Spherical Cubes and Rounding in High Dimensions

Guy Kindler
Weizmann Institute
guy. ki ndl er @wi zmann. ac. i |

Anup Rad
Institute for Advanced Study
arao@ as. edu

Abstract

What is the least surface area of a shape that tik¢s
under translations by?? Any such shape must have vol-
umel and hence surface area at least that of the volume-
ball, namely2(+/d). Our main result is a construction with
surface area)(v/d), matching the lower bound up to a con-
stant factor of2,/27 /e ~ 3. The best previous tile known
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ure 1.3), and gave surface area approximatedgd, only
slightly better thar2d, the surface area of thkdimensional
cube. For three or more dimensions, even potential candi-
dates for the optimal solution are not known. In this paper
we define a distribution on bodies that tik¢ by Z? and
have expected surface area at mos{/d. This comes close

to an obvious lower bound, the surface area of a ball of vol-
ume one, which behaves asymptotically likére-\/d. Our

was only slightly better than the cube, having surface area construction is thus asymptotically optimal up to a factor o

on the order ofi.

We generalize this to give a construction that tiRfsby
translations of any full rank discrete lattick with surface
area2r ||V 1|, , whereV is the matrix of basis vectors of
A, and|-||,, denotes the Frobenius norm. We show that our
bounds are optimal within constant factors for rectangular
lattices. Our proof is via a random tessellation process,
following recent ideas of Raz [11] in the discrete setting.

Our construction gives an almost optimal noise-resistant

rounding scheme to round points Rt to rectangular lat-
tice points.

1 Introduction

The d-dimensional unit cube tileR? by Z¢. That is, its
translations by vectors froi? coverR?, and the interiors
of translations of it by different vectors froéf are disjoint.

In this paper, we consider the problem of finding a body
that tilesR? by Z¢, and has the smallest possible surface
area. This kind of problem is calledfaam problemsince
foams are simply tilings of space that try to minimize sur-

2\/27/e.

Theorem 1.1 For all d > 0 there exists a body which tiles
R? by Z4, and has surface area at mosty/d. Moreover,
this body is contained i—1,1)¢, and it contains the ori-

gin.

The ideas for our proof originate in the study of paral-
lel repetition oftwo player gamesA connection between
the parallel repetition question and foams was observed re-
cently in Feige et al. [5], where it was shown that improv-
ing the upper bounds on the success probability of the re-
peated odd-cycle game would imply new lower-bounds on
the surface area of bodies tilirfg? by Z¢. Subsequently,
Raz [11] gave an example showing that the known upper
bounds for the repeated odd-cycle game cannot be signifi-
cantly improved. While it is not known thany strategyor
the repeated odd-cycle game can be translated into a foam
with small surface area, in this paper we give a continuous
version of Raz’s example that does give a foam with optimal
surface area.

face area. The best previous construction was based on the Raz’s example was based crucially on alemma of Holen-

exact solution of the problem for the casedof 2 [3] (Fig-
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stein’s [6, Lemma 8], that showed a certain sampling algo-
rithm. While Raz uses Holenstein’s lemma as a black box,
the main idea in our construction is to get a continuous and
concrete version of the sampling algorithm of Holenstein,
and use it as part of our construction.



1.1 Noise-resistant rounding ensures that a vector Bt is within /., distance at mos{/d
from its rounding.

A rounding schemis a random method of mappingeach ~ Another somewhat similar result appears in [2], where a
of the points inR? to a point inZ¢, and we say that it  random partition oR¢ into bodies of volume at mostand
is noise resistanif the probability that close by points are  with diameter at mos©(+/d) is shown, such that points
rounded to different lattice points is small. Following is a of distances end up in the same element of the partition
formal definition. (giving aclustering schemjavith probability at mosO(4).
Definition 1.2 (rounding scheme)A d-dimensional While_the partition_in [2] does not give_ rise to_a proper
rounding scheme is a distribution over functions mapping rounding scheme, it does share some ideas with our con-
R< to Z<. A rounding scheme is a family containing one Struction.
d-dimensional rounding scheme for each dimensionA
rounding scheme is callgaroperif for some constant, the ~ 1.2 General Lattices
/- distance between a point and its rounding is uniformly

bounded by.. Let us discuss how to generalize our results for the case
For any§ > 0, the §-noise sensitivity of a rounding of the latticeZ? to arbitrary full-rank lattice inR?. Given

scheme is the maximum over all pointse’ € R with any discrete, full-ranklattice A in R¢, we consider bodies

|l — z'|| < & of the probability that the rounding af is that tile R? by A — such a body is called a fundamental

different from the rounding of'. domain and is defined formally below. To avoid technical

It turns out that along with the above mentioned foam difficulties, we wgnt to only consider bodies that have nice
smooth boundaries.

construction, our techniques give a new rounding scheme
thatis much better than what was previously known. In fact pefinition 1.4 A set inR? is called aC* surface if it is the

our rounding scheme has optimally small noise sensitivity image of a compact set/ C R%~! under a differentiable
We think that the problem of finding noise-resistant round- function whose Jacobian matrix is of full rank (namely of
ing schemes is natural and interesting, and we hope it will ;gnkd — 1) at each pointinM/. A set is called piecewigg!
have applications in the future. if it the union ofC! surfaces.

Theorem 1.3 (Proper rounding) There exists a proper

rounding scheme @? whose’-noise sensitivity is bounded Deﬁ”itign 1.5 (fundamental domain) A - compact body
by O(5). K C R?%is called a fundamental domain of a full-rank lat-

. - tice A, if it has a piecewis€' boundary, and in addition
_ Our _rou_ndmg scheme has th_e ad(_jltlonal pro_per'_[y of be- Upen (K +v) = R? and the interiors of the elements in this
ing periodic — each of the functions in our distribution has  hion are disjoint.

a period ofZ?, so how a vector is rounded only depends on
its fractional part. To see that our attaintoise sensitiv-
ity of £2(9) is indeed optimal, consider an axis-parallel line
segment of length slightly more tharfits length will be the
same both i and inf., norm). On one hand, the length
of the segment ensures that its endpoints are rounded to di
ferent lattice points. On the other hand, a proper round-
ing scheme which ha&noise sensitivity smaller thady2
would round both endpoints to the same lattice point with We can ask the following essentially equivalent questions:
positive probability, as can be seen by breaking the segment
into pieces of length at most(we assum@é < 1forcon-  Question 1: What is the least boundary area of a funda-
venience) and using a union bound argument. mental domain of the toru = R?/A?

As far as we know, no proper rounding scheme was
known where the noise sensitivity is better tif¥i5/d).
But as pointed out to us by Noga Algrusing known tech-
nigues one can get a rounding scheme wiieseise sensi-
tivity is also of orderd(d), and while it is not proper, it still

A spine of a torus. Another related object is spineof

the torusR?/A. This is ad — 1 dimensional surface in
R?/A that intersects every homotopically nontrivial cycle
f_(a closed loop that cannot be continuously deformed to a
point) in the torus. In plainer words, itis a “wall” that bl

all paths that “wrap around” the torus.

Question 2: What is the least surface area of a piecewise
C! spine in7?

The answer to Question 1 is at most twice the answer of
1Given a foam tilingR¢ with period Z<, the construction of a corre- Question 2, since any spine can be usedto geta fundamental

sponding rounding scheme is straightforward. However ttadyais of our

rounding scheme requires more than just the propertiesedbtim stated there is a matching between pointsfofindZ¢ such that points of distance

in Theorem 1.1. at most twice the diameter of the tiles are matched to eadh.ofhis gives
2The idea is to use an efficient tiling according to a well clmogglume the rounding taz®.

1 lattice A to round points to points ih. Hall's theorem then shows that 3Throughout, we assume lattices are always full-rank.




domain whose boundary has at most twice the surface area The most natural construction of a tiling & by A is
of the spine (we omit a formal proof). just to take the Voronoi cells of the pointsin If these cells
are to have small surface area — s@y,/d) — then they
should be “somewhat spherical”. This leads one to consider
A(R?/A) = limsup{|dS| : S is a piecewis€’ spine foer/A}lattices which give. rise to good ;phere-packin_gs. It i§ not
hard to show that if a volumg-attice has covering radius
Let us reformulate Theorem 1.1 using the new notation, R and packing radius then its Voronoi cells have surface
where here and throughout the paper we wifite= R¢ /Z¢ area at mostR/r)rq. A well-known result of Butler [1]
for the cubic torus. shows the existence ihdimensions of lattices witi /r <
2+ o(1). Hence:

Definition 1.6 For a lattice A in R?, define

Theorem 1.7 For all d,

A(T4) < 27v/d. Pr_oposition 1.11 Thereexistvolume1 lattices inR? satis-
in
We can generalize this resu_lt to other lattices. Given g ARY/A) < (2 + 0(1))kq < O(Vd).
any basisvy,...,vq for the lattice A, let V' denote the . . .

. _ def Thus there exist lattices where we have a tight bound
matrix whose rows are the basis vectors. [[®,, = of ©(v/d). In general lattices, however, the Voronoi cell
\/2_i.; vi,; denote the Frobenius norm bf. Then we can  construction can be arbitrarily far off from tif/d) lower
prove the following theorem: bound. In this paper we first show that the surface area of

o the Voronoi cells of a lattic& can actually be far from the
Theorem .1.8 Let A be a volume If';lttlce inR? and letV’ optimal A(R?/A): for A = Z¢ the Voronoi cells are cubes,
be a matrix whose rows are a basis for Then which hj\—/e surface arehwhile we show thal(R%/A) <
d 1 \/71'6/2 d.
ARE/A) < 2 HV Hfb Even in two dimensions, the optimal spine of
In the case wherd is rectangular, namely if it has an T? = R?/Z? is not one that corresponds to a Voronoi cell.
orthogonal basis, we give a matching lower bound: As proven in [3], the spine in Figure 1.3 gives the best

) solution. Here the fundamental domain is an “isosceles”
Theorem 1.9 (Lower Bound for Rectangular Lattices)

If V' is a matrix whose rows are an orthogonal basis for the * * * .
lattice A and .S C R/A is a spine, then

A e

1.3 History of the problem ¢ ° ° !

Foams were studied since as early as the 19th century \%\\%\\%\

(see [14]), they were extensively studied since by mathe- ® ® ® ®

maticians, and they also have a huge variety of applications

A

in physics, chemistry, and engineering (see [12] for some Figure 1. Optimal two dimensional tiling.
examples). A detailed account of the history of foam prob-
lems is thus beyond the scope of this paper. hexagon in which all angles ar&20°. The spine has

We will, however, discuss some known upper bounds for total length(1 + /3)/v/2 ~ 1.93, slightly better that the
A(R?/A) and some related results. But before that, let us voronoi cell, namely the square, which gives a spine of
mention an easy lower bound fet(R</A). Without loss length2.
of generality assume thatis a volumet lattice. Then any
fundamental domai® for A has volume and hence must The question of determining the asymptotics of
have surface area at least that of the voluinmzll, by the A(R?/A) was posed in Feige et al. [5], wherein special em-
Isoperimetric Inequality. Let us write, for (half of) this  phasis was given to the simple case of the cubic tdits
ball's surface area, noting tha, = ©(v/d). More pre-  Feige et al’s interest in the problem came from showing
cisely, we have: that a “discretized” version of it plays an important role in
the study of “Parallel Repetition” [4] in Complexity Theory
Feige at al. observed that by constructing prisms based on

ARY/A) > kg ~ /7e/2Vd the optimal solution iff? one can show

for any volumet lattice A. A(TY) < (%ﬁ + 0(1)) d ~ .966d,

Proposition 1.10



very slightly improving on the trivial upper bound af characteristic function and consider
They left as an open problem the determination the correct

rate of growth,v/d vs. d. Raz [11] recently showed that /va”,
©(V/d) is the correct rate of growth for the “discretized”

v_ersion of the problem; the present paper is an extension Ofvvherer denotes the gradient of, and all integrals are
his result to the natural continuous case. taken overT? unless otherwise specified. Of course, this
does not precisely make sense, siiide not differentiable.
Although we are content to study the asymptotics of pore formally, one can take the total variation yfor con-
A(R?/A), the question of determining it precisely has also sider [ ||V ;]| for sequences of smooth functiofi) ap-
been pursued. In 1989, responding to questions of Michaelproachingf pointwise. We can thus think of the problem

Freedman, Choe [3] considered Question 1 for the case ofyf finding an open fundamental domain f6¢ with small
general compad-manifolds. His main result was to show gyrface area as follows:

that there exists a fundamental domain whose surface area

is minimal among those with Lipschitz boundary. He also - o ]
proved optimality of the above-illustrated solution fBt, Task1: Findf:T¢— {0,1} such that:
and gave the case @ as an open problem. As faraswe 1 [f=1.

know, no one has even conjectured an optimal solution for

A(T?). In our work, we resolve this problem up to a 2. The level se{z : f(z) = 0} is a spine fofl.

constant factor for every.
3. [|IVf] is as small as possible.

1.4  Subsequent work 2.1 A randomized relaxation

Upon hearing a lecture on the results of this paper, The firstidea in the proof of Theorem 1.7 is that we may
Deligne asked the following natural question: “What is the relax condition 1 above by taking to be a continuous den-
minimum ratio of surface area to volume, of a body con- sity function rather than @, 1-valued function (and keeping
tained in(—1,1)? ?” As is easy to see, the analysis of the other conditions intact). Indeed we show that given such
one step (called the "pre-bubble”) of our probabilistii- a relaxed solution, there israndomizedconstruction of a
construction implies the existence of a bodyinl, 1) for spine with expected surface arg4V f||. Our construction
which this ratio isO(v/d) — this ratio is optimal up to the  will work by partitioning theR /A into color regions, with
implied constant. the guarantee that no color region contains a homotopically

Following Deligne’s question, Alon and Klartag [7] have nontrivial cycle. Once we have such a partition, we shall
expressed this isoperimetric problem as a Dirichlet bound-argue that the union of the boundaries of the color regions
ary problem, and showed that Cheeger’s inequality andform a spine. Assuming is continuous and/ = || f|cc.
known spectral estimates directly imply the existence of the construction is as follows:
such a body as well. Indeed, the appearance of the func-
tion I1; sin®*mz; in our sampling procedure and its optimal-  construction:
ity gets perhaps a more straightforward explanation from
their viewpoint. 1. Letall points inT? be “uncolored”.

We note that they also proceed to give a probabilistic

construction of a periodic tiling via random shifts of this 2. Fori=1,2,3,..., until all points are colored:
body, in a similar fashion to our paper, and with a some- g5 Choose a uniformly random “translaté”c T
what simpler analysis. Also, combining their approach with
known relations between the vertex expansion of a graph 4., Choose a uniformly random “heightl’ €
and its spectral properties, they also gave similar refuits (0, M).
some discrete graphs.

5. Let B; be the “pre-bubble’B; = {z ¢ T¢ :

flx—=2)>T}.

2 Proof Overview

6. Color all uncolored points if8; with colori. The

. . ) ) colored points form &ubble
In this section we shall reserve most of the discussion for

the proof of Theorem 1.7. SuppodeC T? is an open set. 7. Output the union of the boundaries of the color re-
One way tadefinethe surface area of is to let f be its0-1 gions.



Itis easy to check that with probabilitythe construction
halts in finitely many rounds.

Proposition 2.1 Assumingf is continuous, the construc-
tion halts after finitely many rounds with probability

Proof: Sincef is nonnegative andl f = 1, there must exist
some positivé, > 0 such thatP := {z € T¢ : f(z) > to}
has positive measung > 0. Sincef is continuousP is

open, and s@ contains a closed culi¢of positive measure
/

m.
Partition T into subcubes of side length less than half

that of C. We now have that there is some strictly positive
e > 0 such that each subcubéas probability at least of
being completely colored in any round of the construction.
This is because there iswl(c) chance that the random
translateZ will be in ¢, and an independeng/M chance
that the random height is smaller tharty; when both of
these happen; is completely contained in the pre-bubble
defined byZ andT'.

We now have a finite number of events (each subcube
being completely colored in a single round), each of which
occurs with some strictly positive probability in each rdun
It follows that all events eventually occur after finitely nya
rounds, with probability. O

The idea behind this construction comes from Raz’s
work [11] on the discretized version gf(T<); more specif-

Theorem 2.4 Let f : T¢ — R=° satisfy [ f = 1. Fur-
ther, assumg’ is “nice” (see below). Then for the above
construction, the expected surface area of the boundary be-
tween bubbles is

JAL

Given that our construction is randomized, it is an inter-
esting open question to come up with an explicit determin-
istic construction that matches its performance.

Any spine given by our construction leads to a rounding
scheme in the natural way: use the spine to get a tiling of
R?, and then round points in every body to the unique lattice
point that lies in the body. The fact that the scheme obtained
by our construction is proper follows from the fact that the
body constructed by our scheme ligsdiameter at most.

Theorem 2.5 Let f : T? — R=0 satisfy [ f = 1. Further,
assumef is “nice”. Then for the above construction, the
d-noise sensitivity of the corresponding rounding scheme is

at most
(6 f1wr.)

2.2 Finding a good f

max O
ueSd—1

Given Theorem 2.4 and Theorem 1.3, we may equally

ically, it comes from the proof of Holenstein’s Lemma [6, well consider the more general task of finding a good “den-

Lemma 8] (see also [10, Lemma 4.1]). Our analysis of it
does not follow from either work, however. The construc-
tion is strongly reminiscent of random tessellation angery
tallization processes; see, e.g., [9]. Also, as pointedstioyu

sity function” f. The second idea in the proof is that we
may obtain a good solution even by fixirfgs 0-set to be
the naive spindx € [0,1)¢ : z; = 0 for somei}. Indeed,

we will show that solving the following problem gives a

James Lee, a very similar construction appeared in [2], ex-Very good solution for Theorem 2.4.

cept that balls were used there instead of our pre-bubbles
andR? was partitioned instead @i“.
We observe here the correctness of the construction:

Proposition 2.2 The surface output by the construction is
a spine forT<.

Proof: Suppose otherwise; then there is a homotopically
nontrivial loop L entirely within one bubble, i.e., color
region. ThisL is contained in some single pre-bubble,
{x € T?: f(xz — z) > t}, wheret > 0. HenceL can be
translated to a hotomopically nontrivial lodg contained

in the set{x € T? : f(z) > t}. But f’s 0-set is a spine, by
assumption, and thus must interséctt This is a contradic-
tion. O

In Section 3 we analyze the expected surface area of the

spine produced by the construction. éf denote the vec-
tor of partial derivatives of . Then we shall prove:

Definition 2.3 We say the functiorf : T¢ — R=C is
“nice” if it is C? and has the property tha¥ f has only
finitely many zeros on the sgt : f(x) # 0}.

Task 2: Find a (“nice”) f : T¢ — R=° such that:
1. [f=1
2. f(x) =0if x; = 0 for somei.
3. [[[V[| is as small as possible.

In Task 2, the presence §¥ f|| is analytically difficult.

We can make it more tractable by expressjing g2. Then
we have the constrairftg® = 1, and

J1ws1=2 [1al-1¥9l < 2\//7W
=2/ [ IVl

where we used Cauchy-Schwarz. This helps because
JIVg|? is easier to work with. It remains to analyze
the following:

1)



Task 3: Findg : T¢ — R such that:

1. [¢*=1.

2. g(z) = 0if »; = 0 for somei.

3. 24/ [ | Vg||? is as small as possible.

So far these proofideas all have analogues in Raz’s work.
We give an improvement by solving Task 3 optimally:

Theorem 2.6 The minimizingg for Task 3, among piece-
wiseC! functions, is

d
g(x) = H V2sin(ra;).

For this function,2,/ [ || Vg||2 = 27v/d (and alsof = ¢°
is “nice”).

The proof is an elementary use of Fourier series and is » ) o
given in Section 4. We note that the maximum value ob- Proposnpn 3.1.The spine OUtpl_Jt b_y the construcﬂon IS a
tained by the induced density functigris 2¢. The expected (@ — 1)-dimensional surface which is piecewise
volume of a pre-bubble chosen according to this density p,of. 1t suffices to show this is true of the boundary of

functionisexp(—d). o each pre-bubble. Sincg is continuous, each pre-bubble
With regards to finding a proper rounding, it turns out ¢ boundanB = f~1(t) for some0 < t < M. By

that the minimizing function fomax,cga—1 [ [(Vf,u)]| is “niceness’,Vf = 0 on at most finitely many points of
the same as above. We shall prove: B. Finally, sincef is C!, a general version of the Implicit

Theorem 2.7 The minimizing function for ~Function Theoremimplies thdt is a piecewis€! (d —1)-
max,cgat [ |(Vf,u)|is dimensional surfacel
d Given a piecewis€! surface inT?, we can express its
f(z) = H 2sin?(7;). area via a “Buffon’s Needle” or Cauchy-Crofton-type for-
i=1 mula.

For this functionmax,cge—1 [ |[(Vf,u)] = O(1). Definition 3.2 For a pointa € T¢ and a directionu €
S?-1, we define the “needle” (line segmert) 5., of length

2.3 Completing the proof 0<é<ltobe{a+Au:)el0,8} T

The following result is from the Integral Geometry textbook
of Santal6 [13] (thel = 2 case is stated as (8.11) therein;
the extension t@ dimensions is discussed on page 274):

The proof of Theorem 1.7 follows immediately from
Theorems 2.4 and 2.6 and the Cauchy-Schwarz argu
ment (1). An illustration of the construction ifi2 with

f(2,y) = sin® () sin®(ry) appears below. Theorem 3.3 Let S be a piecewis€> surface inT%. Let
Similarly, the proof of Theorem 1.3 follows from Theo- (4.5 be a uniformly random needle of lengthi.e., a €

rem 2.5 and Theorem 2.7. T andu € S9! are chosen uniformly and independently.
The proof of Theorem 1.8 faR?/VZ? follows by ap-  Then

plying the linear transformatioWi to the random spine con- E [#(fa su S)] = Cy- 8- area(S)

structed forT<. The analysis is given in Section 5. au ' ’

) o whereCy ~ 1/+/d is the dimension-dependent constant
3 Analyzing the Construction in terms of f
Ca= E [l

egd-1
In this section we prove Theorem 2.4. Assume through- b

out this section thaf is “nice” as in Definition 2.3. We  and#(¢, s, N S) denotes the number of points of intersec-
begin with a straightforward observation: tion between the needle and the surface.



Our plan is to fix a short needlg, 5, and estimate the
expected number of intersections it makes with the random
spine. The main technical theorem we need is:

Theorem 3.4 Fix a needle/ = ¢, s, Of lengthd in T, Let

N be the random variable denoting the number of intersec-
tions /¢ makes with the sping output by the construction,
#(NS). LetW < oo be an upper bound on the magnitude
of f’s second-order partial derivatives (recall th#tis C?).
Then, if3d = [ |(Vf,u)| + Wéis such that? < 1/4,

E[N] <

s 1-68

As should be expectedi|[N] does not depend oa:
the construction is translation-invariant@¥. Given Theo-

rem 3.4, our main theorems Theorem 2.4 and Theorem 2.5

follow easily:

Proof: (Theorem 2.4) LefS denote the random spine out-
put by the construction. Let be as in Theorem 3.4. Then
for 6 small enough, by Theorem 3.3,

Cy- 6 Elarca(S)] = g{ayu[#(emmsﬂ]
= B [Eftnns))]
=5 1%5}
Takingé — 0, this gives us:
Efarea(S)] < (1/CeCq) lim E (

a/cae| [ (vt
1/ [ BT 10)]

Jivn

Proof: (Theorem 2.5) Let, s, be a needle of lengih The
probability that the end points of this needle are rounded
to different points by the rounding scheme is bounded by
E[N], which, by Theorem 3.4, is at mostZ; = O(58) =
O(6 [ |(V f,u)|). This completes the proof of the theorem.
O

a

Thus it remains to prove Theorem 3.4. The theorem fol-
lows immediately from Lemma 3.5 and Lemma 3.6 below.

Recall that the construction defines pre-bubbles
Bi, Bs,.... Let E; denote the ever®; N ¢ # () and let)M;
denote the random variab#e(¢ N 0B;).

Lemma 3.5 Letx = E[M; | E1]. Then
K < 5-/|<Vf,u>| + Wé?

Lemma 3.6 Letx be as in Lemma 3.6, and assumec 1.
Then
K < ]E;)[N] <k/(1—kK).

Proof: (Lemma 3.5) For completeness we begin by noting
that Pr[F1] is easily seen to be positive, as follows from
Proposition 2.1.

Recall that we have fixed a needle= ¢, s, of lengthd in

T?. Givenz € T¢ we will let f, : [0,6] — R=° denote
the restriction of the functiorf(xz — z) to the needl€. By
definition,

By ={(2,t) £ < [|flloo}

My = #{)‘ € [075] cfz(N) = T1}7

and hence
R = E[Ml | El]
o N i € 0,6]: £(N) =t} dtde

2
Tl e dz @)

Let's estimate the quantities in (2). First, we have

[tz [ faz)dz=1

As for the main integrand in (2), using the fact tifatis
C! we have

3)

1 £2llo §
[ #ea = thae= [ 1rovan
0 0
This follows easily from considering the contribution fof
from small segments.

SincelW boundsf,’s order2 partial derivatives, we con-
clude that on the rand®, ¢],

IF2 (V)] < UV fala), u)| + W,
Thus we have
[l £21loo
/ / #{A € [0,0]: f2(\) = t}dtdz
Td JO
S/ §-[(Vf.(a),u)| dz + W& (4)
'er

Combining (3) and (4) we conclude

) < 5/ (V. (a), u)| dz + W62.
’H‘d



Since the above integral does not dependipwe get the
claim of the lemmaQ

Proof: (Lemma 3.6) Recall thad/; denotes the random
variable#(¢ N 0B;). Let C; be the event thaB; com-
pletely encloses the needle, 66 = E; A (M; = 0). If

UC; has not occurred after the construction ends, continue

choosing pre-bubbles until it does. Sin®&[E;] > 0
andE[N; | E;] = k < 1, each even’; has positive

probability and therefore/C; will occur after finitely many
pre-bubbles, with probability. Let R denote the least
index such tha€’r occurs.

Let M} ,M;,,...,M;, denote the values ol/; for
thosei such that?; occurs, up untiM}, = 0,i.e.,jx = R.
We claim

K
M, <N<> M (5)
k=1

4.1 Optimizing g for Surface Area

Expandg : [0,1)? — R in terms of its (multidimen-
sional) Fourier sine series:

d
w) H V2sin(mw;x;),

i=1

g

weNd

g9(z) 7)

where

iw) = [ gto) _

We remark that we have pointwise convergence everywhere
in (7), sincey is piecewis&C! and satisfieg(z) = 0 when-
everz; € {0,1} (henceg’s odd extension is continuous).
More crucially, these conditions also justify term-byrter
differentiation ofg’s sine series. LeD; denote theith par-

H \/isin(muixi).
i=1

The lower bound simply says that the needle has at least a$ial derivative. Then we get the expansion

many spine-intersections as it has intersections with tae fi

pre-bubble that touches it. The upper bound holds becausq;
once a pre-bubble completely encloses the needle it will
never make any more intersections with the spine, and be-

cause countind #(£NOB;) can only overcount(¢N.S).

The distribution of each’ is that of My | E; and
henceE[M] | = x. Thus if we ‘take expectations in (5) we
get

k < E[N] < E[K]k,

using Wald’s Theorem in the upper bound. NéWwis dis-
tributed as the least index for which a sequence of i.i.d- ran
dom variablesM; ..., M; ., is 0. SinceM; is integer-
valued, the probability iti§ is atleast —E[M] | = 1—x.
HenceE[K] < 1/(1 — k), the mean of a geometric random
variable with parameter — . The proof is completel

4 Finding a good densityf

In this section we prove Theorem 2.6 and Theorem 2.7.
Suppose thag : T¢ — R is piecewise’!, [¢*> = 1, and
g(x) = 0 whenever:; = 0 for somei. We shall first show
that the minimum possible value fdr||Vg||? is 72d, and
occurs when

d
x) = H V2sin(mx;). (6)

Having shown this we only need to check thfat= g2 is
“nice” in the sense of Definition 2.3.

Z Tw;§(w

weNd

(V2 cos(nw;x;)) H\/—sln TW;iT;).

i#]
(8)
We now apply Parseval’'s Theorem for cosine series and
sine series to both (7) and (8), obtaining

1—/ = > il

weNd

(9)

wP=n ) wlfgw)?

weNd
(10)

It's now clear that subject to (9), the expression in (10)
is minimized when the Fourier sine spectrum is concen-
trated on the frequenay with minimal |w||, namelyw =
(1,...,1). Hence (6) is indeed the minimizer, as claimed,
and the minimal value is?d.

[1ma =3 ¥ =

Jj=1weNd

4.2 Bounding Noise Sensitivity using f

To prove Theorem 2.7, for every € S9!, we need to

bound
[iwrai< [wru

where the inequality is by applying Cauchy-Schwartz.
Let,p € {—1,+1}%be a uniformly random vector. Then



we have the following derivation:

2
d

/ Z wid sin(mx;) cos(ma;) H 2sin’(7x;)
i=1 J#i
d
Z w4 sin(mp;x;) cos(mp; ;) H 2sin®(mp;;)
i=1 i

2
d

Z w;dp; sin(ma;) cos(max;) H 2sin’(7x;)
i=1 G#i
d
= / Z u?16 sin? (wx;) cos? (mx;) H 16 sin* ()
i=1 j#i

The last equality follows from the fact that all the cross
terms vanish under expectation.

This integral is easily seen to be bounded by
O3, u?) = O(1), which is optimal, by the lowerbound
on thej-noise sensitivity of any rounding scheme, as dis-
cussed in the introduction.

4.3 f is “nice”

Note thatyg itself is not even globallg! as a function on
the torusT?; it has kinks on it9)-set, sincesin(mrz) is nat-
urally periodic on[—1, 1] rather thar{0, 1]. Nevertheless, a
trigonometric identity implies

(V2sin(rx))? = 1 — cos(2nz),

and this isC> on the circleT. Hencef is C* and hence&?
onT¢,

Next, the set{z : f(z) # 0}, on which we need to
consider the zeros o7 f, is clearly (0,1)?. We calculate
that

D;f(z) = 2%2n sin(27z;) - Hsin(mci),
1#]
from which it follows that the only zero d¥ f on (0, 1)? is

at(1/2,...,1/2). Hence we only have finitely many zeros,
as required for “niceness”.

5 General lattices

In this section we consider the problem for other vol-
umel latticesA beside<Z?. Letuv,...,vq denote a basis
for A, and arrange these vectors as columns in a métrix
LetV* = (V—1)T, the matrix of dual basis vectors.

A natural way to construct a spine of low surface area
for R?/A is simply to take our construction f&?/Z<¢ and
apply the linear transformatid. It's clear that this indeed
gives a spine. Regarding its surface area:

Theorem 5.1 The expected surface area of the spine
formed inR?/A by running our construction and applying
the linear transformatiorV is

[ wvs.

Proof: Although we stated Santald’s Theorem 3.3 T,

in fact it holds for any voluma lattice, so long as the nee-

dle is short enough to fit completely inside the fundamental

parallelepiped. Since we takke— 0, this is not a concern.
Getting an analogue of Theorem 3.4 is easy. Instead

of fixing a needlel! = ¢, s, in R?/A, choosingsS via

the construction, and then looking at the expected value of

#(NVS), we can instead fix the preimage of the needle

V~1¢in T4 and look at the expected value#fV —1/NS).

Theorem 3.4 tells us this quantity equals

. -1 — . *
5 [ 1wr vl = [ vVl

up toO(W?2§2). The remainder of the proof is unchanged.
O

We again use the Cauchy-Schwarz argument (1) to
upper-bound

/ Vvl <2, / VeVl
Td T

Finally, with our choice ofy from (6), it is easy to see
from (8) that

d

[ vevalr == ¥ i) -

=1

w2 |V*|3, = =2 [V 5, -

Thus we get a spine fdR?/A whose expected surface
area is at mostr ||V completing the proof of Theo-
rem1.8.

"l

6 Lower Bounds

We have already observed &i/d) lower bound on the
surface area of any spine Bf/Z¢ via the Isoperimetric In-
equality. In this section we generalize this to give a simple
lower bound (Theorem 1.9) that applies to the surface area
of a spine ofR /A for any volumel orthogonallattice A. A
lattice is orthogonal if it has an orthogonal basis.

The theorem follows from the following simple general-
ization of Pythagoras'’s theorem:

Theorem 6.1 Let vq,...,vg be orthogonal vectors. For
eachs, let F; denote thed — 1 dimensional facet whose
corners are the origin and all basis vectors not equabo
LetS be any piecewise continuods- 1 dimensional man-
ifold such that for every, the projection ofS to F; covers
F;. Thenarea(S)? = Zle area(F;)?.



Next, we prove Theorem 1.9: [9] J. Mgller. Random Johnson-Mehl tessellatiodsiv.
Proof: (Proof of Theorem 1.9) Since the Frobenius norm is Appl. Prob, 24(4):814-844,1992.
preserved under unitary transformations, it suffices to@ro
the theorem for the case that matbixis a diagonal matrix.
Let the diagonal entries be,, ..., ag. Then note that for
everyi, area(F;) = [[, ;& = 1/a;. The last inequal-
ity follows from the fact thatdet(V) = 1. On the other

[10] A. Rao. Parallel Repetition in projection games and a
concentration bound. IRroc. 40th ACM Symp. on the
Theory of Computing2008.

[11] R.Raz. A counterexampleto strong parallel repetition

hf';md,V*1 is simply the diagonal matrix With]/oz_i on the Manuscript, 2008.
diagonal. Thus the square of the area of the spine is at least
Z?:l 1/a2 = Hv—lufb_ m] [12] J. Sadoc and N. RivierFoams and emulsions. Pro-

ceedings of the NATO ASI on foams and emulsions,
emulsions and cellular materials held in Casg,

France, May 12—-24, 1997.999.
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