:m—1]. (102)
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Note that f(a) = (1,0,0) and f(b) = (0,1,0).

Finally we permute the rows and columns of F to obtain a new matrix G. For convenience, we use
(z1,22,23) and (y1,¥y2,y3), where x1,z2,y1,y2 € [0 : M — 1] and z3,y3 € [0 : n — 1], to index the rows
and columns of G, respectively. We permute F using II(zy, x2,23) = f~ (21, 2, 23):

Glar 02,09, (v1,92:08) = FTl(@1 02,20 M(w1,02.,00)- (103)
Then by (I0I)) and (I02),
G oy a.03)x = (G1,00)4)" ©(G0,1,04) © Go025)«  and
G yrmows) = (G 1,00))7" © (G (0,1,0))" © G (0,0,45)-
As a result,
Goraa,m),y1.2.3) = (G100 w1v200) " (G000, 132.80) 7~ G0.0,25),(01.92.90)-

We analyze the three factors. First, we have G ) is equal to

Y1,Y2,Y3)

_ Y2 _, Qay1ty2
(G1,00.(1,00)"  (G(100).0,1.0)" - G(1,00).005) = Forea " Fipy " Vysa =Wap" 7,

where vy, , denotes the at? entry of vys. Similarly, G(0,1,0),(y1,y2.y5) = wﬁ}ﬁabm. Second,

G (0,0,23),(1,92.03) = (G(0,0,23),(1,0,0))"" * (G(0,0,23),(0,1,0))”* * G(0,0,23),(0,0,3)-
By (I03)) and (I02) we have
G(0,0,2),(1,0,0) = F11(0,0,2),11(1,0,0) = F11(0,0,2),a -

Then by (I01), Fi1(0,0,2),0 = Vz,o = 1. Similarly, we have G ¢ 0.4),(0,1,0) = Vz,p = 1. Therefore,

_ ,QaT1Y1+T1Y2+T2y1+opT2y2 |
G (a1,02,03), (y1.02,53) = WM G (0,0,25),(0,0,y3)-

In other words, we have
G = Fuw ®F', where W is non-degenerate and F' = (FZ-’J = G(O,O,i),(o,o,j)) is symmetric.

The only thing left is to show F’ is discrete unitary and satisfies (GC). F’ satisfies (GC) because S%°
is a group and thus, closed under the Hadamard product. To see F’ is discrete unitary, we have

0 = (G(0,0,),» G(0,0,)),5) = M?. <F;*,F;*>, forany i #j€[0:n—1].
Since F’ is symmetric, columns F ; and F, ; are also orthogonal. O

Theorem then follows from Lemma [14.3] Lemma [I44] and Lemma [I4.5]

15 Proofs of Theorem and Theorem

Suppose (M, N),F, D, (d,W, p,t, Q,K)) satisfies (R’). We first prove Theorem [6.5t either EVAL(F, D)
is #P-hard or © satisfies conditions (£}) and (L£5).

Suppose EVAL(F, D) is not #P-hard. We use (C, €) to denote the bipartisation of (F,®). The plan
is to show that (C, €) (together with appropriate p’, t" and Q') satisfies condition (R).
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To see this is the case we permute C and € using the following permutation . We index the rows
(and columns) of C and El'l using {0,1} x Z2 x Zg. We set 3(1,y) = (1,y) for all y € Z3 x Zg (that
is, 3 fixes pointwise the second half of the rows and columns), and ¥(0,x) = (0,x’), where x’ satisfies

(i, [i] 1 (i, G :
20,1 = Wii%g1 + Wa1%042, Toi2 = Wis%o;1 + Wasty, 0, foralli€ [g],

and
T145 = kij -2y, forallie[s]andje [t].
See (R') for definition of these symbols.

Before proving properties of Cx 5 and €y, we need to verify that ¥ is indeed a permutation. This
follows from the fact that Wl for every i € [g], is non-degenerate over Zg,, and k; ;, for all i € [s] and
J € [ti], satisfies gcd (ki j,qi ;) = 1 (so the x" above is unique). We use Xy to denote the (0, *)-part of ¥
and I to denote the identity map:

¥(0,x) = (0,%0(x)) = (0,x), forall x € Z3 x Zg.

Now can write Cyx x; and €y = {E[0}7 L ,E[EN_H} as
_( 0  Fsor w_ (DI o o
Cyy = <FI,EO 0 ) and Ey' = 0 0 pirl |- forallr € [0: N —1]. (104)

We make the following observations:
Observation 1: EVAL(Cy 3, €x) = EVAL(C, €) < EVAL(F, D), thus EVAL(Csy 5, €x) is not #P-hard;

Observation 2: Fy, ; satisfies (letting x" = ¥o(x))

(@h.51 %5.2) WIH-(y0,i,1 y0,i,2) T kijay ;Y16
(FZOJ)x,y = FEo(X),y =y = H Wy, H Wa;,;

(3

i€lg] i€[s],j€[t]
_ Z0,1,190,i,1+20,i,2Y0,i,2 T1,4,5Y1,i,5
i€[g] i€[s],j€[ti]

By Observation 2, it is easy to show that Cy x, and €y (together with appropriate ¢, t’, Q) satisfy
condition (R). Since EVAL(Cy yx, €y;), by Observation 1, is not #P-hard, it follows from Theorem
and (I04) that DU, for all 7, satisfy conditions (Ls) and (£3). This proves Theorem 5] since (£}) and
(L4) follow directly from (L2) and (L3), respectively.

We continue to prove Theorem Suppose EVAL(F,®) is not #P-hard, then the argument above
shows that (Cy x, €x) (with appropriate p’,t’, Q') satisfies both (R) and (£). Since by Observation 1,
EVAL(Csx 5, €x) is not #P-hard, by Theorem 5.6 and (I04]), D"} satisfies (Dy) and (Dy) for all 7 € Z.

Condition (D) follows directly from (D). To prove (D)), we let F/ denote Fy 1.

By (D4), for any r € Z, k € [s] and a € I‘lrif,;, there exist b € Zq, and o € Zy such that

-D,[:}, for all x € I',, where F-~ =TF

1 _ plrl -
Wy B =D B So(B)

x+a

Also note that Yy works within each prime factor, so there exists a b’ € qu such that EO(B) = b , and
(Dj) follows.
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16 Tractability: Proof of Theorem

In this section, we prove Theorem The proof is almost the same as the one of Theorem (.7 for the
bipartite case.

Let ((M,N),F,D,(d, W,p,t,Q,K)) be a tuple that satisfies (R'),(£") and (D’). The proof has the
following two steps. In the first step, we use (R'), (£’) and (D’) to decompose the problem EVAL(F, D)
into a collection of s subproblems (Recall s is the length of the sequence p):

EVAL(F, oM EVALFE, Dk,

such that, if every EVAL(FU Dl i € [s], is tractable, then EVAL(F,®) is also tractable. In the second
step, we reduce EVAL(FU, ©[), for every i € [s], to problem EVAL(7) for some prime power m. Recall
that EVAL(7) is the following problem: Given a quadratic polynomial f(x1,...,x,) over Z,, compute

Zify = X e,

x17---7x7L€Z7\'

By Theorem [[2.1] we have for any prime power 7, problem EVAL(7) can be solved in polynomial time.
As a result, EVAL(F, D) is tractable for all i € [s], and so is EVAL(F, D).

16.1 Step 1

Fix i to be any index in [s]. We start by defining Fl/ and ®U, R
For any x € Zg,, we use X to denote the vector y € Za X Lo = szl Zq; such that

yi=xandy; =0 for all j #4, wherey = (y1,...,ys) and y; Gqu.

First, we define Flil, Fll is an m; X m; symmetric matrix, where m; = ]Zqi\. We use Z(h' to index
the rows and columns of FlIl. Then

F,[f]y = Fxy, forall x,y e Zqi.

X,y
By condition (Rj%), it is easy to see that F, I it satisfy
F=Flg. oFk. (105)
Next, we define D11, @ = {D[i’o], ..., DN _1}} is a sequence of m; x m; diagonal matrices: D0l

is the m; x m; identity matrix; and for every r € [N — 1], the x* entry, where x € qu of DIl ig
DX =D& -
By condition (D}), we have
D' =DM g . @DB forallre[0: N —1]. (106)
It then follows from (I05)) and (106 that
Zr o(G) = Zpp o (G) X ... X Zp 5 (G), for all undirected graphs G.
As a result, we have the following lemma:

Lemma 16.1. If EVAL(F DU is tractable for all i € [s], then EVAL(F,D) is also tractable.
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of r

We can use condition (Dj) to prove the following lemma about the matrix D7) (recall Z is the set
€ [N — 1] such that DIl #£ 0, and T,.; is a coset in Zg, for every i € [s], such that, T, = [Licpg Iri):

Lemma 16.2. Let r € Z. Then for any i € [s], a € TH2, there exist b € ZCM and o € Zn such that

e

plirl D)[Zﬂ“] =uw - Ft[i}x’ forallx € T'y;.

x+a

Proof. By the definition of DI*"), we have

X D[T] — DM . DM

[i,r] [ir] _ plr]
D -Dx"' =D ext,(x)+a ext,(x)"

x+a ext,(x+a) ext,(x)

Then by condition (D}), we know there exist b € Zg, and o € Zy such that

D[ivr] . D)[?T} — w?\ff . F

_ (4]
xta b ext, (x) — why - Fb7x, for all x € I'; 4,

and the lemma is proven. O

16.

2 Step 2

Now we let EVAL(F,®) denote one of the subproblems EVAL(F[!, D) we defined in the last step. By

con
use

(A1

(73

(4

ditions (R'), (£'), (D’) and Lemma [[6.2] we summarize the properties of (F,®) as follows. We will
these properties to show that EVAL(F,D) is tractable.

) There exist a prime p and a sequence ™ = (my > w9 > ... > 7p,) of powers of p. F is an m x m
symmetric matrix, where m = mymo...m,. We let m denote m; and use Zx = Zy, X ... X Zg, to
index the rows and columns of F. We also let 7 denote the set of pairs (i, ) € [h] x [h] such that
m; = mj. Then there exist ¢; j € Zy, = Zy, for all (i, j) € T such that ¢; ; = ¢;; and

Fyy = H w0 for all x = (21,...,21),Y = (Y152 Yn) € Lo,
(4,5)€T

where we use z; € Zy, to denote the i" entry of x (The reason we express F in this very general
form is to unify the proofs for the two slightly different cases: (FIY,®[1)) and (FII, ®Ul), i > 2);

) D= {D[O], ...,DIV _1}} is a sequence of N m x m diagonal matrices, for some positive integer N
with 7| N. DI is the identity matrix; and every diagonal entry of DU, » € [N — 1], is either 0 or
a power of wy. We also use Z, to index the diagonal entries of Dl

) For every r € [0: N — 1], we let I', denote the set of x € Zx such that DY # 0, and let Z denote
the set of 7 such that ', # (). For every r € Z, T, is a coset in Z,. Moreover, for every r € Z,
there exists a vector al’l € I, such that DLE]T] =1

) For all r € Z and a € T, there exist b € Z, and a € Zy such that
D)@ra . D,[:} =wy - Fpx, forallxel,.

Now let G be an undirected graph. Below we will reduce the computation of Zg 5(G) to EVAL(T),

where T=wif p#2, and 7T =27 if p= 2.
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Given a € Zy, for some i € [h], we use a to denote an element in Zz such that @ = a (mod m;). For
definiteness we can choose « itself if we consider a to be an integer between 0 and 7; — 1.

Let G = (V,E). We let V,., r € [0 : N — 1], denote the set of vertices in V' whose degree is r mod N.
We further decompose E into U;<jc(o.n—1)Eij, where E; ; contains the edges between V; and V;.

It is clear that if V,. # () for some r ¢ Z, then Zg »(G) is trivially 0. As a result, we assume V,. = ()
for all » ¢ Z. In this case, we have

Zro(G) =) [H <H D,[Zl)

I3 reZ \veV;

I | I B ||

r<r’'€eZ \we€kE, .,

where the sum ranges over all assignments £ = (&, : V., — I', | r € Z) such that £(v) = x,,.
Next by using Lemma [I2.3] we know for every r € Z, there exist a positive integer s, and an s, X h
matrix A"l over Z~ which gives us a uniform map 7"! (see Lemma [[2.3] for definition) from ZZ to Ty

fyim (x) = (xALT]Z +HZ[-T} (mod m)) , forall i € [h].

Recall that for every € Z, al"l is a vector in T, such that DLE]T] = 1. Thus, DLT[}T] 0 = 1. Because A"
is uniform, to compute Zg 5(G), it suffices to compute

Z H<HDL@]("“))] H H Fo i)t x0) | |

(xy) LrezZ \wveV; r<r'€Z \wek, .

where the sum is over
(xp €ZY :veEV,,rEZ)= H(Zf{)lwl-
rez

If we can show for every r € Z, there is a quadratic polynomial f') over Z, such that,

pf}, o= Wi for all x € 7 (107)

and for all » <1’ € Z, there is a quadratic polynomial f '] over Z-, such that,

[7“»7“/] ., /
Foipontipy = @h Y, forall x € Z and y € ZY', (108)

then we can reduce the computation of Zg 5(G) to EVAL(7T) and finish the proof.
First, we prove the existence of the quadratic polynomial f [r.r ], By condition (F}), the following
function f"'1 satisfies (I0R):

iy = Y (;) ey n )y = Y @y (%) (XAKH@T]) (yALT,;] +3£-T,]>-
(et N ' Z

Note that (i,7) € 7 implies that m; = 7; and thus,

1), 7 Ny) € Zn, = L,

The presence of 7/m; is crucial to be able to substitute the mod m; expressions for %M (x) and 7][” (y),

as if they were mod 7 expressions. It is clear that f ('] is a quadratic polynomial over Z.

109



Next we prove the existence of the quadratic polynomial f "], Let us fix r to be an index in Z. We
use €;, i € [s;], to denote the vector in ZZ" whose i" entry is 1 and all other entries are 0. By (F}), we
know for every i € [s,], there exist o; € Zy and b; = (b; 1, ..., bi,n) € Zg, where b; j € Zy;, such that

T
Dl

o big vy (%) o
= wy - Wr; , forallx e Z2.

JEh]

"
Dl xte

We have this equation because "(x + e;) — 4["/(x) is a vector in Z, that is independent of x.
By the same argument we used in the proof of Theorem (.71 (([@0) and (91]), more exactly), one can

show that w}/ must be a power of wz, for all i € [s,]. As a result, there exists 3; € Zz such that

. T s bl e
DE{[}T](X-i-ei) ' DE{[LJ(X) =wp - [[wn™™ Y, forallxe 2z (109)
Jj€lh]

Again, by the argument we used in the proof of Theorem [5.7, every non-zero entry of DIl must be a
power of wx. Therefore, there does exist a function fI'l from ZZ to Zz that satisfies (I07). To see f [r]
is a quadratic polynomial, by (I09), we have for every i € [s,],

x4+ e) — f(x) = 5; + Z <E] . <%> (XALT}J +a§“>> , forallie[s,]and x € Z,
Jjelh]

which is an affine linear form of x with all coefficients from Z.
By using Lemma 124 and Lemma 25, we can prove that f' is a quadratic polynomial over Z=,
and this finishes the reduction from EVAL(F,®) to EVAL(7).
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