Two Query PCP with Sub-Constant Error

Dana MoshkovitZ Ran RaZ

July 28, 2008

Abstract

We show that theV"P-Complete languag8SAT has a PCP verifier that makes two queries
to a proof of almost-linear size and achieves sub-constant probability ofcétrorThe verifier
performs only projection tests, meaning that the answer to the first query determines at most one
accepting answer to the second query. Previously, by the parallel repetition theorem, there were
PCP Theorems with two-query projection tests, but only (arbitrarily sratstanterror and
polynomialsize R9]. There were also PCP Theorems wsthb-constanérror andalmost-linear
size, but a constant number of queries thadaiger than2 [26].

As a corollary, we obtain a host of new results. In particular, our theorem improves many
of the hardness of approximation results that are proved using the parallel repetition theorem. A
partial list includes the following:

1. 3SAaT cannot be efficiently approximated to within a factor%o#r o(1), unlessP = N'P.
This holds even under almost-linear reductions. Previously, the best kkd#hardness
factor wasg + ¢ for any constant > 0, under polynomial reductions @stad,/Lg]).

2. 3LIN cannot be efficiently approximated to within a factor%ofr o(1), unlessP = N'P.
This holds even under almost-linear reductions. Previously, the best kkdWhardness
factor wa% + ¢ for any constant > 0, under polynomial reductions @stad,/Lg]).

3. APCP Theorem with amortized query complexityo(1) and amortized free bit complex-
ity o(1). Previously, the best known amortized query complexity and free bit complexity
werel + ¢ ande, respectively, for any constant> 0 (Samorodnitsky and Trevisaig3]).

One of the new ideas that we use is a new technique for doingaimpositionstep in the
(classical) proof of the PCP Theorem, without increasing the number of queries to the proof.
We formalize this as a composition of new objects that we loadlally Decode/Reject Codes
(LDRC). The notion of LDRC was implicit in several previous works, and we make it explicit in
this work. We believe that the formulation of LDRCs and their construction are of independent
interest.
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1 Introduction

1.1 Probabilistic Checking of Proofs

The PCP Theoreni[ [1] states that any mathematical proof can be converted to a form that can
be checkegrobabilistically by reading only aconstantnumber of places in the proof. Moreover,

the check can be performed by afficientverifier. If the mathematical theorem, supposedly being
proven, is correct, then there exists a proof in the new form that the verifier always (or almost
always) accepts. On the other hand, if the mathematical theorem is false, then no matter which
proof is provided, the verifier rejects with at least some constant probability. Note that soundness
holds even though the verifier queries the proof only in a constant number of places.

A PCP verifier has several important parameters (ideally, we would like all parameters, except
the completeness, to be as small as possible):

1. Completeness(c) : The minimal probability that the verifier accepts a correct proof. An
almost perfect completenessy 1 is usually required. In most cases, a perfect completeness
¢ = 1 can be obtained.

2. Soundness (or, Error)(¢) : The maximal probability that the verifier accepts a proof for an
incorrect theorem. An error of at most— § for some constant > 0 is usually required. In
some cases, a sub-constant etref o(1) can be obtained.

3. Queries(g) : The number of queries to the proof. A constant number of queriesD(1) is
usually required. In some casess 2 can be obtained.

4. Size(m) : The size of a proof in the new form, with respect to the sizé the original proof.
A polynomial sizem = poly(n) is usually required. In some cases, an almost linear size
m = n'*°() can be obtained.

5. Randomnesg(r) : The number of random bits used by the verifier. The randomness upper
bounds the size byn < 2" - ¢q. Thus,r = O(logn) corresponds to polynomial size and
r = (1+o0(1)) - logn corresponds to almost linear size.

6. Alphabet () : The alphabet used for the proof in the new form. It is sometimes more
convenient to consider tlenswer-sizdog |X| (i.e., the number of bits required to represent an
alphabet symbol), rather than the alphabet Sizetself. An alphabet size of at mogbly(n)

(i.e., answer-size aP(log n)) is usually required. In some cases, answer-size(tdg %) can
be obtained.

We denote byPC P, ;[r, q]x. the class of languages that have a PCP verifier with completeness
soundness, randomness, andq queries to a proof over alphabgt (When we omits, it should
be understood that = {0,1}.)

We think of all the parameters as functionsof

2



1.2 Hardness of Approximation and Two-Query Projection Tests

Feige et al'15] discovered that there is a close and simple connection between PCP Theorems and
hardness of approximation. The PCP Theorem can be formalized as stating that approximating the
number of satisfiable clauses iBB8AT formula to within some constant factor P-hard. This
formulation enabled a vast body of hardness of approximation results via further reductions.

A reduction can be viewed as proving a PCP Theorem in which the type of check corresponds to
the problem to which one reduces. Consider, for instadicey, i.e., the problem of computing the
maximal number of equations that can be satisfied simultaneously in a system of linear equations,
where each equation is on three variables @véi(2). To prove the hardness of approximating
3LIN, it is sufficient to prove a PCP Theorem in which the verifier's tests consist of querying three
bits and comparing theX oRr to predefined value$ (or 1).

For many optimization problems, this research direction produced hardness results that match
(or almost match) the approximation factors obtained by the best existing algorithms. Thus, one is
able to explain our lack of success in finding better efficient approximation algorithms. For other
problems, tight hardness results are not known, or are known only under assumptions.

A generic type of tests that was discovered to be especially useful as a starting point for further
reductions is &avo-query projection testn a system of two-query projection tests, the proof consists
of two partsA and B. The verifier makes one query to thiepart and one query to thB part.
Upon seeing the answer to tlequery, the verifier either immediately rejects, or it has a uniquely
determined answer to theé query on which it accepts

1.3 Existing PCP Theorems

The basic PCP Theorem that was proved2)\i] based on previous worl2b, 5, 4,15, 31] is:
Theorem 1 (Basic PCP,2,11]). NP C PCPL%[O(log n), O(1)].

One can convert Theorehto the following equivalent formulations.
Theorem 2 (Equivalent formulations, [7]). Theorenil is equivalent to each of the following:

1. Low error: For anye > 0, NP C PCP, .[O(logn),O(log 1)].

2. Two-query projection testsThere exist a constarit > 0 and an alphabet: of constant
size, such thalv P C PCP,;_s[O(logn), 2]s.. Moreover, the PCP verifier makes two-query
projection tests.

The first item follows from sequential repetition of the basic PCP test (the repetition can be done
in a randomness efficient way by using hitters; see, e.g26}).[For a constant errat, the number
of queries igD(1), but for sub-constant errat the number of queries becomes super-constant. The

n contrast, iNUNIQUE-GAMES [23], each of the two answers determines uniquely a single satisfying answer to the
other.



second item transforms the number of querie3 &b the cost of enlarging the error to a fraction not
much smaller than.

Low error can also be obtained while preserving two-query projection tests. This is done via
parallel repetition. The parallel repetition transformation increases the randomness considerably,
but decreases the error probability exponentially. This was first show2€]n (Recently, several
improvements and simplifications were obtained by Holensiihdnd Rao 29)).

Theorem 3 (Parallel repetition PCP, R9]). There exists an alphabét of constant size, such that
for anye > 0, NP C PCP, .[O(logn - log %), 2] Moreover, the PCP verifier makes two-
guery projection tests.

EO(log %) .

For a constant errar, the randomness 9(log ), and the size ipoly(n). For sub-constant er-
ror ¢, however, the randomness becomes super-logarithmic, and the size becomes super-polynomial.
Interestingly, by a result of Feige et dld], when applying parallel repetition to “natural” verifiers
in order to decrease the error frcgno a small constant erret it is necessaryo usec-logn random
bits, where: > 1 depends on.

Sub-constant error PCP Theorems are also known. In these theorems, the error is decreased
below a constant while preserving polynomial si36,[3, 13]. The state of the art in terms of the
probability of error was proved irlQ].

Theorem 4 (Sub-constant error PCP, BQ, 3, [13]). For any constanivx > 0, there exist: <
2-(gn)™ and alphabet of size|S| < 2, such thatV P C PCP; .[O(logn), O(1)]s.

Theorem4 gives a low error PCP Theorem with constant number of queries. However, the
number of queries is strictly larger than

We note also that one can use known algebraic techniques to obtain very low error with two-
guery projection tests. However, the alphabet size of this construction is always super-polynomial.
The following theorem is folklore and follows from low degree testing theorems with sub-constant
error 30,3, 127].

Theorem 5 (Two-query projection tests PCP,30,3,127]). Fix any constanti > 0. Then, for every
¢ < -1 there exists an alphabgt of size|| < 2°¥(<), such thaiV'P C PCP; .[O(logn), 2]s.

(logn)?

Moreover, the PCP verifier makes two-query projection tests.
Note that the alphabet size is super-polynomial in this construction, no matter what the error is.

The randomness complexity of the verifier in the basic PCP Theorem can be improved, yielding
a PCP Theorem with almost-linear size. Various papers achievedlhdtd, 18, 12]. The state of
the art is by Dinur12], based on a result by Ben-Sasson and Suéan [
Theorem 6 (Almost-linear size PCP,9,12]). 3SAT € PCPlé[logn + O(loglogn), O(1)].

Note that the result is phrased for a specii®®>-Complete languag8SaT, rather than for all
NP. The reason is that the reduction from an arbitrt&f§ language td3SAT may not preserve
almost-linear size.

The transformations from Theore2tan be adapted to preserve almost-linear size:
Theorem 7 (Equivalent formulations, almost-linear size).Theoren®6 is equivalent to each of the
following:



1. Low error: For anye > 0, 3SaT € PCP [logn + O(loglogn) + O(log 1), O(log 1)].

2. Two query projection testsThere exist a constait> 0 and an alphabek of constant size,
such that3Sat € PCP;;_s[llogn + O(loglogn),2]s. Moreover, the PCP verifier makes
two-query projection tests.

The first item follows from randomness efficient sequential repetition via hitters (see, e.g., in
[2€6]). The second item is along the same lines as the second item in Th@orem

Recently, sub-constant error was achieved simultaneously with almost-linear size:
Theorem 8 (Sub-constant error PCP of almost-linear size,47, 26]). There exists a constant
o > 0, as well ass < 2-(s™" and an alphabet: of size|x| < 20" such that3SAT e
PCP; [logn + O((logn)'=*),0(1)]s.

Like Theorend, TheorenB gives a constant number of queries that is strictly larger than

In light of the results described above, the following questions arise (see,3})gAlfe there
PCP Theorems wittwo queries and sub-constant error ? How about two-query projection tests and
sub-constant error ? Are there such PCPs with almost-linear size ?

1.4 Our Results

We prove a PCP Theorem with two-query projection tests, sub-constant error and almost-linear size.
More precisely, for any errar > 0 (that can be any function of), we obtain a construction with
soundness, answer-sizgoly(1) and sizen' () - poly(1). Our main theorem is as follows.

Theorem 9 (Main theorem). For everye > 0, there exists an alphabét with log |%| < poly(%),

such that3SAT € PCP;.[(1 4 o(1)) - logn + O(log 1),2]s.. Moreover, the PCP verifier makes
two-query projection tests.

In particular, ife > m where(3 is a sufficiently small constant, the answer-size is loga-
1

rithmic and the size is almost-linear. We note that for etrot Toam)? Theorem9 follows from
Theorem5 (the PCP Theorem that is based on Low Degree Testing), but this is exactly the less
interesting case where the alphabet size is super-polynomial. The new part is the construction for
> m.

The previous work that is most related to Theoi@m Theoren3 (the PCP Theorem obtained
from the Parallel Repetition Theorem). Theor8ims incomparable to TheoreB While Theoren®
obtains two-query projection tests with sub-constant error, and polynomial (even almost-linear) size,
which cannot be obtained by Theoreé8nthe answer-size in Theorefis poly(é), rather than
O(log 1) in Theorem3. Note that fore = O(1), poly(2) = O(log 1) = O(1) and hence in this
range Theorer® gives the same answer-size as the one in The@éup to a constant), but with
better size parameter (almost-linear size, rather than polynomial size).



1.5 Hardness of Label-Cover

We can also formalize our main result in terms of the optimization prolle®eL-CovER. The
problem captures two-query projection tests and serves as the starting point for many of the existing
hardness of approximation results.

Definition 1.1 (Label-Cover). An instance ofLABEL-COVER contains a regular bipartite multi-
graph G = (A, B, F) and two finite set&, and Xz, where|X 4| > |Xg|. Every vertex inA is
supposed to get a label M4, and every vertex i3 is supposed to get a label lz. For each edge

e € E there is a projectiorr, : X4 — Y which is a partial function.

Given a labeling to the vertices of the graph, i.e., functipns: A — >4 andyg : B — Y3,
an edge: = (a,b) € Eis said to be “satisfied” ifr. (¢ 4(a)) = ¢p(b) (it might be thatr. (¢ 4(a)) is
undefined; in which case.(¢4(a)) # ¢g(b)).

The goal is to find a labeling that maximizes the number of satisfied edges. We safrdlation
of the edges are satisfiable if there exists a labeling that satigfiesction of the edges.

In the LABEL-COVER notation, thesizecorresponds to the number of vertide§ + |B|. The
alphabetcorresponds to the (larger) set of labEls. Therandomnesss log | E|.

Sometimed. ABEL-COVER is defined with projections, that are functions, rather than partial
functions. However, the more general definition of partial functions is convenient for us, and works
just as well for the applications. In the literature one can find a variety of different problems that are
namedLABEL-COVER and are incomparable to Definitidnl. However, today, the nanmeABEL-
CovER usually refers to the problem defined in Definitidnl.

Our main theorem can be restated as follows.
Theorem 10 (Main theorem). For everyn, and everye > 0 (that can be any function of) the
following holds. Solving SAT on inputs of size. can be reduced to distinguishing between the case
that aL ABEL-COVER instance of size'™(!) - poly(1) and parameter$s 4|, [Sp] s.t. log [S4| <
poly(1) andlog |~ 5| < O(log 1), is completely satisfiable and the case that at mdsaction of its
edges are satisfiable.

1.6 Some Implications of Our Main Theorem

In this section we demonstrate some of the prominent implications of Thelfiefhe presentation
follows Khot’s survey 24|, and the reader is referred to this survey for more details.

The following scheme is used to prove hardness of approximation results:

1. Start with a two-query projection tests PCP Theorem with low error (the PCP based on parallel
repetition, given in TheorelB).

2. Apply Long Code 6, 18] and other techniques to convert the test performed by the verifier to
the desired form.



This scheme has been successful in proving hardness of approximation results for many opti-
mization problems. A prominent example is the work afsthd /L8] proving, among other results,
the hardness of approximating8r and 3_IN.

Theorem10 can many times replace Theorédnn stepl. When one is interested iVP-
hardness results, this will usually give better results than what parallel repetition gives: almost-
linear reductions, rather than polynomial or super-polynomial reductions, and sub-constant error,
rather than constant error. This is true as long as'2@pes not use specific properties of parallel
repetition other than two-query projection tests, and as long as the number of repetitions used is
relatively small. (We note that when one is interested in hardness results under stronger assumptions
such as\V"P ¢ DTIM E(2P°Vleen) one usually obtains better results using parallel repetition, i.e.,
using Theoren8 rather than Theoreri0). In this section we demonstrate a few cases in which
Theoreml( can indeed be used to give better results in this scheme.

3SAT:

Hastad followed the above mentioned scheme to prove hardness results for many optimization prob-
lems, including the classicaSaT [18]. Note that any3C'N F' formula has an assignment satisfying

at Ieastg fraction of its clauses. Thus, the best we can hope for is to show thaiifAshard to
distinguish between the case that the formula is satisfiable and the case thatfi@ttjon of the
clauses are satisfiable.

Corollary 11 (3SAT hardness). Solving 3BAT on inputs of sizex can be reduced to distinguishing
between the case thats&' N F formula of sizex'*°(V) is satisfiable and the case that orfiy+ o(1)

fraction of its clauses are satisfiable.

This corollary improves over &bstad’s result in two respects: First, it shows a hardness result
based on an almost-linear size reduction, rather than a polynomial size reduction. Second, it shows
that approximating the number of satisfiable clauses to within a factéHefo(l) is N"P-hard,
and not only that approximating that number to within a facto%off e for any constant > 0
is N'P-hard (as in Histad’s original result). The(1) term is roughly(loglog n)~*(!) because of
Hastad’s test construction that is based on the Long Code. We note that if we could have achieved
in TheorenilQ the alphabet/error tradeoff of Theor@n/< 4| < poly(1), theo(1) term would have
been(logn) YY), We note also that &stad does obtain hardness of approximation results to within
a factor of L + o(1) where theo(1) term is (log n) ~*") (using the above mentioned scheme), but
these are nat/P-hardness results and are based on stronger assumptions.

3LIN:

To obtain an optimal completeness/soundness gap frery bits, we can follow Bstad 18] and
consider the problem of solving linear equations3orariables over= F'(2). For this problem, one

can efficiently check whether all the equations can be satisfied simultaneously by Gauss elimination.
Hence, we give up perfect completeness.

Corollary 12 (3LIN hardness). Solving 3AT on inputs of size can be reduced to distinguishing
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between the case that in a set0f°(!) linear equations, each depending duariables ovelG F(2),
a fraction of1 — o(1) of the equations can be satisfied, and the case that briy(1) fraction of
the equations are satisfiable.

Again, this corollary improves overastad’s result in two respects: First, it shows a hardness
result based on an almost-linear size reduction, rather than a polynomial size reduction. Second, it
shows that approximating the number of satisfiable equations to within a fa(goF of1) is N'P-
hard, and not only that approximating that number to within a factcérJeE for any constant > 0
is AP-hard (as in Hstad's original result). The(1) term is the same as the one fd84&. Once
again, we note also thatddtad does obtain hardness of approximation results to within a factor of
5+ o(1) (where theo(1) term is better than the one we obtain here), but these at&’@ohardness
results and are based on stronger assumptions.

Amortized query complexity and free bit complexity:

Assume for simplicity that the alphabetis= {0, 1}. Roughly speakingamortized query complex-

ity is the ratio betweelbg of the soundness and the number of queries. There are several similar
and essentially equivalent definitions. Here, we refer by amortized query compleﬂgf%}%ﬁ,
following [24]. “Free” queries are queries to which the answer can be arbitrary. The satisfying
answers to the other queries are determined uniquely by the answers to the free queries. Roughly
speakingamortized free bit complexitg the ratio betweetvbg of the soundness and the number

of free queries. Formally, we refer by amortized free bit complexitﬁgﬁ(}%, where f is the

number of free queries.

Samorodnitsky and Trevisan used tBeIN test (and the above mentioned scheme) to obtain
PCP Theorems in which the amortized query complexity 4s= and the amortized free bit com-
plexity ise (for any constant > 0) [32]. Using a similar approach, our results imply a similar PCP
Theorem with amortized query complexityt o(1) and free bit complexity(1). Moreover, this is
done by aralmost-linearsize reduction from SAT, rather than a polynomial size reduction 82].
Corollary 13 (Nearly-optimal amortized query complexity and free bit complexity). There ex-
ists a functionk,,,...(n) > w(1), such that, for any natural number(1) < k£ < k;;4.(n), 3SAT on
inputs of sizex has a verifier that use§l + o(1)) - log n random bits to picly = £? + 2k queries
to a binary proof, such that only = 2k of the queries are free. The verifier has completeness
¢ =1—0(1) and soundness at most= 2-F*+1 implying amortized query complexity+ o(1) and
amortized free bit complexity(1).

1.7 Techniques

In the literature there are two main approaches for proving the PCP Theorem. The classical ap-
proach P, 1] and Dinur’s approachll?]. The classical approach starts with a PCP verifier with
small error but very large alphabet, and gradually reduces the alphabet size. Dinur’s approach starts
with a PCP verifier with small alphabet but very large error, and gradually reduces the error. Our
proof is more related to the first approach.



One of the main new ideas that we use can be viewed as a new technique for doing the compo-
sition step in the PCP Theorem, without increasing the number of queries to the proof.

Proof composition is what enabled the PCP theor2yd]; and is an important part of all PCP
constructions since. In the literature, there are several different (but very related) ways to do the
composition step (see for exampR; 84,14, 8]). However, all these methods are either restricted to
constant error, or require a large number of queries. For example, each application of the standard
way of doing the composition step in the classical proof of the PCP Theorem, increases the number
of queries to the proof by 1.

To formalize our techniques, we define the notiohotally Decode/Reject CodeDRC). Very

roughly speaking, LDRCs are codes such that there exists a decoding algorithm that performs a local
test on a codeword and based on the test either rejects or outputs the value of several positions in
the encoded message. The decoding algorithm should satisfy the following two properties: 1) If it
is given as an input a correct codeword then it always accepts and always returns the correct values
of the encoded message. 2) Given any word as an input (not necessarily a correct codeword), with
very high probability, if the algorithm does accept then the returned values agree with one of a small
list of codewords (a list decoding of the word that is given as an input).

The notion of LDRC and variants of it were implicit, or even semi-explicit, in many previous
works (e.g., B, 130, 33, 113, 26]). We believe that the explicit formulation of LDRCs and their
construction are of independent interest.

Our new composition technique is a composition of LDRCs, rather than a composition of veri-
fiers. The difference between a verifier and an LDRC is that a verifier checks a predicate, while an
LDRC checks a predicate and — provided that the predicate is satisfied — returns values. By using
LDRCs, rather than verifiers, we deviate from the path taken in works su@yx<3[ 10,9, 8], and
proceed in the path taken it3, 26].

Our entire proof is presented as a construction of LDRCs with certain properties, rather than
a construction of PCPs. We then use the new LDRCs to reduce the number of queries in existing
constructions of PCPs. Thus, our proof can be viewed as a reduction that reduces the number of
queries in PCP constructions. More precisely, the reduction converts a PCP with a large number of
gueries into a PCP with two-query projection tests, while not increasing the error by much.

We note however that for the construction of our LDRCs, we do use many of the techniques that
were developed for constructions of PCPs, and our proof contains several steps that are similar to
corresponding steps in the classical approach for proving the PCP Theorem. For example, we use
the Reed-Muller and Hadamard codes and their local testing and self-correction properties. We do
have several new techniques that we need in order to achieve a construction with two queries and
sub-constant error.

As in the classical approach for proving the PCP Theorem, our construction starts with an LDRC
with low error but large alphabet, and gradually reduces the alphabet size. The construction is by
performing various transformations, including compositions of the Reed-Muller and Hadamard con-
structions, and other transformations. Our proof relies on algebraic constructions, yet the construc-
tion involves several combinatorial steps that are quite generic and may find other applications. The



combinatorial steps use expanders with a very large spectral gap. The use is different from the use
of expanders of constant spectral gap in the work of Diad} (although it bears some similarity to
it). More details appear in Secti@where we outline our construction.

The formal definition of LDRC, as well as more details and applications, appear in S@ction
We wish to emphasize that LDRCs are different from existing notions such as Relaxed Locally
Decodable Codes (RLDCs8]] A comparison and a construction of RLDCs and locally testable
codes from LDRCs appears in Sect®3. The use of LDRCs to query reduction for PCPs appears
in Section2.2.

2 Locally Decode/Reject Codes fok-Tuples

A Locally Decode/Reject Code is an encodiag {0,1}" — X™ that maps messagesc {0,1}"
to codewordsZ(x) € ™. ¥ is the alphabet of the code andis its length. Underlying an LDRC
there is a list ofc-tuples of positions irn]:

<Z'171, . 7i1,k>7 ey <iN71, . ,iN,k> € [n]k

The code is associated with a local testing/decoding algoridhimhe purpose of the algorithm is to
decode a randor+tuple from the list. The algorithm is probabilistic and may only query a constant
number of positions irE™. Based on the answers to the queries it should either reject, or return a
k-tuple from the list together with a decoding/obits for it (see Figurd). Note that the alphabét

needs to be large enough to allow that. In our setting, the algorithm makes two queries and performs
a projection test. If the test passes, then based on the answer to the first query (that also gives the
satisfying answer to the second query), the algorithm should decbdede.

Letz € {0,1}" and fix some randomness for the algorithtn This fixing determines &-tuple
(i1,...,ix) € [n]¥ in the hard-wired list. Let us say that the algoritbdnon the fixed randomness
decodest if the algorithm.A does not reject and does outgyt= z(iy),..., b, = xz(ix), where
x(1;) for j € [k] denotes the;’th symbol inz.

In Definition 2.1 below we state the properties of the local tester/decoder. Given access to a
codewordy = FE(z), the algorithm must always decode The requirement from the algorithm
when given as input a non-codeword is more subtle. In existing definitions of local decoders, the
input y is assumed to be at least close (in Hamming distance) to some codéWeydand the
requirement is to decode. In the definition of LDRCs, we will not assume thats close to a
codeword. That is, we allow to be an arbitrary string ix™. In this casey may be far from
all codewords. Hence, we allow the algorithm to reject if it cannot decode. Nonetheless, the list of
codewords that are somewhat close ttannot be large (wheh defines a code with good distance).

We require that with high probability, il does not reject4d decodes one of a short list of messages
x1,...,x € {0,1}". It does not matter which; the algorithm decodes, but all bits must be
consistent with the same (note that this is non-trivial wheh< 2F).

Definition 2.1 (Locally decode/reject code fork-tuples). Let0 < 6., < 1. Letl,0 : (0,1) —

R* be a decreasing function. An encodiay: {0,1}" — Y™ together with a testing/decoding

10



Local Tester/Decoder

Hard-wired: A collection of sizeN of k-tuples of positions itn|:
<Z'1717 . 7i1,k>7 ey <Z.N’1, .. ,iN’/g> - [n]k
Input: y € X

Goal: Test whethery locally agrees with a codeword, and, if so, decddgositions in

the message, where the positions are chosen uniformly at random from the hard-wired list.

)

Output: Either reject or a k-tuple of indices(iy, ..., i) that is uniformly distributed in
the hard-wired list, as well @sbits by, ..., b, € {0,1}.

Process:

1. Pick in some randomized manner a constant number of queriggitoour case, twa
queries), as well as &-tuple (i, ..., i) that is uniformly distributed in the hard-wired
list.

2. Perform some test on the queried positiong {in our case, a projection test). If the test
rejectsreject

3. Use the queried positions to comp#étbits by, ..., b, € {0, 1}.

Figure 1:Local tester/decoder

algorithm A as in Figurel is called a(d,,n, lma.)-locally decode/reject cod®r the hard-wired
k-tuples, if the following holds:

1. CompletenessFor everyx € {0,1}", on inputE(z), the algorithm always decodes

2. Soundness:For everyy € Y™, for every realy such thatj,,;, < ¢ < 1, there exist <
lmaz(0) Messages, ..., x; € {0,1}", such that the following holds: the probability that the
algorithm does not reject, yet does not decode any; of. . , x;, is at mostO(4).

The parameter,,;,, lower bounds the error of the LDRC, i.e., the probability that the tester/decoder
accepts although it should not. The paramétgr. gives the list size as a function of the error we
are willing to tolerate. Typicallyl,,,.(0) < §~°0),

2.1 Bipartite Locally Decode/Reject Codes

For our setting, let us also explicitly define theBEL-COVER version of LDRCs. The notion of
bipartite LDRCsimposes the two query projection tests structure on the local tester/decoder. The
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notion is stronger than the notion in Definiti@il. The encoding consists of two partsand B.
The list-decoding is determined solely by tBepart.
Definition 2.2 (Bipartite locally decode/reject code fork-tuples). Consider a list of-tuples

(i1 yiig)s ooy (i, -y ing) € [0)F

A Bipartite LDRC for thek-tuples isG = (G = (A, B, E), X4, X5, {7} ccps {Te }eems 1Pe fecr)
whereG’ = (G = (A, B, E), X4, Y5, {7} .cp) IS an instance olLABEL-COVER, and every edge
e € FE carries ak-tuple 7. from the list and an evaluation function : ¥4 — {0, 1}’“. For each
J € [N], the tuple(i; 1, . .., 1) appears on the same number of edges.

Given a labeling to the vertices of the graph, i.e., functiohs: A — ¥, andCp : B — X,
an edge: = (a,b) € F is said to be “satisfied” if it is satisfied i4’. For a message € {0,1}",
the edge: is said to “decode’z if p.(Ca(a)) = (x;,, ..., x;,) Wherer, = (iy, ..., i) is the tuple
associated withe.

LetO < dpnin < 1. Letlae : (0,1) — RT be a decreasing function. We say that the LDRC is a
(Omin, lmaz )-bipartite LDRC if it satisfies the following conditions:

1. Completeness¥or everyz € {0,1}", one can efficiently compute assignmeTifs: A — X4
andCp : B — Xp, such that all edges € E are satisfied and decode

2. Soundnessior everyCp : B — Y, for every reab) such that,,;, < § < 1, there exist <
lmaz(0) Messages, ..., z; € {0,1}", such that the following holds for arfy, : A — X 4:
when picking uniformly at random an edge= £, the probability that is satisfied but does
not decode any one af, ..., z;, is at mostO(J).

Note that for decoding to be possible, the alphabet must sabisfy. 4| > k.

In the LABEL-COVER notation, the length of the code corresponds to the number of vertices
|A| 4+ | B|, and the alphabet of the code corresponds to the (larger) set of labelhe randomness
of the local tester/decoder Isg |E|. For any interesting list ok-tuples (where we refrain from
defining “interesting” explicitly; an “uninteresting” list may be one that does not even contain most
possible indices ifn]), the length must be at leaQ{ N + n). We refer to the size of the gragh,
|G| = |A| + |B| + |E|, as thesizeof the bipartite LDRC. The size measures both the length of the
LDRC and the number of possible tests of its local tester/decoder. We say that the construction is of
almost-linearsize, if the size i§N + n) - n°W,

We show a construction of an almost-linear size bipartite LDRCs as follows:
Theorem 14 (Construction of bipartite LDRC). There exists a constafit< a < % such that the
following holds. Lett be such that < (logn)®. Letm < e < 1. Then, there is an efficient
algorithm that given a collection of siz&¥ of k-tuples, outputs &5, = €, lnae(0) = 6 °W)-
bipartite LDRC for these tuples. Its size is almost linéar + n) - n°), and its alphabets satisfy
log |X4] = k - poly(%) andlog |S5| = O(log 1). The degree of thel vertices is(2)°™), and the
degree of the3 vertices is(1)°").
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2.2 Query Reduction For PCPs Via LDRCs

Bipartite LDRCs allow us to convert a PCP with a low error and a large number of queries, e.g., the
one appearing in Theorem(item1), to a PCP with low error and two query projection tests. Using
the bipartite LDRC construction of Theoreld, we get our PCP theorem, Theordg

Definition 2.3 (Construction algorithm). A (k,.4z, dmin )-cONstruction algorithm for bipartite LDRCs
with parametergsize, block 4, blocks) is an efficient algorithm that given a collection ftuples,
wherek < kpqz, OUtPULS &0pnin, Lmaz )-bipartite LDRC for the tuples, wheig,,.(6) < 690, The

size of the output isize, the alphabet size of thé vertices is2”°°k4 and the alphabet size of the
vertices is2blocks,

Theorem 15 (Query reduction). If there is a(q, €)-construction algorithm for bipartite LDRCs

with parameterssize < (N + n) - n°®") blocky, block), then for some, > £,

PCPLEO[(l + 0(1)) : log n, q} - PCPLO(E){(l + 0(1)) : log n, 2]{071}b|ockA

Moreover, the PCP verifier performs two query projection tests, and the answer to the second query
consists oblockg bits.

Proof. Denote byC a (g, ¢)-construction algorithm for bipartite LDRCs with parametéige <
(N +n) - n°M block 4, block ). Assume that outputs(e, I,,.. )-bipartite LDRCs. Let us choose
€0 = €/lmaz(g) > €90,

Let L € PCP.,[(1+ o(1)) - logn,q]. Denote the implied PCP verifier ;. Denote the set
of randomness strings the verifigr uses byR, where|R| < nited)  On randomness € R, the
verifier V; performsg queries to a binary proof of size < n't°(); denote the;-tuple of queries
thatV; performs byl (r) € [m]?.

Invoke the construction algorithi® on the collection of size.'**() of g-tuples{Vi(r)},. to
obtain a bipartite LDRC:

g = <G = (A7 B7 E)7 EA’ 237 {Tre}eeE7 {Te}e€E7 {pe}e€E>

Identify 32, with {0, 1}*°%4 andX 5 with {0,1}"°*“®. Note that the size of is n!t*(),

Consider the following PCP verifiar; for L. Assume that the verifiér; is given inputz. The
verifier V, has oracle access to a proof which it interprets as lafiélsCz), whereCy : A —
{0,1}*°** andCy : B — {0,1}"°**". Supposedly(', andCz encode a proof that would have
convinced the verifiel; thatx € L. The verifierl; proceeds as follows:

1. Pick uniformly at random an edge= (a,b) € E. LetV;(r) for a uniformly distributed- € R
be such that, = Vi (r).

2. If 7.(Ca(a)) # Cg(b), reject

3. Otherwise, accept or reject, dependinglgfs verdict on inputz, randomness and answers
pe(Ca(a)) to its queries.

13



Note thatV; is efficient, uses onlyl+o(1))-log n random bits to make two queries to a proof, where
the answer to the first query consistsbtidck 4 bits, and the answer to the second query consists of
block bits, and performs a projection test on the answers.

Let us argue completeness and soundness.

Completeness. Assume that: € L. By the completeness &f;, there exists a proaf € {0,1}"™
thatV; always accepts. Lefy : A — {0,1}*°** andCj : B — {0,1}"°%7 be labels for which
all edges are satisfied and decadd-or these labels, the verifi&s always accepts.

Soundness. Assume that: ¢ L. Consider labels”, : A — {0,1}"°** andCy : B —
{0,1}°°%5 Letm,...,m € {0,1}" be thel < l,q.(c) strings that follow from the definition
of the LDRCG for the assignmentS'y, C'z and the parametet

Let us show that the probability thé} accepts on input and proof(C4, Cz) is at mostO(¢):

By the soundness of the LDRE, the probability that the edgeis satisfied inG, but does not
decode any ofry, ..., m, is at mosO(¢).

For everyi € [I], whenV is given inputz and proofr;, the probability over the randomness of
Vi thatV; accepts is at most. Thus, the probability that given input the verifierV; accepts when
given as proof one ofy, ..., m, isatmost - ¢ < O(e). O

Corollary 16. TheorenilC holds.

Proof. Lete > 0. Let us assume that for some constdant 0 it holds that= > m Otherwise,
the conclusion of TheoreiQ follows from Theoremb. We will chooses’ > °() shortly. By

Theorem? (item'1),
1
3SAT € PCP, [(1+ o(1)) - logn, O(log g)]
Apply the query reduction theorem (Theord®) using the LDRC construction algorithm given in
Theorenil4. Deduce that for somg, > £°M),

1
PCP.,[(140(1)) -logn, O(log g)} C PCP . [(140(1)) - logn, 2]{0 e

Moreover, the PCP verifier performs two query projection tests, and the answer to the second query
consists of0(log %) bits. Lete’ = ¢¢. Therefore, solving SAT on inputs of size: can be reduced

to distinguishing between the case thdtA#BEL-COVER instance of size,'to() . pon(%) and pa-
rametergX,|, [Xp| s.t. log|S4] < poly(1) andlog |X5| < O(log 1), is completely satisfiable and

the case that at mostfraction of its edges are satisfiable. O

2.3 Relaxed Locally Decodable Codes

In this section we recite the notion of Relaxed Locally Decodable Codes (RLE)CRLDCs are
codes with local testing and decoding algorithm that are different from LDRCs. The notions are
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incomparable in one sense, the requirement of an RLDGti®ngerthan the requirement for an
LDRC, while in another sense, the requirement of an RLD®@easkerthan the requirement for an
LDRC. In the sequel we compare the two notions.

To motivate Relaxed Locally Decodable Codes (RLDC), we revisit the definition of Locally
Decodable Codes (LDCs21]. LDCs are encodingé’ : {0,1}" — ™ that are associated with a
local decoding algorithrd. The algorithm gets as input an indéx [n] and has oracle access to
awordy € X™ that isclose(in Hamming distance) to some encoding, i.e., there exists{0, 1}"
such thatA(y, C(x)) < 4, whered is a small constant. The purpose 4fis to decoder;. The
algorithm is probabilistic and is allowed to query a constant number of positions\Wheny =
C(z), the algorithm should always output The soundness requirement is tfa@tany: € [n| and
anyy such thatA(y, C'(z)) < 9, the algorithmA4 decodes; with probability at leasts 1 — 6. The
probability is only taken over the randomness of the algorihrand not over the choice ofc [n].

The Hadamard code is locally decodable with two queries, but its length is exponential™.
The best constructions known today (under the assumption that there are infinitelyvraesgnne
primeg are slightly sub-exponentiaﬁ"“) and obtain a local decoder that querdsts [35]. For two
gueries, an exponential lower bound is kno®4][ For more queries, a super-linear lower bound is
known [21].

Motivated by this state of affairs, Ben-Sasson eBhkr¢laxed the notion of LDCs as to enable
succinct constructions. Their idea was to allow the decodéto decode a position. In this case,
the decoder should declare that it cannot decodegjadt Of course, the decoder must not use this
privilege too often: it may declare it cannot decode only few positions, depending on the distance of
the received word from the code. The key point is tfat.every position € [n], the algorithmA4
may err, i.e., not reject yet return a wrong value, with only a small probability over its random coin
tosses. There must not be even eére[n] for which algorithm.A err with large probability (unlike
for LDRCs).

Definition 2.4 (Relaxed locally decodable code)let0 < § < 1 and let0 < p < 1. An encoding
E : {0,1}" — X™ together with a decoding algorithid as in Figure2 is called a(4, p)-relaxed
locally decodable codéf the following holds:

1. CompletenessFor everyz € {0,1}" and everyi € [n], on inputF(z) ands, the algorithm
A outputsz;.

2. SoundnessGiven a wordy € ¥™ with A(y, E(z)) < 6,

(a) For every position € [n], the probability that4 does not reject, yet outpubs# z;, is
at most2.
3

(b) For at leastp fraction of the positions € [n], the probability that4 does not reject, and
does output;, is at least?.

The main differences between RLDCs and LDRCs are as follows:
e List decoding vs. unique decodinig. RLDCs, the guarantee is that the word is very close to
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Relaxed Local Decoder

Input: y € ¥™ andi € [n].

[72)
|

Goal: Find z; for z € {0,1}" such thatE(z) is the closest codeword (in Hamming di
tance) toy.

Output: Eitherreject or a bitb € {0, 1}.

Process:
1. Pick in some randomized manner a constant number of queries to

2. Perform some test on the queried positiong.iff the test rejectseject

3. Use the queried positions to compute thebkit {0, 1}.

Figure 2:Relaxed local decoder

a (unique) codeword. In LDRCs there is no such guarantee. The local decoder has to perform
well in the list decoding region.

e Average case vs. worst casda.RLDCs, the local decoder has to perform well &k indices
with high probability over its randomness. In LDRCs, the local decoder has to perform well
for almost allindices with high probability over its randomness. There might be very few
indices, on which the algorithm always returns an incorrect value.

e k-tuple vs. one positionn RLDCs (as in LDCs), the requirement is to decode one position.
In LDRCs, the requirement is to decoldgositions.

3 Construction Outline

In this section we outline our LDRC construction, i.e., the proof of Thedrdnwe present a simpli-

fied construction, taking the liberty of ignoring several issues. In particular, in this outline we ignore
the almost-linear size guarantee. The reason is that the ideas involved in handling almost-linear size
appear in previous work2V, 26] and introduce many technical difficulties. A full account of issues

we ignore in this outline appears in Sect®ri2 Recall that obtaining a PCP Theorem with two
guery projection tests and sub-constant error, even with polynomial size, was unknown prior to our
work.
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3.1 Encoding codewords

The first conceptual step is as follows: Instead of LDRCs encoding binary strings as in Defini-
tion2.2, we will construct LDRCs encoding codewords in some a@de 1. The formal definition
appears in Sectic®.2. The differences from DefinitioB.1 are as follows:

e Given a codeword: € C', we would like assignmentS'y, Cz “encoding” x (the encoding
does not need to work for all possible strings, only for codewords; ithis is a relaxation of
Definition|2.1).

e Given assignmentS',, C'z we would like a “list decoding” of codewords, . .., z; € C (the
list decoding cannot use any string in the decoding, only codewordstinis is a strengthen-
ing of Definition2.1).

Note that constructing LDRCs for an infinite family of efficiently encoddinlear codesC = {C,, }

yields, in particular, LDRCs as in Definitigh1. The reason is that given a binary string {0,1}"

we can first encode it using a codg, for a sufficiently largen’, and obtain a codeword € C,,

such thatr is a prefix ofz’ (by linearity, we can assume, without loss of generality, that the code is
systematici.e., an encoding contains the message bits and a sequence of linear functions of these
bits). Then, we can use an LDRC for the cddge. The positions we wish to decoderalso appear

inx’.

For the final construction of Theoreid, we use as our linear codéthe concatenation of Reed-
Muller and Hadamard. The reason is that both for the Reed-Muller code and for the Hadamard code,
we canlocally decode/rejectFor the Reed-Muller code — Hgw degree testingnd using curves.

For the Hadamard code — ltipearity testingand using linear subspaces.

Nonetheless, the Reed-Muller code and the Hadamard code have apparent caveats. For the
Reed-Muller code — while the length can be made almost-linear, the alphabet size is too large. For
the Hadamard code — while the alphabet size is small, the length is exponential.

Our methods allow us to gain from the advantages of the two codes, while not losing much from
their shortcomings. By composing the respective LDRCs, we obtain locally decode/reject codes
with almost-linear length and small alphabet.

3.2 New Notion of LDRC and Its Parameters

Next we formulate the new notion of LDRCs we use. In this new notion we make an additional
“technical” change.

We associate satisfiability constraints with theertices, rather than with the edges. Recall that
the projections on the edges are partial functions. That is, on some valuesdoétitpoint, an edge
may never be satisfied. Instead, we define the projections to be functions and defipe, sets,
where for every: € A we havey, C ¥4 is the set of satisfying values far A label to the vertex

projects on all the neighbors af The satisfiability constraint ommay check consistency between
the different projections.
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Definition 3.1 (Bipartite locally decode/reject code fork-tuples; new notion). Fix a codeC' C
Y. Consider a list of-tuples

(i1 esing)s oo (ing, o ivg) €[]

A Bipartite LDRC for théi-tuples is(G = (A, B, E), X4, X5, {Xa}ac 4 {Tetecr 1Tefecr 1Pe}ecr)
where(G = (A, B, E), X4, X, {7} is an instance oL ABEL-COVER, and every edge € E
carries a tupler, from the list and an evaluation functign : ¥4 — X*. For eachj € [N], the
tuple (i;1, . ..,7,x) appears on the same number of edges.

Given a labeling to the vertices of the graph, i.e., functibhs: A — ¥4, andCg : B — Y, a
vertexa € Ais said to be “satisfied” ifC4(a) € x.. Anedge = (a,b) € E is said to be “satisfied”
if a is satisfied andr.(C4(a)) = Cp(b). Given a message € C, an edge: = (a,b) € E' is said to
“decode” z, if p.(Ca(a)) = (z;,, ..., x;, ) Wherer, = (iy,..., i) iS the tuple associated with

Let0 < dpnin < 1. Letlae : (0,1) — RY be a decreasing function. We say that the LDRC is a
(Omin, lmaz )-bipartite LDRC if it satisfies the following conditions:

1. Completeness:For everyx € C, there are assignments, : A — ¥, andCg : B — Xp,
such that all edges € E are satisfied and decode

2. Soundness:For everyCy : B — Y, for every reald such that,,;, < § < 1, there exist
| < lna:(6) messages, ..., r; € C, such that the following holds for anyy : A — 3,:
when picking uniformly at random an edge= FE, the probability that is satisfied but does
not decode any one af, ..., z;, is at mostO(J).

We will be interested in various properties of an LDRC. One of them is the form of the satisfia-
bility constraints of thed vertices. Another is the alphabets, andX z. The alphabets will usually
be codes themselves.

We will also be interested in the following parameters:

1. Size. The size of the LDRC, i.e|A| + |B| + |E|. The size combines the length of the code
|A| + |B| and the randomness of the tester/decddefFE|. As we mentioned earlier, in this
outline we will focus on polynomial size.

2. Block length. The block length of thed vertices islog |>X4|. The block length of theB
vertices islog |X 5.

3. Left degree. In this outline we focus on graphs that are left regular, i.e., allAheertices
have the same degree. The left degree is this degree.

4. Right degree.In this outline we focus on graphs that are right regular, i.e., alRhertices
have the same degree. The right degree is this degree.
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3.3 Locally Decode/Reject Code for Reed-Muller

In this section we describe a locally decode/reject code for the Reed-Muller code. The construction
is (a variant of) the folklore construction that yields Theof&m

Let the parameters of the Reed-Muller code be: a finite figld dimensionn and a degree
d. The code consists of ath-variate polynomials of degree at maekbver the fieldF. It will be
convenient to identify positions in the code with pointdin. Thus, thet-tuples we wish to decode
are given as tuples of points:

<5171, .. ,fl’k% ceey <fN71, . 7fN,k:> - (Fm)k

The size of the LDRC is polynomial iff™|. The left degree i$F|°™", and the right degree is
polynomial in|F™|. The alphabet of thd vertices is a Reed-Muller code itself, but of much reduced
parameters: the dimension and the degree’Hieg kd) (independent of the initial dimension).

Still, the block length is largeoly (%, d) - log |F| (compare it to the lower bound - log |F|; note
the dependence on the degrBeand this is the main disadvantage of this construction. To see how
severe this disadvantage is, recall that the degmest be taken to be large if we want a good rate:

The number of codewords in the Reed-Muller codﬁFi\émv:d>. Thus, the rate i) /n, where
n = |F™|. To get large distance and polynomial length, we need to dadech thatn - \IF]Q(” <

d < |F|. Hence, the alphabet is at best super-polynorziigis™. If we wish the length to be
almost linear, the alphabet becomes even larger, slightly sub-exponential.

What allows local testing/decoding for the Reed-Muller code is a principle that we loosely state
as follows:

Low degree testing principle: Fix a functionf : F* — [F. There are a few low degree
polynomialsgy, ..., q : F™ — [ as follows. Pick uniformly at random a linlein F™. “Almost
surely, whenf agrees with some low degree polynomial on a non-negligible fraction of the
points on/ (local tes), it agrees on these points with onegf. . ., ¢; (global conclusioii'.

Herenon-negligiblemeans a sufficiently large fraction®® - (%)9(1).

Proofs of variants of the above principle appear3ndd, 13, 27]. They rely on the distance
property of the Reed-Muller code and on its recursive structure: any low degree sub$etefines
a Reed-Muller sub-code. The “line” in the above principle can be replaced by any low degree curve
or manifold inF™. In particular, we replace the “line” with a low degree manifold that goes through
a k-tuple we wish to decode.

We will refer to our LDRC as the Manifold vs. Point construction, and define it as follows:

e The A vertices arel-dimensional manifolds of degree at mést 1 in [F": there is a manifold
for every k-tuple we wish to decode and three dimensional subspa&€' i(where we use
three-dimensional subspaces because we apply the low degree tesfiiip.of he manifold
contains thé: points and the subspace.
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e The B vertices are the points iR".

e Every manifold is connected to all the points on it, except for a few points that are removed to
ensure right regularity.

o A label to aB vertex is a field element.

¢ Alabel to anA vertex is ad-variate polynomial of degree at mdgt+ 1) - d. The projections
{me}.cp are such that for an edge= (a,b) € E, the projectionr,.(o,) is the value of the
polynomialo, on the point corresponding toon a.

e To encode a Reed-Muller codeword, we view it as a labeling ofilvertices (i.e., the points
in ™) with field elements. We label thé vertices with the restrictions of the codeword to
the manifolds on thel side.

e There are no satisfiability constraints, i.e., for every vetiex A, we have thaj, is the set
of all possible labels.

e For an edge = (a,b) € F, the tupler, is thek-tuple contained im. The evaluatiom,(o,)
is the value of the polynomial, on thek points corresponding tq.

Note that the labels to thd vertices are Reed-Muller codewords, but not Reed-Muller code-
words with the parameters we declared. Yet, we can represent every polynomial with constant
dimension and degre@(kd) as a polynomial with dimension and deg@fog kd).

3.4 Why Composition is Hard — The Two-Prover Game Perspective

It will be useful to think of the LDRC construction above in terms of a game between a verifier and
two provers: prover and proverB. The verifier asks provet about a manifold iff”. The verifier

asks proveiB about a point on the manifold. Provdrknows that provei3 is asked about one of

the points on the manifold that prover got, but proverA does not know which point. Prove?

knows that prover is asked about one of the manifolds that contain the point that pré\got,

but proverB does not know which manifold. The low degree testing principle assures us that this
missing information is sufficient to force the provers to adhere to the same low degree polynomials.

Unfortunately, the alphabet of this Manifold vs. Point construction is large, because prover
needs to describe a polynomial for its manifold. A natural solution is tocosgposition Prover
A needs to provide a polynomial for the entire manifold, but, in fact, the verifier is only interested
in the value of this polynomial ok + 1 points: thek-tuple it decodes and the point that prover
got (on which the verifier compares the answers). The idea is to view the verifier's task as decoding
k + 1 symbols from a Reed-Muller code, and use an LDRC for this purpose.

Let us demonstrate the idea by taking the Manifold vs. Point construction of S&c8as
a concrete instance of an LDRC. Instead of prademe will have two provers: proved.A and
proverA.B. ProversA. A and A. B will convince the verifier ink + 1 values that are all evaluations
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of one low degree polynomial for the manifold on the relevant points. The verifier will send prover
A.A a sub-manifold within the manifold fad that goes through thee + 1 points. The verifier will

send proverA. B a point in the sub-manifold. The provedsA and A. B are expected to reply with
consistent evaluations.

The composition we described increases the number of provers/queries fror @avwl B, to
three:A.A, A.B andB. When composition is applied several times, the number of queries increases
even further. Indeed, this is what happened in previous works that applied composition for similar
needs'8, 30,13, 2€].

A-priori, it seems that we could insist on using only two provers by, in additioB’sooriginal
role, letting each of proverd, B simulate one of proverd. A, A.B. However, this fails, no matter
how we attempt to splid. A and A.B betweenA and B. The reason is that the questions in the
inner protocol reveal information on the questions of the outer protocol, in a way that some prover
will always gain information about the outer question of the other prover. To see this, let us check
the two splitting alternatives:

1. First alternative: A.A — A | A.B — B. ProverA gets the sub-manifold. Provér gets the
outer point (on the manifold) and the inner point (on the sub-manifold). In this case, ptover
gains information about the point &f from knowing the sub-manifold that contains it.

2. Second alternative:A.A — B | A.B — A. Prover A gets the inner point (on the sub-
manifold). ProverB gets the outer point (on the manifold) and the sub-manifold. In this
case, proveB gains information about the manifold from knowing the sub-manifold.

The question that arises is whether one can devise a composition protocol for two provers in which
the questions of the inner protocol do not give (enough) information on the questions of the outer
protocol.

3.5 The Key Idea: Confusing the Provers

The problem with implementing composition is that we cannot afford dngtof the provers will
learn the sub-manifold. We saw that once any of the provers learns the sub-manifold, that prover
gets information that may allow the provers to fool the outer verifier.

What we do instead is l&tothprovers learn the sub-manifold. The key idea is that preverll
also get many other sub-manifolds to confuse it. Proyzaiill not know which of the sub-manifolds
that it got is the one that proveés got. ProverB will not know which of the possible questions
to prover A prover A actually got (where each question to provkeiis a collection of manifolds
containing the manifold that prové? got).

In the next few sections we will show that the two prover game can indeed be transformed into
a form in which the question to provef consists of a few manifolds, and the question to pradver
consists of a single manifold. Since we wish the alphabet to be as small as possible, the question to
prover A should consist of as few manifolds as possible.
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3.6 Reducing Right Degree

For the presentation, we will go back to viewing the Manifold vs. Point LDRC of Se&i&as a
bipartite graph. Our first step is to decrease the right degree of the graph to som@&small

For right degree reduction, we use a regular expander giaph (Vy, Ey) with number of
vertices that equals the original right degree of the graph, ddgraed second eigenvalue” for a
constant, < a < 1.

The construction is as follows (see FigiBe

e The A vertices are as before. The labels to theertices are as before.

e For every vertex € B and every expander vertexc Vy, create a copyb, v). The labels to
the copies are as the labels to the origiBalertices.

e For every edgéa,b) € E in the original graph, wheréu, b) is thew'th edge coming intd,
and every expander edge, v) € Ey, create an edgg:, (b,v)). The projectionr, the tuple
7 and the evaluation functiomthat this edge carries are the same as the projection, tuple and
evaluation of(a, b).

- R

Figure 3:Right degree reduction.

It turns out that choosin@ = [1], wheree is the error we aim for, suffices for soundness. Note
that the left degree, as well as (essentially) the size, are multiplied by a fadtor of

The construction uses in an essential way the fact that we only decrease the right degree, and not
the left degree. It works because each left vertex determines a labeling for all the copies of each of
its neighbors. More than that, it is unreasonable to expect any construction of this kind to reduce left
degree: Revealing to provet a short list of points in it, among them the point that profegot,
allows proverA to choose a polynomial that agrees with profeon all these points. This can be
done even when provés’s answers do not correspond to any low degree polynomial.
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3.7 The Sunflowers Construction

To transform our LDRC into the form described in Seci®§ we switch the roles of provet and
prover B. When the right degree is small, we can do that while preserving the projection property:
we can ask proveB to answer about a vertex € A, and ask prover to answer about all the
neighbors of a vertek € B.

Here is where we pay in the alphabet size. Recall that in Thed#rand hence in our PCP
construction (Theorerf(), the block length depends polynomially énrather than orog % The
reason is that the block length depends linearly on the degree, rather than on the logarithm of the
degree: we keep separate information about each neighbor.

The construction is as follows:

e The newA vertices are the ol® vertices, and the neWw vertices are the oldl vertices. The
edges are flipped, but otherwise remain the same.

e The alphabet of the new vertices is the alphabet of the olvertices. A label of a newA
vertex consists ob labels for the new3 vertices, one per neighbor.

e For every old vertexy € B, for every: € [D], assuming that = (a,b) is thei'th edge
touchingp, for a labely = (p;,...,pp) to b in the new graphg.(p) = p;.

e Each edge: is associated with the same tupleas before. The evaluation function that
carries follows from the previous evaluation function: Assume that the input to the new eval-
uation function iy = (p1, ..., pp). Then, the evaluation is obtained using the old evaluation
pe ONp; wheree is thei'th edge according to the ordering we defined.

e The newA vertices have a satisfiability constraint: for every bhkertex, which corresponds
to a point inF™, all the D labels must agree on the point.

It is instructive to think of a newA vertexa as a sunflower, composed of its neighborig
vertices as petals (as in Figudg The neighboringB vertices intersect on a point given by A
satisfying label ta: is composed of labels to the neighboriBgvertices that are consistent on the
intersection.

3.8 Right Degree Reduction on the Sunflowers Construction

The Sunflowers construction gives a graph with small left degree and large right degree, rather than
a graph with small right degree and large left degree. We can apply right degree reduction on this
graph, and get a graph with small left and right degrees.

In the two prover game terminology, provérgets D different manifolds that have a common
“center” in their intersection. Provds gets one of these manifolds. Provédoes not know which
manifold proverB got. ProverB does not know which sunflower containing its manifold, among
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Figure 4:The Sunflowers construction.

D possible sunflowers, provet actually got. Yet, although each of the provers only has a small
amount of uncertainty regarding the question that the other prover was asked, both provers should
prefer to adhere to the prescribed strategy.

In addition, the satisfiability constraints on prowis answer can be checked by querying its
manifolds on a few points. To see that, note that the satisfiability constraints in the Sunflowers
construction in fact check: (i) agreement on “centers”; (ii) identity between copies of the same
manifold. The (ii) checks come from the right degree reduction, and can be done by comparison on
a random point.

The new structure of the Sunflowers construction is what allows composition in the next section.

3.9 Composition

In this section we start with the Sunflowers LDRC we constructed in Se8témand show how to
perform composition of this LDRC with inner LDRCs of the same type. The purpose of composition
is to obtain an LDRC with lower alphabet. The block length of the composed LDRC is proportional
to the left degree of the outer construction and the block length of the inner construction (and inde-
pendent of the block length of the outer construction). The composition preserves the structure of
Section3.&

ProverA in the outer LDRC needs to provide for each manifold that is a petal in its sunflower,
a polynomial for the entire manifold. However, in reality, we are only interested in the value of
this polynomial onk + 1 point¥: the k-tuple we wish to decode and the point in the center of the
sunflower (on which we compare the answers from all petals). Note that, this time, preerady
knows the manifold that provet got, because proves also got the exact same manifold.

The idea is to use an inner Sunflowers LDRC to decodé: thel positions in the Reed-Muller
codeword corresponding to a polynomial on the manifold. Instead of piy&re will have two
provers: proverB.A and proverB.B. ProversB.A and B.B can convince the verifier it + 1

2To simplify the presentation, we ignore the random point needed for the (i) checks. In Sdfiove remark how
this matter is solved.
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values that are all evaluations of one low degree polynomial for the manifold on the relevant points.
We insist on using only two provers by letting provésimulate provei3. A and proverB simulate
proversB.B. We have to make sure that the questions in the inner protocols reveal no information
on the questions of the outer protocol.

ProverA does not get information, because provesimulates proveB3. A for every petal in its
sunflower. Hence, provet does not know which petal is the one that profewas asked about.
(The picture is completely symmetric from provés point of view).

However, proveB does gain information about the outer question of proyidsecause the+ 1
points that the inner LDRC decodes, reveal the outer center, and hence give information about the
outer question thatl got. For that reason we change the protocol a little bit. In order to confuse
prover B, each inner LDRC on an outer ed@e b) decodes not only the + 1 points that need to
be decoded but also thie+ 1 points that every other neighbor bheeds to decode. Since the right
degree of the outer LDRC is small, this is possible. Now the picture is completely symmetric from
the point of view of prover3 and hence proveB gets no information about the outer question of
proverA.

In the composed two prover game, the verification is as follows:

1. Outer sunflowerPick at random a sunflower containidigmanifolds, as well as one of these
manifolds.

2. Inner sunflower: For every manifold, pick at random a sub-sunflower containthgub-
manifolds. For the manifold that was picked, pick a sub-manifold in it.

3. Ask prover A aboutall the D sub-sunflowers (one for each manifold). Ask pro¥eabout
the sub-manifold. Check the consistency between their answers.

Why does this protocol work? Prover does not know which of thé&? sub-manifolds is the one
that proverB was asked about. Provér does not know which of the sunflowers (that contain the
sub-manifold that proveB got) is the one that proved was asked about. Hence, both provers
would better off adhere to their prescribed strategy.

The composed graph is as shown in FighireThere is anA vertex in the composed graph for
every pair(a, a;,) of an outerA vertexa and an inne vertexa;,. It should be thought of as taking
the sunflowem;, for each of the petals of the sunflower There is aB vertex in the composed
graph for every paitb, b;,,) of an outerB vertexb and an innei3 vertexb;,,. It should be thought of
as taking the sub-manifold,, inside the manifold. Every outer edgéu, b) is replaced by an inner
graph for decoding all thg: + 1)-tuples for neighbors df.

Composition essentially multiplies the size of the outer construction and the inner construction.
The inner construction is typically smaller, and hence the dominant factor is the size of the outer
construction. Composition multiplies the outer and inner left degrees, as well as the outer and inner
right degrees. Nonetheless, the degrees remain polynomgralﬁiy a single composition, we can
get the block length down fromwoly (%, d) - log |F| to poly(k, log d, ) - log |F|. This block length is
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Figure 5:Composed graph.

small, but not as small as we want (recall that we wish to eliminate the dependedcendiiF|).
We solve this in the next section.

3.10 Locally Decode/Reject Code for Hadamard and The Concatenation of
Reed-Muller and Hadamard

We solve the still-too-large-alphabet problem the same way as all PCP constructiondsinomf

pose our construction with a construction for the Hadamard code. This results in arbitrarily small
alphabet at the cost of a larger size. First, let us describe the Hadamard construction. In the next
section we describe the composition with it.

We let the Hadamard code be over a small finite field’he fieldL. may beG F'(2), but for low
error we use larger fieldd.| = (1)°™). We use the lettel to distinguish the field from the field
we used for the Reed-Muller code. It will be convenient to thki® be a subfield oF. Letw be
such that we can identify thB alphabet of the construction of Secti8rg with I.*. Thisw will be
the dimension of the Hadamard code we take. The length of the Hadamard d¢bde iwhich is
exponential inw, but sincew is relatively small, this is tolerable.

It will be convenient to identify positions in the Hadamard code with poinfs‘in Thus, a list
of k-tuples we wish to decode can be thought of as a ligt-tfples of points:

<fl71, R ,f17k>, ceey <fN71, o ;fN,k> € (Lw)k

We can construct an LDRC for the Hadamard code similarly to the way we constructed LDRCs for
the Reed-Muller code in Secti@3 The difference from the Reed-Muller LDRC is that we consider

(k + 2)-dimensional linear subspacesliff instead of degreék + 1) manifolds. In addition, the
correctness of the construction now follows from linearity testing theorems (e.dL9Pf father

than from the more difficult low degree testing theorems.
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Importantly, the Hadamard construction also gives an LDRC for the concatenation of Reed-
Muller and Hadamard: Not only that we can locally decode/rejectitlsgmbols of a label (where
the label corresponds to a Reed-Muller codeword), but we can also locally decode/rejéct any
linear functionof the w symbols. In particular, we can locally decode/reject any symbol in the
concatenation of the Reed-Muller codeword with Hadamard.

3.11 Composition of Locally Decode/Reject Code for Reed-Muller with Lo-
cally Decode/Reject Code for Concatenation of Reed-Muller and Hadamard

To design an LDRC of reasonable rate for the concatenation of Reed-Muller and Hadamard, we
compose the LDRC for Reed-Muller obtained in SecBo@with the low rate LDRCs for the con-
catenation of Reed-Muller and Hadamard obtained in Se@i@€i The composition is along the
same lines as the composition of LDRCs for Reed-Muller described in S&fion

The major difference is as follows. We cannot ask the inner LDRCs to decode the evaluation of
a manifold on the center of a sunflower as we could earlier. This is because the inner LDRCs can
return symbols i, and not symbols in (the much too large) However, the inner LDRCs may
return symbols of the Hadamard encoding of the evaluation. We show that this is sufficient to ensure
consistency on the centers.

In the composed construction of Secti®:§, the satisfiability constraints of thé vertices take
the form of atree of comparisons: each petal in an outer sunflower introduces an inner sunflower of
its own. All the sub-manifolds of this inner sunflower intersect on the center of the outer sunflower,
as well as on a new center. This can be described by a tree in whidh’ thigb-manifolds are leaves
and the inner nodes correspond to centers. Each inner node tlasigdren in the tree: one for each
petal that intersects on the inner node’s center (see Figurény two sub-manifolds have to be
consistent on all the centers that are common ancestors.

Figure 6:Comparisons tree.

Since the satisfiability constraints of the construction of Sec8i@nare given in the form of
a comparisons tree, the analysis of the composition of the construction of S8cGieonth the
construction of Sectiof.10boils down to analyzing the following two-prover game:

The Tree-Path Game. Underlying a tree-path game there is a fixed tree. Each node in the tree
may be labeled by a value Ih L is a subfield off. The purpose of the verifier is to check whether

27



two provers agree on a labeling of the nodes. fee provergets an index and replies, for each of

the nodes in the tree, with thigh symbol of the Hadamard encoding overof a label to the node.

The path provergets a leaf in the tree and replies, for each of the nodes on the path from the leaf to
the root, with a label iff to the node. The verifier checks the consistency of the answers it got from
the two provers.

3.12 Some Technical Difficulties and Non-technical Subtleties [Or: Why Is
The Formal Proof So Long?]

In this section we list some complications that arise in the construction.

Codes and domains. The algebraic construction in Secti8t8is such that the list decoding may
contain polynomials of a slightly larger degree than the Reed-Muller code permits (degrée- d

rather thani). Yet, the set of polynomials of degree at m@st+ 1) - d is also a Reed-Muller code.

To allow the construction to go through, we consider LDRCs that hagecodesunderlying them,
instead of one. To facilitate that, we introduce the notion dbamain A domain is composed of

two codes of the same length and over the same alphabetntoeled codand thedecoded code

The decoded code contains the encoded code as a subset. The LDRC has to encode codewords of
the encoded code. The LDRC is allowed to use in its list decoding codewords from the decoded
code. When we compose, the outer LDRC has to work just as well with labels over the decoded
code of the inner LDRC, as it would with labels over the encoded code of the inner LDRC. Hence,
our definition of LDRCs needs to be extended to alphabets that are themselves domains.

Consistency between copies.The presentation of composition in Secti8r® ignored the issue

of checking consistency between copies of the same petal. While for different copies we wish to
decode different tuples, their labels should be the same. This issue arises from the right degree
reduction in Sectio3.8 It complicates the construction and its analysis considerably:

1. We change the inner Sunflowers LDRC construction so that the centers of the sunflowers are
uniformly distributed inF™, independently of the tuples being decoded. More on this is in
Regularity and uniformitypelow.

2. We change the composition so that copies are compared on the inner centers (which are uni-
formly distributed on the manifolds, independently of the tuples being decoded).

3. In the analysis of the composition, we show that the comparisons on the inner centers suffice
for the consistency check of the outer test.

Regularity and uniformity. The adaptation of the Manifold vs. Point LDRC to almost-linear
size results in LDRCs that are juatmostright regular, rather then right regular. Crucially, the
right degrees depend on the tuples we wish to decode. As a result, when performing right degree
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reduction as in Sectio.€ and then when obtaining the Sunflowers construction in Se&ign
the distribution of the centers of the sunflowedgpends on the tuples we wish to decodéis
dependence is problematic in an inner construction of a composition.

Hence, for the inner construction we consider a uniform right-regular, but polynomial size (rather
than almost-linear size), Manifold vs. Point LDRC construction. The inefficiency is tolerable in the
context of an inner construction. We go through the construction steps in Se8t&i&6, 3.7
and3.8to prove that uniformity and independence are preserved.

4 Qrganization of the Construction

We start with some preliminaries about expanders and codes. In S6et@define several variants

of locally decode/reject codes that are needed for our construction and prove some useful lemmas
about them. In Sectioid we define our building blocks, which are locally decode/reject codes
with special structure for specific codes (e.g., Reed-Muller, Hadamard). These building blocks lend
themselves to various manipulations as described in Seg&tibhose manipulations, put in the right
order, allow us to construct the locally decode/reject codes we are after in S@clibe rest of the

paper is devoted to implementing and analyzing the different manipulations.

5 Preliminaries

The set of real numbersB. The set of positive real numbersis = {x € R | z > 0}. The set of
natural numbers i& = {0, 1,2, ...}. The set of positive natural numbersNg = {1,2,...}. Fora
natural numbern, we denotén| = {1,...,n}. For a stringe or a vectorz of lengthn and an index
i € [n], we letx; denote the’th coordinate ofz. All the logarithms in this work are bage

5.1 Bipartite Graphs

In this work we refer to bipartite (multi-)grapli$ = (A, B, E). Thesizeof G is |G| = |A| + |B| +

|E| (where|E] is counted with multiplicities). Théeft degreeof G is the maximal degree oft
vertices, and theight degreeof GG is the maximal degree dB vertices. If all the degrees of thé
vertices are equal to the left degree, we say that the grdpft iregular. If all the degrees of th&
vertices are equal to the right degree, we say that the grapdhtsregular. If the graph is both left
and right regular with the same degraewe say that it isA-regular. We use the notatiahg;(v) to
denote the degree of a vertexc AU B. It will be convenient to think of the edges touching a vertex
as being ordered. For a vertexc AU B and an index € [Ag(v)], leteg(v,i) € E denote the'th
edge touching. For two setsX C AandY C B,letE(X,Y) ={(z,y) € F |z € X,y e Y }.
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5.2 Expanders

For an undirected (multi-)grap@ = (V, £') and two sets of verticeX,Y C V, let E(X,Y) =
{(z,y) € E |z € X,y € Y } (we use the convention that an edgey) € E with bothz,y € X, Y

is taken to the multi-set twice). Roughly speaking,expanderis a A-regular undirected (multi-
)graphG = (V, E) in which the number of edges (with multiplicities) between any two sets of
verticesX,Y C V,i.e,,|E(X,Y)|, is approximately the expected number irmadomA-regular
undirected (multi-)graph.

It can be shown that angs-regular undirected (multi-)graph whose adjacency matrix has low
second largest eigenvalue (in absolute valusatisfies this property:
Lemma 5.1 (Expander mixing lemma).LetG = (V, E) be aA-regular undirected (multi-)graph,
whose adjacency matrix has second largest eigenvalue (in absolute waltlegn, for any two sets

X,y CV,
[EXLY)] X YL A XY
AV Vi VI A V]V

We will use the explicit constructions guaranteed by the following lemma (for a proof see Ap-
pendixA):
Lemma 5.2 (Explicit construction of expanders).There is a constantv < 1 and a function
T : N — Nt with T(A) = ©(A), such that given two natural numbersand A, one can find
in time polynomial inn and in A an undirected (multi-)graplty = (V, E)) with |V| = n, which
is T'(A)-regular and whose adjacency matrix has second largest eigenvalue (in absolute value)
A< (T(A))

In this work we will refer to the bipartite versions of expander graphs. Given a (multi-)graph
G = (V, E), we define its bipartite version, or it®uble coverG’ = (V' x {out},V x {in}, E’) by
taking for every edge = (z,y) € E the edges(z, out), (y,in)) € E' and((y, out), (z,in)) € E'.
Note that if G is A-regular, then so i€’. Combining Lemméb.1 and Lemmeb.2 we have the
following:
Lemma 5.3 (Bipartite expanders). There is a constant < 1 and a function?” : N — N* with
T(A) = ©(A), such that given two natural numbetsand A, one can find in time polynomial im
and inA aT'(A)-regular undirected bipartite (multi-)grapty = (V1, Vs, E) with [V]| = |V, = n
as follows. For every two sefs C V; andY C V5,

BX.Y)| x| |Y]
NEARVANIA

1 (X1 Y]

< .
IACAY L TR | CY R %Y

5.3 Codes

Let X be a finite alphabet and letbe a natural number. THeelative) Hamming distancleetween
two stringsz, y € X" is the fraction of positions on which andy differ, i.e., Pricp,) [2; # vi]. Let
0 < e < 1. A codewith (relative) distancd — ¢ is a setC’' C " such that every two elements
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xz,y € C have (relative) Hamming distance at least e. In other words, every two elements
x,y € C agreeon at most fraction of the positions. The numberis called thdengthof the code.
The elements of” are called theodeword®f the code. For a sét/ of size| M| = |C|, anencoding
of M via C'is a one-to-one functio”s : M — Y" that takes messages frai to codewords irC'.
When is a field andM is a linear space ovet, we say that the encoding lisear if it is a linear
transformation from\/ to the linear spac&”.

Given a stringr € X" and a real numbey < § < 1, thes-list decodingof x with respect to
C'is the set of all codewords € C' that agree with: on at least & fraction of the positions, i.e.,
Pricp [c; = ;) > 6. We have the following useful proposition:

Proposition 5.4 (List decoding).Let C' C X" be a code with (relative) distance— e. Assume
d > 2y/e. Then, for every: € X", thed-list decoding ofr with respect toC' contains at mos§
codewords.

Proof. Let z € ¥". Assume towards a contradiction that thést decoding ofr with respect to
C contains! = |2| + 1 different codewords. Then, when picking a positiok [r] uniformly
at random, the probability that agrees with one of the codewords on tfh position is at least
ol — (1) - € > 1. Contradiction! O

5.3.1 Some Specific Codes

Some examples of codes that we will use are:

The Reed-Muller Code. TheReed-Muller CodéRM) is defined by a finite field and two natural
numbersm andd. The code is of length = |F™| over alphabeF. Let us identify the positions
1,...,n with the points inf"™. Then, for everyn-variate polynomial) of degree at most overF
we have a codeword, € F". The symbol in the position correspondingia F™ in ¢ is Q(Z).

This code is of distance — %.

We identify the following encoding with the Reed-Muller code: llgt= (m;[d) be the number
of monomials in anm-variate polynomial of degree at mastoverF. Let Ery; : FYV — F” be
the transformation taking a vector IV, representing coefficients for ti& monomials, to the
evaluations of the induced polynomial on the point&th Note that this encoding is linear oviér

The Hadamard Code. The Hadamard CodgHad) is defined by a finite field# and a natural
numberm. The code is of length, = |F™| over alphabeF. Let us identify the positions, ... n

with the points inF™. Then, for every linear functiod : F™ — T, i.e., a function of the form
L(zy,...,xn) =Y -, a;x; for some coefficients vectar = (a4, ...,a,) € F", we have a code-
word ¢, € F". The symbol in the position correspondingiae F™ in ¢y, is L(Z). This code is of

H 1
distancel — -

We identify the following encoding with the Hadamard code: E&f,, : F™* — F” be the
transformation taking a vector iR, which is the coefficients vector of a linear function, to the
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evaluations of the linear function on the pointgfifi. Note that this encoding is linear ovér

5.3.2 Transformation on Codes

We can produce new codes from existing ones by using transformations such as repetition or con-
catenation:

Repetition. Assume that” C >" is a code. Let be a natural number. Then, theepetitionof C
is the codeC! C X! defined by takind copies of each symbol in a codeword. In other words, for
every codeword = ¢; - - - ¢, € C' we have the codeword

cl...cl...cn...cnecl
—— =
l l

If C' has (relative) distance— ¢, then so doe€.

Concatenation. Assume that”; C X" is a code and thaf, C T'* is a code that hag™| = 3|
codewords. Assume tha is associated with an encodity, : M — X" and that”; is associated
with an encodingE, : ¥ — I'*. The concatenation af', andC,, denotedC’; ¢ Cy, C I'™*, is

the code obtained when encoding each symbol 6f a&odeword byEg,, i.e., we defineky, :

" — I'™* such thatEg, (o1 ---0,) = Ec,(01) -+ Ec,(0,). The encoding associated with the
concatenatior®; o Cy is Ef, o B¢, : M — 'k n. (Cy is calledthe outer codeand(, is calledthe
inner code If C; has (relative) distance — ¢; and(C, has (relative) distance — ¢,, thenC; o (s

has (relative) distance— (¢; + €5 — €1¢2). Code concatenation is used to reduce the alphabet of a
code( (from X to the typically much smallel’) at the cost of slightly enlarging the length (from

n ton - k) and damaging the distance.

If E¢, is linear andEc, is linear, then we can view! as a linear space oveér(by defining for
A € T"andv € M, the scalar multiplication to b& - v = (A - 1) - v wherel € X (recall thatX is
a field). Note that\ - 1 € X is well-defined, and so i§\ - 1) - v € M). Using this perspective, the
encodingEy, o Ec, corresponding to the concatenatiOno C, becomes linear over.

6 Graph Theoretic Formulation

6.1 Bipartite Constraint Graphs

We formalize two query constraint graphs with projection property as bipartite géaph§A, B, E),
where vertices il determine values for vertices . Vertices inA are assigned values from an al-
phabet: 4, while vertices inB are assigned values from an alphabgt Every edge: = (a,b) € £

is associated with an elemefifrom some sef2, where¢ is called thdabel of the edge. Every as-
signmentr, € ¥4 for a determines a single assignmentdaiven byproj(a, o,, &) € . The test
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associated with the edgeconsists of comparing whether the assignment fqualsproj(a, 0,4, £),
as well as of a satisfiability checlt(a, o,,) that checks the validity of,. In particular,sat(a, o,)
may check some consistency condition betwgery(a, o,, &) for differenté’s.

Definition 6.1 (Bipartite constraint graph). G = (G, 2, ¥4, ¥, sat, label, proj) is called abi-
partite constraint graplif

1. G = (A, B, E) is a bipartite (multi-)graph(2 is a finite set and 4, .5 are finite sets.

2. sat : A x ¥4 — {true, false} is a function gat determines for each vertexc A whether it
is satisfied under the given assignment).

3. label : E — Qis a function {abel assigns every edge some elemer§t)n

4. proj : Ax Y4 xQ — Ygisafunction (for every vertax € A and assignmentfor it, € X 4,
proj gives, for every € (2, the “projection” of o, t0 ).

We say that an edge= (a,b) € F is satisfiedin G under assignments, € ¥, ando, € Y, if
sat(a,o,) = true andproj(a, o,, label(e)) = oy.

We say that an edge = (a,b) € F is satisfiedin G under assignment§'y : A — >4 and
Cp : B — ¥, if e is satisfied inG under the assignmenés, (a) andCs(b).

When there are several constraint graphs involved we sometimes use subscripts to distinguish
between functions corresponding to different graphs. E.g., we wiriteto refer tosat of G.

6.2 Bipartite Locally Decode/Reject Codes

We formulate locally decode/reject codes that make two queries with a projection property as bipar-
tite graphs. But, before we do that, let us defiloenains Domains capture the sets of messages we
encode and decode. It is not a standard notion, but it will be very convenient for us in the sequel.

6.2.1 Domains

The messages we encode will sometimes be strings ifior a finite alphabekl and a lengt, and
sometimes be codewords themselves, e.g., Reed-Muller codewords or Hadamard codewords. We let
D.... denote the set of messages we encode.

For the decoding we allow to use messages from a set that is possibly larger than the set of
messages we encode. For example, suppose we encode Reed-Muller codewords corresponding to
polynomials of degree at mogtor some natural numbelt Then, we may consider as an appropriate
decoding a codeword that corresponds to a polynomial of a slightly larger dégiteegeneral, we
let D,.. be the set of possible decodings, whéxg. O D.,.. EqualityD,,,. = D4 may hold, but
is not required.

For notational convenience we refer to messages as functions, rather than strings. Skihgs in
can be thought of as functiofis] — X, while the codes we use naturally give rise to functions. For
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instance, the Reed-Muller code gives rise to low degree polynomials, and the Hadamard code gives
rise to linear functions.

Formally, adomainis defined as follows:
Definition 6.2 (Domain). AdomainD is a tuple(D, R, Dy, Daec), WhereD and R are finite sets,
andD.,. € D, are sets of function® — R. D.,. is calledthe encoded domajrand D,,. is

calledthe decoded domain
Some particular domains of interest in this work are:

3. With any finite set we associate a domail = (D, R, D.,.., D) that corresponds to en-
coding and decoding symbols ¥a The domain consists d) = {1}, R = ¥ andDe,,. = Dyec =

{f 141 =2}

¥». With any setX” for a finite set> and a natural numbet, we associate a domaiR =
(D, R, Dene, Dyee) that corresponds to encoding and decoding of string'inThe domain consists
of D = [n], R =Y andD.,. = Dy.. = {f | [ : [n] — X} (the previous item is a special case for
n = 1).

Reed-Muller Code. A Reed-MullerdomairD = (D, R, D, D4..) corresponds to encoding and
decoding of Reed-Muller codewords, where the code we use for the decoding contains the code
used for the encoding. The domain is defined by a finite fiela natural number: and two natural
numbers) < d < d' < |F|. We takeD = F™ andR = F. D,,. is the set of allm-variate
polynomials of degree at mosgtoverF, while D,... is the set of alin-variate polynomials of degree

at mostd’ overF. The numbern is called thedimension The degred is called theencoding degree

and the degred is called thedecoding degree

Hadamard Code. A Hadamard domairD = (D, R, D.,., Ds.) corresponds to encoding and
decoding of Hadamard codewords. The domain is defined by a finitefialtd a natural number
m. We takeD = F™ andR = F. The encoded and decoded domains are the $ame= D,.. and
equal to the set of all linear functiords: F — [F. The numbern is called thedimension

Concatenation of Reed-Muller and Hadamard Codes. A RMoHad domainD = (D, R, Dene, Daec)
corresponds to encoding and decoding codewords in a code which is a concatenation of a Reed-
Muller code and a Hadamard code. The domain is defined by a finite[jeddsubfieldL of F, a

natural numbern and two natural numbers < d < d’ < |F|. Denote the extension degreelof

overL by 7 = [F : L]. Let¢ be a linear bijection fronf (viewed as a linear space over the field

IL) to the linear space of linear functiofi — L (note that there arf.”| = |F| linear functions

L™ — LL). The domain will correspond to encoding each symbol in a Reed-Muller codewasd by

We takeD = F™ x " andR = L.
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e The encoded domaiR.,,. is the set of all functiong : " x L™ — L of the form f (7, Z5) =
d(Q(71))(¥2) for some polynomial) : F — F of degree at most.

e The decoded domaiB,.. is the set of all functiong : F"™ x L™ — L of the form f (7, ¥3) =
o(Q(Z))(Z>) for some polynomial) : F — F of degree at most'.

6.2.2 Bipartite Evaluation Graphs

Fix a domainD = (D, R, D...., Ds.) that defines the messages we encode and decodé. dret
N be natural numbers. Fix a collection lotuples of positions in a message we wish to decode:

<37171, .. ,$17k>, Ce <£EN71, o ,.TN,k) € Dk

We formulate a bipartite evaluation graph as a bipartite constraint graph (A, B, E), in
which tuples(z; 1, ..., z; ) are associated with vertices that are “responsible” for evalugtiog
them. Either thed vertices or theB vertices get associated with tuples. The set of vertices that are
associated with tuples is denotede {A, B}, and we refer to them d@be evaluating verticesThe
tuple that is associated with a vertexc V' is denotedup(v). For an evaluating vertex € V' and
an assignment, € >y to v, an evaluation on the tuplep(v), namely,k values inR, is given by
a functioneval(v, 0,)). All tuples should be associated with the same number of evaluating vertices,
and all evaluating vertices must have the same degree in the graph.

Formally we define bipartite evaluation graphs as follows:
Definition 6.3 (Bipartite evaluation graph). LetD = (D, R, D.,.., D4..) be a domain. Let and
N be natural numbers. Assume a collectiorkeliples:

<£L'171, .. ,ZL‘17]€>, cee <$N,17 o ,ZL’N7k> € Dk
G=(G=(AB,E),V,Q, Y4, %g, sat, label, proj, tup, eval) is called abipartite evaluation graph
for the k-tuples, if
1. G = (G,Q,X 4, Xp, sat, label, proj) is a bipartite constraint graph.

2. V € {A, B} is a set ofevaluating verticesAll the V' vertices have the same degree in the
graphd.

3. tup : V — DF is a function mapping each evaluating vertex té-guple (z; 1, . .., ;) for
i € [N]. Eachi € [N] must have the same (positive) number of vertices V' mapped to
<I’Z"1, e 7Ii,k>-

4. eval : V x Xy — RFis afunction, mapping each evaluating vertex V with an assignment
for it to assignments for the elements ap(v).

We say that a vertex € V with tup(v) = (x;1,...,2;) € D* readsf € Dy in G under an
assignment, € Xy, if eval(v,0,) = (f(xi1),..., f(z;x)). We say that an edge= (a,b) € E
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readsf € D, in G under assignments, € >, ando, € Y3, if the evaluating vertex it touches
v € {a,b} NV readsf in G under the assignment,. We say that an edge= (a,b) € E reads
f € Dgee in G under assignments’y : A — X, andCp : B — X, if e readsf in G under the
assignment§’, (a) andCp(b).

We say that an edgec FE is satisfiedn G under assignments, : A — ¥, andCp : B — X,
if e is satisfied inG’ underC'y andC'z.

If V= A, we say thayj is aleft evaluator Otherwise, we say that it isrgght evaluator

6.2.3 Bipartite Locally Decode/Reject Codes fok-Tuples

Fix a bipartite evaluation graph as in Definiti6r. An encoding of a message is given by assign-
ments to the vertice§'y : A — X, andCp : B — Xg. Given assignment§’y, andCp, local
decode/reject is done as follows:

1. Pick an edge = (a,b) € E uniformly atrandom. Let € {a,b} NV be the evaluating vertex
thate touches.

2. Check the satisfiability constraint on the edge: i$ not satisfied undet’y andCp, reject

3. Otherwise, return “the evaluation 6ip(v) is eval(v, Cy (v))".

Note thattup(v) is (x; 1, . . ., z;x) for a uniformly distributed € [N].

For every messagg € D.,.. one should be able to efficiently compute assignments tal thed
B vertices such that the local decode/reject procedure never rejects and always evyallihtgss,
all edges are satisfied and read

Given an assignment to the vertices, there should be a short list decodfing . ., fi € Daee,
such that, for every assignment to tHevertices, with high probability, the local decode/reject
procedure either rejects or evaluates on¢0f. ., f;. That is, for almost all edges, either the edge
is not satisfied, or the edge reads ongof . ., f;.

Note that we require the list decoding, ..., f; € Dy to depend only on the assignment
to the B vertices, and not on the assignment to thevertices. That is, given the assignment to
the B vertices, there is a single list decodirfg, . . ., f; that worksfor all assignments to thd
vertices. Conceptually, one can give this requirement the following meaning: The assignment to the
B vertices alone is already an encoding of the message (and thus sufficient for decoding), while the
assignment to thel vertices provides additional information that is needed for the purpoeeaif
decode/reject.

Two parameters determine the quality of list decoding in the codes. Qhg,isvhich lower
bounds the error of the decoding, namely, the probability that the decoding procedure does not
reject, yet its evaluation does not correspond to the elements of the list decoding. The bther is
which upper bounds the size of the list decoding. This size is a (decreasing) function of the error
0 > 0min We are willing to settle for.
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The formal definition is as follows:
Definition 6.4 (Bipartite locally decode/reject code).LetD = (D, R, Dy, Daec) be a domain.
Letk and N be natural numbers. Assume a collectiorkéfiples:

<x171, . ,$17k>, Ce <.Z'N’1, - 737N,k> € Dk

Let0 < Omin < 1. Letl,e : (0,1) — RT be a decreasing function. A bipartite evaluation
graphG = (G = (A, B, E),V,Q, %4, Xp, sat, label, proj, tup, eval) for the k-tuples is called a
(Omin, lmaz )-bipartite locally decode/reject codier the k-tuples, if the following holds:

1. Encoding: There is an efficient algorithm that given a messgge D.,.., computes assign-
mentsCy : A — ¥4 andCp : B — Y, such that every edge= (a,b) € E is satisfied and
readsf in G underCy, Cp.

2. List Decoding: For every assignmerits : B — X, for every reall such that,,;, < < 1,
there exist < [,,,.(0) elementsfy,. .., f; € Dg.., such that for every assignmefit, : A —
¥4 the following holds: when picking uniformly at random an edge- (a,b) € E, the
probability that inG underC'4, Cp, the edgee is satisfied, althougla does not read any of
fi,---, fi,isatmosiO(9).

6.2.4 Composable Bipartite Locally Decode/Reject Codes

We strengthen the definition of bipartite locally decode/reject codes (DefirGtd)nwith the in-
tent of allowing composition of codes. In the strengthened definition the alphabets are domains
themselves,

EA - <DA7 RA, ZA,enca ZA,dec> ZB = <DBa RB) ZB,enca EB,dec>

Encoding of a message comprises assignments over the encoded domains of the alphabatsi

Y B.ene- ON the other hand, the list decoding property should hold even given assignments over the
decoded domains of the alphabEgts,.. andX 3 4.. The previous definition can be seen as a special
case in which the encoded and decoded domains of the alphabets are equal Xhamety X 4 4.
andzB,enc = ZB,dec-

Adding elements to the decoded domains of the alphabets makes the task of the decoder harder,
since it needs to succeed on more assignments. In contrast, adding elements to the decoded domain
D... makes the task of the decoder easier, since it can use these elements in the decoding as well.
Usually there will be a correspondence between the decoded domains of the alphabets and the de-
coded domaiD,.., SO whenever the decoder needs to succeed in decoding more assignments, it has
more elements it can use in the decoding.

Definition 6.5 (Composable bipartite locally decode/reject code)letD = (D, R, Depe, Dyec) be
a domain. Let and N be natural numbers. Assume a collectiorkefiples:

<5L‘171, . ,{L‘17k>, cee <1‘N71, o 75EN,I<:> € Dk

LetO < dpnin < 1. Letl,., : (0,1) — R be a decreasing function.
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G=(G=(AB,E),V,Q, Y4, Xg, sat,label, proj, tup, eval) is called a(,,in, lma.)-cOMposable
bipartite locally decode/reject codier the k-tuples, if:

o X4 =(Da, Ra, YA cency Ladec) ANAX 5 = (Dp, Rp, X5 enc, 2B.dec) are domains.

o §'=(G=(AB,E),V,Q Y4 dec; LB.dec, Sat, label, proj, tup, eval) is a bipartite evaluation
graph for thek-tuples. We say that an edge= F is satisfied inG under assignmentS', :
A — Y44 andCp : B — Yp 4., If e is satisfied inG’ under the assignments, andCx.
We say that an edge € E readsf € Dy in G under assignmentS'y : A — ¥4 4. and
Cp: B — Yp e, if ereadsf € Dy in G" under the assignmenés, andC'.

e The following holds:

1. Encoding: There is an efficient algorithm that given a messdge D.,., computes
assignments’y : A — X4 ., andCp : B — Y ., such that every edge= (a,b) €
E is satisfied and readg in G underCy, Cp.

2. List Decoding: For every assignment’s : B — Xpg 4., for every reald such that
Omin < 6 < 1, there exist < I,..(9) elementsf,, ..., fi € Dg.., such that for any
assignmentCy : A — X4 4., the following holds: when picking uniformly at random
an edgee = (a,b) € E, the probability that, inG underC, Cg, the edge: is satisfied,
althoughe does not read any of;, . . ., f;, is at mosiO(9).

We sometimes omit the specification®f;,, andl,,...., when we do not wish to relate to them.
Properties. We consider the following properties Gf
Size. Thesizeof G is the size of5.

Alphabet size and block length. Thealphabet sizef the A vertices iSX 4 ....|. Thealphabet size

of the B vertices i ¥z .| Theblock lengthof the A vertices islog |X 4 nc|. Theblock lengthof
the B vertices islog | X5 cnc|. Thealphabet sizef G is the maximum between the alphabet size of
the A vertices and the alphabet size of tRevertices (which is typically the alphabet size of the
vertices). Thevlock lengthof G is the maximum between the block length of theertices and the
block length of theB vertices (which is typically the block length of thevertices).

Graph degrees. The left degreeof G is the left degree ofs. Theright degreeof G is the right
degree of. G isleft regularif G is. G isright regularif G is.
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6.2.5 Construction Algorithms for Composable Bipartite Locally Decode/Reject Codes

LetD = (D, R, Dy, Daec) be adomain. Let andN be natural numbers. £D, k, N)-construction
algorithmfor composable bipartite locally decode/reject codes is a procedure that given as input a
collection of sizeN of k-tuples of points

<SL‘171, .. 7$1,k>; ce <JJN’1, . ,IN’]J - Dk

outputs a composable bipartite locally decode/reject code for those tuples. The construction algo-
rithm is said to beefficient if its running time is polynomial inD|, |R|, k and N.

We define severalniformity properties that construction algorithms may or may not have. By
uniformity we refer to properties that are common to all outputs of a construction algorithm, inde-
pendently of the:-tuples given as input to the algorithm.

Uniform in structure.  Fix finite setsA, B andV € {A, B}. Fix a finite set. Fix domainsX 4
andXg. A (D, k, N)-construction algorithm is said to lmmiform in structure(A, B, V,Q, ¥4, Xp),

if on all inputs its output has the same vertex detthe same vertex set, the same evaluating
verticesV, the same label s€t and the same alphabet domaing andX 3.

When the identity of4, B, V, 2, ¥4 andX g is inessential, we simply say that the algorithm is
uniform in structurewithout specifying them.

Uniform in tuple association. Fix finite setsA, B andV € {A, B}. Fix a finite set2. Fix
domainsX 4 andXp. Lettupi : V' — [N] be a function (called aniform tuple associatdr The
functiontupi assigns every evaluating vertex an index of an input tuple.

A (D, k, N)-construction algorithm is said to heniform in the tuple associatiotupi, if it is
uniform in structure A, B, V,Q, ¥ 4, ¥ 5) and on all input tuples, thieip function of its output is as
follows: for every vertexy € V/, the tupletup(v) is thed’'th input tuple for indexi = tupi(v).

When the identity of the uniform tuple associatapi is inessential, we simply say that the
algorithm isuniform in the tuple associatigmvithout specifyingupi.

Uniform in encoding and list decoding. Fix finite setsA, B andV € {A, B}. Fix a finite sef).
Fix domainsX 4, andX 3. Assume the following:

¢ &: an efficient algorithm (called aniform encodérthat given a messagéc< D.,,. computes
an assignmer®’s : B — Xp cpe.

e L: an algorithm (called aniform list decoderthat given an assignments : B — Xp 4.
and a real parametércomputes a sequence of messafjes. ., f; € Dyec.

Notably, both€ and L are independent of the tuples on which we evaluate.

A (D, k, N)-construction algorithm is said to lmiform in the encoding and in the list decod-
ing £, if:
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1. Itis uniformin structurg A, B, V,Q, ¥4, X5).

2. There is an efficient algorithi& that given a messagéc D.,.. and a collection ok-tuples of
points(zy1,...,T14),---,{TN1,..., TNk € D¥, computes anassignmefif : A — X4 cpe.

3. Given as input a collection df-tuples of points(xy 1,. .., T14), .-, {TN1, ..., k) € DF,
the outputg of the construction algorithm for those tuples i§a,.,, l,...)-composable bipar-
tite locally decode/reject code that satisfies the following encoding and list decoding proper-
ties:

Uniform Encoding: Let f € D.,.. Invoke& on fand(xy1,..., 21 %), .-, (TN1,-- - TNk)
to compute an assignmefity : A — ¥4 .,.. Invoke& on f to compute an assignment
Cp : B — Y (independent of the input tuples). Then, every edge(a,b) € E'is
satisfied and readsunderC4 andC'’.

Uniform List Decoding: LetCp : B — Xp 4. and letd be a real parameter such that
Omin < 6 < 1. Invoke £ on Cp andé to computel < [,,..(d) messages,..., f; €
Dye. (independent of the input tuples). Then, for every assignréant A — ¥4 4.
the following holds: When picking uniformly at random an edge- (a,b) € FE, the
probability that, inG underCy, C'g, the edge: is satisfied, although does not read any
of f1,..., fi,isat mosiO(9).

When the identities of the uniform encod€rand the uniform list decodef are inessential, we
simply say that the algorithm isniform in encoding and list decodingithout specifyingg andL.

6.2.6 Point Variant of Composable Bipartite Locally Decode/Reject Codes

We define a variant of composable bipartite locally decode/reject codes (see Defthjiom this
variant, not only thé/ vertices are meant to evaluate a functionketuples of points inD, but also

the vertices on the other side (which will be denot€de { A, B}) are meant to evaluate the same
function on points inD. Each vertex» € W has a poinpnt(v) € D associated with it. For an
assignment, to v, the evaluation of on the point is given byvalp(v, o) € R. All the points in

D have the same number Of vertices associated with them. We require nothing about the joint
distribution of the tuples and the points.

Each edge touches oné vertex and onéV’ vertex. We strengthen the definition of reading,
so for an edge to read a functighe Dy, the V' vertex must evaluaté¢ on its tuple and théV
vertex must evaluatg on its point. We require all the vertices i#f to be of the same degree, so a
uniformly distributed edge touches a vertex associated with a uniformly distributedppeinl.

Analogous to a bipartite evaluation graph we define:
Definition 6.6 (Bipartite tuple-point evaluation graph). LetD = (D, R, Dey., Dge.) be a domain.
Letk and N be natural numbers. Assume a collectiorkéfiples:

<SL’171, C. ,1'17k>, ce <.TN’1, C. 7xN,k> € Dk
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G=(G=(AB,FE),V,Q Y4, Xg,sat,label, proj, tup, eval, pnt, evalp) is called abipartite tuple-
point evaluation grapfor the k-tuples, if

1. ¢ = (G,V,Q,%X4, Xp, sat, label, proj, tup, eval) is a bipartite evaluation graph for thg-
tuples.

2. Denote the vertices on the other siddoby W = (AU B) \ V' € {A, B}. All theV vertices
must have the same degreein

3. pnt : W — D is a function mapping each vertex Wi to a point inD. Each pointp € D
must have the same (positive) number of verticeslV mapped to it.

4. evalp : W x Xy — R s a function, mapping each vertexc W with an assignment for it to
an assignment fopnt (v).

We say that a vertex € W with pnt(v) = p € D readsf € Dy in G under an assignment
o, € Dy, if evalp(v,0,) = f(p). We say that an edge= (a,b) € F readsf € Dg.. in G under
assignmentg, € X, ando, € Xp, if e reads f in G’ under the assignments, and o, (as in
Definition'6.3) andv € {a,b} N W reads f in G under the assignment,. We say that an edge
e = (a,b) € Ereadsf € Dy in G under assignmentS, : A — ¥4 andCp : B — X, if e reads
f in G under the assignmenés, (a) andCz(b).

We say that an edgec F is satisfiedn G under assignmentS, : A — ¥, andCp : B — X,
if e is satisfied inG’ underC', andC'z.

The point variant of composable bipartite locally decode/reject codes is defined similarly to
Definitionl6.5, with the bipartite tuple-point evaluation graph underlying it.
Definition 6.7 (Composable bipartite locally decode/reject code (point variant))Let
D = (D, R, Dene, Dygec) be a domain. Let and N be natural numbers. Assume a collection of
k-tuples:
<I171, o ,$17k>, ce <ZL‘N71, . 717N,k> e D¥
LetO < dpin < 1. Letl,., : (0,1) — R be a decreasing function.

G=(G=(AB,FE),V,Q %4, Xg,sat,label, proj, tup, eval, pnt, evalp) is called a(d,in, lnax )-
composable bipartite locally decode/reject code (point varfanthe k-tuples, if we have that:

hd ZA = <DAa RA) ZA,enca ZA,dec> and EB = <D37 RBa ZB,enca EB,dec> are domains.

o §' = (G, V,Q, 34 decy LB.dec; Sat, label, proj, tup, eval, pnt, evalp) is a bipartite tuple-point
evaluation graph for thé-tuples. We say that an edgec F is satisfied inG under assign-
mentsCy : A — ¥4 4. @aNdCp : B — Yp 4, If e is satisfied inG’ under the assignmengs,
andCp. We say that an edgec E readsf € D, in G under assignmentS, : A — X4 4.
andCg : B — Y 4, if ereadsf € Dy, in G' under the assignmengs, andC.

e The following holds:
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1. Encoding: There is an efficient algorithm that given a messdge D.,., computes
assignments’y : A — X4 ., andCp : B — Yp .., Such that every edge= (a,b) €
E is satisfied and readg in G underCy, Cp.

2. List Decoding: For every assignment’s : B — Xp 4., fOr every realdé such that
Omin < 0 < 1, there exist < [,,,.(9) elementsfi, ..., fi € Dy, such that for every
assignment’y : A — ¥4 4. the following holds: when picking uniformly at random
an edge: = (a,b) € E, the probability that, inG underCy, Cg, the edge: is satisfied,
althoughe does not read any of;, . .., f;, is at mosiO(9).

Note thatG~ = (G, V,Q, ¥4, ¥p, sat, label, proj, tup, eval) is a composable bipartite locally de-
code/reject codeWe refer to it as the composable bipartite locally decode/reject code induced by

g.

6.2.7 Construction Algorithms for The Point Variant of Composable Bipartite Locally De-
code/Reject Codes

LetD = (D, R, Deye, Dyec) be adomain. Let andN be natural numbers. £D, k, N')-construction
algorithm for composable bipartite locally decode/reject codes (point variant) is a procedure that
given as input a collection of siz&¥ of k-tuples of points

<SL’171, . ,1’17k>, ce <.TJN’1, .. ,.TJN,]C> e DF
outputs a composable bipartite locally decode/reject code (point variant) for those tuples. Efficiency

and uniformity in structure of such algorithms are as for construction algorithms for composable
bipartite locally decode/reject codes.

For the point variant we are interested in an additional uniformity property that construction
algorithms may or may not have:

Uniform in point association. Fix finite setsA, B andV € {A, B}. Fix a finite set(2. Let
W = (AU B)\ V. Fixdomainst 4, andXz. Letpnt : W — D be a function (called aniform
point associatoy.

A (D, k, N)-construction algorithm for bipartite locally decode/reject codes (point variant) is
said to beuniform in the point associatiopnt, if it is uniform in structure(A, B, V,Q, ¥4, ¥5) and
on all input tuples, the output of the algorithm has agits function the uniform point associator
pnt.

When the identity of the uniform point associatart is inessential, we simply say that the
algorithm isuniform in the point associatignvithout specifyingpnt.

6.2.8 List Decoding Based on Point Evaluations

Recall thatD,.. defines a code as follows: for evefyc D,.. there is a codeword withD| co-
ordinates, where the symbol in positienc D is f(z). Provided thatD,.. defines a code with
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large (relative) distance, a list decoding can be computed based solely on the point evaluations.
The following lemma shows that and relates the list decoding to the list decoding guaranteed in the
definition of the codes:

Lemma 6.8 (List decoding for point evaluations).Let0 < ¢ < 1. FixadomainD = (D, R, Dee, Daec) -
Suppose thab,.. defines a code with (relative) distante- ¢. Letk and N be natural numbers.

Let0 < dpmin < 1. Letl,e : (0,1) — R be a decreasing function. Let be a(D,k, N)-
construction algorithm that outputS, ..., ... )-composable bipartite locally decode/reject codes
(point variant). Assume thatl is uniform in structure{A, B, V,Q, >4, ¥5) and in the point as-
sociationpnt : W — D, whereWW = (AU B) \ V. DenoteX4 = (D, Ra, X enc, 2 a.dec) @Nd

EB = <DB; RB; 2B ,encs 2B dec>

Assume that there 8 < ¢/,

Then, for every assignment : W — R and every reab such thatmax {6, 0,,;,} < 0 < 1,
there exist’ < 2 - [,,,,(6) elementsyy, ..., gy € Dq.., for which the following holds.

< § < 1itholds

min —

< 1, such that for every real satisfyingd/

Assume the algorithmd is invoked on some inpéttuples. Denote the output by

G=(G=(AB,E),V,Q Y4, %g,sat,label, proj, tup, eval, pnt = pnt, evalp)

LetCy : B — Xp 4. be an assignment, and I¢t, .. ., f; € Dy be thel < [,,,.(d) elements
guaranteed by the list decoding propertytbfor Cz andé. LetCy : A — ¥4 4. be an assignment.

When picking uniformly at random an edge= (a,b) € F, the probability that, inG under
C4, Cg, (i) the edger is satisfied, (i) for the vertex € W N {a, b} it holds evalp(v, Cy (v)) =
pe(v), and (iii) e does not read an element frofwfy, ..., i} N {g1,...,gr}, isatmosiO(9).

Proof. Define a code”’ C R as follows: for everyy € Dg.. define a codeword withiV/| co-
ordinates by letting the symbol in the positiore W be g(pnt(v)). Note that by the definition of
bipartite tuple-point evaluation graphs, this code is a repetition of the code defiriggd byHence,
its relative distance i$ — ¢ as well.

Fix an assignmente : W — R. Fix a reald such thatmax {0,in, 0,:,} < 6 < 1. Setd’ =
lm T and note that’ > 2./e. Letg, ..., gr € Dqy.. be all functionsy € D, that agree with the
point evaluatiorpe on at least’ fraction of the vertices, that i${v € W | g(pnt(v)) = pe(v) }| >
&' - [W]. Note that there are at mogt= 2 - /,,,,,(9) such functions by applying Propositi&n4 on
C.

Assume the algorithrd is invoked on some input-tuples. Denote the output lgy as above.
Let Cs : B — Ypa4. be an assignment, and Iét, ..., f; € Dy be thel < [,,,.(0) elements
guaranteed by the list decoding propertygdior Cz andd. LetCy : A — 34 4. b€ an assignment.

Pick an edgec = (a,b) € FE uniformly at random. Denote thi” vertex touching: by v €
{a,b} N W, and note that is uniformly distributed inlA’. We will bound the probability that the
following badevents happen bg(9) and be done:
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e BAD;: In G under the assignments, andC'g, the edge: is satisfied but does not read any

Offl,...,fl.

e BAD,: In G under the assignments, and Cp, for some; € [I], the edgee readsf;,
evalp(v, Cw(v)) = pe(v), yetf; € {gi,..., v}

The bound onBAD; follows directly from Definition6.7. Let us boundBAD,: Fix j € [l].
Whenevere readsf; andevalp(v, Cy (v)) = pe(v), it holds thatf;(pnt(v)) = pe(v). Whenf; ¢
{q1,---,9r}, this can happen with probability less th&n The probability that this happens for
somej € [l] isatmost - O(d') = O(9). O

6.2.9 Generic Framework for Composable Bipartite Locally Decode/Reject Codes

We define a generic framework for handling both composable bipartite locally decode/reject codes
and their point variants.

Definition 6.9 (Generic bipartite evaluation graph). LetD = (D, R, Dy, Dge.) be a domain.

G = (G = (A, B,E),Q, Y4, Xp, sat, label, proj, read) is called ageneric bipartite evaluation
graph if G = (G = (A, B, E),Q, X4, Y5, sat, label, proj) is a bipartite constraint graph and

read C E X 34 X ¥p X Dy, is a relation. We say that an edge= (a,b) € E readssomef € D,

in G under assignmentS, : A — X4 andCy : B — X, if (e,Ca(a),Cp(b), ) € read.

Definition 6.10 (Generic bipartite locally decode/reject code)LetD = (D, R, D¢y, Daec) be @
domain. LeD < d,,;, < 1. Letl,q. : (0,1) — R be a decreasing function.

G=(G=(AB,FE),Q,Y4, %5, sat,label, proj, read) is called a(d,in, lmaz )-generic bipartite
locally decode/reject codd:

L4 2A = <DA7 RA7 2A,encu 2A,dec> and ZB = <D37 RB; EB,enc; 2B,dec> are domains.

o §' = (G = (A B,E), QX4 dec, 2B dec, Sat, label, proj, read) is a generic bipartite evalua-
tion graph. We say that an edgec E is satisfied inG under assignmentSy : A — X4 gec
andCp : B — Yp 4., if e is satisfied inG’ underC,, Cz. We say that an edgec E reads
somef € Dy, in G under assignmentS, : A — ¥4 4. aNdCp : B — ¥ 4., if e readsf
in G’ underCy, Cp.

e The following holds:

1. Encoding: There is an efficient algorithm that given a messdge D.,., computes
assignments’y : A — ¥4 .. andCp @ B — Y ., SUCh that every edge= (a,b) €
FE is satisfied and readg in G underC 4, Cz.

2. List Decoding: For every assignment’s : B — Xp 4., for every realé such that
Omin < 0 < 1, there exist < [,,..(6) elementsfy,. .., fi € Dy, such that for any
assignmenty : A — ¥4 4., the following holds: when picking uniformly at random
an edgee = (a,b) € E, the probability that, inG underC4, C'z, the edge is satisfied,
althoughe does not read any of;, . . ., f;, is at mosiO(9).
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In this generic framework, we can prove the following useful proposition, stating that not only
that every assignment to the vertices defines a list decoding, but also every assignment td the
vertices defines a list decoding. The list decoding may be larger than the list decoding defined by
the assignment to thB vertices and may incur a larger error.

Proposition 6.11 (List decoding for assignment toA vertices). Let D = (D, R, Dene, Diec)
be a domain. Leb < 6§, < 1. Letln. : (0,1) — R™ be a decreasing function. Let
G = (G = (A, B,E),Q,X4,%p, sat, label, proj, read) be a (dmin, lnaz)-generic bipartite lo-
cally decode/reject code. Then, for every assignnmignt A — ¥4 4., for every reals such that
Vmin <6 < 1, there exist’ < 1-1,,,,(6%) elementgy, ..., gr € Dy, satisfying the following. Let
Cp : B — Yp.4. be an assignment. When picking uniformly at random an edge(a, b) € E,
the probability that, inG underC 4, C's, the edges is satisfied although does not read an element
fromg,..., gy, isatmosiO(d).

Proof. Fix an assignment’y : A — ¥4 4. and a reab such that/o,,;, <4 < 1.

Fix s = L%j. Letb € B. Letoy(b),...,0s(b) € ¥ 4. be all elements € X 4. that at leasd
fraction of the edges coming intan G “vote” for them according t@'4, i.e.,

{i € [Ag(b)] | eq(b,i) = (a,b) A proj(a,Ca(a),label(eq(b,i))) = o} > 6 - Ag(b)

Note that indeed there are at mesguch elements € ¥z 4. (there might be less thanelements,
in which case we pad the list arbitrarily). Defia@ssignments foB, Cp1,...,Cps : B — X5 decs
by letting, for everyj € [s] andb € B, C ;(b) = 0;(b).

Fix a confidence parameté&t = 42 > §,,;,,. For everyj € [s], letg;1,...,g;;+ € D denote
the list decoding of* < [,,,,(6*) elements corresponding ¥ ; for confidence parametét, as
follows from the list decoding property @. Note that the total number of elements we define
(possibly with repetitions) i = s - I* < 1 - l,,4,(6%).

LetCp : B — Xp 4. be an assignment. Pick uniformly at random an edge(a,b) € E. We
will bound the probability that the followinhadevents happen b§(¢) and be done:

e BAD;: The edger is satisfied inG under the assignments, and Cz, howeverCg(b) ¢
{Cp1(b),...,Crs(D)}.

e BAD.: The edge: is satisfied inG under the assignments, andC's, and for somg € |[s],
it holds thatC'z(b) = Cp ;(b), howeverge does not read one @f 1, . . ., g, +-

1(b
fraction of the; € [A4(b)] we have that(b,i) = (a,b) € E'is satlsfled ing under the assignments
C4 andCp: it cannot hold thaproj(a, Ca(a),label(eq(b,i))) = Cp(b) for o fraction of thei €
[Ag(b)]. The bound oBAD; follows.

Bounding BAD,. Letb € B such thatCs(b) ¢ {Cg1(b),...,Cgs(b)}. Then, for less thai
(a,b)
be
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Bounding BAD,. On the evenBAD,, for j € [s] it holds thate is satisfied inG underC4, Cg ,
yete does notread any @f; 1, . . ., g;;~. By the list decoding property @f, the probability that this
happens is at most- O(6*) = O(9). O

6.3 Edge Reading Bipartite Locally Decode/Reject Code

In this section we define another instance of generic bipartite locally decode/reject code. In this
instance, the edges evaluate tuples.

Definition 6.12 (Edge reading bipartite locally decode/reject code)LetD = (D, R, Dene, Diec)

be a domain. Let and N be natural numbers. Assume a collectiorkéfiples:

<5E171, .. ,£E17k>, RN <[L’N71, A 7$N,k> c Dk

Let0 < 0pnin < 1. Letlnae : (0,1) — R be a decreasing function.

G = (G = (A,B,E),Q, X4, Xg, sat, label, proj, tup, eval) is called a(d,in, lma: )-€dge read-
ing bipartite locally decode/reject codé

o X4 =(Da, Ra, YA cenc, Badec) ANAE 5 = (Dp, Rp, X ency 2B.dec) are domains.

e tup : E — D¥is afunction mapping each edge td:duple (z; 1, ..., z;) fori € [N]. Each
i € [N] must have the same (positive) number of edged- that are associated with th&h
k-tuple, i.e.tup(e) = (z;1,. .., Tig).

e cval : E x Y44, — RFis a function, mapping each edge= E with an assignment to the
edge’sA endpoint (which determines an assignment to the edgeadpoint) to assignments
for the elements afup(e).

e Foranedge € £, assignments, € ¥4 4. andoy, € X gec aNAf € Dy, let(e, 04, 00, f) €
read if and only ifeval(e, 0,) = (f(zi1), ..., f(zix)) Wheretup(e) = (z;1,...,z;). Then,
G = (G = (A, B,E),Q,%Y4, Xp, sat, label, proj, read) 1S @ (Omin, lmaz)-geENEric bipartite
locally decode/reject code.

e We say that is satisfied inG under assignmentSy : A — ¥4 4ec aNdCp : B — Xp 4e., if €
is satisfied inG’ underC'y andCy. We say that readsf in G underCy andCjp, if e readsf
in G’ underCy andCp.

A (D, k, N)-construction algorithm for edge reading bipartite locally decode/reject codes is a
procedure that given as input a collection of sivef k-tuples of points

<l’171, . ,$17k>, Ce <.TN,1, - 7-77N,k> € Dk

outputs an edge reading bipartite locally decode/reject code for those tuples. Efficiency and uni-
formity in structure of such algorithms are as for construction algorithms for composable bipartite
locally decode/reject codes.
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7 Building Blocks

We will devise construction algorithms for various types of composable bipartite locally decode/reject
codes and point variants of them. These types will differ in the type of domains they work with
(Reed-Muller domain, Hadamard domastc), in whether they are left or right evaluators and in the
specific form of theisat, label, proj, eval andevalp functions. These specifics would later allow us

to transform construction algorithms for one type of codes to construction algorithms for others and
to compose construction algorithms. In this section we survey the different types of building blocks
we use. In the next section we give a full account of the different manipulations on the building
blocks.

7.1 Reed-Muller Left Reader

A Reed-Muller Left Reader (RM-LR) is a composable bipartite locally decode/reject code. It works
for a Reed-Muller domairD defined by some finite fiellf, a dimensionn, an encoding degreé

and a decoding degre&. It is a left evaluator (meaning that the set of evaluating vertice$) s

and the alphabet domain for the verticesD is also a Reed-Muller domain with the same finite
field IF, but with different (hopefully reduced) dimension and degree parameters, demaig@nd

d.,, respectively. No additional satisfiability constraints are imposed on the assignments4o the
vertices. Assignments to the vertices are over the domain associated with the field

The edges are labeled by pointdity, i.e.,Q2 = F“. The projection of a vertex € A, assigned
some polynomial, is given by evaluating the polynomial on the point given as label. A verex
A evaluates its tupléup(a) by evaluating the polynomial assigned to it brpre-defined points
p1, .-, bk € F*. This way we reduce the problem of evaluatinguples inD to evaluating:-tuples
in D. Itis convenient — and does not restrict us — to have the same pgints, p;. for all vertices
a € A.

Formally,
Definition 7.1 (Reed-Muller Left Reader (RM-LR)). Assume domains as follows:

e LetD = (F™, F, D.pe, Dyee) be a Reed-Muller domain defined by a finite fiéJch dimension
m, an encoding degre¢ and a decoding degreé.

o LetD = <Fw,IF,75em,75dec> be a Reed-Muller domain defined by the fig|ca dimensionw,
an encoding degreé, and a decoding degreé, .

o LetF = ({1}, T, Rmﬁdec> be tbe dorgain associated with Recall that we associate a
domain with a finite set by taking.,,. = Faoee = {f | f: {1} = F}.

Letk and N be natural numbers. Assume a collectiorkéfiples:

<f171, e ,fl,k>a ceey <fN’1, - ;fN,k> € (Fm)k
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LetO < dppin < 1. Letl,e, : (0,1) — R be a decreasing function.
A (Omin, lmaz ) -cOMposable bipartite locally decode/reject code forkreiples

G=(G=(AB,E),V=A/1Q, 5,@, sat, label, proj, tup, eval)

is called a(din, lmaz)-Reed-Muller Left Reader (RM-LR) reducirig — D for the k-tuples, if the
following holds:

1. Satisfaction: For every vertexx € A and assignment, € Doee, it holds thatsat(a,o,) =
true.

2. Projection: (2 = I, and for every vertex € A, assignment,, € D,ec and labelp € F*, we
have thatroj(a, o,, p) is the element if¥ ;.. corresponding te, (p).

3. Tuple Evaluation: There are pointgy, ..., pr € F*, such that for every vertex € A and
assignment, € Dy.., we haveeval(a, o,) = (04(P1), .-, 04(Dk))-

A (D, k, N)-RM-LR construction algorithm with structural parametésize, block, degleft, degright)
reducingD — Disan efficien{D, k, N)-construction algorithm that given a collection of siXeof
k-tuples, outputs an RM-LR reducifiy — D for the k-tuples that has sizeize, block lengthblock,
left degreedegleft and right degreelegright.

7.2 Reed-Muller Left+Point Reader

A Reed-Muller Left+Point Reader (RM-LPR) is the point variant of a Reed-Muller Left Reader.
Every vertexb € B is associated with a poipt:t(b). An assignmend, to b corresponds to a field
element, which is also the evaluation on the associated paiiip(b, oy,).

Definition 7.2 (Reed-Muller Left+Point Reader (RM-LPR)). LetD and D be Reed-Muller do-
mains. Lel) < §,,;, < 1. Letl,,q, : (0,1) — RT be a decreasing function.

A (d,min, lmaz)-cOmposable bipartite locally decode/reject code (point varigrfgr some collqvc-

tion of tuples is called &4, lmq)-Reed-Muller Left+Point Reader (RM-LPR) reducifig— D
for the tuples, if:

1. The composable bipartite Iocallx decode/reject code induced iy a (6,nin, linaz )-ReEEd-
Muller Left Reader reducin@ — D for the tuples.

2. Denote the alphabet dgmain of tievertices byBN“ = ({1}, F, Rm, ]?dec). For every vertex €
B and assignment, € F,., it should hold thatvalp(b, o,) is the field element corresponding
to oy.

A (D, k, N)-RM-LPR construction algorithm with structural parametésige, block, degleft, degright)
reducingD — Disan efficient D, k, V)-construction algorithm that given a collection of sixe
of k-tuples, outputs an RM-LPR reducifg — D for the k-tuples that has sizsize, block length
block, left degreedegleft and right degreelegright.
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7.3 Hadamard Left Reader

A Hadamard Left Reader (Had-LR) is a composable bipartite locally decode/reject code that works
for a Hadamard domain and is a left evaluator. Since we will use Hadamard Left Readers only as
inner constructions, we make very few restrictions on their structure.

Definition 7.3 (Hadamard Left Reader (Had-LR)). LetF be a finite field and letn be a natural
number. LetD = (F™ F, D.,., D4e.) be a Hadamard domain. Létand N be natural numbers.
Assume a collection d@f-tuples:

<fl71, - ;fl,k>7 N <fN,1, o ;fN,k> € (]Fm)k

LetO < 0pnin < 1. Letlna, : (0,1) — R be a decreasing function.
A (0ymin, lmaz ) -cOmposable bipartite locally decode/reject code for theiples

G=(G=(AB,E),V =AQ, %, Y5, sat = true,label, proj, tup, eval)

is called a(d,,in, lmae)-Hadamard Left Reader (Had-LR)r the k-tuples.

A (D, k, N)-Had-LR construction algorithm with structural parametésize, block, degleft, degright)
is an efficien{D, k, N)-construction algorithm that given a collection of si¥eof k-tuples, outputs
a Had-LR for thek-tuples that has siz€ze, block lengthblock, left degreeadegleft and right degree
degright.

7.4 RM ¢ Had Left Reader

An RM ¢ Had Left Reader (RMHad-LR) is any composable bipartite locally decode/reject code
that works for a RM> Had domain and is a left evaluator. Since we will use RMad Left Readers
only as inner constructions, we make very few restrictions on their structure.

Definition 7.4 (RM ¢ Had Left Reader (RM ¢ Had-LR)). LetF be a finite field, and lef. be a
subfield off, where the extension degreeobverL is T = [F : L]. Letm be a natural number. Let

D = (F™ x L™, L, Dene, Dyec) be a RMHad Domain. Let: and N be natural numbers. Assume a
collection ofk-tuples:

((fl,b ﬁl,l), cey (fl,m ?71,1<;)>, ceey <(fN,1> ?7N,1)7 ceey (fN,k, ZJNk)> € (Fm X LT)k
LetO < dpnin < 1. Letl,., : (0,1) — R be a decreasing function.
A (Opmin, lmaz)-cOmposable bipartite locally decode/reject code for thiples
G=(G=(AB,E),V =A,Q,%Y4, X5, sat = true, label, proj, tup, eval)

is called a(d,min, lmaz)-RMoHad Left Reader (RM Had-LR)for the £-tuples.

A (D, k, N)-RM < Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) is an efficien{D, k, IV )-construction algorithm that given a collection
of sizeN of k-tuples, outputs an RMHad-LR for thek-tuples that has sizeze, block lengthblock,
left degreedegleft and right degreelegright.
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7.5 Reed-Muller Right Reader

A Reed-Muller Right Reader (RM-RR) is a composable bipartite locally decode/reject code. It
works for a Reed-Muller domain defined by some finite figJddimensionm, encoding degreé

and decoding degreg. Itis a right evaluator (meaning that the set of evaluating vertic& iand

the alphabet domai® for the B vertices is also a Reed-Muller domain with the same finite field

F, but with different (hopefully reduced) dimension and degree parameters, demnafgdandd,,,
respectively. A vertex € B evaluates its tupleup(b) by evaluating the polynomial assigned to it

on k pre-defined pointg, . .., p, € F“. Assignments to thel vertices contain assignments to the
neighboringB vertices, by specifying a polynomial per lalget (2. Satisfiability constraints on the

a vertices compare the evaluations of the polynomials on different points. The constraints are in a
tree structure as explained next.

Tree satisfiability constraints. Tree satisfiability constraints for a vertexc A are given by
a (rooted) treel, = (U, U Q, E,) and functions{Pa,g}feﬂ, calledancestors point specification
functions

1. The leaves of the treg, are the elements if!. The set of inner nodes in the tredls.

2. For every depth in the tree, all the nodes in this depth have the same number of children. In
particular, all the leaves have the same depth,irdenotediepth(T,).

3. Every leaf¢ € () specifies a point ifi™ for each of its ancestors. The specification is given
by the functionP, ¢ : {0, ..., depth(T,) — 1} — F*, where the ancestors are represented by
their depth in the tree.

A polynomial Q, € D,.. assigned to a leaf € Q) defines an assignment of field elements to the an-
cestors ot in the tree by evaluating the polynomial on the points associated with €h&im, < (7))

fori =0,...,depth(T,) — 1. The tree satisfiability constraints are said tcshésfiedby an assign-
mento, : ) — 25dec of polynomials to the leaves, if there is an assignment of field elements to all
the inner nodes of the tree: U, — F that is consistent with the evaluations of all the leaves. I.e.,
if ue U,isindepthi € {0,...,depth(T,) — 1} in the tree, the leaf € Q2 is a descendent of it and

Qe = 04(€) is the polynomial assigned tg then it should hold that(u) = Q¢ (P, (7)). Intuitively,

each leat € Q2 “has an opinion” on all the vertices on the path from it to the root. The satisfiability
constraints are satisfied if all the leaves agree.

In addition, we require an RM-RR to be left regular (note that since it is a right evaluator, it is
necessarily right regular), and require that for every vedtexA, there would be the same number
of edges coming out af for each label.
Definition 7.5 (Reed-Muller Right Reader (RM-RR)). Assume domains as follows:

o LetD = (F™ F, D, D4e) be a Reed-Muller domain defined by a finite fiéJch dimension
m, an encoding degre¢ and a decoding degreé.
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o LetD = <1Fw,IF,25mc,25dec) be a Reed-Muller domain defined by the figlch dimensionu,
an encoding degreé,, and a decoding degre€, .

o Let EA = <QaﬁdecazA,enc: EA,Ulec>; WhereEA,enc = {f ‘ f Q- 56710} and EA,dec =
{f ‘ f : Qﬁﬁdec}-
Letk and N be natural numbers. Assume a collectiorkéfiples:
<le, . ,fl,k>a ceey <fN’1, . ;fN,k> - (Fm)k

LetO < dppin < 1. Letl,., : (0,1) — R be a decreasing function.
A (Omin, lmaz)-cOMposable bipartite locally decode/reject code forkreiples

G=(G=(AB,FE),V = B,Q, EA,YS, sat, label, proj, tup, eval)

is called a(d,min, lmae)-Re€d-Muller Right Reader (RM-RR) reducifyy — D for the k-tuples, if
the following holds:

1. Satisfaction: For every vertexu € A there are tree satisfiability constraints given by a tree
T, and ancestors point specification functiofi, ¢ }._,, such that for every assignmeny :

Q) — Dy, it holds thatsat(a, 0,) = true if and only if the tree satisfiability constraints are
satisfied by,.

2. Labeling: Leta € A be a vertex. For all labelg € (2, there is the same number of edges

e € E coming out of: with label(e) = &.

3. Projection: For every vertex: € A, assignment,, : 2 — D gee aNd label¢ € €2, we have that
proj(a,oq,§) = 04(§).

4. Tuple Evaluation: There are pointgy, ..., p, € F*, such that for every verteéx € B and
assignment, € Dg.., we havecval (b, op) = (o(p1), - - -, op(Pk))-

5. Regularity: G is left regular.

A (D, k, N)-RM-RR construction algorithm with structural parametgdige, block, degleft, degright, depth)

reducingD +— Dis an efficien(D, k, N)-cogstruction algorithm that given a collection of siX¥eof
k-tuples, outputs an RM-RR reducity— D for the k-tuples that has sizeize, block lengthblock,

left degreeadegleft, right degreedegright, and whosed vertices all have tree satisfiability constraints
of depthdepth.
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7.6 Reed-Muller Right+Point Reader

A Reed-Muller Right+Point Reader (RM-RPR) is the point variant of a Reed-Muller Right Reader.
Each vertexa € A is associated with a poinpiut(a). We think of this point as associated with the
root of the satisfiability tree ai, namely, the point that all the leavés: () “have an opinion on”.
Given an assignmeiat, to a, we let the point evaluation functiatvalp(a, o,) be the opinion of an
arbitrary leaf¢, € Q2. Recall that ifo, is satisfying, i.e.sat(a, 0,) = true, then all the leaves agree

on the assignment to the root. N

Definition 7.6 (Reed-Muller Right+Point Reader (RM-RPR)). Let D and D be Reed-Muller
domains. Led < §,,;, < 1. Letl,q. : (0,1) — R be a decreasing function.

A (61min, lmaz)-cOmposable bipartite locally decode/reject code (point varigrfgr some collec-
tion of tuples is called &d,,,i, lmq:)-Reed-Muller Right+Point Reader (RM-RPR) reducing— D
for the tuples, if:

1. The composable bipartite locally Elecode/reject code induced lyy a (6,1in, lma:)-Re€d-
Muller Right Reader reducin@ — D for the tuples.

2. Denote the alphabet domain of thevertices by, = (Q,ﬁdec,EAyem, Y Adec). FiX some

arbitrary &, € Q). For every vertexx € A, for every assignment, : 2 — Dy, we have
thatevalp(a, o,) = 0,(£0)(Pag, (0)) (WhereP, ¢, is the ancestors point specification function
associated witly’s satisfiability tree).

A (D, k, N)-RM-RPR construction algorithm with structural parameters
(size, block, degleft, degright, depth) reducingD — Dis an efficient(D, k, V)-construction algo-
rithm that given a collection of siz& of k-tuples, outputs an RM-RPR reducifiy — D for the
k-tuples that has sizeize, block lengthblock, left degreedegleft, right degreedegright, and whose
A vertices all have tree satisfiability constraints of degébth.

8 Manipulations on Building Blocks

In this section we survey the different manipulations we have on building blocks: generation, change
of domains, right degree reduction, transformation of left readers into right readers and composition.

8.1 Generation of Left Readers

We will be able to devise construction algorithms for left readers.

8.1.1 Construction of Reed-Muller Left and Left+Point Readers

The first algorithm we show is an RM-LPR construction algorithm that is uniform in the point
association. This algorithm works for Reed-Muller domainsn which the field is sufficiently
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large with respect to the dimensian, the decoding degre€ and the numbek of points in a tuple

we wish to evaluate. It reduces the evaluatiorDio evaluation in a Reed-Muller domain with

a constantdimension. On the downsid® has an encoding degree that — not only is not smaller
than the encoding degrekof D — but is slightly larger. In addition, theize, block, degleft and
degright parameters of the algorithm are all very large. Since we will use this algorithm as an inner
construction, we can put up with the large size and block length. As to the left and right degrees —
subsequent manipulations would allow us to reduce them.

Lemma 8.1 (Construction of RM-LPR). Setw = 4. LetD be a Reed-Muller domain defined by a
finite fieldF, a dimensionn > w, an encoding degreé and a decoding degreé. Letk < |F| and

N be natural numbers. We assume that the following condition holds:

o d>(k+1)-d.

Let D be a Reed-Muller domain defined by a finite figlda dimensionw, an encoding degree
(k+ 1) - d and a decoding degreé.

Then, there is 4D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) redUCIngD — D for size < N - |F|°"™, block < poly(k, d) - log |F|,
degleft < \F\O(l anddegright < N - ]IF\ ). The algorithm is uniform in the point association and
outputs(d,min, lmaz )-RM-LPRS for
andl, .. (0) = 2.

o )

We will also show a construction algorithm for (the weaker) RM-LR with much smaller size
parameter. With the right choice of parameters, this size would be almost-{iNear|F™|)!+o(),
rather than polynomial ifif™| and . In particular, to save in the size we need the figlth have
a subfieldK of an appropriate size. The smaller the subfield — the smaller the size. The larger the
subfield — the lowebp,,;,. Specifically, ford,.;, to be small we requirék| > Q(m?), while the
influence of|K| on the size is a factor QK|O(’"). When the dimensiom is sufficiently small, we
can get lows,,,;,, at a reasonable increase in the size.

The other structural parametdtisck, degleft anddegright would remain large, and subsequent
manipulations are required for reducing them.
Lemma 8.2 (Construction of RM-LR). Setw = 4. LetD be a Reed-Muller domain defined by a
finite fieldF, a dimensionn > w, an encoding degre¢ and a decoding degreé. LetK C IF be a
subfield off". Letk < |F| andV be natural numbers. We assume that the following condition holds:

o d>(k+1)-d.

Let D be a Reed-Muller domain defined by a finite figlda dimensionw, an encoding degree
(k+1) - d and a decoding degreé.
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Then, there is 4D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD — D for size < (N + [F|™) - [F|°Y . [K|*™, block <
poly(k, d) - log |F|, degleft < |F|°" anddegright < (N + |F|™) - [F|°®) - |K|*™. The algorithm
OUtpUtS(8,in, linaz)-RM-LRs for

e T )

8.1.2 Construction of Hadamard Left Reader

andl,q, (0) = 2.

We show a Had-LR construction algorithm that is uniform in the tuple association and in the encod-
ing and list decoding. The size, block length, left and right degrees are all large, but as we use this
algorithm only as an inner construction, their influence on the overall construction is minor.

We require that the field underlying the Hadamard domain is prime. In the overall construction,
this field will be a small subfield of the field we are using for the outer construction.
Lemma 8.3 (Construction of Had-LR). Let D be a Hadamard domain defined by a prime finite
fieldF and a dimensiom:. Letk < m — 2 and N be natural numbers.

Then, there is 4D, k, N)-Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) for size < N - [F|°"™, block < O(k) - log |F|, degleft < |F|°*) and
degright < N - [F|°"™. The algorithm is uniform in the tuple association and in the encoding and

list decoding. It output$d, i, lnaz)-Had-LRs ford,,;, = 2.6 /W andl, .. (0) = 5% Moreover, the

right degrees of the vertices in the Had-LR do not depend on the input to the algorithm.

8.2 Power Reduction

Suppose that we have construction algorithms for RM-LRs or RM-LPRs red@itingD;, where

the dimension of the RM domaiR, is small, but the encoding degree is large (Indeed we have such
algorithms by Lemmat®.1 and8.2). Then, we can transform these algorithms into construction
algorithms reducin@®@ — D,, whereD, is a domain in which both the dimension and the encoding
degree are relatively small. Specifically, the dimension and encoding degree parameters are loga-
rithmic in the encoding degree @,. Note that this means that the block length becomes larger
(although not by much if the dimension B is constant).

The only pre-requirement for the transformation is that there is a large enough gap to begin with
between the encoding degreef®f and its decoding degree.
Lemma 8.4 (Power reduction). Assume the following:

e LetD = (F™ F D.,., Ds.) be a Reed-Muller domain defined by a finite fi&)& dimension
mg, an encoding degreé, and a decoding degreé,.
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o LetD; = (F™ F, Dy ene, D1.aec) be a Reed-Muller domain defined by the fi)c dimension
mq, an encoding degre¢, and a decoding degreé .

Fix by = [log(d; + 1)], and assume thaf; > mjbid;. Letms = dy = my - by. Let
dy = |dy/d].

o LetDy = (F"2, IF, Dy cpe, D gee) be the Reed-Muller domain defined by the figldimension
ms, encoding degreé, and decoding degre&,.

LetO < dpnin < 1. Letl,.. : (0,1) — R be a decreasing function. Then,

1. Ifthere is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD — D, then there is also &D, k, N)-RM-LR con-
struction algorithm with structural parameteftsize, block’, degleft, degright) reducingD —
D,, whereblock’ = d?(ml) -log |F|. If the former algorithm output§), iy, lima: )-RM-LRS, then
so does the latter algorithm.

2. Ifthereis a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducing® — D; that is uniform in the point association,
then there is also 4D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block’, degleft, degright) reducingD — D, that is uniform in the point association,
whereblock’ = d?(ml) -log |F|. If the former algorithm output&,.in, lmaez)-RM-LPRS, then
so does the latter algorithm.

8.3 Right Degree Reduction

We can transform construction algorithms that produce readers with large right degree into construc-
tion algorithms that produce right regular readers with small right degree. This comes at the cost of
enlarging the size of the construction and the left degree. Yet, the increase in the size and the left
degree is proportional to the new right degree which is small. Right degree reduction also causes
some deterioration in the error and list size parameters of the readers.

Right degree reduction is possible due to the projection property of the readers. We do not have
a similar lemma for left degree reduction. Instead we will use a transformation presented in the next
subsection that swaps between the left and right degrees.
Lemma 8.5 (Right degree reduction).There is a constantt < 1 and a function’ : N — N*
with T'(A) = ©(A) as in Lemméb.3, such that the following holds for every natural numker
Let D and D be Reed-Muller domains. L&° be a RMHad domain. LeD < §,,;, < 1. Let
Imaz : (0,1) — RT be a decreasing function. S&t, = max {M, W} andl*  (0) =

N
L g (62).
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1. If there is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD +— D, then there is also &D, k, N)-RM-LR con-
struction algorithm with structural paramete(§)(A - size), block, T'(A) - degleft, T'(A)) re-
ducingD — D. If the former algorithm outputd,in, lma.)-RM-LRS, then the latter algo-
rithm outputs(d*,.., %, ..)-RM-LRs. Moreover, the output of the algorithm is always right
regular.

2. Ifthereis a(D°, k, N)-RMoHad-LR construction algorithm with structural parameters
(size, block, degleft, degright) that is uniform in the tuple association and in the encoding and
list decoding and outputs RdMlad-LRs, in which the right degrees of the vertices do not de-
pend on the input to the algorithm, then there is als@¥, k, N )-RMcHad-LR construction
algorithm with structural parameter® (A -size), block, T'(A) - degleft, T'(A)) that is uniform
in the tuple association and in the encoding and list decoding. If the former algorithm out-
PULS (Omin, lmaz )-RMeHad-LRs, then the latter algorithm outpuis;, -RMoHad-LRs.
Moreover, the output of the algorithm is always right regular.

*
in’ lmax)

3. Ifthereis a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD +— D that is uniform in the point association,
then there is also 4D, k, N)-RM-LPR construction algorithm with structural parameters
(O(A - size), block, T(A) - degleft, T(A)) reducingD — D that is uniform in the point as-
sociation. If the former algorithm output$,,.;., ln..)-RM-LPRS, then the latter algorithm
outputs(oy,..., I%...)-RM-LPRs.

min’ “max

4. If there is a(D, k, N)-RM-RR construction algorithm with structural parameters
(size, block, degleft, degright, depth) reducingD — D, then there is also &D, k, N)-RM-RR
construction algorithm with structural parametei@(A-size), block, T'(A)-degleft, T'(A), depth)
reducingD +— D. If the former algorithm output&, i, lma:)-RM-RRS, then the latter algo-
rithm outputs(6?...., L. )-RM-RRs.

5. If there is a(D, k, N)-RM-RPR construction algorithm with structural parameters
(size, block, degleft, degright, depth) reducingD +— D that is uniform in the point association,
then there is also &D, k, N )-RM-RPR construction algorithm with structural parameters
(O(A -size), block, T'(A) - degleft, T'(A), depth) reducingD — D that is uniform in the point
association. If the former algorithm outputs,.;,., /... )-RM-RPRs, then the latter algorithm
outputs(oy,..., l*, .. )-RM-RPRs.

min’ “max

8.4 Transforming Reed-Muller Left Readers Into Reed-Muller Right Read-
ers

Construction algorithms that produce RM-LRs that are right regular with small right degree can
be transformed into construction algorithms for RM-RRs. Construction algorithms that produce
RM-LPRs that have small right degree (they are right regular by definition) can be transformed into
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construction algorithms for RM-RPRs. Moreover, the latter transformation preserves uniformity in
point association. The cost is enlarging the block length by a factor equal to the right degree. If the
right degree is small, then this cost is small as well. Additional costs are enlarging the error and list
size parameters.

The transformation swaps the left and right degrees. If the original left reader has left degree
degleft and right degredegright, then the new right reader has left degdegright and right degree
degleft. In particular, if the original left reader has small right degree, then the new right reader has
small left degree.

The transformation sets the depth parameter of the right reader construction algorithms to
Lemma 8.6 (Switching sides).Let D and D be Reed-Muller domains. Lét< §,,;, < 1. Let
linas  (0,1) — RT be a decreasing function. S&t;,, = /0 and i, (0) = 3 - Lyaa(6?).

1. Ifthere is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD — D that outputs right regular RM-LRs, then there
is also a(D, k, N)-RM-RR construction algorithm with structural parameters
(size, degright - block, degright, degleft, 1) reducingD — D. If the former algorithm outputs
(8mins lmaz)-RM-LRs, then the latter algorithm outpuis;, -RM-RRs.

*
in) lmax)

2. Ifthereis a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD +— D that is uniform in the point association, then
there is also gD, k, N)-RM-RPR construction algorithm with structural parameters
(size, degright - block, degright, degleft, 1) reducingD +— D that is uniform in the point as-
sociation. If the former algorithm output$,,.;, ln.:)-RM-LPRS, then the latter algorithm
outputs(d?.;,., Ix...)-RM-RPRs.

min’ ‘max

8.5 Transforming Hadamard Left Readers Into RMcHad Left Readers

Construction algorithms for Had-LRs can be transformed into construction algorithms fet &i

LRs. The cost is a huge blow-up in the parameters of the Hadamard domain compared to the
parameters of the RbMHad domain. Hence, this transformation is useful only when the parameters
of the RMeHad domain are very small to begin with.

Lemma 8.7 (From Had-LRs to RMoHad-LRs). Let D be a RMHad domain defined by a finite
fieldF, a prime subfield. of F, a dimensionn, an encoding degreé¢ and any decoding degre&.

Letr = [F : L]. SetM = (""‘T:d) (the number of monomials in an-variate polynomial of degree at
mostd). Let’H be a Hadamard domain defined by the finite fieldnd the dimensiod/ - .

Letk and N be natural numbers.

If there is a(H, k, N)-Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) that is uniform in the tuple association and in the encoding and list
decoding and outputs Had-LRs, in which the right degrees of the vertices do no depend on the
input to the algorithm, then there is(®, k, N )-RMoHad-LR construction algorithm with the same
structural parameterssize, block, degleft, degright) that is uniform in the tuple association and in
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the encoding and list decoding and outputs#Md-LRs, in which the right degrees of the vertices
do no depend on the input to the algorithm.

If the former algorithm output§, ..., l..)-Had-LRs, then the latter algorithm outpyts,;,., linaz )-
RMeHad-LRs.

8.6 Composition of Reed-Muller Right Reader and Reed-Muller Right+Point
Reader Construction Algorithms

For Reed-Muller domain®, D; andD,, we can compose an RM-RR construction algorithm re-
ducingD — D; (“outer algorithm”) and an RM-RPR construction algorithm redudng— D,

that is uniform in the point association (“inner algorithm”) into an RM-RR construction algorithm
reducingD — D, (“composed algorithm?”).

Through composition we can reduce the block length. Assume that the outer algorithm produces
RM-RRs that have left degretegleft,... Assume that the inner algorithm produces RM-RPRs that
have block lengttblock;,. The block length of the RM-RRs produced by the composed algorithm
is deglefto,: - block;, (independent of the block length of the outer algorithm). Assume that the left
degreeadegleft,,; is small (this can be taken care of by the previous manipulations). Since the inner
construction algorithm should work only for the domaby, and not the domaif, the block length
block;, can be made small, thus making the block length of the composed construction small.

For composition to be possible, the right degree and the depth parameters of the outer algorithm,
denoteddegright,,: anddepth,,; respectively, should be small. This is because the inner algorithm
should be able to handle tuples witht degright,,; - depth,,; points.

The costs of composition are an increase in the size, in the left and right degrees and in the depth
parameter, as well as a deterioration of the error and list size parameters.

The size parameter of the composed algorithm is typically dominated by the size parameter of
the outer algorithm. If the outer algorithm outputs RM-RRs of size,,., and the inner construction
algorithm outputs RM-RPRs of siztze;,, then the composed algorithm outputs RM-RRs of size
roughlysize,,: -size;,. Even if the sizaize,, is relatively large with respect to the domain parameters,
since the domain is onlfp;, and notD, the contribution osize;, is typically minor.

Lemma 8.8 (Composition of RM-RR and RM-RPR construction algorithms). Let D, D; and
D, be Reed-Muller domains with a finite fiéfd Denote the decoding degree®f by d;.

Letk and N be natural numbers. Lét < 0,in.out, Omin,in < 1. L€tlnaz out, lmazin : (0,1) — R
be decreasing functions. Assume that for some condigrts> 1 for every0 < § < 1 it holds that
lmax,in(é) S (ng12- Set

7 1/(b2+1)
5min = max 6min,in7 (Qb% : §wzin,out>1/(2b2+3), <2b1 . ﬁ)
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and

b 1
lmax(é) - 6_;2 : lmaxput(Z_b% : 52b2+3)

Assume that,,;,, < 1. Given:

e A(D,k, N)-RM-RR construction algorithm,,; with structural parameters
(sizeout, blockeyt, deglefto,:, degrightoyt, depthoy:) reducingD +— Dy, with depthe,: < df.

e A (D, k + degrightoy: - depthoy:, 1)-RM-RPR construction algorithmd;,, with structural pa-
rameterssize;,, block;,, degleft;,, degright;,, 1) reducingD; — D, that is uniform in the point
association.

One can obtain 4D, k, N)-RM-RR construction algorithmd with structural parameters
(size, block, degleft, degright, depth) reducingD — D, for size < size,,; - sizej,, block = degleft,,; -
block;,, degleft = degleft,,: - degleft;,, degright = degright,,: - degright;, anddepth = depth,,; + 1.

If Aout OUtpUtS(émin,outa lmaa:,out)'RM'RRS1 and4in OUtpUts(émin,ina lmaac,in)'RM'RPR51 them
outputs(d,min, lmaz )-RM-RRS.

8.7 Composition of Reed-Muller Right Reader and RMHad Left Reader
Construction Algorithms

Let D° be a RMHad domain. We wish to obtain an edge reading bipartite locally decode/reject
code forD° with small block length.

Let D be a Reed-Muller domain corresponding to the outer codP°c&nd suppose that we
have a RM-RR construction algorithm reduciblg— D; for some Reed-Muller domaif;. From
this algorithm we can rather easily obtain an edge reading bipartite locally decode/reject code for
D¢ whose block length depends &y |F|. Our aim, however, is to achieve a much smaller block
length. In particular, block length that does not depend on the field size, which is inevitably large in
a Reed-Muller code.

We show how to compose the RM-RR construction algorithm redubing D; (“outer algo-
rithm”) with a RMeHad-LR construction algorithm for the doméii?y corresponding to concatena-
tion of D; and Hadamard (“inner algorithm”). For the composition to work the inner algorithm must
be uniform in the tuple association and in the encoding and list decoding. The composition results
in an algorithm whose block length parameter depends only on the left degree of the outer algorithm
and the block length of the inner algorithm.

The costs of this composition, namely the increase in the size and graph degree parameters, are
similar to the costs of the composition described in Subse&i@n
Lemma 8.9 (Composition of RM-RR and RMvHad-LR construction algorithms). LetD andD;
be Reed-Muller domains with a finite fiekd Let D° and D be the RMHad domains associated
with D and D, respectively, where the subfieldlisC F. Denote the decoding degree ®fby d’
and the decoding degree B, by d}. Denote the dimension @f; by w.
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Letk and N be natural numbers. Lét < 0,in.out, Omin,in < 1. L€tlnaz out, lmazin : (0,1) — R
be decreasing functions. Assume that. in(8), lmaz.out (§) < 5700,

For a sufficiently small constamt> 0, set
d\° 1\°
5min = max {5;:717,71 in’ §1C7LG out? (_> 9 (_> }
’ 7\ || L

e A(D, k, N)-RM-RR construction algorithm,,; with structural parameters
(sizeout, blockeyt, deglefto,:, degrightous, deptho,: ) reducingD — Dy, where the deptlepthoy:
is constant and smaller thad{.

Given:

e A (Dy,degleftoy: - k + depthoy + 1, |IF\“’+1)-RM<>Had-LR construction algorithr;,, with
structural parametergsize;,, block;,, degleft;,, degright;,) that is uniform in the tuple asso-
ciation and in the encoding and list decoding. The output of the algorithm is always right
regular.

One can obtain D¢, k, N)-construction algorithmA that outputs (left and right) regular edge
reading bipartite locally decode/reject codes. The algorithm has structural parameters

(size, block, degleft, degright) for size < sizeyy: - sizej,, block < degleft,,: - block;,, degleft <
degleft,,; - degleft;, anddegright < degright,.. - degright;,.

If Aoue OUtPULS(S1min out s limaz.out)-RM-RRS, antd,,, outputs(d,in.in, lmax.in)-RMeHad-LRs, then
A outputs(8,.in, lmae )-€dge reading bipartite locally decode/reject codes for sgmg(d) < 500,

9 Putting The Pieces Together

In this section we show how to put the pieces together to construct a bipartite locally decode/reject
code fork-tuples that has small block length and almost-linear size. We start by outlining our plan.
Then we construct each of the components. Finally, we set the parameters and get the final code.

Our plan is to construct an edge reading bipartite locally decode/reject code with small block
length and small size, and then derive from it the code we want. The construction is as follows:

1. Devise outer RM-RR construction algorithm: We devise an RM-RR construction algorithm
that has small size parameter, small left and right degree parameters, small depth parameter,
but large block length parameter. Specifically, the block length is polynomigldnlog |F|
and the left and right degrees.

2. Devise inner RM-RPR construction algorithm: We devise an RM-RPR construction algo-
rithms that is uniform in the point association and has large size parameter, small left and right
degree parameters, small depth parameter and large block length parameter.
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We will invoke the inner construction algorithm only on the alphabet domain of outer RM-
RRs, and hence the large size and block length would be small in the context of the global
construction.

. Compose the RM-RR and RM-RPR construction algorithms:We compose the outer RM-
RR construction algorithm from Stdpwith an appropriate inner RM-RPR construction algo-
rithm from Stef2 to get an RM-RR construction algorithm with smaller block length.

Specifically, the block length would be polynomial inlog d, log |F| and the left and right
degrees. Notably, the dependencedds much smaller than in the block length of the outer
RM-RR.

. Devise inner RMoHad-LR construction algorithm: We devise an RMHad-LR construc-
tion algorithm that is uniform in the tuple association and in the encoding and list decoding.
It has very large size parameter and large left and right degrees.

We will invoke the inner construction algorithm only on the alphabet domain of composed
RM-RRs, and hence the large parameters would be small in the context of the global con-
struction.

. Compose the RM-RR and RMvHad-LR construction algorithms: We compose the RM-
RR construction algorithm from Ste® with an appropriate inner RMHad-LR construc-
tion algorithm from Step@ to get an RMHad-LR construction algorithm with smaller block
length.

Specifically, the block length would not depend at all on the degeehe fieldF of the outer
Reed-Muller code.

| RM-RR | | RM-RPR |

! composition

| RM-RR | |RM ¢ HackLR |

| |
!

. composition |

|

Figure 7:The outline of the construction.

9.1 Outer RM-RR Construction Algorithm

The outer RM-RR construction algorithm is as follows:
Lemma 9.1 (Outer RM-RR construction algorithm). There is a global constant, > 1, as well
as a functionl’ : N — Nt with T(A) = ©(A) (as in Lemm&.5) as follows.
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Let D be a Reed-Muller domain defined by a finite figlda dimensionn > 4, an encoding
degreed and a decoding degre€. LetK C F be a subfield oF. Letl < k£ < ‘F' , N and A be
natural numbers. We assume that the following condition holds:

o d > cy(k+ 1)dlog((k+ 1)d).

There is a Reed-Muller domaiP defined by the field, a dimensiont < m < ¢ - log((k +
1)d), an encoding degreg: and a decoding degreg! /((k + 1)d)|, as well as aD, k, N)-RM-
RR construction algorithm with structural parametésize, block, degleft, degright, depth) reducing
D — Dforsize < (N +|F™|)- [F|°V . |K|*™- A2, block < poly(k, d, A)-log |F|, degleft = T(A)?,
degright = T(A) anddepth = 1. The algorithm outputs, i, Lnaz )-RM-RRS for

d'k Q1) 1 Q1) d' Q1) 1 Q(1)
< i o) _ _ —
‘5"“”—“1“{(\1?1) 2 () (m) ) ()

andl,q.(6) = 5%.

Proof. The algorithm is obtained as follows:

1. Generation of RM-LRs: LetD, be the Reed-Muller domain defined by the figldlimension
4, encoding degreg:+1)-d and decoding degre&. Invoke LemméB.2to obtain aD, k, N)-
RM-LR construction algorithrd; with structural parametefsize; , block, degleft, , degright,)
reducingD +— D1 for size; < (N + [F|™) - |F|°Y - |K|*™, block, < poly(k,d) - log |F|,
degleft, < |F|°" anddegright, < (N + [F|™) - |F|°" . [K|*™. The lemma guarantees that
A outputs(d,min.1;s lmaz.1)-RM-LRs for

A d-(h+1)
mind = WA\ TR =k |K |IE‘

2. Power reduction: Defineb = [log((k+1)-d+1)] andm = 4b. Letc¢, > 1 be such
thatm < colog((k + 1)d). By assumptiond > 4b(k + 1) - d. Let D be the Reed-
Muller domain defined by the fieldf, dimensionm, encoding degreeé: and decoding de-
gree |d'/((k+1)d)]. Invoke Lemma8.4 (1) on A, to obtain a(D,k, N)-RM-LR con-
struction algorithmA, with structural parameter&ize,, block,, degleft,, degright,) reduc-
ing D — D, wheresize, = size;, block, = poly(k,d) - log |F|, degleft, = degleft, and
degright, = degright,. The lemma guarantees thés outputs(d,,in.2, lmaz 2)-RM-LRS, where
Omin,2 = Omin, @NAlaz2 = Lz

andl,q.1(6) = 2.

3. Right degree reduction: Let « < 1 and7 : N — Nt with T(A) = ©(A) be as in
Lemma8.5. Invoke LemmeB.5 (1) on A, to obtain a(D, k, N)-RM-LR construction al-

gorithm A3 with structural parameterSizes, blocks, degleft,, degright,) reducingD +— D,
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wheresize; = (N + [F|™) - [F|°Y . [K[*™ - A, blocks = poly(k,d) - log |F|, degleft, =
T(A) - degleft, anddegright; = T'(A). The lemma guarantees that the algoritdmoutputs
right regular(d,,n. 3, lmaz,3)-RM-LRS, for

B S (k+1) 1 ma |
%“3‘““X{ R ”ﬂﬁ<VLKv%v|m>’Tuwka}

andl; g, 3(6) = 5.

4. Switching sides: Invoke Lemme8.€ (1) on A; to obtain a(D, k, N)-RM-RR construction
algorithm A, with structural parameter$|ze4, blocky, degleft,, degright,, depth,) reducing
D +— D, wheresize;, = (N + |[F|™) - [F|°Y - [K[*™ - A, blocky = poly(k,d, A) - log [F|,
degleft, = T'(A), degright, = T'(A) - degleft, anddepth, = 1. The lemma guarantees that
the algorithmA, outputs(8,.in 4, lmaz 4)-RM-RRs, for

_ d-(k+1) L1 md’ 1
5min = max 8 _ 4 m 32— + 16 , —
! { [F[—k Y (er VWO ﬂ@u}

andl; . 4(6) = %.

5. Right degree reduction: Invoke Lemme8.5 (4) on A, to obtain a(D, k, N)-RM-RR con-
struction algorithm4; with structural parameter&izes, blocks, degleft-, degright;, depth;)
reducingD — D, wheresize; = (N+|F|™)-|F|°Y. [K[*™- A2, blocks = poly(k, d, A)-log |F|,
degleft; = T'(A)?, degright, = T(A) anddepth, = 1. The lemma guarantees that the algo-
rithm A; outputsS(d,,in.5, lmaz 5)-RM-RRS, for

_ (k:+1 .
s oo 5512 0 (i ) e

andl; g, 5(6) = 5.

9.2 Inner RM-RPR Construction Algorithm

The inner RM-RPR construction algorithm is obtained similarly to the way the outer RM-RR con-
struction algorithm is obtained. The parameters resemble those of L&dnmexcept for the size
parameter which is larger.

Lemma 9.2 (Inner RM-RPR construction algorithm). There is a global constantg > 1, as well

as a functionl’ : N — Nt with T(A) = ©(A) (same as in Lemni@. 1) as follows.

Let D be a Reed-Muller domain defined by a finite figlda dimensionn > 4, an encoding
degreed and a decoding degre€. Let]l < k < ‘F‘ , N and A be natural numbers. We assume that
the following condition holds:
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o d' > cy(k+ 1)dlog((k+ 1)d).

There is a Reed-Muller domaiP defined by the field, a dimensioni < ¢, - log((k + 1)d), en-
coding degreen (wherem is as in Lemmé®.1) and decoding degreg!’ /((k + 1)d) |, as well as a

(D, k, N)-RM-RPR construction algorithm with structural parametgisge, block, degleft, degright, depth)
reducingD — D for size < N - |[F|°"™ . A2, block < poly(k,d, A) - log [F|, degleft = T(A)2,
degright = T'(A) anddepth = 1. The algorithm is uniform in the point association and outputs
(Omins lmaz)-RM-RPRS for

d'k Q(1) d (1) 1 Q(1)
rin < - o). —
ﬂ“{(m) \mE) \a

Proof. The algorithm is obtained as follows:

andl,q.(6) = 5%.

1. Generation of RM-LPRs: Let D, be the Reed-Muller domain defined by the fi&lddimen-
sion4, encoding degreék + 1) - d and decoding degreé. Invoke LemmaéB.1to obtain a
(D, k, N)-RM-LPR construction algorithrm; with structural parameters
(sizey, blocky, degleft,, degrightl) reducingD — D, for size1 < N - |F|°"™, block, <
poly(k, d) - log [F|, degleft, < [F|°") anddegright, < N - |IF| ). The lemma guarantees that
A is uniform in the point association and outpuis,i, 1, lima1)-RM-LPRS for

U I CAIUES) J[md
mzn,l—mx |]F|—l{7 UF |]F

2. Power reduction: Defineb = [log((k+1)-d+1)] andm = 4b. Letc¢, > 1 be such
thatm < colog((k + 1)d). By assumptiond > 4b(k + 1) - d. Let D be the Reed-
Muller domain defined by the field, dimensionm, encoding degreeé: and decoding de-
gree|d'/((k+1)d)]. Invoke Lemme8.4 (2) on A, to obtain a(D, k, N)-RM-LPR con-
struction algorithmA, with structural parameter&ize,, block,, degleft,, degright,) reduc-
ing D — D, wheresize, = size;, blocky = poly(k,d) - log |F|, degleft, = degleft, and
degright, = degright,. The lemma guarantees thdt is uniform in the point association and
OUtPULS(0,min.2; linax,2)-RM-LPRS, WhereS, i, o = 0min1 @Ndlaz0 = linga -

andl,q.1(6) = 2.

3. Right degree reduction: Invoke Lemma8.5 (3) on A, to obtain a(D, k, N)-RM-LPR con-
struction algorithmA; with structural parametersizes, blocks, degleft,, degright,) reducing

D — D, wheresize; = N - [F|°™ . A, blocks = poly(k, d)-1og |F|, degleft, = T((A)-degleft,
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anddegright; = T'(A). The lemma guarantees that the algoritidmis uniform in the point
association and outputs, ., 3, lmaz,3)-RM-LPRS, for

~ S+ 1) 1 e |
o = m{ kY < {m {m ) ’T(A)l-a}

andl; g, 3(6) = 5.

4. Switching sides: Invoke LemmaB.€ (2) on A; to obtain a(D, k, N)-RM-RPR construction
algorlthm A4 with structural parameterize,, blocky, degleft,, degright,, depth,) reducing
D — D, wheresize; = N - [F|°"™ . A, block, = poly(k,d, A) - log [F|, degleft, = T(A),
degright, = T'(A) - degleft1 anddepth, = 1. The lemma guarantees that the algoritdmis
uniform in the point association and outps, ., 4, lmaz.4)-RM-RPRS, for

d, (k+1 16
b =525 0 (i {5 e

andl;q.4(0) = .

5. Right degree reduction: Invoke Lemma8.5 (5) on A, to obtain a(D, k, N)-RM-RPR con-
struction algorlthrnA5 with structural parameter$|ze5, blocks, degleft;, degright;, depth;)
reducingD — D, wheresize; = N - [F|°™ . A2, blocks = poly(k, d, A) - log |F|, degleft, =

T(A)?, degright; = T(A) anddepth; = 1. The lemma guarantees that the algoritidmis
uniform in the point association and outplds, ;. 5, lmaz.5)-RM-RPRs, for

- a-(k+1) 2
s s iy ) e |

andl;,e.5(6) = 5.

9.3 Composition of The RM-RR and RM-RPR Construction Algorithms

Composing the outer RM-RR construction algorithm of Len®ahwith the inner RM-RPR con-
struction algorithm of Lemma&.2 we get the following:

Lemma 9.3 (Final RM-RR construction algorithm). Let7 : N — Nt with T(A) = ©(A) (as in
Lemmaé8.5). There is a polynomiaj(-, -, -) as follows.

Let D be a Reed-Muller domain defined by a finite figlda dimensionn > 4, an encoding
degreed and a decoding degre€. Let K C F be a subfield off. Letk, N and A be natural
numbers, where < k < 5l — T(A).

We assume that the foIIowing conditions hold:
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o d>d-q(k,logd,A).

o logkd < me°W,
There is a Reed-Muller domaiR with field F and the same dimension and encoding degree which
is at mostO(log(k + A) + loglogd), as well as & D, k, N)-RM-RR construction algorithm with
structural parameterssize, block, degleft, degright, depth) reducingD — D for size < (N +|F™|)-

|It7|mo(1> CKPP™ - A4 block < poly(k, logd, A) - log |F|, degleft = T(A)*, degright = T'(A)? and
depth = 2. The algorithm output&d,,in, lma: )-RM-RRS where

dEN D AN O 1\ &M 4\ & 1\ 21
o) ()" () ()3
{ || || IN || A

andlmaw(é) S 501(1) '

Proof. Let ¢y be the global constant from Lemrfal. Let us choosg such that:
d > co(k + 1)dlog((k + 1)d) (1)

(¢ should also satisfy requiremei@) pelow).

Invoke Lemma9.1 on the domainD, the subfieldK and the natural numbers N and A.
Let D; be the Reed-Muller domain guaranteed in the lemma. The dofMalms dimension and
encoding degreé < m; < ¢glog((k + 1)d). Its decoding degree is!’/((k + 1)d)|. Let A, be
the (D, k, N)-RM-RR construction algorithm with structural parameters
(sizeout, blockeyt, degleftoy:, degrightous, deptho,:) reducingD — D for sizeo,y < (N + |F™]) -
IF|°W L K|)*™ - A2, blockoy < poly(k, d, A) - log [F|, degleftous = T'(A)?, degrighto, = T/(A) and
depthoy: = 1. The algorithm output&d,,in out, lmaz.out)-RM-RRS for

d'k Q(1) 1 Q(1) d Q(1) 1\ 2
(Smin ou < T om L — om L — N
’ t—m“{w) k) T ) s

andlaz,out (6) = 55
We choosey such that
d/

(k+1)d

| | >ck+T(A)+ 1) -mylog((k+T(A)+1)-my) (2

Invoke Lemma9.2 on the domairD; and the natural numbefs+ 7T'(A), 1 and A. Let D be the
Reed-Muller domain guaranteed in the lemma. The dorPdias the same dimension and encoding
degree which is at most log((k + T(A) + 1)m;) = O(log(k + A) 4 loglogd). Let A;, be the
(D1, k+T(A),1)-RM-RPR construction algorithm with structural parameters

(sizejn, block;,, degleft;,, degright;,, depth;,) reducingD; — D, for sizej, < |F|O(m1) - A?, block;, <
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poly(k,logd, A) - log |F|, degleft;, = T'(A)?, degrighti, = T'(A) anddepth;, = 1. The algorithm is
uniform in the point association and outplds, ., i, lmaz.in)-RM-RPRs for

IANTY AN ORI C)
’ —m“{(dm) T (kle|> (A)

andlaz,in(6) = 5.
Apply the composition lemma (Lemn&€) on A,,, and.A;,. Let A be the(D, k, N)-RM-RR

construction algorithm reducir® — D obtained from the lemma. The algorithshhas structural
parameterssize, block, degleft, degright, depth) for:

me()

e size < sizeyy - sizej, < (N + [F™|) - |F| ’K‘m AL

block = degleft,, - blocki, < poly(k,logd, A) - log |F|.
degleft = degleft,, - degleft;, = T(A)%.

degright = degright.,: - degright;, = T'(A)?.
e depth = depthy, + 1 = 2.

The algorithm output$d, i, lna.)-RM-RRs where

JIN D AN D) 1\ 20 P ORI
Ormin < - .= om om (= i
—m“{(\w) ’(\m) k) T e A

andlmax(é) = 60% : lmaw,out(50(l)) < 501(1) : -

9.4 Inner RM¢Had-LR Construction Algorithm

The inner RMHad-LR construction algorithm is obtained from the Had-LR construction in Lefa
and the transformation to RdMHad-LRs in Lemma.7. It is transformed to a construction algorithm
that outputs right regular RMHad-LRs via the transformation of LemrBzt.

Lemma 9.4 (Inner RM¢Had-LR construction algorithm). LetD° be an RMHad domain defined
by a finite fieldF, a dimensionn, an encoding degreé a decoding degreé and a prime subfield

L, where the extension degreeris= [F : L]. SetM = (™). Letl < k < M -7 —2and N be
natural numbers. LefA be a natural number.

There is aD°, k, N)-RMoHad-LR construction algorithm with structural parameters
(size, block, degleft, degright) for size < N - |F|°) . A, block < O(k)-log [L|, degleft < A-|L|°®)
anddegright < O(A). The algorithm is uniform in the tuple association and in the encoding and list

decoding and outputs right requl@®, .. ,,, l;nq.)-RMoHad-LRs ford,,,;,, < max {(ﬁ)ﬂﬂ)’ (%)9(1)}
and !y, () < 557
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Proof. The algorithm is obtained as follows:

1. Generation of Had-LRs. Let H be the Hadamard domain defined by the fikldnd the
dimensionM - 7. Let A; be the(H, k, N)-Had-LR construction algorithm guaranteed by
Lemma8.3 The algorithmA,; has structural parametesze, , block,, degleft,, degright, ) for
size; < N - [F|M block; < O(k) - log |L|, degleft, < |L|°* anddegright, < N - |F|°).

The algorithm is uniform in the tuple association and in the encoding and list decoding. It

OUtPULS(S,min 1, lmaz.1)-Had-LRS 018,51 = 2,ﬁ/ﬁ andl,,q.1() = &. The right degrees of

the vertices in the output do not depend on the input to the algorithm.

2. Transformation to RM ¢Had-LRs. Invoke LemméB.70n .4, to obtain &aD?, k, N )-RMoHad-
LR construction algorithrd,. The algorithmA, has structural parameters
(sizes, blocks, degleft,, degright,) for size; < N - |F|?™) | blocky < O(k) - log ||, degleft, <
IL|°™ anddegright, < N - [F|°™). The algorithm is uniform in the tuple association and in

the encoding and list decoding. It outputs, ., 2, lmax2)-RMoHad-LRs ford, ;2 = 2.¢ ﬁ

andl,,g,2(0) = 3—3 The right degrees of the vertices in the output do not depend on the input
to the algorithm.

3. Right degree reduction. Invoke Lemmé8.5 (2) on A, to obtain a(D?, k, N)-RMoHad-LR
construction algorithmAs that outputs right regular RMHad-LRs. The algorithm4; has
structural parametefsizes, blocks, degleft,, degright,) for size; < N - |[F|??) . A, blocks <
O(k) - log |L|, degleft, < A - [L|°*® anddegright, < O(A). The algorithm is uniform in the
tuple association and in the encoding and list decoding. It OUtEIiS 3, [z 3)-RMoHad-

LRs forémmg < max {(ﬁ)ﬂ(l)’ (%)Q(l)} andlma$73(5) < ﬁ_

]

9.5 Composition of The RM-RR and RMvHad-LR Construction Algorithms

Composing the composed RM-RR construction algorithm of LerrBavith the inner RMHad-
LR construction algorithm of Lemm@&.4 we get the following:

Lemma 9.5 (Final RMoHad-LR construction algorithm). Let7 : N — N* with T(A) = ©(A)
(asin Lemmd.5). Letq(, -, -) be the polynomial from Lemna3

Let D° be an RMHad domain defined by a finite field a dimensionn > 4, an encoding
degreed, a decoding degred and a prime subfield. C F. LetK C F be a subfield of. Letk, N
and A be natural numbers, where< k < £l — 7(A).

We assume that the following conditions hold:
o d>d-q(k,logd,A).

e logkd < me°W,
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There is dD°, k, N)-construction algorithm with structural parametgksze, block, degleft, degright)
for size < (N -+ |F|) - [F|7" " +peb(kAlogd) pei2m piocl < AOW) . k. 1og [L], degleft < [L|27"*,
degright < A, The algorithm outputs left and right regulés, i, l,....)-edge reading bipartite
locally decode/reject codes, where

1\ o0 JEAN 20 1\20 71\ 20
Orin < — o), om) . [ — -
—m“{Qm) . ) " \K) c\a

andlmaw(5> S 501(1) .

Proof. Let D be the Reed-Muller domain associated wiith Invoke LemméB.3on the domairD,
the subfieldK and the natural numbeks N andA, to obtain a Reed-Muller domaiR; with field

[F and dimension and encoding degtee= O(log(k+A)+loglogd), as well as 4D, k, N)-RM-RR
construction algorithrd,,,; with structural paramete(size,:, blocky,:, deglefto,:, degrightous, depthoy:)
reducingD — D for sizeow < (N + |[F™|) - [F|™" - K™ - A%, blockey < poly(k,logd, A) -
log |F|, deglefto, = T(A)?, degrightos: = T(A)? and depth,,; = 2. The algorithm outputs
(Omin.outs lmaz,out)-RM-RRs where

JIN D AN D 1\ 20 PR ORPERNE
t { [ [ IN [ A

andlmax,out(a) S 501(1)'

Let D be the RMHad domain associated with; for the subfieldL. Denoter = [F : L.
Denotek’ = degleftoy-k+depthoy+1. Let us assume without loss of generality thatl (%) -7—2
and thato > 2 (so, in particular, the decoding degreefdf is larger thar).

Invoke Lemméd.40n the domairD? and the natural numbeksand|F|“*" to obtain & D¢, &/, [F[“)-
RMeoeHad-LR construction algorithid,;,, with structural parametef(size;,, block;,, degleft;,, degright;,)
for size;,, < ]F|pOIY(k’A’IOgd), blocki, < AW . k. log [L|, degleft;, < A - |]L\AO(1)'k anddegright;, <
O(A). The algorithm is uniform in the tuple association and in the encoding and list decoding, and
outputs right regulald,in.in, lmaz.in)-RMoHad-LRs Where, ,,, i, < max {(Fil)m), (%)9(1)} and
Imaz,in(6) < 50%-

Apply Lemme8.Son the outer algorithmd,,,; and the inner algorithm;,, to obtain 4 D°, k, N)-
construction algorithmd with structural parametersize, block, degleft, degright) for size < (N +
). [ e kA togd) e 2m o < AOM). i log (L, degleft < [L|27"™*, degright < ACO,

The algorithm outputs left and right regul@r,...., l.....)-edge reading bipartite locally decode/reject
codes, where

1\20 JEAN 2O 1\ 71\
Orin < _— o) , o). [ — —
—m“{(mo o ) "™ \K) \a

andl ;.. (6) < o0y O

69



9.6 Setting Parameters

In this section we construct the bipartite locally decode/reject code we want:

Corollary 17 (Edge reading bipartite locally decode/reject code)Let n be a natural number.
Let D be the domain associated with the set of binary strifigsl}". There exists a constant
0 <« < 5 such that the following holds. Létand NV be natural numbers such that< (log n).
Let( oy < e < 1. Then, for every collection @f-tuples

<Z'1,1, e 7i1,k>7 e <’Z'N71, R ,iN,k> € [n]k

there is a (left and right) regulatd, .., lma. )-bipartite locally decode/reject code, whetg;, < ¢
andl,,q.(0) < 6790, The size of the code {8V + n) - n°(") and the block length i - poly(2). The

left degree is at most**°¥(2). The right degree is at mosbly( ). Moreover, the alphabet of the
right vertices is of Slzeoly(a)

Proof. We will choose a constartt < a < % later. Let us choose the parameters of the<Ridd
code we will use with respect to. In all that follows we omit ceil and floor notation when we refer
to natural numbers in order to ease the reading.

Let b = 2(°e™)" andm = (logn)'~® so thath™ > n. Assume without loss of generality that
m > 4. Letd = (h — 1)m. Setd’ = d - q(k,logd, A) Whereq isas in Lemm®.E.

SetA < (1)°( large enough so that the ter(*%) ) appearing in the expression fdy,, in
Lemma9.5is at moste. LetL = GF(p) wherep < (1)°® is a prime number which is large
enough so the terrhi)ﬂ(l) appearing in the expression féy,;,, in Lemma9.5is at most=. Let

Q1) o .
K = GF(p%) whereg, is large enough so that the tern?(V) (IK\) appearing in the expression
for 0,,:, INn Lemma9.5is at most. LetF = GF(p992) whereg, is large enough so that the term
y Q(1) L . . .
mOM). (ﬂ’“ﬁ) appearing in the expression @y, in Lemma&9.5is at most andk < &l —T(A)

(whereT is as in LemmeéB.5). Denoter = ¢; - g». LetD® = (F™ x L",L,D¢,.., dec) be the
determined RMHad domain. Note that we can do all the above and have.

e m < (logn)t—«
e d < d < 2(logn)o‘+0(loglogn)

o |F| < 2ogm)*+O(loglogn)

° |K‘ < 20(loglogn)

IL|, A < poly(3)

From Lemmé.5we get a construction algorithp with structural paramete(size, block, degleft, degright)
for:
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O(a)

size < (N +n) - ne) . 9(logn)

block < k - poly(2)

degleft < 2kPolv(2)

degright < poly(2)

Let us chooser so that the2(s™ ™ term appearing in the expression for the size’s).

The construction algorithm outputs left and right regula;,,, l,....)-edge reading bipartite lo-
cally decode/reject codes, fof,;, < ¢ andl,,..(6) < 6-°M. Looking into the construction reveals
that the alphabet of the right verticedlis

Fix a setd C F of size|H| = h such thatd™ C F™ and|H™| > n. Pick an arbitrary vector
a € L. Let us identify[n]| with distinct elementsz, @) € H™ x L". Let us consider the encoding
of {0,1}" that sends strings € {0, 1}" to codewords € D¢ . such that for every € [n] we have
f(i) = x;. Note that this is possible by our choicedf

Given a collection of sizév of k-tuples

<Z'171, . ,i17k>, ey <iN71, . ,iN,k> € [n]k
we invoke A on the corresponding collection &ftuples inF™ x IL” to obtain the bipartite locally
decode/reject code we want. O

10 Construction of RM-LRs and RM-LPRs

In this section we present algorithms for constructing RM-LPRs and RM-LRs proving L&ima
and Lemmé&8.2. The idea of the construction algorithms is to create a bipartite graph, in which
side A corresponds to low degree manifoldgfifi, each passing through an input tuple, and gide
consists of all the points ifi”*. This way each4 vertex has a tuple that is associated with it, and
eachB vertex has a point that is associated with it. We put edges betweentices corresponding

to manifolds andB vertices corresponding to points on them. Assignment$ vertices naturally
project onto assignments to their neighboriagertices.

A correct encoding of a polynomi&) : F" — T assigns eacl® vertex the value of) on the
point associated with th& vertex, and assigns eachvertex the restriction of) to the manifold
associated with thd vertex. This way eacH vertex can evaluat@ on the tuple associated with it,
and eachB vertex can evaluat@ on the point associated with it. Note that the restrictiord)ab
any manifold of a low degree is a polynomial of low degree.

To show that the construction has a list decoding property, we s degree testingheorem
for sub-constant error. Specifically, we use the low degree testing theorétid odihd choose the
manifolds through the input tuples as to satisfy the conditions of this theorem. The advantage of
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the theorem of27] is that it can be used (together with an additional idea fr@6j)[to yield con-
structions of small size, as required in Lem#&Z2. For LemmeB.1that does not require particularly
small size, we could have used other low degree testing theorems aS\@€|l. |

10.1 A Low Degree Testing Theorem

We specify the variant of the low degree testing theoren2@f ve use. Details on the relation
between this variant and the original test/®7] can be found in AppendiB.

The Randomness-Efficient Subspace vs. Point testLet F be a finite field. Letn andd’ be
natural numbers, where degree at méss considered “low degree”. L& be a subfield oF.

Fix a functionf : F — F we wish to test. Iff were a polynomial of degree at ma&t then for
anyz, i1, y» € F™, the functionp(to, t1,t2) = f(toZ'+ t17) + t27>) would have been a polynomial
in three variables of degree at masoverF.

Assume access to an orackewhose goal is to convince us thatis of degree at most'. For
everyz € F™ andy, y» € K™, the oracled provides a three-variate polynomial of degree at most
d’', which is supposedly(to,ti,t2). The oracled may be probabilistic, meaning that its answer
may depend not only o#, 1, 7>, but also on additional randomness.

A test for checking thaf is consistent with a polynomial of degree at md'sis described in
Figure8.

LDT/A

1. Pick uniformly at random three vectofs, i1, 7>) € F™ x K™ x K™. Using the oracle
access to4, obtain a three-variate polynomial(tg, t1,t2) overF of degree at most’
for (Z, 71, U2) [p* IS supposedly the restrictign(to, t1,t2) = f(toZ + t1y1 + t275)].

2. Pick uniformly at randont, # 0,t1,t, € F. Setzy = toZ + t1y1 + t2yo. If indeed
p*(to, t1,t2) = f(20), accept Otherwiseyeject

Figure 8:Randomness-Efficient Subspace vs. Point Low Degree Tester
This test is similar to the test il2F]. The following follows from a slight strengthening of the
statement of27] appearing in26] (see Appendi:8):
Theorem 18 (Analysis of low degree test27, 26]). Foro > m (,8/@ + {‘/%) , for any function
f : ™ — F, there arel < % polynomials@,,...,Q; : F™ — F of degree at most’, such
that for any oracleA the following holds: the probability, over the randomness4ofind over

the randomness of the tester, tHabT/ accepts, althoughf (%) ¢ {Q1(%), ..., Q:i(%)} (where
Zp € F™ is picked by the tester; see Figug is at mosiO ().
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10.2 The Manifold vs. Point RM-LPR Construction Algorithm

The purpose of this section is to prove Lemga. We describe an RM-LPR construction algo-
rithm that is uniform in the point association, called the Manifold vs. Point RM-LPR construction
algorithm. We specify the properties of the algorithm in Subsed®@.1and analyze it in Subsec-
tion'10.2.2

The description of the algorithm will start with specifying the uniform part of the construction
(i.e., the part that is common to all outputs of the algorithm), and proceed by presenting the compo-
nents that are input-specific.

Construction 1 (Manifold vs. Point RM-LPR algorithm). We use the notation and assume the
restrictions appearing in Lemnal

We define a uniform structure and uniform point association as follows:

A vertices. The vertex setl consists of quadruplet§, 7, i1, 7>) for i € [N] (indicating an input
tuple) and®, 1, > € F™ (needed for the low degree test). We set A (for left evaluators) and
Q = F¥ (recall that we setv = 4).

B vertices. The vertex seB consists of all pointg’ € F™. For everyb € B, we sepnt(b) = b.

Alphabets. The alphabet , is the domairD defined by the finite fielf, the dimensionu, the
encoding degreék + 1) - d and the decoding degre&. The alphabek; is the domain associated
with the seff. Let us denot& 4 = (F“,F, X4 cne, Lagee) aNAE5 = ({1} F, X5 ene, 2B dec) -

Given as input a collection of siz€ of k-tuples:
(Trdy ey Tig)s oo TNy D) € (F™)F
The construction algorithm constructs an RM-LPR
G=((A,B,E),V,Q, X4, X, sat = true, label, proj, tup, eval, pnt, evalp)
for the k-tuples as follows:

Associating A vertices with manifolds. A vertexa = (i, 7, 41, 7>) € A is associated with théth
input tupletup(a) = (¥;1,...,%;x), and corresponds to a manifold through tHh tuple defined
as follows. Fix arbitrarilyk + 1 different scalars in the field,, . . ., qx, ¢x+1 € F. Letc; z : F — F™
denote the single curve of degre¢hat goes throught'; ;, ..., 7, andZ atq, . .., gk, qe+1:
ciz(q) = Tix, -, Ciglar) = Tig, Cia(qrr) =T
The vertex: is associated with the manifold of degree at niost 1
pa(t to, t1,t2) = to - ciz(t) +t1- 91 +12- 1

where we also denote, = {u.(t, to, t1,t2) | t,to,t1,t2 € F}. Note that eachi € [N] has the same
number ofu € A with tup(a) = (Z;1, ..., Tix)-
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Edges. We connect every vertex= (i, 7, 41, 72) € A to points inB that are on the manifold
1. The choice of the points is done as to match the low degree test in Subdér:fiofor every

t e F\{q,...,q}andty # 0,1;,t, € F, there is an edge = (a,b) € E connecting: to the point

b=ty ciz(t) +t1 %+ ta- Yo € F™ 0N p,. We selabel(e) = (t,to,t1,t2) € Q.

Projection. For every vertexa € A, assignment, € X4 4. (Which is aw-variate polynomial
over the fieldF) and label¢ € 2 (which is a point inF"), we letproj(a, o,, &) be the element in
Y B.enc = 2B dec COrresponding to the field element(¢).

Point evaluation. For every vertex € B and assignment, € Xp 4., We letevalp(b, o) be the
field element corresponding tg.

Tuple evaluation. Denotep; = (¢1,1,0,0),...,0k = (g, 1,0,0) € F*. For every vertex: € A,
the tupletup(a) is on the manifold., in positionsp,, . .., Pk, i.e.,tup(a) = (1a(P1), - - -, ta(Dk))-
For every vertexa € A and assignment, € X4 4. (Which is a polynomial on the manifold,),
the evaluation of; on its tuple is given by the evaluation @f on the pointg, ..., pi, i.e., we let

eval(a,04) = (0a(P1), -, 0a(Dk))-

10.2.1 Properties of The Manifold vs. Point RM-LPR Construction Algorithm

Note that the algorithm is uniform in the point association. Additionally, the algorithm is efficient,
and runs in time polynomial iff™| and N .

e Size.Onallinputs, the output is of sizize = N [F|*"+|F™|+N-|[F|*"|F|°Y = N.|F|O0™,

e Block length.On all inputs, the output has block lenditock = log |X 4 enc| = poly(k,d) -
log |F|, since the number of monomials in a polynomial witfil) variables of degree at most
(k + 1)d is poly(k, d), and for polynomials over a fieldl, there ardF| possible coefficients
for each monomial.

o Left degreeOn all inputs, the output is left regular with left degrigleft = (|F| — k) - (|F| —
1) - |F” = [F]7).

e Right degree.On all inputs, the output is right regular, and its right degredejgight =
%-degleft = N-|]F|O(m). To see why right regularity holds, notice that the distribution induced
on B by picking uniformly and independently at random a veriex A and a neighbor of
a in the output graph, is uniform: this is the distribution definedf&hby picking uniformly
and independently at randoie [N], 7, 41,92 € F", t € F\ {q1,...,qx}, to # 0,t1,t3 € F,
and computingy - ¢; z(t) + t1 - 71 + t2 - y». By definition of the curves, z, for every: € [N],
foranyt € F\ {q,...,q}, for a uniformly distributedz € F™, we have that; z(¢) is
uniform in F. Hence, for anyt, # 0,t,t, € F and anyy;,y, € F™, the distribution of
to - ¢iz(t) +t1 - th + t2 - 4 is uniform onF™.
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10.2.2 Analysis of The Manifold vs. Point RM-LPR Algorithm. Completing The Proof of
Lemma8.1

To complete the proof of Lemnilit remains to prove that the algorithm outp(s,;,., l,.q.)-RM-
LPRs for thed,,;,, andl,,,, stated in the lemma.

Fix an input to the construction algorithm
(T1s e s Tak)s oo ATN, -, Tvg) € (F™)F
Denote the output of the algorithm by
G=((AB,E),V,Q, %4, Xg,sat = true,label, proj, tup, eval, pnt, evalp)

Let us prove encoding and list decoding:

For a functionf : F* — F and a vertexx = (i, Z, 71, ) € A, let the restriction off to y, be
fiua : T — F defined by assigning evely, ty, ¢, t2) € F*

f|Ma(t7t07t17t2) = f(t() : Ci’f(t) + 11 - ?71 + iy - ?j2)

DenoteD = (F™, F, Dene, Daee)-

Encoding. Assume a polynomiaf € D.,.. For every vertex € B, takeCz(b) to be the element
in X5, corresponding tg(b). Define an assignmelity : A — X4 ., by letting every vertex

a € Abe assigned's(a) = fiu, € Xaenc. Note that bothC'y, Cp can be constructed efficiently
given f, and that every edgec F is satisfied and readsin G underC4 andCp.

List Decoding. Fix an assignmert’s : B — X p 4... Fix a reald such thav,,;, <4 < 1.

Invoke the low degree testing theorem given in Theoféh{whereK = ) for the function
fs : F™ — T defined for everyr € F™ by letting fz(Z) be the field element corresponding to
Cp(Z). Letfi, ..., fi € Dy be thel <1,,..(d) polynomials guaranteed by the theorem.

Fix an assignment'y : A — X4 ge..

Proposition 10.0.1.When picking uniformly and independently at random a vertex A and an
edge coming out of it = (a,b) € E, the probability that is satisfied inG underC4, Cg, although

fe(b) & {f1(b),..., fi(b)} is at mostO(9).

Proof. There is a probabilistic oracld, such that picking uniformly at random a vertex A and

an edge coming out of ¢ = (a, b) € E and checking whetheris satisfied inj underCy andCj is

equivalent to performind D775 for the oracleA. To see this, considgrD7T 754 when replacing
its stepl by the following procedure (that implicitly defines the oragle

e Pick uniformly at random a vertex= (i, ¥, 11, o) € A.
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e Pick uniformly at random a scalarc F \ {q1, ..., ¢}

e Output the three vector& = c¢; z(t), 71, 2) together with the polynomigh*(to, t1,t2) =
Ca(a)(t,to, t1,to) Of degree at most'.

For everyt € F\ {q1,...,qx}, for a uniformly distributedz € F™, the distribution of the point
¢; z(t) is uniform inF™. Hence, the distribution o' = ¢; z(t), 41, ¥2) is uniform inF™ x F™ x F™.
The lemma follows from Theored8 for K = F.

m[of Propositior10.0.]]
Proposition 10.0.2.Leta € A such thatCu(a) ¢ {fiju.,-- - fiju t- When picking uniformly at
random an edge coming out of e = (a,b) € E, the probability thate is satisfied inG under
Ca,Cpandfg(b) € {f1(b),..., f1(b)} is at mostO(9).

Proof. Write a = (i,Z, 41, 7). For everyj € [l], the polynomialsC4(a) and f;,, aredifferent
w-variate polynomials of degree at ma@st+ 1) - &’ overF. Thus, by the Schwartz-Zippel lemma,
they can agree on at most a fraction 6t of the points inF”. Hence,Ca(a)(t, to, t1,t2) €

||
{ filpa (t, b0, T, 82), - .-, fuua (8, o, 1, t2) } for at most a fraction of- HITll of the scalars, ¢, t1,ts €

F.

By construction, picking uniformly an edge coming outaok equivalent to picking uniformly
and independently at randotve F \ {q1,...,qx}, to # 0,%1,t2 € F and takinge = (a,b) € E for
b = toc; z(t)+t191 +1t2y>. Moreover, whenever = (a, b) is satlsfled irg underC4, Cp ande( ) €
{f1(b), ..., fu(b)}, itfollows thatCy(a)(t, to, t1, t2) = fB(b) € { fijua (t,to,t1,t2), . - -, fuua (E, to, tr,t2) -
We conclude that, when picking uniformly at random an edge coming autof (a,b) € E,
the probability thate is satisfied inG underCy4,Cp and fg(b) € {fi(b),..., fi(b)} is at most

2. (’Tgl_l_)]j’ . ‘Fl% = 0(9) (for § > ‘F‘k*kl)) m[of Propositiori10.0.4

By Proposition10.0.1and Propositiori0.0.2and using left-regularity, when picking uniformly
at random an edge = (a,b) € F, the probability that is satisfied inG underC,, Cz, although
a) ¢ {flwa, . f1|ua} is at mostO(d). The list decoding property follows noticing that when
the edgee is satlsfled ing underCy andC'g, andC4(a) € {flm, e flwa}, we have that reads
oneoffy,..., fiinGunderCy, Cpg.

This concludes the proof of Lemné&al.

10.3 The Manifold vs. Point RM-LR Construction Algorithm

The purpose of this section is to prove Lem&2 We describe an RM-LR construction algorithm,
called the Manifold vs. Point RM-LR construction algorithm. The algorithm is along the same lines
as the Manifold vs. Point RM-LPR construction algorithm. The difference between the two comes
from savings in the size parameter of the RM-LR algorithm. These savings are obtained by reducing
the number of manifolds using ideas fro2v][26].

We will need the following lemma froni2g]:
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Lemma 10.1 (Balancing curves, Lemma 7.1 in2€]). For a finite fieldlF, a natural numbem,
natural numbersV andk < |F|, an accuracy parametdr < ¢ < 1 and a collection of sizéV of

k-tuples:

(Z1s e s Tok)s oo ATN, - Tyg) € (F™)F
there is an algorithm that runs in time polynomial ii"|, N and % and constructsV - C' curves
c11,-..,cyco @ F — F™ of degree at most, whereC' = (Eﬁ;‘} (i.e., there are at mosV + 'E;—’;'

curves). The curves have the following properties for fixed (distinct) scalars. , ¢ € F:

1. (“Curves pass through given points”) For every [N, j € [C], ¢ii(q1) = Tix, - .-, cii(qr) =
2. (“Curves coverF™ almost uniformly”) The probability distribution induced d#* by picking

uniformly and independently at randoime [N}, ;7 € [C] andt € F \ {qi,...,q}, and
computinge; ;(t) is e-close in the;-norm to uniform ovei™.

The presentation of the RM-LR algorithm and its analysis closely follow the presentation of the
RM-LPR algorithm.
Construction 2 (Manifold vs. Point RM-LR algorithm). We use the notation and assume the
restrictions appearing in Lemn2.

Given as input a collection of siz€ of k-tuples:
(Zray s Big)s e TN, T € (F™)F
The construction algorithm constructs an RM-LR
G=((AB,E),V,Q,34,Xp, sat = true, label, proj, tup, eval)

for the k-tuples as follows:

Avertices. Sets = ﬁ andC' = (Eﬁ;}'} as in Lemmdo0.1 The vertex sefl consists of quadruplets
(i, 7,71, y2) for i € [N] (indicating an input tuple); € [C] (indicating a curve through the input
tuple) andyy, y» € K™ (needed for the low degree test). We Bet= A (for left evaluators) and

Q =" (recall that we setv = 4).

B vertices. The vertex seB consists of all pointg’ € F™.

Alphabets. The alphabet , is the domairD defined by the finite fielf, the dimensionu, the
encoding degreék + 1) - d and the decoding degre#. The alphabek ; is the domain associated
with the seff. Let us denot& 4 = (F*,F, X4 cne, Zadee) aNAE5 = ({1} F, X5 ene, 2B dec) -
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Associating A vertices with manifolds. Invoke the algorithm from Lemnf0.1onF, m, N, k,
¢ and the CO"ectior‘(le, ce 7fl,kz>7 RN <fN,1, - ,fN,k> S (]Fm)k Let C1,15---,CN,C F — F™
denote the curves outputted by the algorithm.

A vertexa = (i, 7,71, %) € Ais associated with théth input tupletup(a) = (Z;1,..., i),
and corresponds to a manifold of degree at most 1 through thei'th tuple defined as follows

pa(t to, t1,te) =to - cij(t) +t1 -1 +ta- o

where we also denote, = {p.(t, to, t1,t2) | t,to,t1,t2 € F}. Note that eachi € [N] has the same
number ofu € A with tup(a) = (Z;1, ..., Zix).

Edges. We connect every vertex= (i, 7,71, 92) € A to points in B that are on the manifold
1. The choice of the points is done as to match the low degree test in Subsértiofor every

t e F\{q,...,q} andty # 0,t1,t, € F, there is an edge = (a,b) € E connecting: to the point

b= to - Ci,j(t) + 1 - :Jl + iy - (7]2 € F™ on - We Seiabel(e) = (t, to,tl,tg) e Q.

Projection. For every vertexa € A, assignment, € X4 4. (Which is aw-variate polynomial
over the fieldF) and label¢ € € (which is a point inF*), we letproj(a, o,, ) be the element in
Y p.enc = 2B dec COrresponding to the field element(¢).

Tuple evaluation. Denotep; = (¢1,1,0,0),...,p5x = (g, 1,0,0) € F“. For every vertex: € A,
the tupletup(a) is on the manifold., in positionsp;, . .., Pk, i.e.,tup(a) = (o (P1), - - -, ta(Pk))-
For every vertexa € A and assignment, € X4 4. (Which is a polynomial on the manifold,),
the evaluation ot on its tuple is given by the evaluation@f on the points, .. ., pi, i.e., we let

eval(a,04) = (0a(P1), - - Ta(Dk))-
10.3.1 Properties of The Manifold vs. Point RM-LR Construction Algorithm
The algorithm is efficient, and runs in time polynomial 1’| and N.

Size.On all inputs, the output is of sizize = N - C' - [K™|* + |[F™|+ N - C - |[K™|* - [F|°Y) =
(N +[F™]) - [F[ - K[>,

Block length.On all inputs, the output has block lendtleck = poly(k, d) - log |F]|.

Left degreeOn all inputs, the output is left regular with left degrésgleft < |IF|O(1).

Right degreeThe output is not necessarily right regular. We bodaglight < (N + |F™|) -
[FI°0 - [P
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10.3.2 Analysis of The Manifold vs. Point RM-LR Algorithm. Completing The Proof of
Lemma8.2

To complete the proof of Lemni&Z it remains to prove that the algorithm outp(s,;,., l;.q.)-RM-
LRs for the),,;, andl,,.. Sstated in the lemma.

Fix an input to the construction algorithm
(T1s e s Tak)s oo ATN, -, Tvg) € (F™)F
Denote the output of the algorithm by
G=((AB,E),V,Q,34,Xp, sat = true, label, proj, tup, eval)

Let us prove encoding and list decoding:

For a functionf : F* — F and a vertex. = (i, j, 41, 72) € A, let the restriction off to y, be
fiua : T — F defined by assigning evely, ty, ¢, t2) € F*

Fina (t b0yt 1) = fto - coj(t) + 11 - 1+ to - )

DenoteD = (F™,F, D, .., Dyec)-

Encoding. Assume a polynomiaf € D.,.. For every vertex € B, takeCz(b) to be the element
in X5, corresponding tg(b). Define an assignmeldty : A — X4 ., by letting every vertex

a € Abe assigned's(a) = fju, € Xaenc. Note that bothC'y, Cp can be constructed efficiently
given f, and that every edgec F is satisfied and readsin G underC4 andCp.

List Decoding. Fix an assignmert’s : B — X 4... Fix a reald such thav,,;, <4 < 1.

Invoke the low degree testing theorem given in Theci@rfor the functionfs : F™ — [ defined
for everyr € F™ by letting fz(%) be the field element correspondingdg (). Let fi,...,f €
Dgec be thel < ,,,.(0) polynomials guaranteed by the theorem.

Fix an assignment'y : A — X 4 ge..
Proposition 10.1.1.When picking uniformly and independently at random a vertex A and an
edge coming out of it = (a,b) € E, the probability that is satisfied inG underCy, Cg, although

fB(b) & {fi1(b),..., fi(b)} is at mostO(9).

Proof. ConsiderLDT/#4 when replacing its stefi by the following procedure (that implicitly
defines the oraclgl):

e Pick uniformly at random a vertex= (i, j, 71, 2) € A.

e Pick uniformly at random a scalarc F \ {q1,. .., qx}-

79



e Output the three vector&” = ¢; ;(t), 71, 72) together with the polynomigh*(te, t1,t2) =
Ca(a)(t, to, t1, t2) Of degree at most'.

By the properties of the curves;, the distribution of the point; ;(¢) is e-close (in the/;-norm) to
uniform onF™. Hence, the distribution ofZ = ¢, ;(t), 41, ¥2) is e-close (in the;-norm) to uniform
onF™ x K™ x K™. The lemma follows from TheoreiB noticing that: < 4.

m[of Propositiori10.1.]]

Similarly to PropositioriL0.0.2 relying on the low degree of the curves, we have the following:
Proposition 10.1.2.Leta € A such thatCy(a) ¢ {flwa, e 7fz|ua}- When picking uniformly at
random an edge coming out of e = (a,b) € E, the probability thate is satisfied inG under
Cya,Cpand fg(b) € {fi(b),..., fi(b)} is at mostO(9).

By Proposition10.1.1and Propositiori0.1.2and using left-regularity, when picking uniformly
at random an edge = (a,b) € FE, the probability that is satisfied inG underC4, Cz, although
Ca(a) & { fijpas---» fiua » is @t mostO(8). The list decoding property follows noticing that when
Cala) € {flma, - ,flwa}, we have that reads one of, ..., f; in G underCy, C5.

This concludes the proof of Lemn&?2.

11 Construction of Hadamard Left Readers

In this section we present an algorithm for constructing Had-LRs proving LefhfaThe idea

of the construction algorithm is to create a bipartite graph, in which didmrresponds to low
dimensional linear subspaceslif’, each passing through an input tuple, and ditleonsists of
points inF™. This way each vertex has a tuple that is associated with it. We put edges between
vertices corresponding to subspaces &nertices corresponding to points on them. Assignments
to A vertices naturally project onto assignments to their neighbdsivgrtices.

A correct encoding of a linear functioh : F* — [ assignsL to the points inB, and assigns
the restrictions of.. to the subspaces to thevertices. This way eacH vertex can evaluaté on
the tuple associated with it. Note that the restrictiorhdd any linear subspace is a linear function.

To show that the construction has a list decoding property, we liseaaity testingtheorem for
large finite fields. The linearity test we need is in the form of a projection test. Its analysis follows
from the analysis of the more standard Blum-Luby-Rubinfeld t&tit [Specifically, we build upon
the analysis for large finite fields b$9%]. The analysis requires that the fidids prime and assumes
that the function igolded(details follow).

11.1 A Linearity Testing Theorem

Folding. Let[F be afinite field. Letn be a natural number. Fix a functigh: F* — F we wish to
test. If f were a linear function, then:

80



—

1. (Multiplication by scalar)For everyz € F™ andt € F, f(t-2) =t - f(2).
2. (Addition)For everyz, i € F™, f(Z+ ¢) = f(2) + f(¥).

We can ensure that itefihholds by usindolding: consider the equivalence relatienon ", where
Z~gifandonlyif Z =t -4 forsomet £ 0 € F. Let R C F™ be a set of representatives of the
equivalence classes. For evatye ™, let [Z] be the representative of the class that conta@ina
foldedfunction is a function that is defined on the representatﬁlesR — . A folded function

f defines a functiory : F" — T that satisfies iterd by assigning every’ € ™ the appropriate
multiple of the value of its representative, i.e.7if= t - [Z], thenf(Z) =t - f([Z]).

Linearity Testing (projection form). Let f : R — F. Assume access to an orackewhose goal
is to convince us thaf is linear. For every’ € F™ andy € F™, the oracleA provides a bi-variate
linear function, which is supposedfy(t, 2+ t>7). The oracled may be probabilistic, meaning that
its answer may depend not only érandy/, but also on additional randomness.

A test for checking thaf is consistent with a linear function is described in Fig8re

LmTestf A

1. Pick uniformly at random two vectors, ) € F™ x F™. Using the oracle access to
A, obtain a bi-variate linear functiofi(t,,t2) over F for () [I* is supposedly the
restriction f(t12' + t27)].

)%

2. Pick uniformly at random, ¢, € F. SetZ, = ;2 + toy. If indeedi*(t1,t2) = f(Zo),
accept Otherwisereject

Figure 9:Linearity Tester (Projection form)

The following follows from the analysis ofiB] (see Appendi;C for details):
Theorem 19 (Analysis of linearity test, [L9]). There are some naturah, and Fj, such that for
everym > mg and a prime finite field® with |F| > Fp, the following holds. LeR C F™ be a set of
representatives needed for folding.

For o > 2,6/%', for any functionf: R — T, there arel < 52_3 linear functionsLy,...,L; :

F™ — IF, such that for every probabilistic oracld:

The probability, over the randomness4fand over the randomness of the tester, tbﬂtTestf’“i
accepts, althouglf(Zo) ¢ {Li(%o), ..., Li(Zo)} (Wheref : F™ — T is the function defined by
andi, € F™ is picked by the tester; see Figu®} is at mosiO(9).
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11.2 The Had-LR Construction Algorithm

The purpose of this section is to prove Lemf& We describe a Had-LR construction algorithm
that is uniform in the tuple association and in the encoding and list decoding. We specify the prop-
erties of the algorithm in Subsectidd.2.land analyze it in Subsectidi.2.2

The description of the algorithm will start with specifying the uniform part of the construction
(i.e., the part that is common to all outputs of the algorithm), and proceed by presenting the compo-
nents that are input-specific.

Construction 3 (Had-LR construction algorithm). We use the notation and assume the restric-
tions appearing in Lemmi@&.3

We define a uniform structure and uniform tuple association as follows:

A vertices. The vertex setl consists of triplesi, Z' ) for i € [N] (indicating an input tuple) and
Z,y € F™ (needed for the linearity test). We dét= A (for left evaluators). The uniform tuple
associatortupi : A — [N] assignesi, Z, ) the indexi.

Setw = k + 2 and2 = F".
B vertices. The vertex seB consists of all representativese R.

Alphabets. The alphabet:, is the Hadamard domai® defined by the finite field@ and the
dimensionw. The alphabe®: s is the domain associated with the d&t Let us denote:, =
<Fw7 IFa EA,enm ZA,dec> and EB = <{1}7 Fa EB’,enca EB,dec>-

Given as input a collection of siz€ of k-tuples:
(Z1se e Tok)s - TN, - Tyg) € (F™)F
The construction algorithm constructs a Had-LR
G=((AB,E),V,Q,34,Xp, sat = true, label, proj, tup, eval)

for the k-tuples as follows:

Associating A vertices with manifolds. A vertexa = (i, 2,y) € A is associated with théth

input tupletup(a) = (%;1,...,%;x). Let us assume without loss of generality thaf, . . ., 7; , are
linearly independent (otherwise, we find a maximal sub-tuple of linearly independent vectors inside
the k-tuple and complete it to A-tuple (Z; 1, ..., Z;x) of linearly independent vectors).

DenoteZ; ;11 = ZandZ;x+2 = ¢. Then, the vertex corresponds to the following linear
subspace through théh tuple:

k+2
Sa= Q> - Ty
j=1

t1, .-, trhto E]F}
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We also use the functional notatign: F — F™, where for every = (t1, ..., tpso) € FY,

k+2
() =) tj- &,
j=1
Note that eachi € [N] has the same number @fc A with tup(a) = (Z;1, ..., Tik).

Edges. We connect every vertex= (i, 2, ij) € A to representatives i of points on the subspace
sq. Foreveryt = (ty,...,te) € F*2 such thatt,,, # 0, there is an edge = (a,b) € E
connecting: to the representative of the corresponding pointspnb = [I,(t)]. We setabel(e) =
teq.

Projection. For every vertex. € A, assignment, € X 4 4., (Which is aw-variate linear function
over the fieldF) and label¢ € Q (which is a point inF*), such that,,(¢) = t - [I,(£)] for a scalar
t #0 € F,weletproj(a, o,, &) be the element ik s ... = X5 4. COrresponding to the field element

% ’ Ua(&)'

Tuple evaluation. For every vertex. € A, we letp), ..., pr € F* be such that thé-tupletup(a)
is on the subspace, in positionspy, ..., pk, i.e., tup(a) = (l.(P1),-..,l(Pk)). For example,
when the originalk-tuple (Z; 1, ..., Z; ) consists of linearly independent vectors, we hgve=
(1,0,...,0,0,0),...,p5: = (0,...,1,0,0) € Fv,

For every vertex: € A and assignment, € X4 q.. (Which is aw-variate linear function over
the fieldFF), the evaluation of. on its tuple is given by the evaluation®f on the pointsy, . . ., Pk,
i.e., we leteval(a,0,) = (04(P1), .-, 0a(Pk))-

11.2.1 Properties of The Had-LR Construction Algorithm

The algorithm is efficient, and runs in time polynomial #*| and N.

e Size.Onallinputs, the output is of sizize < N-|F|*" +|R|+ N -|F[*"-[F|*"? = N |F|°™.

e Block length.On all inputs, the output has block lendilock = log |4 cpc| = log |IF|’“+2 =
O(k) - log |F|.

e Left degreeOn all inputs, the output is left regular with left degrésgleft = (1 — ﬁ) F| <
|]F|O(k)_

¢ Right degree.The graph is not right regular, however, the degrees ofRheertices are the
same for all inputs, andegright < size. To see why the right degrees are independent of the
input, note that for every fixing of; 1, ..., Z;, and@; .o = 7, for anyt = (t1,...,tgso) €

F**2 such that,,, # 0 € F, whenz; iy, = Zis uniformly distributed inf™, so istif tj -
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Z; ;. The vectorg/ andz are distributed uniformly if¥”, independent of; 1, .. ., Z; . Thus,
the degree of th% representatives that are ribare the same, and all the right degrees
are independent o# the input.

11.2.2 Analysis of The Had-LR Algorithm. Completing The Proof of Lemma8.3

To complete the proof of Lemn&3it remains to prove that the algorithm is uniform in the encoding
and list decoding and outputs,.;., l,n...)-Had-LRs for théj,,;,, andl,,... stated in the lemma.

Fix an input to the construction algorithm
(Tray ey Big)s e ATN, - D) € (F™)F
Denote the output of the algorithm by
G=((AB,E),V,Q, Y4, Xpg, sat = true, label, proj, tup, eval)

Let us prove encoding and list decoding:

For a functionf : F™ — F and a vertexa = (i, 2, 3) € A, let the restriction off to s, be
fla : F* — T defined by assigning everyc F*

fialt) = F(la(8))

DenoteD = (F™, F, Depe, Dyec) -

Encoding. Let us prove uniform encoding. Assume a linear functfoa D.,.. For every vertex
b € B, takeCg(b) to be the element iXp ... corresponding tg (b). Define an assignmeidt, :
A — ¥ 4.nc DY letting every vertex € A be assigned’s(a) = fjo € X4 ne. Note that bottCy, Cp
can be constructed efficiently givgih and that every edgec F is satisfied and readsin G under
C, andCp.

List Decoding. Fix an assignmert’s : B — Xp 4... Fix a reald such thav,,;, <4 < 1.

Invoke the linearity testing theorem given in Theorgéfor the functionfB : R — FF defined for
everyr € R by letting f5(Z) be the field element correspondingd@(¥). Let f1,. .., fi € Dy be
thel < I,,..(9) linear functions guaranteed by the theorem. Note that the constructign.of, f;
is uniform: it requires onlyC'z ando.

Fix an assignment'y : A — X 4 gec.
Proposition 11.0.3.When picking uniformly and independently at random a vertex A and an
edge coming out of it = (a, b) € E, the probability that is satisfied inG underC4, C, although

fe(b) & {fi(b),..., fi(b)} is at mostO(0).
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Proof. There is a probabilistic oracld, such that picking uniformly at random a vertex A and
an edge coming out of t = (a,b) € E and checking whether is satisfied inG underC, and

Cp is equivalent (up to a small statistical distance) to perforrmngfestf&““ for the oracleA. To
see this, considetinTest# when replacing its steti by the following procedure (that implicitly
defines the oraclgl):

e Pick uniformly at random a vertex= (i, Z, y) € A. Denotetup(a) = (Z;1,...,Zik)-
e Pick uniformly (and independently of the choiced)fat randomy = (¢, ... ,t;) € F*.

e Output the two vectorgz + Zg‘le t; - Z;;,y) together with the bi-variate linear function
U (tis1, ter2) = Cala)(bugr -ty oo bign - i, tiepn, tig2)-

Note thatz + Z?Zl tj - @; ; is uniformly distributed inf™. Moreover, the follwoing two distri-
butions are at statistical distanéhﬁwll):

1. LinTest!A distribution: Pick uniformly at randort,, 1, ;2 € F. Compute

k
Tpt1 - <5+ th : fzg> +tpro Y

J=1

2. Edge distribution: Pick uniformly at randoth, ..., t, ., € F such that_, # 0. Compute
k
St Ei A thyy b 7
j=1

The proposition follows from Theore®, recalling that > ﬁ

m[of Propositior11.0.3
Proposition 11.0.4.Leta € A such thatCa(a) ¢ {fija---, fya}. When picking uniformly at
random an edge coming out of e = (a,b) € E, the probability thate is satisfied inG under

Cy, Cpand fz(b) € {f1(b), ..., fi(b)} is at mostO(d).

Proof. Write a = (i, 2, ). For everyj € [l], C4(a) and f;, aredifferentw-variate linear functions
overF. Thus, they can agree on at most a fractiorﬁpbf the points inf”. Hence,Cx(a)(t) €

{fia(1), ..., fya(t)} for at most a fraction of - ﬁ of thet € Fv.

By construction, picking uniformly an edge coming outaofs equivalent to picking uniformly
t € F* such that,,, # 0, and takinge = (a,b) € E for b = [1,()] (where recall that we denote
Tig1 = Zand; y1o = 7). Moreover, whenevet = (q,b) is satisfied inG underCy, Cp and

To(b) € {A1(0), ., b)}, it follows thatCoa(a)(F) € {fia(@), ., fralE)}-
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We conclude that, when picking uniformly at random an edge coming autcof (a,b) € E,
the probability thate is satisfied inG underCy, Cz and f5(b) € {fi(b),..., fi(b)} is at most
% ﬁ = 0(9). m[of Propositiori11.0.4

By Propositioril1.0.3and Propositiold1.0.4and using left-regularity, when picking uniformly
at random an edge = (a,b) € E, the probability that is satisfied inG underC,, Cz, although
Ca(a) & {fija:---» fua} is at mostO(8). The list decoding property follows noticing that when the
edgee is satisfied inG underCy andCp, andC4(a) € {f1|a, e fl|a}, we have that reads one of

fi,-.., fiinGunderCy, Cp.
This concludes the proof of Lemn&3

12 Power Reduction

In this section we show the power reduction manipulation, proving Le@@#haOur presentation
will use the notation introduced in this lemma.

The power reduction manipulation transforms construction algorithms rediicirgD, , where
D, is a Reed-Muller domain with a small dimension but a large encoding degrée, to construc-
tion algorithms reducin@® — D,, whereD; is a Reed-Muller domain in which both the dimension
ms and the encoding degréde are logarithmic in the encoding degrée The manipulation is based
on thepower substitutionechnique from13].

12.1 A Power Reducing Embedding

The manipulation is done using the following embedding:

EmbeddingF" — F™2. Recall that; = [log(d; + 1)] andmy = m; - b;. Define an embedding
¢ : F™ — ™2 by mapping everyz, . .., T, ) € F™ to
¢(I17 s ’xml) = (xfov‘T%l? s vZE%blila T 75372217533;1 s vxzsiil)

Power reduction for polynomials via the embedding. Assume that we have a polynomial :
F™ — F of degree at most;. For some coefficient§oy;, . ; }il e T, the

polynomial@ can be written as

Qr,- o Tm) = Y Oy, 7Y T

77777 mq

For a numbef) < i < d;, denote by(i,b; — 1) ---b(i,0) the binary representation af Then, we
define a polynomial),, : F2 — F by mapping everyzy o, ..., T1p,—15 " s Ty 05« - + y Loy by—1) €
F™2 to

Q(Z:(:El,[b Ce 7$1,b1—17 s 7xm1,07 e 7xm1,b1—1) =
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b(i1,0) b(i1,b1—1) b(im170) b(imybl*l)
§ Qiyoimy " T10 " Ty py 1 Lm0 " Ling -1

Note thatQ), is efficiently computable and thal = @, o ¢. The polynomialky, is a multi-linear
polynomial inm, variables, and henc®, € D, .,.. Moreover, sincel, = [d}/d;|, for every

Q € Dy 4ee, it holds thatQ o ¢ € Dy ..

12.2 The Power Reduction Manipulation on RM-LRs
Given an RM-LR reducin@® — D; for some tuples:
G=((A,B,E),V = A, Q,Dl,ﬁ, satg = true, labelg, projg, tupg, evalg)

whereF = ({1},F,Fey., Fa..) is the domain associated with the finite fiéfd we construct an
RM-LR reducingD — D, for the same tuples (note th@thas the sameup function asg):

G={((AB,E),V =AQ, D, ﬁ, satg = true, labelg, projg, tupg, evalg)
by performing the following operations:

1. LetQ =™z,
2. For every edge < E, setlabelg(e) = ¢(labelg(e)).

3. Foravertex: € A, anassignmentforit, , € D, q4.. and alabep € F2, we letprojg(a, 04,2, D)

be the element it .. corresponding to the field elememi(p). Note that for every edge
e = (a,b) € E itholds thatprojg(a, 0,2, labelz(e)) = projg(a, oaz2 o ¢, labelg(e)).

4. Assume that the points, . . ., p. € F™ are such that for every vertexc A and assignment
041 € D1 4ec We have thatvalg(a,o,1) = (041(D1),- .-, 0.1(Pk)). Then, for every vertex
a € A and assignment,, € Ds 4., let evalg(a,0,2) = (0a2(0(P1)), - .-, 0a2(d(Pk))) =
evalg(a, 0,2 0 @).

Properties of the manipulation. G can be computed efficiently frog. MoreoverG has the same
size and left and right degrees@sand its block length id?(ml) -log |FF|.

Analysis. We say that assignment$, : A — Ds.4gec andCy : A — Dy 4. areequivalentif for
every vertexa € A, it holds thatC (a) = C 4(a) o ¢.

Proposition 12.1. For any two equivalent assignmers, : A — Dy gec aNdCy : A — Dy 4, fOr
any assignmenf’s : B — F jee, for any edge: = (a,b) € E, we have:

e ¢ is satisfied inG underC,, Cj if and only ife is satisfied inG underC 4, C.
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e ¢ reads som¢ € Dy, in G underCy, Cp if and only ife readsf in G underC 4, Cjp.

We thus have:
Lemma 12.2.Let0 < i < 1. Letl,q. : (0,1) — RT be a decreasing function. § is a
(8mins lmaz)-RM-LR reducingD — D, for some tuples, and is obtained fromG by the power
reduction manipulation, the@ is a (6,,in, limaz)-RM-LR reducingD — D, for the same tuples.

Proof. Let us prove encoding and list decoding:

Encoding. For a polynomialf € D, letCy : A — Dy . andCp : B — Rnc be the efficiently
computable assignments under which every edger is satisfied and readsin G. The assignment
Ca: A — Dy, equivalent toCy, defined by assigning every € A the polynomialC4(a), is
also efficiently computable. Moreover, by Proposiligh], all edges € E are satisfied and read
in G underC 4, Cp.

List Decoding. Fix an assignment’z : B — Fdec. Fix a reald such that),,;, < 0 < 1. Let
fi,--, fi € Dgec be thel < 1,,..(0) elements guaranteed by the list decoding propert§.ofet
Cy:A— D; 4ec e an assignment. L€ty : A — D, 4. be its equivalent assignment. By the list
decoding property of, for all edges € E, but at mostO() fraction, e is either not satisfied or
reads one of, ..., f; in G underCy, Cg. Hence, by Propositiofi2.], for all edges € F, but at
mostO(4) fraction,e is either not satisfied or reads onefgf. .., f; in G underC 4, Cp. O

Transforming RM-LR construction algorithms.  Assume that we are given (@, k, N)-RM-
LR construction algorithmA; with structural parameter&ize, block, degleft, degright) reducing
D +— D;. The(D, k, N)-RM-LR construction algorithrd, with structural parameters
(size, block’, degleft, degright) reducingD — D, will be as follows: Given an input to the construc-
tion algorithm

<fl71, - ;fl,k>7 ceey <fN,1, o ;fN,k> c (]Fm)k
Invoke 4; on the input tuples to obtain an RM-L&reducingD — D; for the input tuples. Then
perform the power reduction manipulation on RM-LRs that is described above to obtain an RM-LR
G reducingD — D, for the input tuples, and outpgt

12.3 The Power Reduction Manipulation on RM-LPRs
Given an RM-LPRG reducingD — D, for some tuples:
G=(AB,E),V =A, Q,Dl,ﬁ, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)

Let G~ be the RM-LR reducin@ — D for the same tuples that is induced 8y Perform the
power reduction manipulation on RM-LRs that is described above to obtain an R§=LrRducing
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D — D, for the input tuples:
G- ={((A,B,E),V = A,Q,D,, IF‘, satg= = true, labelg=, projg=, tupg=, evalg=)
Obtain an RM-LPR reducin® — D, by considering:
G={((AB,E),V=AQ,D,, F, satg= = true, labelg=, projz=, tupg=, evalg=, pntg, evalpg)

Note that the RM-LR induced by, denotedG)~, isG—.

Properties of the manipulation. G can be obtained efficiently frod. Moreover,G has the same
size and left and right degrees@sand its block length ig” ™" - log [F|.

Analysis. Applying PropositioriLl2.1we get: N
Proposition 12.3. For any two equivalent assignmertts, : A — Dy 4. andCy : A — Dy g, for
any assignmer@’s : B — F ., for any edge: = (a,b) € E, we have:

e cis satisfied inG underC,, Cjp if and only ife is satisfied inG underC 4, C5.

e creads somg € Dy in G underC,, Cjp if and only ife readsf in G underC 4, Cp.

Proof. Let us prove the second item. Recall thaeadsf in G underCy, Cz if and only if e reads
fin G~ underC,, Cy andevalpg(b, C5(b)) = f(pntg(b)). Similarly, e readsf in G underC 4, Cp
if and only if e readsf in (G)~ = G~ underC 4, C andevalpg(b, C(b)) = f(pntg(b)). By

Propositioril2.], e readsf in G~ underCy, C'z if and only if e readsf in G~ underC' 4, C'z. [

Hence, similarly to the case of RM-LRs, we have:
Lemma 12.4.Let0 < i < 1. Letl,a. : (0,1) — R be a decreasing function. § is a
(8mins lmaz)-RM-LPR reducingD +— D, for some tuples, ang is obtained fromg by the power
reduction manipulation, the@ is a (4, lmaez)-RM-LPR reducingd +— D, for the same tuples.

Transforming RM-LPR construction algorithms.  Assume that we are given(®, k, N)-RM-

LPR construction algorithrd; with structural parameter&ize, block, degleft, degright) reducing
D — D that is uniform in the point association. Consider {fi& k&, N)-RM-LPR construction
algorithm A, with structural parameter&ize, block’, degleft, degright) reducingD — D, defined
as follows: Given an input to the construction algorithm

<.f171, . ,f17k>, ceey <£i"N’1, - 7fN,k> € (]Fm)k
Invoke A; on the input tuples to obtain an RM-LRRreducingD — D, for the input tuples. Then
perform the power reduction manipulation on RM-LPRs that is described above to obtain an RM-
LPR G reducingD — D, for the input tuples, and outpgt. Note thatA, is uniform in the point
association.
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13 Right Degree Reduction

In this section we show how to reduce the (graph) degree oBthertices in the various building
blocks we consider, thus proving Lemi@&. We start by presenting the right degree manipulation
on bipartite constraint graphs. Then we will describe the manipulation on RM-LRsHamMLRs,
RM-LPRs, RM-RRs and RM-RPRs.

13.1 The Right Degree Reduction Manipulation on Bipartite Constraint Graphs

The idea of right degree reduction is to split each vettex B into many copies. The number of
copies will be the original degree 6fin the graph. Each copy will have a small degree in the new
graph. This is achieved by putting an expander with small degree in the new graph between the
neighbors ob in the original graph andfs copies. Formally, the manipulation is defined as follows:

Given a natural numbek and a bipartite constraint graph
G=(G=(AB,E),Q X4 Xg,satg,labelg, projg)
we construct a bipartite constraint graph that is right regular with right deégfag:
G =(G=(AB,E),Q, %4 X, satg, labelg, projg)
by performing the following operations:

1. Bipartite expanders.Leta < 1and7 : N — N*, whereT'(A) = ©(A), be asin Lemma.2.
Forn = 1,...,]A|, compute as follows from Lemm&a.3 a 7'(A)-regular bipartite (multi-
)graphH,, = ([n], [n], E,,) satisfying the following expansion property: for every two sets

X Cn],Y Cnl,
T(A)-n = n o n (T(A))1« Vo V n

2. B vertices. For every verted ¢ B, for everyi € [A4(b)], there is a vertek = (b, i) € B.
In the remainder of this section we shorthand and wkité) to denoteA4(b).

3. Edges. For every; € [A(b)], assuming thg’'th edge coming intd is eq(b,j) = e =
(a,b) € E, for every edge(j,i) € Eagp), we put an edge = (a, (b,i)) € E. We set
labelg(€) = labelg(e).
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Figure 10:Right degree reduction.

Properties of the manipulation.

e Running timegG can be computed froid efficiently.

Size.The size ofG is

Gl = A+ [B| + |E| = |Al+ > _A®) + Y _T(A)-A(b) <O (A-|G))

beB beB

Block length.The manipulation does not change the alphabets.

Left degreeThe degree of each of thévertices inG is larger than its degree if by a factor
of T(A).

Right degree( is right regular with right degre€(A).

Analysis. Given an assignmeiit; : B — ¥ tothe vertices i3 and a real paramet (Al))l_a <
6 < 1, we define a list of size = |3 | of assignments to th& vertices corresponding 6 and
J as follows. For every vertek € B, letoy(b),...,0:(b) € X5 be all elements € X5 that are

assigned to at least@fraction ofb’s copies, i.e.,
[{e e [A®)] | Cp({(b;7)) = 0 }[ =6 - AD)

Note that there are at massuch elements € > 3. If there are less thanelements, we pad the list
arbitrarily. We define the assignments to the&ertices corresponding Gz andd, Cp 1, ...,Cps:
B — Y, by letting, for everyj € [s] andb € B, Cg ;(b) = 0;(b).

We prove the following proposition:
Proposition 13.1.LetC, : A — X4 be any assignment to thévertices. When picking uniformly
at random an edge = (a, (b,4)) € F, the probability that the edge is satisfied inG under the
assignments’, and Cg, howeverCyz((b, 7)) ¢ {Cp1(b),...,Cps(b)}, is at mosts.
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Proof. Letb € B. Foro € X5, defineY;, C [A(b)] to be the indices of copies éfassignedr by

Cg,
Yoo = {i € [AD)] | C5((b,7)) = 0}

Let us say that an edge= (a,b) € E coming intob votesfor o € X, if the projection ofC 4 (a)
ontobis o, i.e.,projg(a, Ca(a),labelg(e)) = o. DefineX,, C [A(D)] to be the indices of the edges
coming intob that vote foro,

Xpo = {j € [A(D)] | ec(b, j) votes foro }

Note that the setX, ., as well as the setys, ., are pairwise disjoint.

Let S C ¥ denote the “uncovered” elemerfis= X5 \ {Cp1(b),...,Cps(b)}. By definition,
for everyo € S, it holds thatly;, .| < - A(b). Hence, by the expansion property’@k ), we have

‘EA(b)(Xb,mYb,a)‘ <5 | Xb o n 1 . |Xb,0|' Yo
T(A)-A@) = A (TA)'= | AD) | Ab)
Thus, we get the following upper bound on the fractional number of edgesa, (b)) € E that
are satisfied by’'4, Cg, althoughC5((b, 7)) ¢ {Cp1(b),...,Cp(

Zaes|EA(b)(Xb,o,YEm Z |Xb(,| 1 |ng| ]ng|
7(3)-A() 2

o€eS

By the Cauchy-Schwarz inequality and using the disjointness of theXgetnd of the set¥;, ., we
have:

% pes | o (Koo Yio)| Xool | [N
ma)-a S T aaye \/ NG \/ NG
< b+ ;
R
< 26

The proposition follows noticing that the probability we wish to bound is at most

ZbeB 20 - T(A) ) A(b)

SopTA)-AD) 2

]

13.2 The Right Degree Manipulation on Composable Bipartite Locally De-
code/Reject Codes that are Left Evaluators

Given a natural numbek and a composable bipartite locally decode/reject code for some tuples:

g= <G = (A7 B, E)a V= A, Q, 34,35, satg, labelg,projg,tupg, 6U&lg>
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We construct a composable bipartite locally decode/reject code for the same tuples which is right
regular with right degre&'(A)

G=(G=(AB,E),V =AQ,%4, g, satg, labelg, projg, tupg, evalg)
as follows:
1. Consider the bipartite evaluation graph underlyéhg
G'=(G=(AB,E),V = A Q, Y4 dec; LB dec, Salg, labelg, projg, tupg, evalg)
whereX 4 4. andX 4. are the decoded domainsdf; andX, respectively.
2. Consider the bipartite constraint graph underlyéiig

G" = (G = (A, B, E),Q, XA decs 2B dec, Satg, labelg, projg)

3. Perform the right degree reduction manipulation on the constraint grapb compute the
bipartite constraint grap@”:

G" = (G = (A, B,E),Q, Y4 dcc, LB.dec, Satg, labelgr, projg)
[Note thatG is left regular]
4. Define a bipartite evaluation graph:

G =(G=(AB,E),V = A QYA dec; LB dec, Satg, labelgr, projg, tupg, evalg)

5. Let the corresponding composable bipartite locally decode/reject code be:
G=(G=(AB,E),V =A,Q,%,, 3z, salg, labelg = labelgr, projg, tupg, evalg)
Properties of the manipulation. G can be obtained efficiently fro. If G has sizesize, thenG

has sizeD(A - size). G has the same block length s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. It is right regular with right degre@(A).

Analysis.

Proposition 13.2. Lete = (a, (b,i)) € E be an edge, and let= (a,b) € E be its corresponding
edge. For every assignme@ty : A — ¥4 4., for every two assignmentg : B — Xp 4. and
Cg : B — Yp.4e such thatC(b) = C5((b,4)) it holds that:

e cis satisfied ing underCy, Cj if and only ife is satisfied inG underC, C5.

e ¢ reads som¢ € Dy in G underCy, Cp if and only ife readsf € Dy, in G underCy, Cg.

93



We thus have:
Lemma 13.3.Let0 < 0, < 1. Letlya, @ (0,1) — RT be a decreasing function. S&t,, =

max {\/5min> W} andl;,,.(0) = 5 Lnas(6%). If G is @ (Gmin, lmaz)-cOmposable bipartite

locally decode/reject code for some tuples, @hi$ obtained fromg by the right degree reduction
manipulation, theryj is a (¢7,,,,, %, )-composable bipartite locally decode/reject code for the same
tuples.

Proof. Let us prove encoding and list decoding:

Encoding. Denote the encoded domain Bfby D,,. and the encoded domains of the alphabet
domains ofG (andG) by Y denc aNd X g cne. For a polynomialf € De,., letCy : A — 34 cne
andCp : B — Y., be the efficiently computable assignments under which every edgé’ is
satisfied and readéin G. The assignmer® : B — Yp ..., defined by assigning evety, i) € B

the valueCs(b), is also efficiently computable. Moreover, by Proposiiidhz, all edges: € E are
satisfied and reagl in G underCy, C5.

List Decoding. Fix an assignmenf : B — Ypdec- Fix areald such thaty;,,, < 6 < 1.

Let Cp1,....Cps : B — Ypag. be thes = L%j assignments corresponding ¢g; andJ as

in the analysis of the right degree reduction manipulation on bipartite constraint graphs. Fix a
real parameted’ = 6% > 0,,,. For everyj € [s], let fi1,..., i1 € Dae. be thel < I,4.(d)
elements guaranteed by the list decoding property fufr Cz ; andd’. In total we defined at most

3 Lae(02) = 17, (0) elements.

) max

LetCy : A — ¥4 4ec e an assignment.

By the list decoding property @, for at mostO(s - §') = O(0) fraction of the edges € E, for
somej € [s], the edges is satisfied but does not read onefof, . .., f;; in G underCy, Cp ;.

By Propositiori13.], for all edges = (a, (b, 7)) € E, butat most(9) fraction,e is not satisfied
in G underCyu, Cg, or C5({(b,i)) € {Cp.(b),...,Cps(b)}. Hence, by Propositiod3.2 for all
edges = (a, (b,i)) € E, but at mos(§) fraction, eithere is not satisfied irG underC,, Cz, or
for somej € [s] we haveC3((b,i)) = Cp ;(b) and the edge = (a,b) € E is satisfied inG under
CA, CB,]

For a uniformly distributed edge= (a, (b,4)) € E, the edge: = (a, b) is uniformly distributed
in E. Hence, for all edges = (a, (b,7)) € E, but at mos(J) fraction, eithef is not satisfied irG
underCy, Cg, or for somej € [s] we haveCy((b,7)) = Cp ;(b) and the edge = (a,b) € E reads
one off;1,..., fj;in G underCy4, Cp ;. Thus, by Propositiod3.2, for all edges = (a, (b,i)) € E,
but at most(§) fraction,e is either not satisfied or reads onefef, . . ., f,; inG underC 4, C5. O

Transforming RM-LR construction algorithms.  Assume that we are given a natural number
and a(D, k, N)-RM-LR construction algorithrd; with structural parameters
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(size, block, degleft, degright) reducingD — D. Consider thgD, k, N)-RM-LR construction gl-
gorithm A, with structural parameter®) (A - size), block, T'(A) - degleft, T'(A)) reducingD +— D
defined as follows: Given an input to the construction algorithm

—

<fl71, - ,%17k>, ceey <fN,1, ... 7fN,k> € (Fm)k

Invoke .4; on the input tuples to obtain an RM-L& reducingD +— D for the input tuples. Then
perform the right degree reduction manipulation on composable bipartite locally decode/reject codes
that is described above to obtain an RM-GReducingD — D for the input tuples, and outpgt

Transforming RM ¢Had-LR construction algorithms. Assume that we are given a natural num-
berA and a(D, k, N)-RMoHad-LR construction algorithmal; with structural parameters

(size, block, degleft, degright) that is uniform in the tuple association and in the encoding and list de-
coding, and outputs RMHad-LRs whose right degrees do not depend on the input to the algorithm.

Consider théD, k, N)-RMoHad-LR construction algorithmd, with structural parametefg) (A-
size), block, T'(A) - degleft, T'(A)) defined as follows: Given an input to the construction algorithm

—

<.1,_’)171, . 7$1,k>7 cvey <fN?1, e ,fN,k> € (Fm)k

Invoke .A; on the input tuples to obtain an RMad-LR G for the input tuples. Then perform
the right degree reduction manipulation on composable bipartite locally decode/reject codes that is
described above to obtain an RMad-LR G for the input tuples, and outpgt

Note that the algorithr, is uniform in the tuple association, as well as in the encoding and list
decoding.

13.3 The Right Degree Manipulation on RM-LPRs

Given a natural numbek and an RM-LPR reducingp — D for some tuples:
G=(AB,E),V =A, Q,ﬁ,ﬁ, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)
We construct an RM-LPR reducifg — D for the same tuples that has right degige\ )
G={((ABE),V=A2Q, D, T, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)
as follows:
1. Consider the RM-LR induced hy:
G =((AB,E),V =A, Q,ﬁ,ﬁ‘, satg, labelg, projg, tupg, evalg)
2. Perform the right degree reduction manipulation on the RM&-Ro obtain the RM-LRG—:
G- ={((A,B,E),V =A,Q, D, IF‘, satg, labelg=, projg, tupg, evalg)
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3. Assume that the field of the Reed-Muller domdmmis F and the dimension is:. Define
pntg - B — F™ by assigning every verteo, i) € B the pointpntg(b). Definecvalpg :
B x ﬂlfdec — TF by assigning every verte®, i) € B and assignment;, € ]?‘dec the evaluation
evalpg (b, 03,) [Note that sinceg is an RM-LPR, for a uniformly distributed vertek, i) € B,

the pointpntz((b, 7)) is uniformly distributed irF™].
4. Let the corresponding RM-LPR be:

G={(AB,E),V=A4,QQ, D, IF, satg = true, labelg = labelg=, projg, tupg, evalg, pntg, evalpg)

Properties of the manipulation. G can be obtained efficiently froi. If G has sizesize, thenG
has sizeD(A - size). G has the same block length @s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. It is right regular with right degre@(A).

Analysis. Applying Propositioril3.2, we get:

Proposition 13.4.Lete = (a, (b,i)) € E be an edge, and let= (a,b) € E be its corresponding
edge. For every assignme6@y : A — D, for every two assignmentS : B — Fg., and
Cg : B — Fg. such thatCp(b) = C5((b,4)) it holds that:

e ¢ is satisfied inG underC,, Cjp if and only ife is satisfied inG underC, Cs.

e creads somg € Dy, in G underC,, Cy if and only ife readsf € Dy, in G underCy, C.

Thus, similarly to Lemmd3.3 we have:
Lemma 13.5.Let0 < 0 < 1. Letl,a. @ (0,1) — RT be a decreasing function. S&t,, =

max {Wmm, W} andl?,,. (6) = L-lnar(62). 1 G iS @(Gmin, Imaz)-RM-LPR reducing +— D

for some tuples, ang is obtained fromG by the right degree reduction manipulation, thérnis a
(0% ins 120 )-RM-LPR reducing — D for the same tuples.

min’ “max

Transforming RM-LPR construction algorithms. Assume that we are given a natural number
A and a(D, k, N)-RM-LPR construction algorithni; with structural parameters

(size, block, degleft, degright) reducingD +— D. Consider theD, k, N)-RM-LPR construction al-
gorithm A, with structural parameter® (A - size), block, T(A) - degleft, T(A)) reducingD — D
defined as follows: Given an input to the construction algorithm

<f171, . ,f17k>, Ceey <.f"N,1, . ,fNJf) € (]Fm)k

Invoke A; on the input tuples to obtain an RM-LRRreducingD — D for the input tuples. Then
perform the right degree reduction manipulation on RM-LPRs that is described above to obtain an
RM-LPR G reducingD — D for the input tuples, and outpgt. Note that if.4; is uniform in the

point association, then so ;.
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13.4 The Right Degree Manipulation on RM-RRs
Given a natural numbek and an RM-RR reducin® — D for some tuples:
G=(AB,FE),V =B,Q, Y4, D, satg, labelg, projg, tupg, evalg)
We construct an RM-RR reducirf — D for the same tuples that has right degiée\))
G={((AB,E),V =B,Q,%,, D, satg, labelg, projg, tupg, evalg)
as follows:
1. Consider the bipartite evaluation graph underlyéhg
G'=((A,B,E),V = B,Q, %4 dec, Dees satg, labelg, projg, tupg, evalg)
whereX 4 gec andﬁdec are the decoded domains f; andD, respectively.
2. Consider the bipartite constraint graph underlyéiig

g// = <(A> B, E), Qa EA,deca 5deca Satg, labelg, pT’Ojg>

3. Perform the right degree reduction manipulation on the constraint grapb compute the
bipartite constraint grap”’

7 = <(A7 Ea E)a Q, EA,deca 5deca satg, label@’ pTOjg>

[Note that: (1) For every vertex € A, for all labels¢ € €2, there is the same number of edges
€ € I coming out ofa with labelg+(€) = &; (2) The grapht = (A, B, E) is left regular]

4. Assume that the field of the Reed-Muller domdis F and the dimension is:. Define
tupg : B — (F™)* by assigning every vertef, i) € B the tupletupg(b). Defineevalg :

B x Dy, — FF by assigning every vertef, i) € B and assignment, € Dg,. the evaluation
evalg(b, o) [Note that the distribution obtained by picking uniformly at random a vertex
b € B and computingupg(b) and the distribution obtained by picking uniformly at random a
vertex(b,i) € B and computingupg((b,i)) are identical].

5. Define a bipartite evaluation graph:

G' = {((A,B,E),V = B,Q, Y dec, Dees satg, labelgr, projg, tupg, evalg)

6. Let the corresponding RM-RR be:

G={((AB,E),V =B,Q,%,, D, satg, labelgr, projg, tupg, evalg)
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Properties of the manipulation. G can be obtained efficiently fro. If G has sizesize, thenG
has sizeD(A - size). G has the same block length &s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. It is right regular with right degre®(A). The depth of the
tree satisfiability constraints f is the same as that of.

Analysis.
Proposition 13.6. Lete = (a, (b,4)) € E be an edge, and let = (a,b) € E be its corresponding
edge. For every assignme@ly : A — X4 4., for every two assignmentss : B — D, and
Cg : B — Dy such thatC(b) = C5((b,4)) it holds that:

e ¢ is satisfied inG underC,, Cjp if and only ife is satisfied inG underC, Cs.

e e reads somg € Dy, in G underC,, Cyp if and only ife readsf € Dy, in G underCy, Cz.

Thus, similarly to Lemmd3.3 we have:
Lemma 13.7.Let0 < 0, < 1. Letl,ae @ (0,1) — RT be a decreasing function. S&t,, =

max {\/_5%, W} andl?,,,.(6) = 2 - laa(62). If G iS @(Opmin, lmas)-RM-RR reducing — D

for some tuples, ang is obtained fromg by the right degree reduction manipulation, thérnis a
(0r.., 1% . )-RM-RR reducind — D for the same tuples.

min’ “max

Transforming RM-RR construction algorithms.  Assume that we are given a natural number
and a(D, k, N)-RM-RR construction algorithn#; with structural parameters

(size, block, degleft, degright, depth) reducingD +— D. Consider thgD, k, N)-RM-RR construc-
tion algorithm A, with structural parameter& (A - size), block, T'(A) - degleft, T'(A), depth) re-
ducingD — D defined as follows: Given an input to the construction algorithm

<f171, . ,f17k>, ceey <.f"N’1, .. ,fNJf) € (]Fm)k

Invoke .4; on the input tuples to obtain an RM-RRreducingD — D for the input tuples. Then
perform the right degree reduction manipulation on RM-RRs that is described above to obtain an
RM-RR G reducingD — D for the input tuples, and outpgt

13.5 The Right Degree Manipulation on RM-RPRs

Given a natural numbek and an RM-RPR reducin — D for somek-tuples:
G=((AB,E),V =B,Q,%4, D, satg, labelg, projg, tupg, evalg, pntg, evalpg)

We construct an RM-RPR reducifiy — D for the same tuples which has right degi&e\)
G={((AB,E),V =B,Q,%,, 15, satg, labelg, projg, tupg, evalg, pntg, evalpg)

as follows:
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1. Consider the RM-RR induced lgy.
G =((AB,E),V =B,Q, EA,ZS, satg, labelg, projg, tupg, evalg)

2. Perform the right degree reduction manipulation on the RMgRRo obtain the RM-RR;—:
G- ={((A,B,E),V =B,Q,%,, D, satg, labelg=, projg, tupg=, evalg=)

3. Let the corresponding RM-RPR be:
G={((AB,E),V =B,Q, %y, 75, satg, labelg=, projg, tupg=, evalg=, pntg, evalpg)

Properties of the manipulation. G can be obtained efficiently fro. If G has sizesize, thenG
has sizeD(A - size). G has the same block length s It is left regular with left degree larger by a
factor of T(A) than the left degree @. It is right regular with right degre@€(A). The depth of the
tree satisfiability constraints ©f is the same as that 6f.

Analysis. Applying Propositionl3.6 we get:

Proposition 13.8. Lete = (a, (b,i)) € E be an edge, and let= (a,b) € E be its corresponding
edge. For every assignme@ly : A — X4 4., for every two assignmentsg : B — 5dec and
C : B — Dy, such thatC'z(b) = C5((b, 1)) it holds that:

e ¢ is satisfied inG underC,, Cj if and only ife is satisfied inG underC, Cs.
e e reads somg € Dy, in G underC,, Cjp if and only ife readsf € Dy, in G underCy, Cz.

Thus, similarly to Lemmd.3.3 we have:
Lemma 13.9.Let0 < 0, < 1. Letlya @ (0,1) — R be a decreasing function. S&t,, =

max {\/6mm, W} andl’, .. (0) = % Mnaz(02). 1f G is @ (Opmin, lmaz)-RM-RPR reducin@® +—

D for some tuples, and is obtained frong by the right degree reduction manipulation, th@iis a
(0F i, Ut )-RM-RPR reducin@ — D for the same tuples.

min’ “max

Transforming RM-RPR construction algorithms. Assume that we are given a natural number
A and a(D, k, N)-RM-RPR construction algorithrd; with structural parameters

(size, block, degleft, degright, depth) reducingD — D. Consider théD, k, N)-RM-RPR construc-
tion algorithm.A, with structural parameter& (A - size), block, T'(A) - degleft, T'(A), depth) re-
ducingD — D defined as follows: Given an input to the construction algorithm

<le, - ;fl,k>7 ceey <fN71, - ;fN,k> € (Fm)k

Invoke A; on the input tuples to obtain an RM-RRRreducingD — D for the input tuples. Then
perform the right degree reduction manipulation on RM-RPRs that is described above to obtain an
RM-RPRG reducingD — D for the input tuples, and outp@. Note that if.4; is uniform in the

point association, then so ;.
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14 Transforming Reed-Muller Left Readers Into Reed-Muller
Right Readers

In this section we show how to transform RM-LR construction algorithms into RM-RR construc-
tion algorithms and RM-LPR construction algorithms into RM-RPR construction algorithms, thus
proving LemméB.6.

14.1 Transforming RM-LRs Into RM-RRs

To transform RM-LRs into RM-RRs we switch the roles of theand theB vertices. After the
switch, theB vertices project onto the vertices, instead of thd vertices projecting onto th&
vertices. This is achieved by letting assignments to each verte®r contain assignments to all the

A vertices neighboring it. This causes the block length to increase by a factor equal to the degree of
the B vertices.

We add satisfiability constraints to tligvertices. The constraints ensure that the assignments to
A vertices contained in an assignment to a vebtex B are consistent on their projection orita
the original RM-LR. These constraints are formulated in terms of tree satisfiability constraints (see
the discussion before DefinitiohS).

Formally, the switching sides manipulation on RM-LRs is as follows:
Given a right regular RM-LR reducing — D for some tuples that has right degrigright:

G=(G=(AB,E),V =A, Q,D,F, satg = true, labelg, projg, tupg, evalg)
we construct an RM-RR reduciig — D for the same tuples
G=(G=(AB,E),V =580y, D, satg, labelg, projg, tupg, evalg)
by performing the following operations:

1. SetA = BandB = A.

2. For every edge = (a,b) € E there is an edge = (b,a) € E. Note thatG' = (A, B, E) is
left regular.

3. SetQ) = [degright]. If e = (a,b) € E is thei'th edge coming intd in G for i € [degright]

ande = (b,a) € E, then we setabelz(e) = i. Note that for every vertek € A, for all labels
i € [degright] there is one edge € E coming out ofb with labelg(€) = i.

4. The alphabet domaib; and the projection functioprojz are as in the definition of RM-RRs
(Definition'7.5).

5. Settupg = tupg andevalg = evalg.
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6. Recall that by the definition of RM-LRs, we have tfat= F* wherel is the field of D,
andw is its dimension. For every vertek= b € A, define a satisfiability tre&;; of depth
1 as follows. The tree contains a roat = b that has as its children the elementsin=
[degright]. The elements if2 are the leaves of the tree. To complete the description of the tree
satisfiability constraints we need to define for every [degright] a function?;; : {0} — F¥
specifying a point i for the rootu,. For every index € [degright] corresponding to an
edgee = eq(b,i) € E, setP;,(0) = labelg(e) € F*.

Properties of the manipulation. G can be obtained efficiently froi. G has the same size gs
The block length of is larger than the block length ¢f by a factor equal to the right degree@f
G is left and right regular with left degree equal to the right degreg arfd right degree equal to the
left degree ofG. The depth of the tree satisfiability constraintsof 1.

Analysis. DenoteD = (F™, F, Dove, Daee)s D = (F*, F, Denc, Daee), Sz = (€, Dec, S ener DA dec)
andF = ({1}, F, Fope, Faec).

LetC; : A — X4, be an assignment to thevertices inG. We define itprojected assignment
Cp: B — ]?dec to the B vertices inG by assigning every vertex= a € B an element i@dec as
follows: If o5z = C'4(@) is not satisfying, i.e.satg(a, 0a) = false, letCp(b) be an arbitrary element
in Fy... Otherwise, denote by = P; 1(0) € [ the point that the (arbitrary) leafspecifies for the
root of 5. Let Cz(b) be the element iff . . corresponding tos(1)().

Prori)siti(ln 14.1. AssumgthaCA A — Ddee andCp : B —_>IFdec are assignments tg. Assume
thatCz: A — X3 ,.andCz: B — D,.. are assignments 1@, such that the projected assignment

of C; to the B vertices isCp andCz = C4. Lete = (a,b) € F and lete = (b,a) € E be its
corresponding edge. It holds that:

e If 2is satisfied inG underC— andC', thene is satisfied inG underC, andCs.

e ¢ reads an elemenf € Dy, in G underC— and C if and only ife readsf in G underC,
andCp.

Moreover, given assignments, : A — 25enc andCp : B — ]Fenc such that all edges are satisfied
in G underC, andC'z, one can efficiently compute assignmefits: A — Y7 ene andC5 : B —
D..., such that the projected assignmentdf to the B vertices isCz, C5 = C4, and it holds that
all edges are satisfied i@ underC andC'5.

Lemma 14.2.Let0 < 0, < 1. Letl,ee : (0,1) — R* be a decreasing function. S&t,, =
Vim @NAL (6) = L - 100(82). If G iS @ (Smins lnaz)-RM-LR reducingD — D for some tuples,

and G is obtained fromg by the switching sides manipulation, thénis a (6%,,,,, 1%,..)-RM-RR
reducingD — D for the same tuples.

Proof. Let us prove encoding and list decoding:
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Encoding. Let f € D,,.. Assumethat, : A — 25e,w andCp : B — ]?enc are the efficiently
computable assignments guaranteed by the encoding propejtjooff. By Propositioril4.1, we
can efficiently construct assignmerdts; : A — ¥4 _..andCy3 : B — D.,,, such that all edges are

Aenc
satisfied and reagl in G underC andC'5.

List Decoding. Fix an assignmenf’; : B — Dg.. and a reab such thats”, < ¢ < 1. Let
fi,--, i € Dge be thel < [* . () elements guaranteed by Propositiéril invoked on the
(6min; Lmaz)-g€NETIC bipartite locally decode/reject code inducedibyhe assignment'y, = Cx
and the parameter.

Let C4 : A — ¥4, be an assignment to thé vertices inG. LetCp : B — F,.. be the
projected assignment to thevertices inG. When picking uniformly at random an edges F, the
probability thate is satisfied but does not read onefef. .., f; in G underCy, Cg, is at mostO(J).
Hence, by Propositiofi4.1, when picking uniformly at random an edge= £, the probability that

e is satisfied but does not read onefof. . ., f; in G underC, C'g, is at mostO(9). O

Transforming RM-LR construction algorithms.  Assume that we are given @, k, N)-RM-
LR construction algorithmA4, with structural parameter&ize, block, degleft, degright) reducing
D — D that outputs right regular RM-LRs. Consider i1, k&, N)-RM-RR construction algorithm
A, with structural parameterSize, degright - block, degright, degleft, 1) reducingD +— D defined
as follows: Given an input to the construction algorithm

<le, . ;fl,k>7 ceey <fN’1, R ;fN,k> - (Fm)k
Invoke A; on the input tuples to obtain a right regular RM-IRreducingD — D for the input
tuples. Then perform the switching sides manipulation on RM-LRs that is described above to obtain
an RM-RR¢ reducingD — D for the input tuples, and outpgt
14.2 Transforming RM-LPRs Into RM-RPRs
Given an RM-LPR reducin@® — D for some tuples that has right degrigright:
G=(G=(AB,E),V =A, 0, D, T, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)

whereD = (FW,F,ﬁenc,ﬁdec> andF = ({1}, T, ﬁenc,ﬁdec>, we construct an RM-RPR reducing
D — D for the same tuples

G=(G=(AB,E),V =BQ,%y, D, satg, labelg, projg, tupg, evalg, pntg, evalpg)

by performing the following operations:
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1. Consider the RM-LR induced hy:
G =(G=(AB,E),V =A, Q,ﬁj‘, satg = true, labelg, projg, tupg, evalg)
[Note that it is right regular]

2. Perform the switching sides manipulation on RM-LRs to obtain an RMGRR

G- =(G=(AB,E),V=DBQYy, 5, satg=, labelg=, projg=, tupg=, evalg=)
SoA = B. DenoteS = (2, Diees Tt enes X4 dec) -

3. Setpntg = pntg. Define a functiorevalpg : A x Y7 gec — T as in Definition7.€.

4. Let the corresponding RM-RPR be:

G=(G,V,Q,%4,D, satg=, labelg=, projs=, tupg—evalz=, pntg, evalpg)

Properties of the manipulation. G can be obtained efficiently froi. G has the same size gs
The block length of; is larger than the block length 6f by a factor equal to the right degree®f
G is left and right regular with left degree equal to the right degreg arfid right degree equal to the
left degree ofG. The depth of the tree satisfiability constraintsof 1.

Analysis. Using Propositioii4.1, we get: B

Proposition 14.3. Assume tha€'y : A — Dy andCp : B — F4.. are assignments tg. Assume
thatCy : A — ¥y 4. andCy : B — Dy, are assignments @, such that the projected assignment
of C; to the B vertices isCp andCz = C4. Lete = (a,b) € F and lete = (b,a) € E be its
corresponding edge. It holds that:

e If 2 is satisfied inG underC and C'z, thene is satisfied inG underC 4 andCj.

e If 2is satisfied inG underC'; and C'z ande reads an elemenf € Dy, in G underC, and
Cp, thene readsf in G underC4 andC5.

Moreover, given assignments, : A — @m andCgp : B — RE suc_h that all edges_are s&tisﬁed
in G underCy andC's, one can efficiently compute assignmeftits: A — >+ . ~andCyz: B —

Aenc

D.,.., such that the projected as_signmeﬂﬁaj to the B vertices isC, C5 = C4, and it holds that
all edges are satisfied i underC; andC5.

Similarly to Lemmel4.2, we have:
Lemma 14.4.Let0 < 0pin < 1. Letl,a. @ (0,1) — RT be a decreasing function. S&t,, =
VO min @NAL0 (0) = L 100 (62). If G iS @ (Omin, Linas)-RM-LPR reducingd — D for some tuples,
and G is obtained fromG by the switching sides manipulation, théns a (¢7,,.,, %...)-RM-RPR
reducingD — D for the same tuples.
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Transforming RM-LPR construction algorithms.  Assume that we are given(®, k, N)-RM-
LPR construction algorithrd; with structural parameterSize, block, degleft, degright) reducing
D — D that is uniform in the point association. Consider tfi k, N)-RM-RPR construction
algorithm.A4, with structural parametexsize, degright - block, degright, degleft, 1) reducingD — D
defined as follows: Given an input to the construction algorithm

—

<fl71, - ,1317k>, ceey <fN?1, o 7fN,k> € (]Fm)k

Invoke A; on the input tuples to obtain an RM-LRRreducingD — D for the input tuples. Then
perform the switching sides manipulation on RM-LPRs that is described above to obtain an RM-
RPRG reducingD — D for the input tuples, and outpgt. Note thatA, is uniform in the point
association.

15 Transforming Hadamard Left Readers Into RMoHad Left
Readers

In this section we show how to transform a Had-LR construction algorithm into aHRd-LR
construction algorithm, thus proving Lemra/. Recall that a Reed-Muller codeword corresponds

to a low degree polynomial. The idea is to take the coefficients of the low degree polynomial, and
encode them via a Hadamard code olzerThe symbols of the concatenation of the Reed-Muller
codeword with a Hadamard code appear in the encoding (we argue that below).

This results in a very wasteful construction, and is hence used only as an inner construction.

We use the notation appearing in Lemg&. Specifically,D is a RMcHad domain defined by a
finite field F, a prime subfield. of F, a dimensionm, an encoding degreéand a decoding degree
d'. The extension degree &foverL is7 = [F : L]. The number of monomials in an-variate
polynomial of degree at mogtis M/ = ("*%). We consider the Reed-Muller encodifigf — FI*""!
which is a linear function over the field We consider the Hadamard encoding— IL which is a
linear function over the field.. IdentifyingF with the linear subspade”, the concatenation of the
two encodings can be viewed as a linear function dver

The linear functions corresponding to symbols of RMHad Code. By the linearity of the con-
catenation of the Reed-Muller encoding and the Hadamard encoding, for evety paie F x L™
representing a position in the concatenation, there is a linear functioriLavepping each vector
in L» ™ to the symbol of the corresponding codeword at positigny). Letéz; € LY 7 be the
coefficients vector of this linear function.

Transforming Had-LR construction algorithms. 'H is a Hadamard domain defined by the finite
field L and the dimensio/ - 7. Note that there is a natural bijection between the encoded domain
of D and the encoded (and decoded) domait{othe bijection that maps a Reed-Muller codeword
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in the encoded domain @ to the Hadamard encoding of its coefficients in the encoded domain of
H.

Assume that we are given (&, k, N)-Had-LR construction algorithrd; with structural pa-
rameterssize, block, degleft, degright) that is uniform in the tuple association and in the encoding
and list decoding. Moreover; outputs Had-LRs in which the right degrees of the vertices do not
depend on the input to the algorithm.

Let us construct &D, k, N )-RMoHad-LR construction algorithml, with structural parameters
(size, block, degleft, degright) that is uniform in the tuple association and in the encoding and list
decoding, and outputs RdHad-LRs, in which the right degrees of the vertices do not depend on
the input to the algorithm:

Given an input to the construction algorithm
(@11, 01), - (@i i)y - ((@Nas T - (B, Gve)) € (F™ x L7)*
Invoke A, on the following input:
<€f1,1,?71,17 s 7551,1@7@'1,1@% RR) <55N,1,§N,17 cee 7é)5N,k727N,k> € (LMT)k

Assume that the output o4, is the Had-LR

G=(G=(AB,E),V =A Q0 Y, Xg,satg = true, labelg, projg, tupg, evalg)
Let us construct a RbvHad-LR

G=(G=(AB,E),V=AQ,%,%p, satg = true, labelg, projg, tupg, evalg)

as follows:

—

1. For every vertexa € A, assuming thatupg(a) = (€z,4.1---» €z 5.0 1€ tupg(a) =
<(fi,17 gi,l)a ceey (fi,ka ?jz,k))

Note thatA, is uniform in the tuple association. Moreovet; outputs RMHad-LRs in which the
right degrees of the vertices do not depend on the input to the algorithm.

Assume tha is a (dmin, lmaz)-Had-LR. Let us show tha@ is a (8,min, linae )-RMoHad-LR:
DenoteD = (F™ x L7, L, Depne, Daee) @NAH = (LM77 L, Hepe, Haee). Recall thatHe,. = Hee.
DenOteZA = <DA> RA, ZA7enc> EA,dec> andzB = <DBa RB> zB,enca EB,dec>-

Encoding. Let f € D.,. and denote byf € H.,. the corresponding element. L&Y, : A —
X aenc aNACp 1 B — Yp 4. b€ the assignments guaranteed by the encoding propegtyoof/. In
G underC, andCjp, all edges are satisfied and read
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List Decoding. Fix an assignment’s : B — Xp 4. and a real such that,,;, < 6 < 1. Let
fiveo s f1 € Haee = Hene be thel < 1,,..,(6) elements guaranteed by the list decoding property of
G. Letfi,..., fi € Depe C Dye. be the corresponding elements. ket : A — X4 gec. In G under

C4 andC'z, when picking uniformly at random an edges F, the probability that is satisfied but
does notread one g, . .., f; is at mostO(J).

Since A, is uniform in the encoding and list decoding, sods.

16 Composition of Reed-Muller Right Readers

In this section we show how to compose RM-RR and RM-RPR construction algorithms, thus proving
Lemmas8.&

1. LetD = (F™ F, Deye, Dyec) be a Reed-Muller domain defined by a finite figélda dimension
m, an encoding degreéand a decoding degre&

2. LetD; = (F*,F, Dy ene, D1.4ec) be @ Reed-Muller domain defined by the filda dimension
w, an encoding degreg and a decoding degrek.

3. LetDy = (F*,IF, D3 cne, D2 gee) be a Reed-Muller domain.

Assume that we have outer and inner construction algorithms as follows:

e A,.: (D, k, N)-RM-RR construction algorithm with structural parameters
(sizeout, blockeyt, deglefto,:, degrightous, depthoy,: ) reducingD +— Dy, with depth,,, < d.

o A,.: (Dy, k + degrightoy - depthoy, 1)-RM-RPR construction algorithm with structural pa-
rameterssize;,, block;,, degleft;,, degright;,, 1) reducingD; — D, that is uniform in the point
association.

We design a composed algorithd It will be a (D, k, N)-RM-RR construction algorithm with
structural parameterSize, block, degleft, degright, depth) reducingD +— D, for size < sizeyy -
sizej,, block = degleft,,; - block;,, degleft = degleft,,. - degleft;,, degright = degright,, - degright;,
anddepth = depth,,; + 1:

Assume that the input to the construction algorittdnis a collection ofk-tuples of points
(Zi1,...,Tix) € (F™)* for i € [N]. The construction algorithm constructs an RM-RR

G=(G=(AB,E),V = B,Q,34,D,,satg,labelg, projg, tupg, evalg)

as follows:
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1. Outer construction. Invoke construction algorithr,,,; on the inputk-tuples to obtain an
RM-RR

gout = <Gouta ‘/out = Bouta Qouta ZAouta Dla Satgoum lab@lgout ) pT‘Ojgout, tuonut) evalgout>
WhereGout = (Aouta Bouta Eout) andonut = <Qouta Dl,dec; ZAout,enca ZJAou,g,dec>-

2. Queried points. Recall that for every vertex,,;, € A,.;: there are tree satisfiability con-
straints given by a satisfiability trég, , whose leaves are the element<i,; and by an-
cestors point specification functiofs”,,. ¢,.. ¢, .,cq,,, (S€€ Sectiolr.5). We say that an
edgee,us = (aout, bout) € Eoue qQueriesa pointz € FY, if 7 is one of the points along the
path from¢,,; = labelg,,,(e.u:) tO the root of the satisfiability tre€,_,, i.e., there is a depth
i €{0,...,deptho, — 1} such that,,, ¢,.. (1) = Z.

For a vertex,,; € B,.: we definek + degright,,; - deptho,: queried pointsof b,,,; (possibly
with repetitions) as follows:

out?

e \ertex queried pointsk(points): If p1,...,pr € F* are the points such that for ev-
ery oy, € Dl,dec it holds thatevalgout (bout7 Ubout) = <Ubout (ﬁl), e 3 Obpus (ﬁk», then
P1, ..., P are the vertex queried points &f,;.

e Edge queried pointsiégright,: - depth,,: points): For every edge,.: = (aout, bout) €
E,.; coming intob,,; in G,,; that queries a point € F", the pointz is an edge queried
point of b,,;.

. . — bout — boui
We denote the queried pointsigf,; by xﬁ ), e ,(Hde)grightout.depthom

points are the vertex queried points.

€ F¥, where the firsk

3. Inner construction. For every verteX,,; € B,.:, we define an RM-RPR. The purpose of the
RM-RPR is to read the queried pointsigf;.

The algorithm.A;,, is uniform in the point association, and, in particular, uniform in struc-
ture. LetA,,, B, i, andX,, be such thatd,;, is uniform in structure(A;,, Bin, Vi, =
B;,, Qm, ZAm> D2> DenOteZAm = <Qm, D2,dec> EA,L-”,enca ZAi,,L,dec>- Letpntm : Am — [F* be

the uniform point associator.

Forb,.; € B, invoke A;, on the queried points df,,; to obtain the RM-RPI@?;;“:

bOU —_ bou .
Gort = (G, Vin, Qins X, Doy SGt goue s LD goou s PTOJ goous s EUP ghous s €0 Ghous s Pitin, €VAID o)

m )

bou - bou
whereGyo" = (Ain, Bin, E;5").

By definition, there aré + degrightoy: - depthous POINISDY, . . ., Pt degrighton:-depthor: € FF that
correspond to evaluation of the queried point@j’gr“, i.e., for everyb;,, € By, ando,, €
D5 gec,

vl goou (ins Tb:,,) = (00, (D1), -+, Tbr, (Pt degrightous-depthaue )

We call these pointthe evaluating points df,,;.
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. Composed graph. To construct the composed graph for each vertexa,,; € A, We
produce a copy o#;,,, and for each vertek,,; € B,.:, we produce a copy aB;,. Thatis, we
take:

A = {<aout> ain> ‘ Qout € Aout A Qi € Azn}a B = {<bout7 bzn> ‘ bout € Bout A bin S an}

For every two edges,.: = (Gout, bout) € Four aNdes, = (@i, bin) € Ef;;“t, we put an edge
e € E between(a,,, a;,) € A and(byu, bin) € B. Note that the composed graph is left and
right regular with left degredegleft,,. - degleft;, and right degredegright,. - degright;,. The

size of the composed graph is less than,,; - size;,.

Figure 11:.Composed graph.

. Labels. We letQ) = [degleft,.:] x €;,. If an edgee € E corresponds to the outer edgg; =

(Gouts bout) € Four @nd the inner edge,, € Ef’;;uf, thenlabelg(e) is the pair(i, &;,) € 2, where
i € |degleft,] is the index of the outer edgg,; among the edges coming out @f,, i.e.,
Cout = €Gou (Qout, 1), ANAE,, IS the label of the inner edgg, in gf;;w, i.e.&n = labelgg),,m (ein)-
Note that for every vertex € A, there is the same number of edges coming outwith each

label.

. Alphabets. We letX 4 = (2, D5 gec, L aenc, 2a.dec) @aNdprojg be as in Definitiori7.5. Note
that the block length idegleft,. - block;,.

. Evaluation. For every vertex = (byyu, bin) € B, we settupg(b) = tupg,,, (bout). Note that
each tuple is associated with the same numbé? vértices.

For o, € Dsgec, We letevalg(b, op,) be evalgz_;out (bin, 0p) truncated to the first positions
(corresponding to thé vertex queried points).

. Tree satisfiability constraints. Let a = (a,u, a;n) € A. We define tree satisfiability con-
straints fora. Their purpose is:
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(a) To check the satisfiability constraints @f,; in G,;.

(b) To check the satisfiability constraints @f, in gfg"f for every vertexb,,; € B, that
neighborsi,,; in Gyy;.

(c) To check consistency between the assignments to every two velrijj;dﬁ)t € Bout
that neighbora,,: in G, such that the edges’, = (au, b)) € E,. ande?), =
(Gout; b)) € ELu have the same labédbelg, ,(e'))) = labelg,,, (¢2)). The check is

by comparing them on the poiptit;,(a;,) (Which is uniformly distributed irf* for a
uniformly distributeda;,, € A;,).

Let the tree satisfiability constraints af,; in G,.;: be given by the tre€,, , = (U, U
Qout, Ea,,,) and the ancestors point specification functie@ﬁgouhgout}gm cq,.,- 10 construct
the satisfiability tre€l, for « we take the tred; ., and place in each leaf,,; € Q.. @
sub-tree of depth. The leaves of the sub-tree are the eleménts (i, &;,) € 2 for which
the i'th edge coming out ot in G, has label¢,,;. Let us denote these elements by
Q.. € Q. Then, formally we defind, = (U, U, E,) for U, = U,,,, U Qo and E, =
Eops I{(Eout: €) | our € Qour N E € S, }. Note that for every depth, all nodes in that depth
have the same number of children, since this property hold$;for and there is the same

number of edges coming out @f,; with each labek,,; € Q..

We set the ancestors point specification functions as follows:¢Let (i, &;,) € Q. Let
bout € B,y be the vertex touching th&th edgee,.; € F,.; coming out ofa,,; in G,,;, and
let &, = labelg,,, (exn:) be the label of this edge. Léte {0,...,depth — 1} be a depth in
the treeT,. Recall thaddepth = depth,,; + 1. We handle the following two cases separately:

e 0 < h <depthy,—1: Letz =P, , .. (h) € F”bethe point specified in the trég_,.
Then,Z is a queried point ob,,;. Assume that it is thg'th queried point ofh,,; where
J € [k + degrightoy: - depthoy), and letp; € F* be the corresponding evaluating point of
bout. We setP, ¢(h) = pj.

o h = depthyy,: Let P, ¢, : {0} — F* be the ancestors point specification function
associated with the trég,. in the RM-RPRG’>*. Then,P, ¢(h) = P,, .. (0).

16.1 Analysis

Lemma 16.1 (Composition).Let0 < dmin.outs Ominin < 1. L€tlnaz outs lmazin = (0,1) — RT be
decreasing functions. Assume that for some constants > 1 for every0 < § < 1 it holds that
lmax,in(é) S b_l Set

5b2

y 1/(b2+1)
5min = max 5min,in7 (2b% ' §mm,out)1/(2b2+3)7 <2b1 . ﬁ)

and
by 1

lmam(é) = % : lmam,out<2_b% : 62b2+3>
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Assume thai,,;,, < 1.

Then, if A, OUtPULS(,min.outs lmaz.out)-RM-RRS, and4,,, outputs(d,in.in, lmaz,in)-RM-RPRS,
then.4 outputsS(0,in, lnaz)-RM-RRS.

Proof. We will prove encoding and list decoding:

Encoding. Let f € D.,.. We efficiently construct assignmerd§ : A — ¥4, andCp : B —
Dy.enc as follows: LetCly,,, : Aout — Xayuenc ANACh,,, + Bowr — D1 ene b€ the assignments for
Gou following from the encoding property fof. Letb,,, € Bow. LetCa,, b, : Ain — 24, enc
andCp,, b,.. : Bin — D2 enc be the assignments f@ifg“f following from the encoding property for
CBout (bout) € Dl,enc-

Leta = (aou, ain) € A. Then,Cx(a) is taken to be the functiom, : [degleftou] X Qi — Daene
defined as follows: For € [degleftou], 1€t eour = (Gout, bout) € Eoue b€ thei'th edge coming out of
Aoyt 1N Gyt FOT eVerye,, € Qi leto,((i, &) = Ca,, bow (@in) (&in) (Recall thatt 4, ... is the set
of functions(2;,, — Dz ¢nc). FOr everyb = (bou, bin) € B, 1etCr(b) = Cpg,, by, (bin)-

Lete = (a,b) € E for a = (apu, ain) € A andb = (byus, bin) € B. Denote the label of by
label(e) = (i,&n) € Q. Letegs = (Aouts bout) € Eour @Ndes, = (ain, bin) € Ef,;ut. We have the
following properties:

Reading. We have thatvalg(b, C5(D)) is the firstk positions ineval ;s bout (bin, CB;, bow: (bin) ), @and,

sincee;,, readsCp,,, (bouw) in Geo*t underCly,, 4, andCp,, 4., it holds thatevalg (b, Cr(b)) =
evalg,,, (bout, Cp,,, (bout)). SinCee,,; readsf in G,,; underC,,, andCp, ,, alsoe readsf in G
underC4 andCjp.

out

Projection. We haveprojg(a, Ca(a), (i,&in)) = Projgveu (@ins Cag b (@in)s §in) = Chip b (bin) =
Cp(b).
Leta = (aou, ain) € A, and let us show thatutg(a, Ca(a)) = true:

Satisfaction. We define an assignment: U, — T of field elements to the inner nodes Gf;
recall thatU, = U, . U Q..

Qout

e Letoy : U,,,, — I be the satisfying assignment to the inner nodes of the satisfiability tree
Tam Of oy IN Gouy @s follows fromsatg,,, (aout, Ca,,, (Gout)) = true. For every node: €
leto(u) = o1 (u).

am t

e Letoy : Q,, — F be defined as follows. Le&f,.; € ... Denote the polynomial corre-
sponding to the labed,.; by Qc,., = Ca,..(Gout)(§out) € Dienc- Then,oz(&our) evaluates
the polynomial@y,,, on the point associated with,,, namely,os({out) = Qe (Pt (ain))
(recall the uniform point association). For every nade Q,,;, leto(u) = oo(u).
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Next we show that this assignment is indeed consistent with the evaluétigng(¢) for the leaves
¢ € Qofthetreel,. Leté = (i, &) € Q. Denote the polynomial assignediby ) = Ca(a)(§) €
Dsenc- Leteour = (Gout, bour) € Eoue be thei'th edge coming out ofiy,: iN Gour. L€t o € Qo
be the label of,,;. As before, denote the polynomial assigned:jg by the outer assignment

CA(,M (aout> by Qﬁgut = CAout (aout)(gout) S Dl,enc-

Leth € {0,...,depth — 1}, and letu € U, be the ancestor af in depthh in the treeT,,. We
handle the following two cases separately:

® 0 </ < depthoy — 1: Letes, = (aim, bin) € By be some edge withibel g, (ein) = &in-
Slncng = CAinybout (aln)(gzn) = CBirubout (bln)’ ngut C(Buut (bOUt) andezn readeout (bOUt)
in Goov underCa,, 4., andCap, ..., We have thaQe(Po¢(h)) = Q¢,y(Pavuséons (h)). Since
satg, . (@out, Ca,,, (out)) = true, it holds thatQ)e, ., (P, ... gm(h)) = o1 (u).

o h = depthyy: SinceQe = Ca,, b, (@in)(&in) andsat ghou (@in, Cay, by (@in)) = true and
by the definition of theevalp function in an RM- RPR (see Definitiod.€) we have that
Qe(Poe(h)) = evalpgisut (@in, C Ay bous (@in)). SINCEQ, ., = Cp, .. (bout) @aNde;, readsCp, ., (bout)
in G2t underC'y andCsg,, 5,.., We haveQ (P, ¢(h)) = Qe,., (pntin(ain)) = oa(u).

Overall, we get tha@): (P, ¢(h)) = o(u).

in 7bout

Listdecoding. LetCp: B — Dy gec. L€, <6 < 1.

We use the list decoding properties of the inner and outer constructions to define a list decoding
for the composed construction.

Setl;, = | 5b2J Letbou: € Bout- LetCp,, b, © Bin — D2.4ec b the assignment induced by,

wmn

for Gl defined by letting every;,, € B;, be assigned’s((bou, bin)). Note thats,,;, ., < § < 1.
Let fo,uits- s fooundin € D1.dec D€ the list decoding guaranteed by the property of the RM-QLER
for the assignment’s, , ., and confidence paramet&we pad the list arbitrarily if there are less
thanl;,, elements in the list decoding). Defihg assignmentéJBout 1y s CBouiitin + Bout = D1 dec
by assigning, foi € [l;,], every vertex,,; € B,y 10 Cp,,, i(bout) = fbout i

Setdou = gz - 03, and note thab,inour < dour < 1. S€tlowr = |lmaz,out(dout)]. FOT
1

everyi € [l;], let fix, ..., fii,.. € Daec be the list decoding guaranteed by the property of the
RM-RR G, for the assignment’s,,, ; and confidence paramet&y,; (we pad the list arbitrarily if
there are less thah),; elements in the list decoding). In total, we defined a list decoding of size
lin - lowt < 5+ bnaz.out (357 - 6%77) = bnaa (9).

Fix an assignment’y : A — ¥4 4... For every edge,.; = (Gout, bout) € Eou this assignment
induces an assignme@ly, ..., : Ain — X4, dec 0 Ay, IN gbm' Assume that,,; is thei'th edge
coming out Ofa,y,; IN Gy, fOr i € [degleftoy], i-€.,€0u = €q,., (aout, 7). FOr every vertex, € A;,,
takeCly,, em,(am) to be the function that assigns eagh € Q;,, the valueC s ({aour, ain)) (i, &in))-

Setly, = [5245]. We will construct assignmentSy, .1, - - ., Cipueiz. © Aout = Sayuidec: SUCH
that the following holds:
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Proposition 16.2 (Target outer assignments)Pick uniformly at random an edge= (a,b) € E.
Leta = (aout, @in) € A, b = (bout, bin) € B, €our = (Gout, bout) € Eouts Eour = labelg,,,(eou:) @and
ein = (@in, bip) € B>, With probability at least — O(6):

Either the edge is not satisfied irG under the assignments, and Cp, or there areig € [l;,]
andj, € [I},], for which: (i) the edge;,, readsCsp,, i, (bout) IN gf;“f under the assignmen€s,
andCp,, p...; (i) the edgee,,, is satisfied inG,,; under the assignments,,,, ;, andCp,,, i, -

in>€out

Note that once we prove Propositié6.2, we are done, since (using the notation of the propo-
sition): The edge,,; is uniformly distributed inE,,;. Thus, for everyi, € [l;,] andj, € [I}

in]'

the probability of the following event is at moét(d,..): (ii) holds, but not (iii) e,,; reads one of

Jioas -« Jiodou: IN Goye UNMer the assignments,,, ;, andCp,,, ;,. Hence, the probability that this
event happens fasomeiy € [l;,] andj, € [I%,] is at mostO(0,y: - L, - If)) = O(J). Moreover,
whenever both (i) and (iii) hold; reads one of;, 1, ..., fi, ... IN G underC4 andC'.

Constructing the target outer assignmentsFor every vertexu,,; € A,.:, We construct’, as-
signMentsoa,,, 15 - - s Tagurtz, * Qout — Didec 10 Goue- The assignment€'y,,, 1,...,Ca,piz

Aot — Xa,.,.qec are defined for every € [I¥ ], by assigning the vertex,,; € A, the value
C 4yur,i(Gout) = 0a,,,i- We construct the assignmemts,, 1, . . . , 04,z iN two steps:

1. Projection step. Setl], = L% “lmaz,in(0)]. FOr every&,,; € Q,., we construct a list

Jaouriourls > Jaour o, € Diaec Of candidates fok,,,. The list satisfies the following
property:

Proposition 16.3.Letay,; € Apur- Letegw = (Gour, bout) € Eqe be an edge coming out of
a.: that has labelabelg, , (eout) = our- When picking uniformly at random an edge =
(Gin, bin) € Bl and setting: = (a,b) € E for a = (aou, ain) € Aandb = (b, bin) € B,
the probability that the following holds is at masto):

The edger is satisfied inG under the assignments, and Cp, but¢;, does not read an

elementin fo,...1, - s foudin } N Faouonents - - -+ aoursonett, 1IN Gra Under the assignments
Ca andCp

in,€out in 7bnut "

2. Satisfaction stepBy matching the listS.,,,, ¢,ue.15 - - -5 fagur éour,t, € D1.dec fOr differenté, s,
we construct the;, assignments.,,,, 1, -, Tapu iz, © Lout — Didee, SO that the following
property is satisfied:

Proposition 16.4.Leta,,; € Aou-

(a) Forevery: € [I7], it holds thatsatg,,, (Gout, Tay.,.i) = true.

(b) Pick uniformly at random an edg€.; = (dout, bout) € Eour COMING 0OUL Oftyyy IN G oy
and an edge;, = (i, byn) € EX. Sete = (a,b) € E for a = (agw, a;n) € A and
b = (bout, bin) € B. Let&y, = labelg,,,(ex:). The probability that the following holds
is at mostO(§):
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The edge: is satisfied inG under the assignments, andCp, bute;,, does not read an

element in{fbout717 R fbout7li'rL} m {Uaoutvl(go'Uzt)) st 7o-aoutvl:n (SOUt)} In glb;zut under the
assignmentg’y andCpg,, by, -

in,€out

When (in the notation of Propositid6.4), the edge:;,, reads an element §fs,., 1, - - - foour it }1
{Oamurt (Cout) - - - s Oapurtr, (Eour) } N G under the assignmentSy, ..., and Cp it holds
that for someiy, € [l;,] andjy, € [I%,], the edges;, readsCsg,,, i, (bout) IN gf;;“t under the assign-
mentsCly,, ... andCp,, »,.., and that the edge,,, is satisfied inG,,; underCy,,, ,, andCpg,,, .-
Thus, once we prove Propositid6.4 Proposition16.2 is proved as well, noticing that when
e = ({Gouts @in), (bout, bin)) is uniformly distributed inF, we also have that,,; = (aout, bout) IS
uniformly distributed among the edges coming out.gf, in G,.; ande;,, = (a;n, b;,) is uniformly
distributed inE’.

Let us turn to the construction.

in 7bout !

The projection step (Proof of Propositich6.3). We will use Lemmé.8€ and our definition of the
satisfiability tree.

Let &,ur € Q4. Let us define a point evaluation functipa : A;, — F. Leta;, € A;, and
denotea = (aput, ain) € A. If satg(a,Ca(a)) = false, let pe(a;,) be an arbitrary field element.
Otherwise, letv : U, — F be the implied assignment to the inner nodes of the satisfiability tree
T,. Recall that,,; is a node in this tree, and defipe(a;,) = o(&,.t). The decoded domaiB, 4.

, ~\ 1/(b2+1)
defines a code with (relative) distante- %, and for every real’ satisfying (261 . %) <
§" < 1itholds thatm > 2 %. Let fapuioutsls - - > faourbourt, € Draec DE the list we get

from Lemma6.8 for the construction algorithmi,,,, the functionpe and the parameteyr (we pad
the list arbitrarily if there are less thdjy elements).

Fix an edgecou: = (Gout, bowt) With label labelg,,, (out) = Eout- L€t € = (ain, bin) € Elov
ande = (a,b) € E for a = {(apu, ain) € A andb = (bou, bin) € B. Denote the label of by
labelg(e) = (i, &y ). By the definition of the tre&),, whensatg(a, C4(a)) = true we also have that
Sal goour (@in, Ca,, en (@in)) = true andevalpgpout (@in, Ca,, eom (@in)) = pe(ai,). In addition, when
Ca(a)((i,&n)) = Cp(b), we haveCy, ..., (am)(En) = Cp, b...(bin). Hence, wher is satisfied
in G under the assignmengs, andC's, we have that;, is satisfied irgf;;"'i under the assignments
Ca,, eom ANACE andevalpgoou (@i, Ca, (ain)) = pe(as,). Propositioril6.3follows from

Lemmab.&

insDout n,€out

The satisfaction step (Proof of Propositich6.4). Let us say that a vertex = (aou, @in) € A
checkedan assignment,, ., e....i € Di.dec TOr {our € Qo if there is an edge,,, = (aout, bour) €
Eo. With labellabelg, ,, (o) = £oue @nd an edge;,, = (@, bin) € Ef;;"t, such that:

1. The edgex;, readsf.,, ¢,.... IN Goo* underCly, andCsp, 5,.,-

ns€out
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2. Fora = (ayy, ain) € Aandb = (b, bin) € B, the edgee = (a,b) € F is satisfied inG
underC, andC's (and, in particularsatg(a, Cs(a)) = true).

Note that by the definition of the tree satisfiability constraints, if a vertexA checked assignments
f, R f e i € Digec for @m, . gout € Q,ut, respectively, then there is an assign-
out Soutr? QoutsSoyts?

mentoy,: : U,,,, — F to the inner nodes of the satisfiability trég , that is consistent with all
these assignments. That is, for evgry [s], for every depthh {0 .,depthoy — 1}, ifu € U,,,,

is the ancestor of the Ie&ft in depthh in the treeT,,,,, thenf, L, ) (h)) = oout(u).
m f J QoutSoqt
We define assignments,,,, 1, a5 - - > Tagurdr, © Qout — Dl,dec using the following proce-
dure:

fori=1,2,...,0} +1do

rin

1. For everyé,.; € Q.. let theuncovered assignmerfts &,,,; be
Lguut = {faoutvgouhl’ R faoutygoui»l;n} - {O-aout,l(gt)ut)7 s 70-aout7i_1(50ut)}

2. If there is noa = (a,, ain) € A such that for at least fraction of theé,,; € .., the vertex
a checked an uncovered assignmentggy, halt.

3. Otherwise, let € A be such a vertex. For evety,; € 2,.; such that. checked an uncovered
aSSignmenfaouhfautJ < Lfout for fouti let O-aouni(gout) = faoutvfoutvj' Completegaout,i into an
assignment),,, — Dy 4. Such thatatg, ,, (Gout, 0a,.,.i) = true [Note that this is possible for
depthoy: < df].

Note that:

e When the algorithm ends, it is necessarily because it reachdthttiestruction in Stej2:
For every iteration = 1,...,0% + 1, let L; denote the average number of uncovered assign-

ments| . D o€t |L§m\ in thes'th iteration. We have thdt, < ;. Moreover, for every
iteration; = 1, . .. , >, +1in which the algorithm does not halt, we have that; < L;,—4-1.
Hence, if the algorlthm reaches S@m iteration/;, +1, it holds thatl,;« , <, =913, <0
(recall thatl}, > =22, while I, < =247). Therefore, in this iteration, for evey,, € Qoy it

holds that L,,,,| = 0, and the algorithm must halt.

e Assume that the algorithm halts in Si2pn thei'th iteration. Pick uniformly at random an
edgecou = (Gout, bout) € Eou COMING OUL Oftyy, IN Gy and an edge;, = (ain, biy) € B2,
Sete = (a,b) € Efor a = (agu, ain) € Aandb = (byys, bin) € B. Let&y, = labelg,,, (€out)-
Let us show that the probability that the edgs satisfied inG under the assignment$, and
Cp, ande;,, reads an elementiffa,.,.couts - - - s favur ourtl, }—{Caouet (Cout)s - - - s Tagurio1(Eout) }
in Qf;;“t under the assignments, andCp is less than:

Assume that this is not the case. For eveyy € Q.. there is the same number of edges
Cout = (Qout, bout) € Eoue COMING oUt Ofayy; IN Goyy With labelg, , (€0ut) = oue- HeENCE,

in,€out inabout 1
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in the i'th iteration, there must be a vertex= (a,., a;n) € A that checked an uncovered
assignment for at leastfraction of theg,,; € Q... If this is the case, the algorithm does not
halt.

Let Oapui1s - s Oaguritz,  Qour — Diaec DE the assignments the algorithm outputs (If there are
less tharl}, assignments, we pad the list arbitrarily with assignments : Q. — Di gec With
satg, ., (Gout, 0a,,,) = true). By definition, for everyi € [I7 ], it holds thatsatg,,, (Gout; Tayyi) =
true. Propositionl6.4now follows from Propositioil6.3 O

17 The Tree-Path Game

In this section we analyze a two-prover game that we calie@-Path GameThis analysis allows
the composition of RM-RR and RdMHad-LR construction algorithms.

A Tree-Path Game is defined by the following objects:

1. Tree. Arooted tre€l’ on a set of nodes. We denote the depth @f by d. The depthi should
be thought of as some small constant. Fet 0, ...,d, we letU; C U denote the nodes in
depthi. All the nodes inU; have the same number of children, denadtedWe assume that
the tree is directed from the root to the leaves.

2. Alphabet. A finite alphabetR, where nodes i/ are assigned values frofR

3. Code. An encodingE : R — X™ for some alphabet and lengthm. The encoding corre-
sponds to a code with (relative) distarice e for 0 < e < 1.

In the game a verifier interacts with two provetise tree provef/” andthe path provefP. Both
are asked about an assignment to the nédeSupposedly, both answer about the same assignment
oc:U — R.

The tree prover is given a positiane [m| in an encoding, and outputs feverynodeu € U
a symbol in3. The symbol is supposedly thigh symbol in the encodind’(o(u)). We denote the
answer of the prover by (i) : U — 3. We say that it iconsistentvith an assignment : U — R,
if indeed for every node € U, it holds that7 (i)(u) = E(o(u));.

The path prover is given a leaf in the treg € U,, and outputs assignmems ...,r; € R for
the nodesuy, ...,uqy € U on the pathuy — --- — u, from the root to the leaf,;. We denote the
answer of the prover b (u,) : {0,...,d} — R. We say that it ionsistenwith an assignment
o : U — R, ifindeed it holds thaP (u4)(j) = o(u;) for j =0, ..., d.

The verifier in the Tree-Path game picks uniformly at random a question to the tree prover and a
guestion to the path prover and checks their consistency. See B@gure

We will prove that for any strategy of the tree and path provers, there exists a short list of possible
assignments to the treg, ..., 0, : U — R, such that almost surely whenever the provers pass the
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Tree-Path” :
1. Pick uniformly at random a positiane [m].

2. Pick uniformly at random a leaf; € U,.

3. Letuyg,...,uq € U denote the nodes on the path from the root.fo The verifier asks
for 7 (i) and’P(u,) and tests that the two provers are consistent on the assignments to the
verticesuy, . . ., uq € U, namely, it checks the following equalities:

7(i)(uo) = E(P(ua)(0))i, -, T(i)(ua) = E(P(ua)(d))s

Figure 12:Tree-Path Game Verifier

test, the answer of the path prover is consistent with ong of ., 5;. Note: we could have proved
a similar assertion about the consistency of the tree proverswith . , oy, but it is not necessary for

us.
We use the following notation:

o TPTP(i,uy): For a positioni € [m] and a leafu; € Uy, we let TP7” (i, uy) be 1, if the
verifier's test in the Tree-Path game passes when the verifier asks the treeppvestion
and the path proveP questionu,, and0 otherwise.

e conp(ug,0): For aleafu; € U, and an assignment: U — R, we letconp(ug, o) bel, if
P(uq) is consistent withr, and0 otherwise.

The first proposition shows that from any prover strategies we can extract an assignment
U — R to the nodes of the tree. The assignment is such that we can relate the consistency of the
path prover with the assignment to the probability that the test passes.

We prove an even more general statement. In this statement, there is a weight functign—
0, 1] that assigns each leaf, € U, a weightw(u,), and we consider the following:

e Theaverage success probabilitf the test is

E  [TP77(i,ug) - w(ua)]

1€[m],ug€lUy
e Theaverage consistenaf the path prover with an assignment U — R is

UdIEEJUd [conp(ug, o) - w(ug)]

We relate the average success probability of the test and the average consistency of the path
prover with the assignment. The relation we show rapidly deteriorates with the depithwever,
as we think ofZ as being a small constant, it does not bother us.
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Proposition 17.1. For any Tree-Path game as above, for any leaf weightsU; — [0, 1], for any
prover strategie§¥ and?P, there exists an assignment U — R, such that

B feonp(une) wlua] = (B TPl u) wu)]) - @24 1)

uqgeUy i€[m],uqg€lUy

By applying the proposition iteratively, we can find a short list of possible assignments to the
treecy,...,0; : U — R, such that almost surely whenever the provers pass the test, the answer of
the path prover is consistent with onexaf . . . , o;:

Proposition 17.2. Consider a Tree-Path game as above. gt = 2 - €2l and/, .. () = 5% For

everyd > d,.n, fOr any prover strategieg and P, there exist < [,,,..(5) assignments, ..., o; :
U — R, such that the following holds:

Pr  [TPTP(i,uq) AV € [I], conp(ug,a;) =0] <&

i€lm],uqg€lUy

Proof. Fix 6 > 0,.;,. We construct assignmenis, ..., o; : U — R iteratively. Each time we use
Propositionl?7.1to extract an assignment that is consistent with the path prover on a large fraction of
the leaves. Then, we set the weights associated with these ledvesdbminate their contribution
to the probability that the test passes, and move to the next iteration to extract another assignment:

1. for ug € Uy, setw(uy) < 1
2. 71
3. while Eicpnuger, [TPT7 (4, ua) - w(ug)] >0
(a) Leto; : U — R be an assignment that satisfies

5%’
E [conp(ug,0j) - w(ug)] > —
ug€ly 2
[note that such exists by Propositi@i.1and the choice of > §,,;,]
(b) Uy« {uq € Uy | conp(ug, o) - w(ug) =1}
(c) for ug € Uy, setw(ug) — 0

d)j—j+1
First note that in SteB, the following holds:
E  [TP"7(ug) - w(ug)] = Pr [TPTP(i,us) = 1AVL < j < j—1, conp(ug,05) = 0]

i€lm],uqg€Uy 1€[m],ug€ly

Thus, when the procedure ends, the assignments ., o,_; satisfy the statement of the proposi-

tion. It remains to argue that the number of assignments we constructed is af,most = 5%

This follows since (i) in different iterationg, # j», we haveUdJ1 N Ud,j2 = ¢; and (i) in every
od
/U = 5. -

iteration;j, we have‘ Uy
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Let us prove Propositich7.1:

Proof. (of Propositioril7.1) The proof will be by induction on the depthof the tree in the Tree-
Path game. Fatf = 0, letT" consist of a single nodé = {u,}. Take the assignment: U — R that
is consistent with the answer of the path prover, iréuy) = P(u0)(0). Then,conp(ug, o) w(ug) =

w(uo), and we are done sin@ () [TP7” (i, uo) - w(uo)fo — (20— 1) - e < w(ug).

Assume that the proposition holds for some natural nunmiber, and let us prove that it holds
for d. Consider a Tree-Path game as above where the tree hasddégtho : U; — [0, 1] give leaf
weights. Fix prover strategies andP.

Observe the nodes in depth- 1. Every such node,_; € U,_; hask,_; childrenu, € Uy in
depthd. We consider the sub-game, in which the question to the path prover is chosen among the
children ofu,_; in the tree. Denote,_; — u, Whenuy is a child ofu,_; in the tree. The average
success probability of this test is given by:

E [TPT’P(Z', ug) - wlug)]

i€lm],ug€Uq:ug—1—uqg
Averaging over the,, | € U;_; gives:
E [ E [TPT’P(Z', Uq) - w(ud)}} = E [TPT’P(Z', Uq) - w(ud)}
uqg—1€Uq_1 [i€[m],uq€U :uq—1—uq i€lm],ug€lUy
Or, equivalently,

E [ E [TPT’%,ud)-w(udﬂ]: B [TPT7(iua) - wlua)]

udfleUdfl,iG[m] ug€Ug:uqg—1—uqg ie[m},udGUd

Since for any random variablg it holds thatk [X?] > (E [X])?, we have that

2( E [TP”’(z’,ud)-w(ucz)])2

ug—1€U4—1,5€[m] ug€Ugug_1—ug i€[m]ug€ly

E [( E [TPTP (i, ug) - w(ud)}>2

Using the notation;_; — ug4, u), to indicate that:; andw), are both children ofi;_; (possibly the
same child) in the tree, we get

E [TPTP (i, uq) - w(ua) - TPTP (i ) - w(ug)]]

ug—1 €U _1,4€[m] [ud,uéeUd:ud_lﬂud,ug

2( E [TPT”’(z’,ud)~w(udﬂ)2

i€[m],uq€Uy

Or, equivalently,

E

ug—1€Uq-1

BB (TP ) wlu) TP w<u;>}“

ug,u, €U ug_1—ug,uly |i€[m]
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2
> ( E [TPT’P(i,ud) : w(ud)])
i€lm],uqg€Uy

For a path assignment: {0,...,d} — R, we denote the assignment induced on deptts
d—1bypgq:{0,....,d=1} — R(forj =0,...,d —1,pq4-1(j) = p(j)). We say that leaves
uq, u, € Uy that have the same fathey_, € U, in the tre€l” agree if on questions:; andu);, the
path prover answers the same on the common path from the regtta.e., P (uq) -1 = P(u})ja-1
(note that the equality is between tftonctiongy. We letagr,(uq, u);) bel if u; andu/, agree, and
otherwise.

By the distance of the code corresponding:tofor any leaves:,, v/, € U, that have the same
fatheru,_, € U, in the treeT but do not agree, i.eagrp(uq, u);) = 0, it holds that:

E [TPT’P(i, ug) -TPT’P(Z', u&)} <e

1€[m]
Hence,
E E [ [TPT P (i, uq) - wlua) - TPTP (i, uy) - w(uy) - agrp(ug, Um}
ud—1€U4—1 | ug,ul,€Ug:ug_1—ug,ul; [i€[m]

> (,e[ E (TP (i, ug) -w(ud)])2 —e

m],uqg€lUy

Or, equivalently,

E

ug—1€Uq—1 |i€[m]uq,ul€Uquqg_1—ug,u,

E [TPTP (i, ug) - w(ua) - TPTP (6, up) - w(uy) - agrp('ud’uiz)]]

2
> (B (TP wu)] ) o
i€[m],uqg€Uy

Consider the tre&” of depthd — 1 that is obtained from the tréE by discarding the nodes in
depthd. LetU’ = Uf;ol U;. Let 7T’ be the tree prover induced W3y for 7". For a path assignment
p:40,...,d—1} — R, for a positioni € [m| and a node:;_; € U,_, IetTPT"p(z',ud,l) be0 or
1, depending on whether the test of the Tree-Path game passes, when th& trekedree prover
is 7" and the path prover answersLet Inp ,,(p) bel if p is induced by the path assignmentig
i.e.,P(uq)a—1 = p, and0 otherwise.

We have that

E Z E [TPT/vp(i,Ud_ﬂ np ., (p) - wlug) - |n7>,u2l(p) -w(ufi)

ug—1€U4-1 {0, d1}— R i€[m],ug,ul,€Uq:uq_1—uq,ul

> (,e[ E (TP (i, ug) -w(ud)])2 —e

m]uqg€lUy
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Stated differently,

E Z E [TPT/’p(i,ud_l)] . ( E [Inp 4, (p) -w(ud)])2

uqg_1€U4_ ] ug€EU :ug— u,
d-1€U4-1 {0, d*l}HRZE[m] d€Uqug—1—uq

> (ie[m}E [TPTP (i, uq) -w(ud)])2 —€

uqgeUg

We define a path prove?’ for the Tree-Path game ¢ as follows: For every node, € Uy_1,
let P'(uq—1) be an assignment: {0,...,d — 1} — R that maximizes

E TP™7(ua0)] - B (Inpu(p) - wlu)

ze[m] ug€Ugiug_1—ug

Foruy—y € Uy, denote this maximum by/,, ,. Then, it follows from what we showed that

E Mud,l ' Z E [Inp,ud (p) ’ w(ud)]
ug—1€U4-1

uqg€Ugq:uqg_1—u,
p:{0,....d—1}—R d=Tditd—1d

> (iewE [TPTP (i, uq) ~w(ud)])2 — €

ug€elUy

Since for everyuy 1 € Uy it holds thatzpz{0
we have

d-1}—R Eu,ctaug-1—uq [lnp,ud(p) ) w(ud)] < 1,

-----

E [Mudl]z( B [TPT’P(i,ud)~w(ud)}>2—e

ug_1€Uq_1 ie[m],udEUd

Or, equivalently,

E [TPT’””(@', Ug_1) - E (Inpu, (P (ug_1)) - w(ud)]}
i€[m]ug—1€Uq—1 ud€Ugug—1—uq
2
> ( E [TPT’P(Z', Ug) -w(ud)}) —€ 3)
i€[m],uqg€Uy

Define a weight function’ : U;_; — [0, 1] by assigning every,_, € U,_, weight

w'(ug-1) = E (Inp (P’ (1)) - w(ua)]

ug€Ug:ug_1—uq

By the induction hypothesis on the Tree-Path game on theltreédepthd — 1, we get that there
exists an assignment : U’ — R, such that

E [conp/(ud_l, 0'/) : w’(ud_l)]
ug—1€Uq—1
2d71
> ( E [TPT,’PI(Z', Ug—1) -w'(ud_l)}> — (21— 1) 4)
ie[m]vudfleUdfl
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Leto : U — R be the assignment that identifies withon U’ and assigns eaaly, € U, the value
P(ugq)(d). Then,

E [conp(ug, o) -w(ug)] > E  [conp(ug_1,0")  w' (ug_1)] (5)
ug€Uq ud—1€U4—1

Let us lower bound the right hand side of inequaldy. By inequality @),

9d—1

( E [TPT/’P/(% Ug-1) - w'(“dl)]) — (27 =1) €

iE[m],ud_1€Ud_1

2d—1

> (( E _[TPP(i ug) -w(uczﬂ)Q - E) (@27 1) e

1€[m],uqg€ly

> ( E [TP"7(i,uq) - w(ud)}>2d —2 e — (24t 1) €

i€[m],uqg€Uy

— ( E  [TP"7(i,uq) -w(ud)})2d —(27-1)-€

i€[m]uqg€ly

Therefore, from inequalityd) and equalitys), we get
2d
E [conp(ug,0) - w(ug)] > ( E  [TPTP(i,ug) - w(“d)]) —(29=1)-¢
uq€Uy 1€[m],ug€ly

The inductive claim follows. OJ

18 Composition of Reed-Muller Right Reader and RMHad Left
Reader Construction Algorithms

In this section we show how to compose RM-RR and{®Md-LR construction algorithms, thus
proving LemméB.C.

1. LetD = (F™,F, D.,., Ds.) be a Reed-Muller domain defined by a finite fi&lda dimension
m, an encoding degreéand a decoding degreg&

2. LetD; = (F*.F, Dy ene, D1.4ec) be @ Reed-Muller domain defined by the filda dimension
w, an encoding degreg and a decoding degrek.

3. LetD° = (F" x L7, L, D¢, ., DS..) be a RMHad domain associated with, whereL is a

enc?

subfield ofF and the extension degreeris= [IF : L.

4. LetDy = (F* x L7, L, DY ..., ¥ 4..) be a RMHad domain associated with, .

1,enc’
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Assume that we have outer and inner construction algorithms as follows:

e A,.: (D, k, N)-RM-RR construction algorithm with structural parameters

(sizeout, blockeyt, deglefto,:, degrightoy:, deptho, ) reducingD — D;, where the deptlepth,,:
is constant and smaller thal).

o A;.: (D3, degleftoy: - k+depthou+1, \IF|“’“)-RM<>Had-LR construction algorithm with struc-
tural parameterssize;,, block;,, degleft;,, degright;,) that is uniform in the tuple association
and in the encoding and list decoding. The algorithm outputs right regulai-REH_RS.

We design a composed algorithsh The algorithmA is a (D?, k, N)-construction algorithm that
outputs edge reading bipartite locally decode/reject codes. The algorithm has structural parame-
ters (size, block, degleft, degright) for size < size,,; - sizej,, block < degleftyy: - block;,, degleft <
degleft,,. - degleft;,, degright < degright,,. - degright;,:

Assume that the input to the construction algoritbhinis a collection ofk-tuples of points
{Ti1,Tin)y - (Tir, Tin)) € (F™ x L7)k for i € [N]. The construction algorithm constructs
an edge reading bipartite locally decode/reject code

G=(G=(A,B,E),Q X4, Xg,satg,labelg, projg, tupg, evalg)

as follows:

1. Outer construction. Invoke construction algorithim,,; on the input:

—

<fl71, . ,I17k>, ceey <fN,1, ... ;fN,k> € (Fm)k

Obtain an RM-RR

QOUt - <Gout7 V;mt - BOUt’ QD’lLtJ ZAOMJ Dl? Satgout7 la’belgout Y projgoutﬂ tupgout7 eva’lgout>

WhereGout == (Aouty Boutu Eout) andEA == <Qout7 Dl,deC7 ZAout,ena ZAgut,dec>-

out

2. Queried points.  Setk’ = (deglefto,: - k£ + depthoy + 1). For a vertex-label paif =
(Gouts Eout) € Agur X Qouy We define a collection of siz&|“ " of &'-tuples of points iff® x L.
We call these pointqueried pointsEachk’-tuple is indexed by a palfz, ) € F* x .". The
tuple consists of the following’ points inF* x IL":

e \ertex queried pointsdégleft,. - £ points; k& points for every neighbor of,,;): These
points depend only on the vertey,;. Lete,.: = (aout, bour) € Four be an edge coming
out of a,,;. The vertex queried points associated with this edge are as follows.
Assume that the tuple associated Wil is tupg,,, (bout) = (Zin, - .., Tig) fori € [N].

If p1,...,p, € F* are the points such that for every vertgx, € B,,; and assignment
Obpus € D1.dec it holds thatevalg,,, (bout, Ob,.;) = (Obyu (D1)s - - -5 b, (Pk)) (SUCh poOINtsS
exist by the definition of RM-RRs), thelpy, 7.1, - - ., (Pk, Uik) € F* X7 are the vertex
queried points ofa,., £,.:) associated witla,,;. Note that these points do not depend
on (&, 1) or on&,y;.
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e Path queried pointsdepth,,: points): Recall that for every vertex,.;, € A,.; there are
satisfiability constraints ig,,; given by atred’, , whose leaves are the elementSlip;
and by ancestors point specification functidd, . ¢,.. }¢, o, ., (See the discussion in
Section?.5). A pair (p, i) € F* x L7 is a path queried point Qtiyu:, oue ), if 7S One of
the points along the path frof,; to the root of the satisfiability tre€, ., i.e., there is

adepthi € {0,...,depthy, — 1} such that?,,, ¢,..(i) = p.
e Random point{ point): the point(z, i) € F* x L.

out?

We assume that eaéfrtuple is ordered as above.

. Inner construction. Let I = (aout, Eour) € Aour X Qoue. We define a RMHad-LR whose
purpose is to read the queried points/of

The algorithmA,,, is uniform in the tuple association, and, in particular, uniform in structure.
Let A;, Bin, Qin, X4, andXp,  be such thatd,, is uniform in structure(A;,, Bi,, Vin =
Ama Q'ln’ EAzn’ E zn>'

Invoke A;,, on the collection of queried points éf Obtain the RMHad-LRG! :

gzln - <GI V;nu Qiru ZA

wm?

in ) Ean ?

satgr = true, labelg{n ,projgr s tupgr evalg{n>

whereG! = (Ai,, Bin, EL). Lettupi;, : A;,, — F* x L7 be the uniform tuple associator
(where we use the indexing introduced for the queried points above).

. Composed graph. To construct the composed graph for each vertexa,,; € A,u: We
produce a copy ofi;,,, and for each vertek,,; € B,.:, we produce a copy aB;,. Thatis, we
take:

A = {<aout> ain> | Qout S Aout A Ain S Azn} ) B = {<bout> bzn> | bout S Bout A bzn S Bz’n}

For every edge, .. = (aout, bout) € Eoue With labelé,,, = labelg,,,(e..:) @and an edge;, =
(airwbin) € EZIn Where[ = <aout7€out>1 we pUt an edge €FE between<a0utaain> € A and
<b0ut7 bzn> S B

Note that the composed graph is left regular with left degieggeft,,. - degleft;, and right

regular with right degredegright,,: - degright;,. The size of the composed graph is less than
Siz€oyt - SIZEp.

. Labels. We letQ = Q. x Q;,. If an edgee € E corresponds to the outer edgg; =
(Gout> bout) € FEous, labeled byé,,; = labelg,,, (eous), and the inner edge;,, € E! , where

I = {(aout, out)s thenlabelg(e) is the pair(&,.:, &) € Q, whereg;, is the label of the inner
edgee;, inG! ,ie. &, = labelgr (ein).

. Alphabets. We letX 4 = (Qour, X 4;, decs DA .enc, 2a.dec), Where the encoded domain consists
of all possible functions frorf,,; to the encoded domain &f,, , i.e.,

EA,enc = {f | .f : Qout - ZAm,enc}
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and the decoded domain consists of all possible functions figpto the decoded domain of
XA le.,

in?

EA,dec = {f ‘ f : Qout - ZAm,dec}
We letXz = X, . The projectiorprojg is defined in the natural way, by assigning every

vertexa = (aout, @in) € A, assignment, : Qour — X4, dec aNd labEK = (Eour, Ein) € Q,
wherel = {(ayut, {out), the projection

pm]'g(a, Oa, 5) = p?“OjgiIn (aim Oa (gout)a gm)

Note that the block length is at masigleft,,; - block;, (note that we can assume without loss
of generality thatQ,,;| < degleftoyt).

. Evaluation. Lete = (a,b) € E be an edge, where = (ayu, @in) andb = (bous, bin). Let
Cout = (Qout, bour) @NM leté,,, = labelg,, (e..:) be the label of the outer edge.

Suppose thatupg, ., (bout) = (Ti1, - .., Tix) € (F™)* fori € [N] (For simplicity, we associate
everyb,,; with a uniquei € [N]). We settupg(e) = ((Zi1,%i1),- - (Zig, Yig)) € (F™ x
IL™)*. Note that each tuple is associated with the same number of edges.

Leto, : Qour — Xa,, dec ANATL = (Gout, Eour)- We letevalg(e, o,) be evalg,_zn(am,aa(fout))
truncated to thé positions corresponding to thevertex queried points associated wit});.

. Tree satisfiability constraints. Recall the definition of tree satisfiability constraints appearing
in Section7.5.

Leta = (aopu, am) € A. Leto, @ Qo — X4, 4ec D€ an assignment far. We define a
satisfiability constraintatg(a, o,), whose purpose is to check the tree satisfiability constraints

of a..: IN G,y (recall that the inner reader has no satisfiability constraints). The check focuses
on one position in the Hadamard encoding of the evaluation in each of the nodes. The position
is determined by;,, (here we use the uniformity in the tuple association).

Let the tree satisfiability constraints af,; in G,,; be given by the treq, , = (U, U

QAout
Qout, Ea,,.) and the ancestors point specification functi¢ns, . ... be,.,ca,..-

We say that, satisfies: (i.e., satg(a, 0,) = true), if there exists an assignment of elements
in L to the inner nodes of the tree: U, ,, — L, such that the following holds. Letec U,_,,

be a node in the tre€,_,. Assume that is in depthh € {0, ..., depthy,: — 1} in the tree.
Let &, € Qo be a leaf in tree which is a descendenwofLetp = P, ¢,..(h) € F* be
the point specified for. in the tree. Letj € L™ be the position in the Hadamard encoding

associated witl,, (i.e., is the second component of the paipi;,(a;,)).

Then,(p, v) is a path queried point df = (a,ut, {out)- SUPpPOSE it is the'th queried point for
j € [K']. Itshould hold thatvalg: (ain, 0a(Eout)); = o(u).
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18.1 Analysis

Lemma 18.1 (Composition).Let0 < dmin.outs Omin.in < 1. L€tlnaz outs lmaz.in : (0,1) — RT be
decreasing functions. Assume that, i (6), lnaz.out(§) < 690, For a sufficiently small constant

c> 0, set
d\° (1Y)
5min = max {57?’”71 in? 5;:””7' out? (_) ’ (_) }
an Cmineut> \ TR ) \ L]

Then, if Ay, OUtPULS(8,in out, lmaz.out)-RM-RRS, andd;,, outputs(d,,:n.in, lmax,in)-RMeHad-LRs,

then A outputs(d,,.in, lma: )-€dge reading bipartite locally decode/reject codes, for same(d) <
500,

Proof. We will prove encoding and list decoding:

Encoding. Let f € D.,.. We efficiently construct assignmer§ : A — X4, andCp : B —
Y Benc as follows: LetCly,,, : Apur — Xa,uienc ANACE,,, : Bowr — D1 enc bE the assignments for
G..: Tollowing from the encoding property fof.

By the uniformity in encoding (and list decoding) &f;,, for everyb,.; € B,,; we can effi-
ciently construct an assignmefi,, 5., : Bin — X5, .enc fOr the concatenation of the Reed-Muller
codewordC'g, , (b,,:) With the Hadamard encoding ovér. For everyb = (b, bin) € B, let
OB<b) = CBm,bout (bm)

For I = (aout; Sout) € Aout X Qout, 1€81Ca,, 1 : Ain — X4, enc be the assignment fof;,, in
G! following from the encoding property for the concatenatiomafj, ,, (aout, Ca,., (Gout); Eout) €
D1 ene With the Hadamard encoding ovier

Leta = (aou, ain) € A. Then,Cy(a) is taken to be the function, : Q,,: — X4, enc defined
as follows: FOI,,: € Qoue, 1011 = (aout, Eour) @Nd definer, (§our) = Ca,, 1(ain)-

Lete = (a,b) € E for a = (aou, ain) € A andb = (bou, bin) € B. Denote the label of by
label<€) = f = <£out7£in> € Q. Let] = <aout7£out> S Aout X Qout- Let Cout = (aoutabout) € Eout
ande;, = (ain, bin) € EL . We have the following properties:

Reading. Assume thatupg(e) = ((Zi1,9in), - - -, (Tig, Uix)) fori € [N].

We have thatvalg(e, C'a(a)) is thek positions inevalgr (ain, Ca,, 1(ain)) corresponding to the
k vertex queried points associated with,. The edgeei,fnreads the concatenation 6%, (bout)
with the Hadamard encoding ov&rin G/ underC,,, ; andCg,, 4...- Thus, for everyj € []
it holds thatevalg(e, Ca(a)); is they; ; symbol ofevalg,,, (bout, Cp,.. (bout)); With the Hadamard
encoding ovetl.. Sincee,,; readsf in G,,, underCy, ,, andCp, ,, alsoe reads the concatenation of
f with the Hadamard encoding ovierin G underC'y andCp.

Projection. We have projection:
projg(a, Ca(a),§) = projgr (ain, Ca,,,1(@in), &in) = Chiy o (bin) = Cp(D)
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Leta = (aut, ain) € A, and let us show thatatg(a, Ca(a)) = true. Let the position in the
Hadamard encoding associated with bey = (y1,...,y,) € L™ (this is the second component of
the pairtupi;,(a;,)).

Satisfaction. We define an assignmeat: U, , — L of subfield elements to the inner nodes of
T.,... Leto’ : U,,,, — T be the satisfying assignment to the inner nodes of the satisfiability tree
Ty Of aous IN Gy @s follows fromsatg,,, (aout, Ca,,, (Gout)) = true. Recall that we identifyf with

L7. For every node € U, , leto(u) be the symbol of the Hadamard encodingtif.) determined

by a;,. Thatis, ifo’(u) = (of,...,0.) € L7, theno(u) = >_, y; - o).

Next we show that this assignment is indeed satisfyingulLetU,_ , be a node in the treg,
Assume that: is in depthh € {0, ..., deptho, — 1} in the tree. Let,,; € Q.. be aleaf in the tree
which is a descendant af LetQ),,, = Ca,..(@out)(&out) € D1 4ec DE the assignment for this leaf in
the outer RM-RR7, ;.

Letp = P, .. ¢..(h) € F* be the point specified faz in the tree. Lety € L™ be the second
component of the paitupi;,(a;,). Assume thatp, ) is thej'th queried point ofl = (aout, Eout)
for j € [K']. Then, the inner reader indeed evaluatesdy: (ai,, Ca(a)(&ou)); the positiony of
the Hadamard encoding overof Q. (p). "

out "

Listdecoding. LetCp: B — Xp,, 4. Letd < 1. Inthe course of the proof we will need various

in,in? “min,out’ \ [F|

. .-, . ! Q(l)
lower bounds or. All these lower bounds will be quantities that a O ) (d ) or
(1) : :
(ﬁ) . We will setd,,;, as to satisfy all these lower bounds.
We use the list decoding properties of the inner and outer constructions to define a list decoding
for the composed construction.

We will setd;, in the sequel in a way that, > ¢°® would hold. Se,,;, such that;, >
5m'm,in- Setl'm = Umax,m(ézn)J S 5_0(1)- Let bout € Bout- Let CBm,bout : Bm - z]Bm,dec be
the assignment induced ldys defined by letting every;,, € B, be assigned's ((bou:, bin)). Let
Soour 15+ + 5 Joourtin € DY 4. D€ the list decoding guaranteed by the uniform list decoding property of
A, for the assignmert’s,, ,,,, and confidence paramet®y, (we pad the list arbitrarily if there are
less than;,, elements in the list decoding). Defing assignment€'s, . 1....,Chyuiii @ Bout —
D1 qec by assigning, foi € [l;,], every vertex,,. € B,,: to the Reed-Muller codeword associated
with fbout,i'

We will seté,,, in the sequel in a way thak,, > ¢°) would hold, and se#,,;, such that
60ut Z 5min,out- Setlout = Umax,out(&mt” S 670(1)- For eVeryi € [lm]’ let fi,la s 7f7j,lout € Ddec
be the list decoding guaranteed by the property of the RMegiRfor the assignment’s,, ; and
confidence parametéy,,; (we pad the list arbitrarily if there are less thap elements in the list
decoding). In total, we defined a list decoding of dize l,.,; < §°W.

Fix an assignment’y : A — X4 jee. FOr everyl = (aout, Eout) € Aour X Qout, the assignment
C, induces an assignme6ty,, ; : Aj, — Sa,, dec 10 Az, in G2 for every vertex;,, € A;,, take
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CAm,I(am) = OA(<aouta ain>)(§out)-
For somel;, < §~°0) defined later, we will construct assignmerdts
Aoyt — X a,,..dec: SUCH that the following holds:

out,ly s v v CAouszn :
Proposition 18.2 (Target outer assignments)Pick uniformly at random an edge= (a,b) € E.
Leta = <aout7az’n> S Aa b = <bout7bin> S B, Cout = (aoutybout> S Eoutn gout = labelgout(eout>)
I = {aout, Eout) AN e, = (ain, bin) € EX . With probability at least — O(6):

Either the edge is not satisfied irg under the assignments, and Cp, or there areiq € [l;,]
andj, € [I%,], for which: (i) the edge;,, reads the concatenation 6fs,,, ;, (b,.:) With the Hadamard
encoding ovef. in G/, under the assignments,,, ; andCp (i) the edgee,,; is satisfied in
Gout Under the assignmengs, andCp,,, io-

in :bout !

out»J0O

We set,,, > §°W) such thab,,, - 1;, - I, = O(5). Note that once we prove Propositib8.2, we
are done: Let us use the notation of the proposition. The eggés uniformly distributed inF,,;.
Thus, by the list decoding property of the outer construc@ion, for everyi, € [l;,] andj, € [I7,],
the probability of the following event is at mosk(d,.;): (ii) holds, but not (iii) e,,; reads one of
Jioas -« Jioiou: IN Goye UNMer the assignments,,, ;, andCp,,, ;.. Hence, the probability that this
event happens fasomeiy € [l;,] andjy € [I%,] is at mostO(0,y: - L, - If)) = O(J). Moreover,
whenever both (i) and (iii) hold, i underC 4 andC'g, the edge: reads the concatenation of one of
Jio1s -+ fiolou With the Hadamard encoding ovier

Constructing the target outer assignmentsFor every vertexi,,; € A, we construct’, assign-
MeNtSOa,,. 15 -+ s Tague iz, Qout — Didec to a..;. We identify an assignment : €,,; — Didec
with an assignmen,,, — D, 4. that maps eack,,, to the Reed-Muller codeword corresponding
to O-(gout)-

The assignment€’y,,, 1, -, Captz  Aowr — Ya,...dec are defined for every € [I7 ] by
assigning each,,; € A, the function(,,, — D 4. identified witho,,, ;.

For every vertex,., € A, We construct the assignments . 1, ..., 7q,,, 1, in three steps:

1. Projection step.Setl}, = |1 -l (62)] < 6790, For every vertexi,,; € Ao, for each
label&ou: € Qour, We construct alista,,, eou1s - - s faour o, € D1 gee Of candidates fog,.;-
The list satisfies the following property:

Proposition 18.3. Letay: € Aout- Letepwr = (aout, bout) € Four b€ an edge coming out of
Aoyt that haS |abe[ab€lgout (eout) = gout' Letl = <a0ut,€out> c Aout X Qout'

When picking uniformly at random an edgg = (a;,, b;,) € El and setting: = (a,b) € E
for a = (aout, ain) € Aandb = (b, bin) € B, the probability that the following holds is at

mostO(§):

The edgee is satisfied inG under the assignments, and C'z, but e;,, does not read an
elementin{ fo,...1;- - s foourdin } N { faursoutsls - - - > favuréonertr, 3 IN G, UNder the assignments
CAZTL:I andCBi'rubout'

127



For everyi € [I.,], for every&,.; € Qou, definecy,,,, i(Sout) = fagus onsi-

2. Satisfaction stepUsing our analysis for the Tree-Path game, for every verigxe A,.; we
construct the;, assignment®.,,, 1, - -, gtz * Qowr — DY 4. The assignments corre-
spond to satisfying assignments for,; in G,,;. In addition, the property of the assignments
from the previous step would still hold for them:

Proposition 18.4.Letay,; € Aous-

(a) Foreveryi € [I7 ], itholds thatsatg,,, (aout, 0a,.,.i) = true (recall that we identify,,, ;
with an assignmer,,; — D gec)-

(b) Pick uniformly at random an edg€.; = (Gout, bout) € Four COMING OUL Oftpyy IN Gy
Denote its label by,,; = labelg,,,(eout). Denotel = (ayut,&out)- Pick uniformly
and independently at random an edgg = (a;,,b:n) € EL. Sete = (a,b) € E for
a = (Qout; @in) € Aandb = (b, bin) € B. The probability that the following holds is
at mostO(4):

The edge- is satisfied inG under the assignments, and C, bute;, does not read

an element ir{fbout717 ) fbout,lin} N {O—aoutyl(SOUt)’ e 70-aout7l;‘n (gout)} In gZI’VL under the
assignments’y, ; andCp

in,bout *

When (in the notation of Propositid8.4), the edge:;,, reads an element §fs,.., 1, - - -, foouetsn }1
{Oaourt (Cout): - - - s Oapurir, (Cour) } IN GI under the assignments,,, ; and Cp,, 4,.,. it holds that
for someiy € [l;,] andj, € [I%,], the edgee;, reads the concatenation 6fs,,, ;, (bou:) With the
Hadamard encoding ovér in G/ under the assignments,,, ; andCjy,, 4., and that the edge
eout 1S satisfied inG,,, underCy, , j, andCp, ., ;.. Thus, once we prove Propositid8.4 Proposi-
tion'18.2is proved as well, noticing that when= ({a,ut, @in), (bout, bin)) IS uniformly distributed
in E, we also have that,,; = (a.u, bowe) iS uniformly distributed among the edges coming out of
Aout IN Gout, and the edge;, = (ain, by ) is uniformly distributed inEZ for I = (aout, Eout)-

Let us turn to the construction.

The projection step (Proof of Propositioh8.3. We will apply Propositior6.11that shows a list
decoding for assignments to the left side of a reader and use the uniformly distributed position read
by the inner reader.

Let apur € Aot Leteos = (aout, bout) € Eoue b€ an edge coming out af,,, that has label

labelgout (eout) = gout- Let] = <a0ut7€out> € Aout X Qout- Choosasmin such that 2 V 5mzn,zn
Let fopurboursls - - faour o, € D aec DE the elements following from Propositi@nl1i for the
assignmenCly, ; : A, — X4, 4ec @and the parameter

Pick uniformly at random an edge,, = (ai,,b;,) € El and sete = (a,b) € E fora =
<a0ut7 ain> S A andb == <bout7 bzn> € B.

Let us bound the probability that the following bad events happef 3y and be done:
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e BAD;: The edge: is satisfied inG under the assignment$, andC', bute;, is not satisfied
or does notread one g, .1+ - - - » fapuréoue,tr, IN G, underCy, ; andCp

inybout :

e BAD,: The edge:;, is satisfied and reads an element frm, ., ¢...1, - - - 7faout,fout,z;n} _
{ foonets -« s Joourisn s IN GLunder the assignments,, ; andCp

inabout "

Bounding BAD;. Whene is satisfied inG under the assignments, andC'i, we have that;, is
satisfied inG!, under the assignments,, ; andCp The bound follows from Propositigh 11.

in 7bout "

Bounding BAD,. Leti, € [l;,] andj, € [l},,] be such thaf, .. c...i0 # foouio- The probability
thate;,, readsfa,., c..i.50 @nd fi, ..o IN G1. under the assignments,,, ; andCp,, 5., iS at most

% + ﬁ (since where;, is uniformly distributed in&; also the last pair imupgizn(am) IS uniformly
distributed inF* x L7, and by the distance property of the concatenation of the Reed-Muller code
and the Hadamard code). Thus, for eveyy (1}, ] such thatf, .. e ..io & {foouets - - foouriin 1+ thE
probability thate,, readsf,, ., ¢,...jo» @s well as one of;,., 1, - -, fo,uisn» IN G1, under the assign-

mentsCy,, r andCp,, 4,,, IS at most;, - <% + ﬁ)

s;Qout

The probability that;, is satisfied but does not read onefgf, 1, . .., fo,...., iN G, under the
assignments’y, ; andCp, ,,,, iS at mostO(d;,). In particular, for everyj, € [I;,], the probability
thate,, is satisfied, readsg,, ., ¢,...j,, but does not read one ¢f oy Joourdin 1N G under the
assignments’y, ; andCp,, ;.. iS at mostO(é;,,).

Hence, the probability that for somg € [I;,,] such thatf,, . c...jo & {foouts- s foouiiin t» thE
edgee;, is satisfied and reads, , ¢,.,.;, in G1, under the assignments,, ; andCp,, 4, .,, iS at most
I - (lm . (d' + ﬁ) + O(5m)>. We set),,, such that’, - d;, < ¢ (this also fixed;,). We set),;,,

W =

out, 15+ -

such that!, - ;, - <% + ﬁ) <.

The satisfaction step (Proof of PropositiatB8.4). Leta,,, € A, Let us define a Tree-Path game
corresponding to the constraints on the edges connecting vefticgs:;,) € A to their neighbors
inG.

1. Tree. The treel' is T,

Qout = (U
in gout-

Qout

U Qout, Ea,,,) from the tree satisfiability constraints @f,;

2. Alphabet. The rangeR of the assignments to the nodes of the tree is the Keld

3. Code. The encoding of the assignments to the nodes is a repetition of a Hadamard encoding
E : F — LMl defined as follows: Let € F. Let us identify the|A;,| positions inE(t)
with the vertices in4;,, and focus on a positiom;,, € A,,. Assume that;,, is associated with
positiony € L™ in the Hadamard encoding (this is the casg i the second component in
the pairtupi;,(a;,)). Then the symbol off(¢) in positiona;, is the symbol of the Hadamard
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encoding oft in positiony, namely(t)(y) (whereg is as in the definition of the domain cor-
responding to concatenation of Reed-Muller and Hadamard). Note that the code has relative

distancel — |L|

Fix j € [l},]. Let us define the strategies for the tree prover and the path prover induced by the
assignmen’, and the assignment,,, ; respectively:

1. Tree prover. Assume that the tree prov@r is given a vertex;,, € A;, corresponding to a
position in the encoding. Denote= (a,.:, ain)-

o If satg(a,Ca(a)) = false, then7 outputs an arbitrary assignment to the nodes of the
treeo : U,,,, U Qo — L.
o If satg(a,Ca(a)) = true, then there is an implied assignment to the inner nedes
U,,.. — L. The tree provef outputs an assignment: U, U2, — L thatidentifies
with o; onU,,,,, and assigns to the elements if,,;.
2. Path prover. Let{F,,,, ¢,. }¢, ., c0,., D€ the ancestors point specification functions of the tree

satisfiability constraints ai,,; in guout. Fix a leafé,,; € Q... We say that an assignment
{0,...,depthy,} — F is consistentvith an assignment,,, ;({out) t0 &, If the following

holds:

e For0 < h <deptho,:—1,letfe ., € Dy 4. be the Reed-Muller codeword corresponding
to Taout (out) € DY 4. Letp € F* be the point associated with the node in defoth
i.e.,p'= P,,..¢..(R). Then, it should hold that(h) is the evaluation of, . onp. l.e.,

( ) fgout (ﬁ)'
e Forh = depth,,, it should hold that (k) = 0.

Assume that the path provér is given a leaf,,; € €, Then,P outputs the assignment
o :{0,...,depth,,} — I that is consistent withr,,, ;({ou)-

1 /2depthout
Setér = > > 9. We setd,,;, such thatir > 2 - (ILI) (recaII thatdepthg,. iS

constant). Let;1,...,05; : Uy, U Qo — F be thel < ()Qd—ptht < 6-9( assignments to the

nodes of the tree guaranteed figr and the strategies & andP by Propositiornl7.2. For every
L€ [l], letoa,, i : Qour — DS 4. bE defined as follows: le}.; € Qous-

o If 0,,.,.i(&ut) iS CONsistent withr; , (that is, consistent with an assignmeft. . ., depthe,: } —
[F that is consistent with; ,), leto,, ., ;. (Sout) = Tapus i (Eout)-

e Otherwise, let,,, ;.({.:) De an arbitrary element Wf,dec that is consistent withr; , (note
that such exists sinagepth,,: < d)).
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For every. € [l], it holds thatsatg,,, (aout, Oa,.,.j.) = true (Where we identifyo,,, ;, with an
assignment,,; — D1 gec)-

Pick uniformly at random an edgg.; = (aout, bout) € Four COMINgG out Ofa,,, in G,;. Denote
its label by¢,., = labelg,,,(eout). Denotel = (ayu, $out)- Pick uniformly and independently at
random an edge;, = (ain,bin) € EL. Sete = (a,b) € E for a = (apu, ain) € A andb =
(bout, bin) € B. Note that{,,,; is uniformly distributed inQ2,,; and thata;,, is uniformly distributed
in Azn

When the edge is satisfied inG under the assignments, and C'z and the edge;, reads
Oapurj(Eout) IN GL underCy, ; andCp, .., it holds that the Tree-Path verifier accepts when the
tree prover7 gets the position:;,, and the path proveP gets the leaf,,. In addition, when
the answer ofP is consistent withs;, for « € [I], it holds thate,, readso,,,, ;, = 0a,..; IN G},
under the assignments,,, ; andCp,, ;... Hence, by Propositiod7.Z, the probability thak is
satisfied inG under the assignments, and C, ande;, readso,,,, j((out) In G, underCy,,
andCg,, p,.., but for all. € [l], eithero,,,, ;. ((out) F# Tavusj(Eout), OF the edge;,, does not read
Capurijn(Eout) = Tagurj(Eout) IN G1, under the same assignments, is at n@&t-). The probability
that this happens for somec [I},] is at mostO(6).

Letl, < 5~°0) be the total number of assignments we defined. ProposiBoffollows from
Propositioril8.3 ]
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A Explicit Construction of Expanders

We will use the following lemma as our starting point. It gives an explicit construction of expanders
with constant degree and constant eigenvalue. For a proof see, for example, Corolland2}4 in [
Lemma A.1l. There are constanta, > 1 and0 < \g < Ag, such that given a natural number

n, one can construct in time polynomialina A,-regular graphG = (V, E) with |V| = n whose
adjacency matrix has second largest eigenvalue (in absolute vajue)

By raising the graph obtained from Lemrdall to a sufficiently large power, we can get
Lemma5.z
Corollary 20 (Restatement of Lemmeb.2). There is a constant < 1 and a functiorii” : N — N*
with 7'(A) = ©(A), such that given two natural numbetsand A, one can find in time polynomial
in n and in A an undirected (multi-)grapli = (V, £) with |V | = n, which isT(A)-regular and
whose adjacency matrix has second largest eigenvalue (in absolute wadu€)'(A))«.

Proof. We use the notation of Lemnfal. Takea = llg’gg“ LetT : N — N* be the function that
maps every naturah < A, to Ay and every naturalh > A, to A, wherer > 1 is the natural
number that satisfied; < A < Aj**. Note thatT'(A) = O(A).

Given natural numbers and A, let Gy = (V, Ey) be theA,-regular graph withV| =
obtained from Lemmad.1. Setr > 1 to be the natural numbésg, (7(A)). RaiseG, to the power
r to obtain al'(A)-regular undirected (multi-)grapy = (V, E) (i.e., letG be the (multi-)graph
corresponding to raising the adjacency matrixfto ther’th power). Then, the second largest
eigenvalue (in absolute value) 6fs adjacency matrix i, = (A{)* = (T'(A))“. Note thatG can
be computed in time polynomial imand inA. O

B Low Degree Testing

The test presented i27] differs from the variant stated in Subsectibd. 1.

Specifically, the test 0747] assumes access talaterministicoracle Ay, assigning polynomials
of degree at most’ to three-dimensionatubspacesn F™ (and not to their basis representation
Z, 11, y2). Supposedly, the polynomials are the restrictions of the tested funttothe subspaces.
The notational convention is that for an affine subspace F™, for a pointz’ € s, the polyno-
mial assigned te evaluated ort’ is denotedA4,(s)(Z) (this way there is no need to specify the
representation of).

For a functionf : F — T, the test of 27] is as in Figurel3.
We consider a different (yet equivalent) formulation, given in Figide

The following follows from what was shown 2V, 26] (The theorem was essentially proved in
[27]. In [26] it was shown that the list decoding does not dependign

Theorem 21 (Analysis of low degree test27, 26]). Foré > m (,8/@ + W’%’) , for any function
f :F™ — T, there arel < 2 s polynomials@y, ..., Q; : F" — T of degree at mosf’, such that
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LDT)

original *

1. Pick uniformly at random three vectof&, 41, 72) € F™ x K™ x K™. If Z, 41, y» are
linearly dependenticcept Otherwise, let denote the three-dimensional linear subspace
spanned by, 41, .

2. If Ay(s)(z0) = f(%), accept Otherwisefeject

Figure 13:The low degree tester c2¥]

LDT7

equiv *

1. Pick uniformly at random three vecto(s, 4, y») € F™ x K™ x K™. If 2,4, ¢, are
linearly dependengccept Otherwise, lek denote the three-dimensional linear subspace
spanned by, 4, .

2. Pick uniformly at randonty # 0,¢,t; € F. Setzy = to2 + t141 + tote. If Ao(s)(2) =
f(%b), accept Otherwisereject

Figure 14:The low degree tester c2¥]; different formulation.

for every oracleA,, the following holds: the probability over the randomness of the tester that
LDT/: accepts, althouglf () ¢ {Q1(0),. ., Qu(%)}, is at mosO(s).

equiv
Let us show that Theored8 from Subsectiod0.1indeed follows from Theoreifl. Recall that
in the tester of Theorem8, we let the answers of the orackedepend on the basis representation
of s and on additional randomness.

Assume that for a functiofi : F* — F and for an oracled, the probability, over the randomness
of A and the randomness of the tester, that the tésteF/-* from Subsectio10.1accepts, although

f(Z) € {Q1(%), ..., Qi(%)},is0 < 0" < 1.

Let us probabilistically construct an orackg, for LDTGJ;’;“Z%. For every subspace such that
there is a positive probability for = span{Z,#, 7>} in LDT/, pick at random a representation
(2,71, %) € F™ x K™ x K™, and a polynomial of degree at ma&t according to the distribution

of LDT/, conditioned ors = span{Z, ¥, ij»}. Let Ay(s) be this polynomial.

Then, the expectation (over the randomness in the constructidg) aff the probability, over the
randomness of the tester, that the te&t&X77“ accepts, althoughi(z,) ¢ {Q1 (%), ..., Qi(Z)},

equiv

is at leasty’ — O(ﬁ). Hence, there exists an orachy, such that the probability that the tester

LDT/7 accepts, althoughi(%) ¢ {Qi(%),. .., Qu(%)}, is atleast’ — O().

equiv
Theoreml8follows, noticing that for the choice of parameters made in the construction, it holds

1
thatm < 4.
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C Linearity Testing

In this section we show how the linearity testing theorem we stated in Sddtidifollows from the
analysis of the Blum-Luby-Rubinfeld linearity te4t1].

We test a folded functiorf : R — F, whereR C F™ is a set of representatives needed for
folding, as in Sectiod1.1. The folded function defines a functigh: "™ — F that respects scalar
multiplication. The Blum-Luby-Rubinfeld test is as in Figur&

BLRLinTest! -

1. Pick uniformly at randomy, i/ € F™.

2. If f(Z+79) = f(2) + f(v), accept Otherwisereject

Figure 15:Blum-Luby-Rubinfeld (BLR) linearity test

Define the agreement of a functigfn R — T with a linear function by

f(??) = Zaizi] }

ackm | zZekm -
i=1

mei max{ Pr

It was shown in/19] that large acceptance probability of the BLR linearity test implies large
agreement of the function with a linear function. The same analysis also allows to derive a converse
result: a large agreement of the function with a linear function implies a (relatively) large acceptance

probability of the BLR tester: N
Theorem 22 (Analysis of linearity test f19]). Letf: R — F.

- 3 . -
(me ) < Pr [BLRLmTestf accept% < Linf

For convenience we repeat below the linearity test from Sedtloh

Lz’nTestf A

1. Pick uniformly at random two vectorg, ) € F™ x F™. Using the oracle access to
A, obtain a bi-variate linear functiofi(t,,t2) over F for (%) [I* is supposedly the
restriction f(t12' + t27)].

1”4

2. Pick uniformly at random,, ¢, € F. SetZ, = t,2 + toy. If indeedi*(¢1,t2) = f(Zo),
accept Otherwisereject

Figure 16:Linearity Tester (Projection form) — a copy of Figie

From Theoren2, we conclude that large acceptance probability of the linearity test in the
projection form implies large agreement of the function with a linear function:
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Corollary 23. Letf: R — T and let.A be a probabilistic oracle. Then,

Lin! > <Pr [Lz’nTestf A accept%)3 -0 <%>

Proof. For Z, 7 € F™, let the maximal agreement gfwith a linear function within the subspace
spanned by andy be

Lingg = max { Pr [f(t1Z2+ ta) = art; + (lgtg]}
’ ack? | ter?

Note that

Pr [Lz'nTestf A accept% < E [Lmifg] (6)

Z,yelfm

Let R, C F? be a set of representatives for the equivalence ratmn [F? (as defined in Sec-
tion11.1). Forz,y € F™, definefz; : R, — F to be the following restriction of

Fea(ti ta) = f(t 7+ o))
Let fz; : F? — F be the function defined b;g. Note that for every,, ¢, € IF, it holds that

fzg(ti, t2) = f(t1 2+ t27)

Hence,
Pr |BLRLinTest’ accept% > B [Pr [BLRLmTestffvﬁ acceptﬂ —0 (%) @)
In addition, inequalityé gives
Pr [Lz'nTestf A accept% < Egj']glﬁ'm [Linﬁ"y“} (8)
By Theorem22,
_E_[Pr[BLELinTest7 accepts| > E [(meﬂ
Z,yelm Z,yelfm

By Jensen’s inequality,

Zyerm

_ B 3
E [Pr [BLRLmTestfw acceptﬂ > ( E [meD
Z,yerm™
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Thus, applying Theorei®2 again and using inequalitidand8, we get:

Linf > Pr [BLRLmTestf accept%

> E [Pr [BLRLmTestffﬂ acceptﬂ -0 (i>

|F|
_ 3 1
. _ il
(. [rne]) —o(g)
1

> <Pr [LmTestf A accept%s)3 -0 (HFT)

v

We use the list decoding version of this theorem:
Corollary 24 (Restatement of Theorem19). There are some naturah, and F;, such that for
everym > mg and prime finite field with |F| > F;, the following holds. Lefz C F™ be the set of
representatives needed for folding as in Secfihril.

[E] &
F™ — TF, such that for every probabilistic oracld:

For § > 26/L, for any functionf : R — T, there arel < 2 linear functionsL,,...,L; :

The probability, over the randomness4and over the randomness of the tester, that Test’ A
accepts, althouglf (7o) ¢ {L1(%o),. .., Li(Zo)} (Wheref : F™ — T is the function defined by
andz, € ™ is picked by the tester; see Figu® is at mosiO(9).

Proof. Fix§ > 2¢ ﬁ and a functionf: R — F. Letf : F™ — F be the function defined bf/. Set

8" = 6% and note that’ > 2, /I%I' LetL,,...,L; : F™ — [ be the linear functions corresponding
to thed’-list decoding of (the word corresponding tHwith respect to the Hadamard code. Recall

that by Propositio®.4, | < 5% Let. 4 be a probabilistic oracle.

Assume on way of contradiction that the probability, over the randomnesgsasfd over the
randomness of the tester, thatnTest/* accepts, althoughf(?) ¢ {L1(2),..., Li(Z)}, is more
than2j. Letg : R — ™ be a function that agrees with on all pointsz for which f(2) ¢

{L1(2),...,Li(Z)}. To other pointsy assigns a functioa : R — [ that rarely agrees witany
linear function (see Propositidd.1 below):

f(2) F2) ¢{La(3),. ... (D)}
9(2) =
e(2) otherwise

Letg : F™ — F be the function defined by. Note that by our assumptionjnTest?* accepts with
probability more tharzd. Hence, by Corollar23, there is a linear function : F — F, such that

Prwa:L@h%%P—OG%)

Zefm
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However, by Propositiog. ],

B, 102) = L) NG = EN] < e - (1 01) 4
Thus, for sufficiently largen and sufficiently large fieldr,
Pr [9(2) = L(Z) AG(E) # &) > 86" — —— - (1+0(1)) > & (©)

zZelm \/W

It follows that
Pr [f(2) = L(2)] > ¢

FeFm
Therefore, there must ble< i < [, such that, = L;. On the other hand, returning to inequaly
we now have

Pr [f(2) = Li(Z) A f(2) ¢ {La(2), ..., La(2)}] > O

which is a contradiction. O

The proposition we needed for the proof is proven below:
Proposition C.1 (Random function rarely agrees with linear). There is some naturahg, such
that for everym > my, the following holds. There exists a functienn R — T such that for
any linear functionL : F™ — [, when picking uniformly at randorsi € R, the probability that

e(z)=L(%)isat most\/%- (14 o0(1)).

Proof. Pick a functione : R — F uniformly at random. Lef : F* — F be a linear function. For
every? € R, let X, > be an indicator random variable for the event that) = L(%). For every

Z € Ritholds thatPr [ X, > = 1] = ﬁ Let X, = > .. X1z By the linearity of the expectation,

it holds thatk [X ]| = %. By the Chernoff bound, for every > 0,

2)\2
Pr XL>E[XL]+)\ < exp —‘?l

In particular, this holds foh = /m |R|In|F|. For sufficiently largen, it holds thatﬁ < 1/@,

implying that
X; - 1 N 1
|R| [F|  |F|

Applying a union bound, the probability that for some lindar. F — F it holds that% >

’/Tll + ﬁ is at most|IF| ™. In particular, there exists : R — F such that for all linear functions

Pr < |F|7*™

L:F" — Fitholds thati < /& - (1 +0(1)). O
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