A NEW LINE OF ATTACK ON THE DICHOTOMY CONJECTURE
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ABSTRACT. The well known dichotomy conjecture of Feder and Vardi states that for every family I'
of constraints CSP(I") is either polynomially solvable or NP-hard. Bulatov and Jeavons reformulated
this conjecture in terms of the properties of the algebra Pol(I"), where the latter is the collection
of those m-ary operations (m = 1,2,...) that keep all constraints in I invariant. We show that
the algebraic condition boils down to whether there are arbitrarily resilient functions in Pol(T").
Equivalently, we can express this in the terms of the PCP theory: CSP(T') is NP-hard iff all
long code tests created from I' that passes with zero error admits only juntas'. Then, using this
characterization and a result of Dinur, Friedgut and Regev, we give an entirely new and transparent
proof to the Hell-Negetfil theorem, which states that for a simple connected undirected graph H,
the problem CSP(H) is NP-hard if and only if H is non-bipartite.

We also introduce another notion of resilience (we call it strong resilience), and we use it in
the investigation of CSP problems that ’do not have the ability to count.” The complexity of this
class is unknown. Several authors conjectured that CSP problems without the ability to count
have bounded width, or equivalently, that they can be characterized by existential k-pebble games.
The resolution of this conjecture would be a major step towards the resolution of the dichotomy
conjecture. We show that CSP problems without the ability to count are exactly the ones with
strongly resilient term operations, which might give a handier tool to attack the conjecture than
the known algebraic characterizations.

Partially supported by NSEF Grants CCF-0832797 and DMS-0835373.
1We shall use the term “junta” in a little weaker sense than usual: a constant number of the variables have constant
influence on the outcome.



1. INTRODUCTION

Constraint satisfaction problems (CSP) are the pinnacles in NP not only because they have
multiple interpretations in logic, combinatorics, and complexity theory, but also for their immense
popularity in various branches of science and engineering, where they are looked at as a versatile
language for phrasing search problems. This said, it is even more remarkable that some basic
complexity questions about them remain unanswered.

To a finite domain D, variables {z1,x9,...} ranging in D, and a set I' of finitary relations on
D we can associate a problem CSP(T"), whose instances consist of a finite set of constraints of the
form (x;,,...,2;,) € R; for some R; € I'. The size of the instance (usually denoted by n) is by
definition the number of different variables involved in its constrains.

As one might expect, for the tractability of CSP(I") the relations in T' matter. For instance,
general Boolean CSPs are NP hard, but if all constraints are Horn clauses (i.e. disjunctions of
literals, at most one of which is negative), then the problem is polynomially solvable. Other
polynomially solvable cases include linear equations over finite fields and the set of all Boolean
constraints that involve at most two variables.

The central question of the field is how the complexity of CSP(I') depends on I'. Due to a
beautiful result of Schaefer [41] we know, that if the variables are binary then CSP(I") is either N P-
hard or polynomial time solvable for every I'. His Dichotomy Theorem also gives a full description
of the polynomial time solvable families.

A fundamental question raised by Feder and Vardi [21], if this theorem generalizes for arbitrary
finite domain. Their Dichotomy Conjecture would imply the dichotomy of Monotone Monadic SNP
([21, 30], see also [31]), which is perhaps the largest natural subclass of NP, for which dichotomy
can be hoped for. That the entire class NP does not have dichotomy (unless P=NP) was proved
by Ladner [32].

In [21] it is established that it is sufficient to settle the dichotomy conjecture when I' contains
a single binary relation, i.e. a directed graph, H. With a slight abuse of notation we denote this
problem by CSP(H). A problem instance now simply becomes a directed graph G whose vertices
we want to map to the vertices of H such that edges go into edges. The problem then becomes
a graph homomorphism problem. What if GG is undirected? In this case dichotomy holds by a
pioneering theorem due to Hell and Nesettil (1990):

Theorem 1. Assume that H is a simple, connected, undirected graph. Then CSP(H) is polynomial
time solvable if and only if H is bipartite. Otherwise CSP(H) is NP-complete.

We refer the reader interested in the graph homomorphic view of CSPs to an excellent survey
written by the above authors, which also puts our current result into that context [25].

There is a beautiful algebraic theory due to Jeavons and his coauthors [14, 15, 27, 11, 12],
that looks at maps from D™ to D (m = 1,2,...), which keep all relations in I' invariant (said
to be compatible with I'). These maps, if we look at them as operators, form an algebra, called
Pol(T"). The theory heavily relies on the fact that a composition f(g1,...,gm) of operators that
are compatible with T" is also compatible with T, hence Pol(T") is closed under composition.

We can also look at these functions in an entirely different way. For fixed m the condition that
f: D™ — D keeps all relations in I' can be interpreted so that f passes the long code test associated
with I with zero error.

This dual interpretation of Pol(T") allows us to connect the algebraic theory of CSPs with Fourier
analytic techniques that were successfully used in the theory of probabilistically checkable proofs.

To demonstrate the strong interaction between the theories we reprove the theorem of Hell and
Nesettil in a transparent way. We rely on theorems of Bulatov and Jeavons as well as on the Fourier
analytic results of Dinur, Friedgut and Regev.
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We then go farther, and give new analytic characterizations of two different classes of CSPs. The
first class is known as Block Projective CSPs: This is the class that does not have “interesting”
polymorphisms, provably NP-hard, and contains all known NP-hard instances. The other class is
the set of CSPs to which some linear equations can be reduced. The class goes under the name
“CSPs with ability to count.”

With one leg our characterizations stand on the algebraic theory of CSPs, and with the other leg
they rest on concepts familiar from PCP theory such as resilience to noise (random or adversarial)
and the long code tests. The table below gives a little summary of our results:

Algebraic Condition Analytic Condition on Pol(T") Long Code Tests
Block Projective « Lacks Asymptotically Resilient Terms <« Admits Only Juntas?
= Block Projective  «+» Has Asymptotically Resilient Terms

No Ability to Count <« Has Strongly Resilient Terms

Our paper also contributes a little bit to the theory of higher order dynamical systems: We
characterize maps from D" to D whose high iterates are resilient to small noise. That is, for any
measure on D, if k is large enough, then no matter how we change a fixed constant number of inputs
before other input bits are set, the distribution of the function values of the k times iterated map
will be decreasingly influenced as k tends to infinity. We also study a stronger notion of resilience
when an adversary controling a variable cannot significantly influence the outcome of powers of a
map even if she can set her input after seeing all other inputs. We show that the existence of these
functions in Pol(I") coincides with I' being in the “Not block projective,” and the “Without the
ability to count” classes, respectively.

Our new characterization of the Block projective class allows us to give a new modular proof
to the Hell-Nesetfil theorem (Sections 5, 6). Our characterization of the class of CSPs without
the ability to count (Section 8) gives a new tool to tackle the conjecture of Feder and Vardi [21],
Larose and Zddori [33], and Bulatov [8] proved all to be equivalent by Larose, Zadori and Valeriote
[34], that CSP problems without the ability to count have bounded width. The resolution of this
conjecture would be a major step towards the resolution of the dichotomy conjecture.

2. LoNG CODE TESTS

Fix n. The Long Code over alphabet D consists of those functions f : D™ — D that depend on

a single coordinate:

fi(zr,...xpn) = x4 (1 <i<n).

A membership test for this code is an essential element of the PCP theory. The test must be local
in the sense that it evaluates f only at a constant number of places. If the replacement values
are found consistent, the test accepts, otherwise it rejects. If the test looks at k places, it is called
k-local. The test is random. PCP theory is concerned with tests that with high probability accept
only words that are close to some word in the Long Code. In this paper we somewhat reverse the
question: given a Test, determine the set of those functions that are accepted with probability one!
This sounds like an easier problem because the approximation aspect is ignored. What we have
found is that even in the non-approximate setup Fourier Analytic techniques benefit us.

Some words about the test: Each known test? is associated with a relation R on D (or with a set
of relations, in which case we run tests for each, separately). Let R C DF be a k-ary relation on D
and let m be a probability distribution on k tuples (x(l), el x(k)) € (D")k that obey the property
that

1 k .
(1) (mg),...,xg))ER for 1 <i<n.
2In the sense that a constant number of the variables have constant influence on the outcome.
3Hastad’s test requires a little modification of the framework.
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Then Testr , is a procedure that takes a function f : D" — D as its input, selects a k-tuple
(M. .., 2, € (D™)* of according to 7, and accepts if and only if

Take Dinur’s test of the long code on D = {0,1} for an example. She used relations: b = —a
and a V bV c. The first relation is automatically provided to hold everywhere by a technique
known as folding. For the second relation Dinur used a certain non-trivial probability distribution
7 on triples. By Fourier analytic techniques she verified that the test checks the long code in the
following strong sense: If the acceptance probability is 1 — e then f must coincide with some word
of the long code on 1 — O(e) fraction of randomly and uniformly chosen elements of D".

3. THE GRAPH HOMOMORPHISM TEST

We discuss the special case of the long code test, where H is a simple, connected, undirected
graph. The result of this section will be a component of our new proof of the Hell-Nesettil theorem.
We denote the vertex set of H by D (faithfully to our prior notations), and the edge set of H with
E. The power set of a set is denoted by P(). Let

Graph ‘ Vertices ‘ Edges
H" D" (U,W) : (v, w;) € E for all 1 <14 <mn;
P(H) | P(D) |(S,T): (s,t)e Eforallse SandteT.

By the previous section Testy . on f : D™ — D picks an edge e = (v,w) of H" with probability
m(e) and accepts if (f(v), f(w)) is an edge in H. If the support of 7 is the entire E™, then f is
a homomorphism from H™ to H if and only if Testy » accepts with probability one. Our analysis
requires a special measure.

The stationary measure on the vertices, up, (edges, ug) of H assigns frequencies to every node
(edge), with which that node (edge) is visited by an infinite random walk. It is well known that the
stationary measure on the edges of a simple connected undirected graph is uniform. This implies
that the stationary measure on the vertices is proportional to the degree of each node.

It is immediate that the stationary measure on the vertices (edges) of H" is u%, (1), where

n n

(w1, o) = [[ o (i) Wp((er, - ven)) = [ unlen):

i=1 =1

We would like to characterize those functions F' : D" — D that are accepted by Testy  with
probability one. By our previous remark these are exactly the graph homomorphisms from H" to H.
What we show is that, independently of n, for any such f we find a constant sized set of coordinates
that have non-negligible influence on the value of f. This holds when H is connected, non-bipartite.
We say that a mapping f : H" — G depends only on the subset of coordinates L C {1,...,n} if
u|, = v|g implies f(u) = f(v), where u|;, (v|r) denotes the restriction of v = (vy,...,v,) to the
coordinates in L.

Lemma 2. Let H = (D, E) be a simple, connected, undirected graph, which is also non-bipartite,
and let up and pg be the stationary measure on its vertices and edges. Then for every € > 0 there
exists an integer | = l(e, H) such that if f : D™ — D is a homomorphism then there is a mapping
s: D™ — P(D) such that:

(1) Prob, w)e,um ((s(v), s(w)) is not an edge in P(H)) <€;
(2) Probyeun (f(v) € s(v)) <e.

(3) The mapping s depends on at most | coordinates.
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Proof. Since f : D™ — D is a graph homomorphism, the inverse image, f~!(K), of an independent
set K C D is independent in H™. We use a theorem of Dinur, Friedgut and Regev to show that
f71(K) has a special structure:

Theorem 3. [19] Let H = (D, E) be a simple, undirected, connected, non-bipartite graph with
stationary measures up and pg on its vertices and edges. Then for every & > 0 there exists a
positive integer j = j(J) such that to every independent set I in H™ we can associate a set of
coordinates Ly and an “almost independent” set I* that spans less than § fraction of the edges
(according to measure p',) and depends only on coordinates in Ly, such that

(2) pp(I\I7) < 6.

For an independent set I C D" let Ly and I* as in Theorem 3. We choose § later. Let Ind(H)
be the system of all independent sets of H, and define the following set of coordinates:

L= J Lygw 1=IL.
KcInd(H)

We define s : D™ — P(D) via an “inverse” function S : D — P(D") as:
3) S@= () fHE)

Kelnd(H)
zeK

(4) s(v) ={z € D|v e S(x)}.
Lemma 4. The mapping s depends only on its coordinates in L.

Proof. Notice that for any K € Ind(H) membership in f~(K)* depends only on the coordinates
in Ly-1(x) € L. Thus the same holds for S (z) for any x. This makes S effectively a function from

D to P(D'), hence s is a function from D! to P(D). O
We now set 6 = ¢/|Ind(H)]|.
Lemma 5. Condition (1) of Lemma 3 holds for s.

Proof. Notice that (s(v),s(w)) is not an edge in P(H) if and only if there are = € s(v), y € s(w)
such that {z,y} € Ind(H), which in turn by Definitions (3) and (4) implies that v, w € f~!({z,y})*.

Say that an edge e = (v,w) € E™ is bad if it is induced inside f~1(K)* for some K € Ind(H),
and good otherwise. The total measure of bad edges is bounded by ¢|Ind(H)| = ¢, since for every
K € Ind(H) the total measure of edges induced inside f~1(K)* is at most . An edge participates
in the event we want to bound from above only if it is bad. O

Lemma 6. Condition (2) of Lemma 3 holds for f.

Proof. Let us call v € D" faulty if for some K € Ind(H) it belongs to f~1(K)\ f~1(K)*. The
probability that v is faulty is then at most 6[Ind(H)|. It is obvious from our definitions, that when
v is not faulty, then f(v) € s(v). O

0

4. DicHOTOMY CONJECTURE AND ALGEBRA

From Dinur’s analysis of her test, when setting € to 0, we get that if a function f : {0,1}" — {0,1}
obeys f(—-z1,...,—x,) = —f(z1,...,2,) for every #, and for every #, ¢ and Z it obeys that
TIVYLV 21, Ty VY V 2, implies f(z1,...,20) V f(y1,...,Yn) V f(21,..., 2n), then f has to be
a word of the long code.
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Words of the long code, or projections, play a central role in the algebraic theory of CSPs
developed by Jeavons and his co-authors: If for every n the set of operations f : D™ — D that keep
all relations in I are only the projections, then CSP(I") is NP-hard. An operation f keeps an [-ary
relation R iff for every 2, ... 2 e D

1 1 1 !
R(:cg ),...,xgn)) A /\R(a?l( ),...,a?l(n)) — R(f(xg ),...,a:g)),...,f(af(l),...,x(l))).

n n

One can easily recognize that this is exactly saying that the long code test for relation R succeeds
with probability one for any distribution 7 with full support on tuples that satisfy Equation (1).

That the algebraic theory of CSPs and long code tests talk about the same objects, raises a
lot of questions. Why this connection has not been utilized thus far? The answer perhaps is that
the testing theory deals with analytical properties of functions that nearly satisfy the tests, while
the algebraic theory of CSPs deals with algebraic properties of functions that keep all relations.
Our main contribution is that we positively demonstrate, that it is worthwhile to take an analytic
approach to functions that keep all relations. When these functions are examined both from analytic
and algebraic viewpoints, nontrivial conclusions like the Hell-NeSettil theorem can be obtained.

The connection has another great benefit, namely it lends more sense to rewriting algebraic
identities into analytic form. Let us explain: Bulatov, Jeavons and Krokhin essentially conjectured
that CSP(I") is tractable iff there is a compatible operation which can be distinguished from the
projections by its identites. E.g a majority operation satisfies f(y,z,x) = f(z,z,x), f(z,y,x) =
f(z, 2, 2), f(z,2,y) = f(z,x,z), the i'" identity shows that this can not be a projection to the i
coordinate, since this coordinate is x on one side and y on the other side. The above is just a
special case.

Before getting closer to algebra we have to use two technical assumptions. First, we deal with
the case when I' is a core, i.e. every homomorphism I' — I'" is an automorphism. Every structure
has a unique core (up to isomorphism), and a structure and its core define the same CSP language.
This is always assumed in the literature to make algebraic methods to work. Secondly, we only
consider idempotent operations: idempotency means that f(x,...,z) = x for every x € D. The
simple reason is that the complexity of a CSP problem for cores depends only on its idempotent
operations, and on the other hand this assumption simplifies the algebraic theory a lot.

By a result of McKenzie and Mar6ti, if there is a compatible operation which can be distinguished
from the projections by its identites, then there is also a special type, called weak near-unanimity
(WNU) term. An idempotent operation f is a WNU if for every z,y € X it satisfies f(y,z,...,x) =
fle,y,z,...;2) == f(z,...,z,y).

The following theorem uses the WNU condition of Maréti and McKenzie [35], while condition
(1) is stated in the combinatorial terminology of Nesetfil, Siggers and Zadori [36].

Theorem 7. For any constraint family I' the following are equivalent.

(1) T is block-projective, i.e. there exist no disjoint subsets S1,Sa of D such that for every
compatible, idempotent operation f there exists k such that f(xi,...,z,) € S; iff xx € S;
fori=12.

(2) There exists a compatible WNU term operation.

In the next sections we add to the above equivalent conditions a new one: There exists a com-
patible WNU term operation iff there exists an operation whose powers, as they grow, become
arbitrarily resilient to small noise. This offers an analytic approach to investigating NP-hardness
of CSPs.

It may occur that in Pol(T") there is no WNU operation, but CSP(T") is N P-complete, however
this cannot happen when I" is a core. So we restrict ourselves to cores as promised.

Theorem 8. IfT is a core and has no compatible WNU operation then CSP(T") is N P-complete.
5



The Dichotomy Conjecture of Bulatov, Jeavons and Krokhin states that Theorem 8 can be
reversed in the following sense:

Conjecture 9 (Algebraic Dichotomy Conjecture [12]). Let I' be a core. If I' admits compatible
WNU operation then CSP(I") is tractable, else it is N P-complete.

Example 10. This gives a remark for Dinur’s test: her test implies the NP-hardness of CSP(—a =
b, a AbAc) by Theorem 8. While this is not earth-shattering, the Algebraic Dichotomy Conjecture
also immediately suggests that the —a = b folding is essential for the test to work.

Bulatov, Jeavons and Krokhin used the term Polymorphism for functions (of arbitrary number
of variables) that are compatible with all relations in I', and they denoted this set of functions by
Pol(T"). They have proved that Pol(I") determines the complexity of I". The approach has been ap-
plied in several contexts, in particular, this is how Bulatov solved the problem for |D| = 3. Another
application of their theory by Bulatov proves dichotomy, when I is a set of list homomorphisms [6].
The original goal of the algebraic theory was to deal with decision problems, though it proved to be
successful in other cases. Bulatov an Dalmau proved a dichotomy theorem for counting the solu-
tions of CSPs [10], Bodirsky and Nesettil [4] managed to extend the theory to (omega-categorical)
countably infinite target structures, Chen partly managed for quantified CSPs [13].

In the last section we are going to look at the class of CSPs with “no ability to count.” This
class is defined algebraically and its complexity is not yet known. We give an analytic definition of
the class, which seems to yield a fresh insight into its tractability.

5. RESILIENCE

Let D be a finite domain, f : D" — D and 1, ..., i, be distributions on D. By f(u1,..., n), or
shortly by f(ii), we denote the distribution on D that we obtain by plugging independent D-valued
random variables into f such that the ith variable is distributed as p;. pu. We define

ReSil(falau) = Ssup 6(.]0(:““7[1'7 s HU“)’f(,ulv s >:un))7

M1 sfbn

where § refers to the statistical difference, §(u,v) = 3 Y. cp|p(z) — v(z)|, of distributions and
i, .-, iy runs through all sequences of distributions on D with the properties that at most [ of
the p;s are different from g and the support of each p; is contained in the support of p. We call
Resil(f,l, 1) the resilience of f.

6. ASYMPTOTIC RESILIENCE

The iterates of a function f : D™ — D are f! = f, f*1 = f(f% ..., f*) for i > 1. The arity of
f* is n*, and we can visualize it as an n-ary tree of depth k built of fs. We say that a function
f: D" — D is asymptotically resilient if for every distribution p on D and every [,e > 0 we have
Resil(f*,1, 1) < ¢ for any sufficiently large k. Most functions are asymptotically resilient, but
e.g. projections are not. Instead of giving further examples we describe all asymptotically resilient
idempotent functions.(With a little extra effort one can give a similar characterization without the
idempotency condition.)

Theorem 11. Let f: D™ — D be idempotent. The following are equivalent:
(1) f is asymptotically resilient.

(2) Resil(f*,1,u) goes to zero as k goes to infinite for every fired p.

(3) f generates a WNU (including that itself is a WNU).

(4) There do not exist pairs of disjoint subsets S1,S2 C D and1 < k < n such that f(z1,...,2,) €
S; iﬁl’k € S; fOT’iZ 1,2.



Proof. (1) implies (2) by the definition of asymptotic resilience. We will show (2) — (1) in the
Appendix. The equivalence of (3) and (4) comes from algebra. It is easy to see that (1) implies
(4): in fact if (4) does not hold then Resil(f*,1,u) = 1 for every k. Now we prove that (3) implies
(2). For the sake of simplicity we assume that f is a WNU itself, of arity n (if f only generates a

WNU, the proof needs only a minor adjustment). For our argument we fix pu. Let pp = fk(u"k)
(recall that the arity of f* is n¥). We would like to estimate the statistical difference of py and

f* (ui_lyu“k_i) for any 1 < i < n* and any v, whose support is contained in the support of p.
k

Let ap = max;, §(pug, f* (1~ tvp™ ~%)). What we need to show is that ay — 0. By the following
propositions and its corollary it is straightforward that oy is non-increasing:

Proposition 12. The variation distance of two distributions cannot increase under any map F :
X =Y (8(00) = 3 ey () = v(0)] 2 3 Tpex [Syer1(o (80) = v(v)| = 8(F (), Fw)).)
Corollary 13. Let f : D" — D be arbitrary and pi,...,n, Vi,-.-.,Vn, be two sequences of
distributions on X. Then §(f(p1, ..., pn)s f(V1, .. vm)) < Soiy 0(pas v4).

Proof. The corollary follows from §(T 7" p, [[1q vi) < 1—T10 (1—0(pi i) < Doy 6(ps,vi). O

We now want to go a step further and to show that a1/ is is upper bounded by a constant
(i.e. independent of k) less than 1. It is easy to see that Proposition 12 can be strengthened if we
find an = € X, yo,y1 € F~1(x) such that u(yo) — v(y0) > 0, v(y1) — p(y1) > 0:

(5) 6(F (), F(v)) < d(p,v) — min{pu(yo) — v(yo), v(y1) — p(y1)}-

At this point we exploit that f is a WNU, and certain identities hold for its output. Before
describing what we get from this (proof in the Appendix) we need a technical definition:
Definition 14. Let p and v be probability distributions on X. We define

min B min H@)

v z:w(x)#0 l/(l‘) ’
Lemma 15. For every WNU term f and probability distributions p and v on D:

v n—1
S, 1) < (1= 2 min ) )

D[
for every 1 <i <n.

n 1
Lemma 15 gives that agi1/ar < 1— | DI" ming, min £& ﬁ , where [ ranges among distributions of
the form f*(u'~ Vu” ~9). Indeed, use that f&+1(u~tyum - %) can be written as f on many copies

of pu1, and one copy of f* (,ui/_lz/,u” ' ). An easy analysis shows that this improvement is sufficient,

because ming, min Z—: remains bounded from below by min £. This follows from the more general:

min

H’“":Hmi i : (M)Zminﬂ

[1;vi nVi; . F(v) v’

7. THE HELL-NESETRIL THEOREM

Recall that the Hell-Nesettil theorem [24] states that for a simple, connected, undirected graph
H the complexity of CSP(H) is polynomial if H is bipartite and NP-complete otherwise. The first
part of the theorem is trivial: every bipartite graph with at least one edge has a retraction to into
any of its edges. This implies that a graph G has a homomorphism into H iff it has a homomorphism
into a single edge, i.e. G is bipartite. The interesting, and combinatorially quite involved part is
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the NP-completeness of CSP(H) when H is non-bipartite. This was the first dichotomy theorem
with a really sophisticated proof using gadget reductions. Later Bulatov [7] streamlined the proof
using the algebraic theory, though his proof still has some ad hoc part. Barto, Kozik and Niven [2]
extended the theorem proving dichotomy for digraphs with no sink and source.

Here we give a proof based on our notion of asymptotic resilience. According to Theorem 8 in
[12] and using the fact that the core of a non-bipartite graph is also non-bipartite it is sufficient to
prove that:

Lemma 16. Let H be a simple, connected, graph, which is not bipartite. Then Pol(H) has no
asymptotically resilient term.

Proof. (of Lemma 16) Set ¢ = % We assume for a contradiction that we have an asymptotically re-
silient compatible operation f on H. Let [ be the integer given by Lemma 2 (to €). An appropriate
iteration of our asymptotically resilient operation is a homomorphism G™ — G such that the follow-
ings holds: for any [ coordinates 1 < a1 <as <---<a; <nand u,v € G! the variational distance
of the distributions is small: 0(f(u,v), f(v,v)) < e. (Here g = f(u,v) denotes the distribution
where g,, = u; and else the distribution of g; is the stationary distribution corresponding to . The
coordinates of g are independent.) We use now Lemma 2: this gives a mapping s : H" — P(H)
that is an ”almost homomorphism”, ”almost covers f” and depends on [ coordinates, we might
assume that these are the first [ coordinates. Let v € G! and f, : V(G)"~! — V(G) denote the
subfunction of f we get when fixing the first [ variables to v. We call a vertex v € G* bad if
v({t € GV fu(t) ¢ s(t) > % The measure of bad vertices is < 3¢ by Markov’s inequality, since
Probyeyn (f(v) & s(v)) < e. On the other hand if ¢ < % then for any two good vertices u,v € G’
we have s(u) N s(v) # 0. Since G has no loop, the pair (s(u),s(v)) is not an edge of the graph
P(G). But the stationary measure of bad vertices is < 3e, so these cover edges of measure < 6e.
All other edges are mapped to non-edges by s. At least 1 — 6 > ¢ edges are mapped to non-edges
by s, contradicting that Prob(, ,)e,n ((s(v), s(w)) is not an edge in P(H)) < e. O

8. No ABILITY TO COUNT AND LocCAL vsS GLOBAL

The harder part of the algebraic dichotomy conjecture is the tractable part: how does an algebraic
condition lead to tractability? Jeavons, Cohen and Gyssens [15] proved that the existence of a
semilattice operation implies tractability, Cohen, Cooper and Jeavons [14] proved it in case of the
existence of a so-called near-unanimity operation (a generalization of majority operations), Bulatov
and Dalmau [9] in case of the existence a so-called Maltsev term (what shows that the algebra is
”somewhat grouplike”): the algorithms are generalizations of the ones solving Horn-formulas, 2-
SAT and linear system of equations, respectively. But to solve a general tractable CSP problem
we needs to combine these algorithms (and we might need essentially different ones). There are
very few results combining such algorithms of different nature: Bulatov [6]did this when proving
dichotomy for list homomorphism problems, Dalmau [18] for CSPs that have an operation on every
pair behaving like a group or a majority operation, his result was generalized in a ”truly algebraic”
manner in [3]. Feder and Vardi have studied CSP problems that no linear system of equations
(over a finite field) can be reduced to using gadget reductions: they called these CSP problems
without the ability to count. Unlike in the case of linear equations, one might expect here some
local algorithms to solve the problem. We will denote this class by A. It turned out in the work
of Larose, Valeriote and Zédori [34] show that A can be well understood in algebraic terms. They
use a branch of algebra called Tame Congruence Theory, a localization theory for finite algebras.
The localization process of this theory corresponds to gadget reductions of CSP problems. The
algebraic characterization of CSP problems reducible to 3-SAT using this theory has led to the
algebraic dichotomy conjecture. The work of Larose, Zadori and Valeriote is more involved: they
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manage to characterize A in terms of having locally no algebra that has only group operations and
no algebra with only projections.

A recurring theme in combinatorics and computer science is whether consistent local solutions
can be patched together into global solution. The notion of bounded width intends to capture those
CSPs for which local solutions can be made global.

A partial assignment o with support X C N assigns a value from D to each variable z;, i € X.
We say that o with support on X and ¢’ with support on Y are consistent if they assign the same
values to variables in X NY. A CSP instance is satisfied by a partial assignment ¢ with support
on X, if o satisfies all constraints that take variables only from X.

Definition 17. An instance of CSP(I") is k-consistent if there exists a set Z of partial solutions
such that:

(1) Every o € E has support size k + 1;

(2) Every o € = satisfies the instance;

(3) For every | X|=k+ 1,z € X and y € X, and o € = with support X, there exists a partial
assignment ¢’ € = with support (X \ {z}) U {y} that is consistent with o.

Definition 18 (Width k). CSP(I") has width £ if and only if the existence of a set of k-consistent
solution guarantees a (global) satisfying assignment.

The notion of local consistency emerged independently in graph theory [26], finite model theory
[29] and algebra [15]. This was a successful direction of research in the last years: Foniok, Nesetril
and Tardif [37, 22] studied CSP problems with good characterizations in the category of relational
structures with homomorphisms (with finitely many obstructions, these are called finite dualities).
Rossman [40] proved the well-known Homomorphism Preservation Theorem in model theory. Dal-
mau, Kolaitis and Vardi [17, 28, 29] have found the connection with logic, Datalog and existential
pebble games, see also Atserias [1]. Hell, Nesetfil and Zhu [26] proved that the k-consistency of a
given input can be characterized by obstructions of treewidth at most (k + 1). Some of the above
authors and others (Larose and Zadori) believe that the only reason for a tractable CSP having a
local, but not having a global solution, is that it can solve linear equations:

Conjecture 19. Every problem in A has bounded width.

If the Conjectures 9 and 19 are correct, then whenever CSP(I") € A, Pol(T") should contain a
WNU, since it is immediate that bounded width instances are tractable. More is true: we can
characterize A completely via its compatible WNUs. A non-obvious algebraic theorem of Maréti
and McKenzie implies:

Theorem 20. [35] CSP(T") € A if and only if there is an kg € N such that for all k > ko Pol(T)
contains a WNU of arity k.

Note that the “only if” direction relatively painlessly follows from the fact that term operations
that are compatible with linear equations over mod p cannot have arity divisible by p.

Can we exploit Theorem 20 to prove A has bounded width? There are only a few cases known
where complexity results are shown via general WNUs. Considering our proof, a key idea was to
“boost” the power of a WNU to obtain a term that has statistically noticeable properties.

In the case of Theorem 20 we have to face one more challenge: Its criterion talks about an infinite
number of terms instead of one. Relying on the concept of influence we will be able to formulate
an analytical condition, called strong resilience, that captures A with a single intuitive criterion,
which, we believe, brings us closer to proving Conjecture 19.

Definition 21 (Influence). Let D be a finite domain and p be a measure on D. The influence of
the i*" variable of f : D" — D is Inf;(f) = Prob,+1(f(z) # f(2')), where z, 2’ runs through all
9



random input-pairs that differ only in the ith coordinate: p"*! gives a natural measure on such
pairs. The maximal influence, max inf(f) is max; Inf;(f).

Definition 22 (Strong Resilience). A function f : D™ — D is strongly resilient if for every measure
p on D: max inf(f*) — 0 when k — oco.

Theorem 23. Let " be a core. Then CSP(I') € A if and only if Pol(I") has a strongly resilient
term.

Although it follows from our previous theorems, one can also directly see that:
Proposition 24. If f: D™ — D is strongly resilient then it is also resilient.

Indeed, for measure p and function f it holds that max inf(f) < O(Resil(f,1,1)). Putting it
informally: Functions, whose variables have small influence will stay constant with high probability,
when we change a given coordinate of a random input in a random manner. On the other hand,
resilient functions only show resilience in a statistical sense: the statistics of their output is not
influenced, when we fix a coordinate before randomly setting all other coordinates. Take the parity
function as an example: Its variables have high influence, because no matter how we set all but
one variable, the un-set variable has full influence on the output. On the other hand, the resilience
is zero: no matter how we fix any coordinate, the output statistics remains (1/2, 1/2).

We will prove Theorem 23 only in the longer version of the paper, here we only give a glimpse
into the proof. The hard part is to show that Pol(T") has a strongly resilient term if CSP(T") € A.
In order to create this term we use the WNU characterization of A in Theorem 20. First we create
a term with a weaker property:

Definition 25 (l-immune). f : D™ — D is immune with respect to variable ¢ if there are
Cly-..,cm € D such that the (one-variate) expression f(ci,...,c¢i—1,2,Cit1,-..,Cn) does not de-
pend on z. f is I-immune if it is immune with respect to all of its variables.

We would like to create a 1-immune term from one of the WNUs provided by Theorem The-
orem 20. Undoubtedly, the best case is when we find a WNU w, which is a majority form, i.e.
w(z,y...y)=...w(y...y,z) =y for all xz,y € D. In this case we do not have to go farther, since
w is already 1-immune. This might make us think that the worst case is when we find only minority
forms, i.e. WNUs for which w(z,y...y) =...w(y...y,z) =z for all x,y € D. Luckily, there is a
solution in this case too, but, if w is on m variables, we need another (arbitrary) WNU on m — 1
variables:

Lemma 26. Let w be a minority WNU on m wvariables and w' be an arbitrary WNU on m — 1
variables in an algebra A that also contains all projections. Then there is a 1-immune expression
mn A.

Proof. Consider

w(w (ro, w3, ..., 2m), W (T1, 23, o, Tm)s - - W (X1, T2, .., Typ—1))
with z1,...,z,, as variables! O
The above single line proof is the essence of turning sequences of WNUs provided by Theorem

20 into 1-immune expressions. The full proof is, of course, contains a little more details, since the
existence of a minority form among the WNUs is not given. Finally we need to show:

Theorem 27. Let A be a finite idempotent algebra. The following are equivalent:

(1) In all sub-algebras of A there is a 1-immune term operation.
(2) There is a strongly resilient term in A.
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9. APPENDIX

Proof. ((2) — (1), Theorem 11 ) We show by induction on [ that if »(f*, 1, ) goes to zero as k goes
to infinite then so does r(f*,1, u) for every I > 1. Fix [ > 2 and € > 0, and let &', k" be such that
r(f¥,1,p) < e/l and r(f*',1 — 1, ) < e, respectively. Let g = f¥ and h = f*". For k = k' + k"
we have:

*=hg,....q).
Let L C [n]* be a subset of I inputs for f*. We distinguish between two cases:
Case 1: Each g gets at most one input from L. The output of those that get a label from L is
g/l-close to the distribution h(,u"kl) by the choice of k’. We then use Proposition 13.
Case 2: There is a g which gets at least two labels from L. In that case at most [ — 1 of the gs
involve labels from L, and we use that r(h,l — 1, ) < e. O

Proof. (of Lemma 15) There are z,y € D such that

(6) p(x) —v(z) = o(u,v)/|D|
(7) v(y) —ply) = o(p,v)/|D].
Without loss of generality assume that ¢ = 1. Define:
p1 = Probuy(y,x,...,x) = w(y)p(@)™
q = Probyn(y,x,..., 1) = v(y)p(z)" !,
p2 = Probp(z,y,z,....;x) = pl@)p(y)p(z)" =,
@ = Probyn(z,y,z,....2) = v(z)u(ly)p(z)""
From (6) and (7) we obtain that
o(p,v)
plz) = D]
o(p,v) . p

wly) = D] min —,
P1—q1,92 —p2 > 0.
Let a = f(y,z,...,z) = f(z,y,z...,z). From (5):
S(f(u ™ on™™") f(u™) < 8(u ™ op T p") — min{pr — g1, g2 — p2}
5 ) — o, v)* K

|D|n HlIlV.
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