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9 Entropy of Random Walk Range

Itai Benjamini∗ Gady Kozma∗ Ariel Yadin∗ Amir Yehudayoff†

Abstract

We study the entropy of the set traced by an n-step random walk on Z
d. We

show that for d ≥ 3, the entropy is of order n. For d = 2, the entropy is of order

n/ log2 n. These values are essentially governed by the size of the boundary of the

trace.

1 Introduction

A natural observable of a random walk is its range, the set of positions it visited. In

this note we study the entropy of this range – roughly, how many bits of information

are needed in order to describe it. We calculate the entropy of the range of a random

walk on Z
d, d ∈ N, up to constant factors.

1.1 Main Result

Let S(0), . . . , S(n) be a simple symmetric nearest-neighbor random walk on Z
d, d ∈ N,

of length n. Define the range of the random walk to be

R(n) = {S(0), S(1), . . . , S(n)} ,
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the set of vertices visited by the walk.

In this note we study the entropy of R(n) as a function of n (for formal definition

of entropy, see Section 2.1). We calculate the value of the entropy, H(R(n)), up to

constants, precisely:

Theorem 1. For d = 2 there exist constants c2, C2 > 0 such that for all n ∈ N,

c2
n

log2(n)
≤ H(R(n)) ≤ C2

n

log2(n)
,

and for d ≥ 3 there exist constants cd, Cd > 0 such that for all n ∈ N,

cdn ≤ H(R(n)) ≤ Cdn.

The proof of Theorem 1 is organized as follows: we first prove the lower bound which

is easier and follows directly from estimates on the size of the boundary of the range;

in two dimensions the boundary of the range of the walk is of order n/ log2 n, and in

higher dimensions it is linear in n. This is done in Section 2.2. We then show the upper

bound which requires a certain renormalization argument. An interesting feature of the

procedure is that at each step of the renormalization process, the number of “active”

boxes is not determined by examining the previous renormalization step, but rather

globally. This is done in Section 2.3.

The one dimensional case is not difficult.

Exercise. In the case d = 1, there exist constants c1, C1 > 0 such that for all n ∈ N,

c1 log n ≤ H(R(n)) ≤ C1 log n.

Acknowledgements. We thank Eric Shellef for useful discussions. We also thank

Elchanan Mossel for his help with the construction in Section 3.1.

2 Entropy of Random Walk

2.1 Entropy

Here we provide some background on entropy. Let X be a random variable taking values

in an arbitrary finite set Ω. For x ∈ Ω, let p(x) be the probability that X = x. The
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entropy of X is defined as H(X) = E[− log p(X)] (all logarithms in this note are base

2). For two random variables X and Y , the conditional entropy of X conditioned on Y

is defined as H(X|Y ) = H(X, Y ) − H(Y ).

Proposition 2. The following relations hold:

(i). H(X) ≤ log |Ω|.

(ii). For every function f , H(f(X)|X) = 0.

(iii). H(X) ≤ H(Y ) + H(X|Y ).

For more information on entropy and for proofs of these properties see, e.g., [1, Chapter

2].

2.2 Lower Bound

Notation. By Pz and Ez we denote the probability measure and expectation of the

random walk conditioning on S(0) = z. We denote P = P0 and E = E0. Let z, w ∈ Z
d

and A ⊂ Z
d. Denote by dist(z, w) the graph distance between z and w in Z

d. Denote

dist(z, A) = inf {dist(z, a) : a ∈ A}. We write z ∼ w if dist(z, w) = 1, and z ∼ A if

dist(z, A) = 1. The inner boundary of A is defined as

∂A =
{

z ∈ A : z ∼ Z
d \ A

}

.

Let pn(A) = P[R(n) = A].

Lemma 3. For every A ⊂ Z
d,

pn(A) ≤
(

1 − 1

2d

)|∂A|−1

.

Proof. Let T0 = 0 and define inductively for j ≥ 1,

Tj = inf {t ≥ Tj−1 + 1 : S(t) ∈ ∂A} .

By the strong Markov property, for any j < |∂A|,

P
[

S(Tj + 1) 6∈ A
∣

∣ S(0), . . . , S(Tj), Tj < ∞
]

≥ 1

2d
.
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The event A ⊆ R(n) implies that Tj ≤ n for all j ≤ |∂A|. The event R(n) ⊆ A implies

that S(Tj + 1) ∈ A for all j ≤ |∂A| − 1. Let Ej be the event that S(Tj + 1) ∈ A and

Tj+1 < ∞. Thus,

P [R(n) = A] ≤ P

[

|∂A|−1
⋂

j=1

Ej

]

≤
|∂A|−1
∏

j=1

P
[

Ej

∣

∣ E1, . . . , Ej−1

]

≤
(

1 − 1

2d

)|∂A|−1

.

Lemma 3 shows that in order to lower bound the entropy of the random walk trace it

is enough to lower bound the expected value of the size of the inner boundary of the

random walk trace.

Corollary 4. H(R(n)) ≥ − log
(

1 − 1
2d

)

· E[|∂R(n)| − 1].

The following lemma gives the lower bound for the entropy of the random walk trace.

Lemma 5. For any d ≥ 2, there exists a constant cd > 0 such that for all n ∈ N,

H(R(n)) ≥
{

c2
n

log2(n)
d = 2,

cdn d ≥ 3.

Proof. By Corollary 4, it suffices to show that

E[|∂R(n)|] ≥
{

c2
n

log2(n)
d = 2,

cdn d ≥ 3,

for some constants cd > 0. For z ∈ Z
d, define Tz = inf {t ≥ 0 : S(t) = z}. By

Lemma 19.1 of [4], and by the transience of the random walk for d ≥ 3, there exist

constants cd > 0 such that for any z ∼ w ∈ Z
d,

Pz[Tw > n] ≥
{

c2
log n

d = 2,

cd d ≥ 3.

Denote the right-hand side of the above equality by fd(n). Using the strong Markov

property at time Tz, for any z ∼ w ∈ Z
d,

P [z ∈ ∂R(n)] ≥ P [Tz ≤ n , Tw > n] ≥ fd(n) P [Tz ≤ n] .
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This proves the lemma, since

E[|∂R(n)|] ≥ fd(n)
∑

z∈Zd

P[Tz ≤ n] = fd(n) E[|R(n)|],

and since

E[|R(n)|] ≥
{

c′2 · n
log n

d = 2,

c′dn d ≥ 3,

for some constants c′d > 0 (see, e.g., Theorem 20.1 in [4]).

2.3 Upper Bound

We now show that the lower bounds on the entropy of the random walk trace given by

Lemma 5 are correct up to a constant. The transient case is much simpler than the

two-dimensional case.

Proposition 6. For d ≥ 3, there exists a constant Cd > 0 such that for all n ∈ N,

H(R(n)) ≤ Cd · n.

Proof. Let Ω =
{

A ⊂ Z
d : pn(A) > 0

}

. By clause (i) of Proposition 2 it suffices to

prove that |Ω| ≤ (2d)n. This follows from the fact that the number of possible n-step

trajectories in Z
d starting at 0 is (2d)n.

2.4 Two Dimensions

We now turn to the two-dimensional case, which is more elaborate.

For z ∈ Z
2, we denote by ‖z‖ the L2-norm of z. Denote

Tz,r = inf {t ≥ 0 : ‖S(t) − z‖ ≤ r} ,

and denote Tr = T~0,r. Also denote

τz,r = inf {t ≥ 0 : ‖S(t) − z‖ ≥ r} ,

and denote τr = τ~0,r.
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2.4.1 Probability Estimates

We begin with some classical probability estimates regarding the random walk on Z
2,

which we include for the sake of completeness.

Lemma 7. There exists a constant C > 0 such that for all n ∈ N,

E

[

max
0≤k≤n

‖S(k)‖2
]

≤ Cn.

Proof. Let S(k) = (X(k), Y (k)), so ‖S(k)‖2 = |X(k)|2 + |Y (k)|2. Doob’s maximal

inequality (see, e.g., [5, Chapter II]) on the martingale X(k) tells us that

E

[

max
0≤k≤n

|X(k)|2
]

≤ 4 E
[

|X(n)|2
]

.

The martingale |X(k)|2−k/2 tells us that E [|X(n)|2] = n/2, which completes the proof,

since X(k) and Y (k) have the same distribution.

Lemma 8. There exist constants c1, c2 > 0 such that for all n ∈ N and λ > 0,

P

[

max
1≤j≤n

‖S(j)‖ ≥ λ
]

≤ c1 · exp

(

−c2
λ2

n

)

.

Proof. This is a consequence of Theorem 2.13 in [4].

Lemma 9. There exists a constant c > 0 such that the following holds. Let T = T~0,0.

Then, for z ∈ Z
2 and r ≥ 2 ‖z‖,

Pz [T ≤ τr] ≥
c log(r/ ‖z‖)

log r
.

Proof. Let a : Z
2 → [0,∞) be the potential kernel defined in Chapter 1.6 of [2]. That is,

a(0) = 0, a(·) is harmonic in Z
2 \ {0}, and there exist constants c1, c2 > 0 such that for

any z ∈ Z
2 \ {0}, a(z) = c1 log ‖z‖ + c2 + O(‖z‖−2). Since a(·) is harmonic in Z

2 \ {0},
if r > ‖z‖ then a(S(t)) is a martingale up to time T ′ = min {T, τr}. Thus,

a(z) = (1 − Pz [T ≤ τr]) · Ez

[

a(S(T ′))
∣

∣ T > τr

]

,

which implies

Pz [T ≤ τr] ≥ 1 − c1 log ‖z‖ + c2 + O(‖z‖−2)

c1 log r + c2 + O(r−2)
.
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We also need an upper bound,

Lemma 10. There exists a constant C > 0 such that for every z ∈ Z
2 and r, R such

that 1 ≤ r ≤ 1
2
‖z‖ ≤ 1

4
R,

Pz [Tr ≤ τR] ≤ C · log(R/ ‖z‖)
log(R/r)

.

Proof. Using the potential kernel from the proof of Lemma 9 with the stopping time

min {Tr, τR}, there exists a constant c1 > 0 such that

Pz [Tr ≤ τR] ≤ c1(log R − log ‖z‖) + O(R−1 + ‖z‖−2)

c1(log R − log r) + O(r−2)

≤ C · log(R/ ‖z‖)
log(R/r)

,

for some constant C > 0.

Lemma 11. For any 0 < α < 1, there exists a constant C > 0 such that the following

holds. Let z ∈ Z
2 such that ‖z‖ ≥ 1/α. Then for any n ∈ N such that n > ‖z‖4,

Pz

[

Tα‖z‖ ≥ n
]

≤ C

log(n/ ‖z‖4)
.

Proof. By adjusting the constant, we can assume without loss of generality that n/ ‖z‖4

is large enough. Let r = α ‖z‖ and R = n1/4. Using the potential kernel from the proof

of Lemma 9 with the stopping time T ′ = min {Tr, τR},

Pz [Tr ≥ τR] ≤ c1 log(‖z‖ /r) + O(r−1)

c1 log(R/r) + O(r−1)
≤ C1

log(n/ ‖z‖4)
, (2.1)

for some constant C1 = C1(α) > 0 independent of z and n. Also, considering the

martingale ‖S(t)‖2 − t up to time τR shows that Ez [τR] ≤ (R + 1)2. Thus, by Markov’s

inequality,

Pz [τR > n] ≤ 4√
n

. (2.2)

(2.1) and (2.2) together prove the proposition, since

Pz [Tr ≥ n] ≤ Pz [Tr ≥ τR] + Pz [τR > n] .
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Lemma 12. There exists a constant C > 0 such that for all n ∈ N and 1 ≤ r ≤ 1
2

√
n

the following holds. Let z ∈ Z
2 be such that ‖z‖ ≥ √

n. Then,

Pz[Tr ≤ n] ≤ C

log(n/r2)
.

Proof. For m ≥ 1, let Am be the event
{

τm‖z‖ < Tr ≤ τ(m+1)‖z‖ ≤ n
}

. The family {Am}
consists of pairwise disjoint events, and

Pz[Tr ≤ n] ≤
∞

∑

m=1

P[Am].

For every m ≥ 1, using the strong Markov property at time τm‖z‖,

Pz[Am] ≤ Pz[τm‖z‖ ≤ n] · max
{

Px[Tr ≤ τ(m+1)‖z‖] : m ‖z‖ ≤ ‖x‖ ≤ m ‖z‖ + 1
}

.

By Lemma 8, there exist constants C1, c2 > 0 such that

Pz[τm‖z‖ ≤ n] ≤ Pz

[

max
1≤j≤n

‖S(j)‖ ≥ m ‖z‖ − ‖z‖
]

≤ C1 exp
(

−c2m
2
)

.

By Lemma 10, for any x ∈ Z
2 such that m ‖z‖ ≤ ‖x‖ ≤ m ‖z‖ + 1,

Px[Tr ≤ τ(m+1)‖z‖] ≤
c3

log(n/r2)
,

for some constant c3 > 0. Summing over all m ≥ 1,

Pz[Tr ≤ n] ≤ c3

log(n/r2)

∞
∑

m=1

c1 exp
(

−c2 · m2
)

.

2.4.2 Upper bound in two dimensions

For z ∈ Z
2 and k ∈ N, let Q(z, k) = {z + (j, j′) : −k ≤ j, j′ ≤ k}; i.e., Q(z, k) is the

square of side length 2k + 1 centered at z. For a path x(0), x(1), . . . , x(n) in Z
2, we

denote by x[s, t] the path x(s), x(s + 1), . . . , x(t).

Lemma 13. There exist constants c, C > 0 such that for all n, k ∈ N such that k ≤ n1/4,

and all z ∈ Z
d such that ‖z‖ ≥ 5

√
n,

P [R(n) ∩ Q(z, k) 6= ∅] ≤ C

log n
· exp

(

− c
‖z‖2

n

)

.
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Proof. Let λ = ‖z‖ − 2
√

n. Let T be the first time the walk S(·) started at 0 hits

Q(z, k). Then τλ < Tz,2k < T . By Lemmas 8 and 12,

P [R(n) ∩ Q(z, k) 6= ∅] ≤ P[τλ ≤ n] · max {Px[Tz,2k ≤ n] : λ ≤ ‖x‖ ≤ λ + 1}
≤ P

[

max
1≤j≤n

‖S(j)‖ ≥ λ
]

· c1

log n

≤ c2

log n
· exp

(

− c3
‖z‖2

n

)

,

for some constants c1, c2, c3 > 0.

Lemma 14. There exists a constant C > 0 such that the following holds. For all

n, k ∈ N such that k ≤ n1/4, and all z ∈ Z
d such that 1 ≤ ‖z‖ < 5

√
n,

P [R(n) ∩ Q(z, k) 6= ∅] ≤ C · log(10
√

n/ ‖z‖)
log n

.

Proof. By adjusting the constant, we can assume without loss of generality that ‖z‖ ≥
3k. Let Q = Q(z, k). Define σ0 = 0, and for i ≥ 1, define

σi = τ10i
√

n = inf
{

t ≥ 0 : ‖S(t)‖ ≥ 10i
√

n
}

.

The event {R(n) ∩ Q 6= ∅} is contained in the event

{S[0, σ1] ∩ Q 6= ∅} ∪
⋃

i≥1

{S[σi, σi+1] ∩ Q 6= ∅ , σi ≤ n} .

Since 3k ≤ ‖z‖ < 5
√

n, we have that the event {S[0, σ1] ∩ Q 6= ∅} implies that the

random walk started at 0 hits the ball of radius 2k around z before exiting the ball of

radius 20
√

n around z. Translating by minus z we get by Lemma 10 that there exists a

constant C1 > 0 such that

P [S[0, σ1] ∩ Q 6= ∅] ≤ P−z

[

T2k ≤ τ20
√

n

]

≤ C1 ·
log(10

√
n/ ‖z‖)

log n
.

Fix i ≥ 1. By Lemma 8,

P[σi ≤ n] ≤ P

[

max
0≤j≤n

‖S(j)‖ ≥ 10i
√

n
]

≤ C2 · exp
(

− C3 · 102i
)

,
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for some constants C2, C3 > 0. Using Lemma 10 again,

P[S[σi, σi+1] ∩ Q 6= ∅ | σi ≤ n] ≤ C4

log n
,

for some constant C4 > 0. Therefore,

P[R(n) ∩ Q 6= ∅] ≤ C1 ·
log(10

√
n/ ‖z‖)

log n
+

C2 · C4

log n

∑

i≥1

exp
(

− C3 · 102i
)

.

We have reached the main geometric lemma,

Lemma 15. There exists a constant C > 0 such that the following holds. Let n, k ∈ N,

let Q = Q(0, k) and let z ∼ Q. Then,

Pz [∂R(n) ∩ Q 6= ∅] ≤ C · log2 k

log n
.

Proof. Without loss of generality assume that log2 k ≤ log n. Define Q+ = Q(0, k + 1).

So Q+ contains the union of Q with all vertices that are adjacent to Q. Define τ0 = 0,

and inductively

σj = inf {t ≥ τj : ‖S(t)‖ ≥ 10k} ,

τj+1 = inf
{

t ≥ σj : S(t) ∈ Q+
}

.

If Q+ ⊆ R(n) then ∂R(n)∩Q = ∅. Thus, it suffices to upper bound the probability of the

event {Q+ 6⊂ R(n)}. With hindsight choose m = ⌈log k · log n⌉. Set Vj =
{

σj+1 − σj ≥
n

2m

}

and Uj = {Q+ 6⊂ R(σj)}. We prove the following inclusion of events

{

Q+ 6⊂ R(n)
}

⊆ {σ0 ≥ n/2} ∪ Um ∪
m−1
⋃

j=0

(Uj ∩ Vj). (2.3)

Assume that the event on the right-hand side of (2.3) does not occur; i.e., assume

that σ0 < n/2, that Um, and that for all 0 ≤ j ≤ m − 1, Uj ∪ Vj . Let J =

min
{

0 ≤ j ≤ m : Uj

}

. Consider the following cases:

• Case 1: J = 0. Then Q+ ⊂ R(σ0). Since σ0 < n/2, we get that Q+ ⊂ R(n).
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• Case 2: J > 0. Since we assumed that Um, we know that 1 ≤ J ≤ m. By the

assumption ∩m−1
j=0 (Uj ∪ Vj), we have that σj+1 − σj < n/2m, for all 0 ≤ j ≤ J − 1.

Since we assumed that σ0 < n/2, we get that

σJ = σ0 +

J−1
∑

j=0

σj+1 − σj < n.

But J was chosen so that UJ occurs, so Q+ ⊂ R(σJ) ⊂ R(n).

This proves (2.3).

Fix j ≥ 0. The martingale ‖S(t) − z‖2 − t shows that Ez[σj − τj | F(τj)] ≤ C1k
2 for

some constant C1 > 0. Using Markov’s inequality,

Pz

[

σj − τj ≥
n

4m

∣

∣

∣
F(τj)

]

≤ C2mk2

n
, (2.4)

for some constant C2 > 0. By Lemma 11, there exists a constant C3 > 0 such that

Pz

[

τj+1 − σj ≥
n

4m

∣

∣

∣
F(σj)

]

≤ C3

log n
. (2.5)

The two inequalities, (2.4) and (2.5), imply that

Pz

[

Vj

∣

∣ F(σj)
]

≤ C4

log n
, (2.6)

for some constant C4 > 0. Using Lemma 9, there exists a universal constant C5 > 0

such that for any x ∈ Q+,

Pz

[

x ∈ S[τj , σj ]
∣

∣ F(τj)
]

≥ C5

log k
.

Thus,

Pz[Uj ] = Pz

[

Q+ 6⊂ R(σj)
]

≤ min
{

1, |Q+| · (1 − C5/ log k)j+1
}

≤ min
{

1, C6k
2 exp(−C5(j + 1)/ log k)

}

, (2.7)
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for some constant C6 > 0. Plugging (2.4), (2.6) and (2.7) into (2.3) yields

Pz

[

Q+ 6⊂ R(n)
]

≤ Pz [σ0 ≥ n/2] + Pz [Um] +
K

∑

j=0

Pz [Uj , Vj ] +
∑

j>K

Pz [Uj , Vj]

≤ C7

(k2

n
+ n−C8 +

K
∑

j=0

1

log n
+

∑

j>K

k2 exp(−C5(j + 1)/ log k)

log n

)

≤ C9 log2 k

log n
, (2.8)

where K = ⌈4 log2 k/C5⌉ and C7, C8, C9 > 0 are constants.

Definition 16. Define Λ(k) = {(2k + 1)z : z ∈ Z
2}. The collection {Q(z, k)}z∈Λ(k)

consists of disjoint squares that cover Z
2. For k, n ∈ N and z ∈ Z

2, define I(z, k, n) to

be the indicator function of the event {∂R(n) ∩ Q(z, k) 6= ∅}. Define

M(k, n) =
∑

z∈Λ(k)

I(z, k, n),

the number of squares that intersect ∂R(n).

Lemma 17. There exists a constant C > 0 such that for every k, n ∈ N,

E [M(k, n)] ≤ C · max
{

1,
n

k2
· log2 k

log2 n

}

.

Proof. Fix k, n ∈ N. For z ∈ Z
2, the event {∂R(n) ∩ Q(z, k) 6= ∅} implies the event

{

max
0≤j≤n

‖S(j)‖ ≥ ‖z‖ −
√

2(k + 1)
}

.

We start with an a-priori bound. Using Lemma 7,

E [M(n, k)] ≤
∑

z∈Λ(k)

P

[

‖z‖ ≤ max
0≤j≤n

‖S(j)‖ +
√

2(k + 1)
]

≤ C1 · max

{

1, k−2 · E
[

max
0≤j≤n

‖S(j)‖2
]

}

≤ C2 · max
{

1,
n

k2

}

,
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for some constants C1, C2 > 0. Thus, we can assume without loss of generality that

k < k + 1 ≤ (n −√
n)1/4 ≤ n1/4.

Let

τQ(z) = inf {t ≥ 0 : S(t) ∈ Q(z, k + 1)}
and let

J(z, k, n) = 1{τQ(z)≤n−√
n} · I(z, k, n).

For all z ∈ Λ(k), a.s.

I(z, k, n) ≤ 1{n−√
n<τQ(z)≤n} + J(z, k, n).

Summing over all z ∈ Λ(k), a.s.

M(n, k) ≤ 4
√

n +
∑

z∈Λ(k)

J(z, n, k). (2.9)

By the strong Markov property at time τQ(z) and Lemma 15, there exists a constant

C3 > 0 such that a.s.

P
[

∂R(n) ∩ Q(z, k) 6= ∅
∣

∣ τQ(z) ≤ n −
√

n
]

≤ C3 ·
log2 k

log n
. (2.10)

By Lemma 14, there exists a constant C4 > 0 such that for all z ∈ Z
d with 1 ≤ ‖z‖ <

5
√

n,

P
[

τQ(z) ≤ n −
√

n
]

≤ C4 ·
log(10

√
n/ ‖z‖)

log n
,

which implies

P[J(z, k, n)] ≤ C5 ·
log2 k

log n
· log(10

√
n/ ‖z‖)

log n
, (2.11)

for some constant C5 > 0.

Denote Γ = 5
√

n/(2k + 1). Summing over all z ∈ Λ(k) such that 2 ≤ ‖z‖ < 5
√

n,
∑

z∈Λ(k)
2≤‖z‖<5

√
n

log(10
√

n/ ‖z‖) ≤
∑

x,y∈Z

2≤x2+y2<Γ2

log(2Γ/
√

x2 + y2)

≤ C6Γ
∑

2≤x≤Γ

log(2Γ/x) ≤ C7Γ
2, (2.12)
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for some constants C6, C7 > 0. Plugging (2.12) into (2.11), and summing over all

z ∈ Λ(k) such that ‖z‖ < 5
√

n, we get

∑

z∈Λ(k):‖z‖<5
√

n

P[J(z, k, n)] ≤ C8 ·
log2 k

log2 n
· n

k2
, (2.13)

for some constant C8 > 0. In addition, by Lemma 13, there exist constants C9, C10 > 0

such that for every z ∈ Λ(k) such that ‖z‖ ≥ 5
√

n,

P
[

τQ(z) ≤ n −
√

n
]

≤ C9

log n
· exp

(

− C10
‖z‖2

n

)

,

which implies, using (2.10),

P[J(z, k, n)] ≤ C11 ·
log2 k

log2 n
· exp

(

− C10
‖z‖2

n

)

,

for some constant C11 > 0. Summing over all z ∈ Λ(k) such that ‖z‖ ≥ 5
√

n,

∑

z∈Λ(k):‖z‖≥5
√

n

P[J(z, k, n)] ≤ C11 ·
log2 k

log2 n

∑

z∈Λ(k):‖z‖≥5
√

n

exp
(

− C10
‖z‖2

n

)

≤ C12 ·
log2 k

log2 n
· n

k2
, (2.14)

for some constant C12 > 0. The lemma follows by (2.9), (2.13) and (2.14).

For k < n ∈ N, let ∂(k, n) be the vector (I(z, k, n))z∈Λ(k)∩[−2n,2n]2. Note that

M(k, n) =
∑

z∈Λ(k)

I(z, k, n) =
∑

z∈Λ(k)∩[−2n,2n]2

I(z, k, n).

Lemma 18. Let k, ℓ, n ∈ N and let k′ = (2ℓ + 1)k + ℓ. Then,

H(∂(k, n) | ∂(k′, n)) ≤ E[M(k′, n)] · (2ℓ + 1)2.

Proof. For any z′ ∈ Λ(k′), the square Q(z′, k′) is of side length 2k′ + 1 = (2ℓ +

1)(2k + 1), and so Q(z′, k′) can be tiled by (2ℓ + 1)2 disjoint squares from the collection

{Q(z, k)}z∈Λ(k).
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If Q(z, k) ⊂ Q(z′, k′), then I(z, k, n) ≤ I(z′, k′, n). Thus, conditioned on the vector

∂(k′, n), there are at most 2M(k′,n)·(2ℓ+1)2 possibilities for the vector ∂(k, n). By clause

(i) of Proposition 2, and by the definition of conditional entropy, H(∂(k, n) | ∂(k′, n)) ≤
E[M(k′, n) · (2ℓ + 1)2].

Lemma 19. There exists a constant C2 > 0 such that for all n,

H(R(n)) ≤ C2
n

log2(n)
.

Proof. Since the vector ∂(0, n) determines R(n), clauses (ii) and (iii) of Proposition 2

yield that H(R(n)) ≤ H(∂(0, n)).

Set k0 = 0, and for j ≥ 0, define inductively kj+1 = 3kj + 1. For every j ≥ 1, since

3kj ≤ kj+1 ≤ 4kj, it holds that
log kj

kj
≤ 9j3−j. Let m > 0 be the smallest j such that

kj > n. The entropy of ∂(km, n) is zero. By Lemmas 17 and 18, for 0 ≤ j ≤ m − 1,

there exist universal constants c2, c3 > 0 such that

H(∂(kj, n) | ∂(kj+1, n)) ≤ c3 · max
{

1,
n

log2 n
· (j + 1)2

9j+1

}

.

Using clause (iii) of Proposition 2, there exists a constant C > 0 such that

H(∂(0, n)) ≤
m−1
∑

j=0

H(∂(kj , n) | ∂(kj+1, n)) + H(∂(km, n)) ≤ C · n

log2 n
.

Remark 20. The proof of Lemma 19 shows that provided one can calculate the different

conditional probabilities (e.g., with unlimited computational power), one can sample

the range of a random walk using only order n/ log2 n bits.

3 Concluding Remarks and Problems for Further

Research

3.1 Extracting Entropy

Lemma 5 shows that the entropy of R(n) in two dimensions is at least c2n/ log2 n. It is

interesting to note that one can extract order of n/ log2 n almost uniformly distributed

random bits, by observing a sample of the range. We sketch the construction.
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Consider the two configurations that appear in Figure 1. Symmetry implies that con-

ditioned on outside of the configuration, both have the same probability of occurring.

Thus, any occurrence of such a configuration in the range of the random walk gives an

independent bit, e.g., setting the bit to be 1 if the right configuration occurs, and 0 if

the left configuration occurs. Considerations similar to those raised in the proofs above

show that the expected number of such configurations is of order n/ log2 n.

Figure 1: Two symmetric configurations. X’s are vertices occupied by the range.

3.2 Intersection Equivalence

Consider the n×n square around 0 in Z
2, and consider the following procedure. Divide

the square into 4 squares of side length n/2. Retain each of the squares with probability

1/2, independently. Continue inductively: at level k, divide each remaining square

of side length n2−(k−1) into 4 squares of side length n2−k, and retain each one with

probability k/(k + 1) independently.

This procedure produces a random subset of the n×n square, denote this set by Q(n2).

In [3], Peres shows that the sets Q(n2) and R(n2) are intersection equivalent; that is,

there exist constants c, C > 0 such that for any set A ⊂ Z
2,

c ≤ P[Q(n2) ∩ A 6= ∅]
P[R(n2) ∩ A 6= ∅] ≤ C.

The entropy H(Q(n2)) is of order n2/ log2(n), as is H(R(n2)). Note that intersection

equivalence does not imply or follow from equal entropy. See [3] for more details.
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3.3 Open Questions

Let G be an infinite graph, and let {S(n)}n≥0 be a simple random walk on G. Let

R(n) = {S(0), S(1), . . . , S(n)} be the range of the walk at time n. Let H(n) be the

entropy of R(n).

Our results above suggest the following natural questions.

• Assume G is vertex transitive (that is, for any two vertices x, y there exists an

automorphism of G taking x to y). Is it true that if S(·) is transient then H(n)

grows linearly in n? It is not difficult to produce examples of non-transitive graphs,

that are transient but have sub-linear entropy.

• How small can H(n) be in transient graphs? It is possible to construct (spherically

symmetric) trees that are transient but have H(n) = O(log2 n). Is it possible to

get a smaller entropy?
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