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Abstract

In a two player game, a referee asks two cooperating players (who are not allowed to commu-
nicate) questions sampled from some distribution and decides whether they win or not based on
some predicate of the questions and their answers. The parallel repetition of the game is the game
in which the referee samples n independent pairs of questions and sends corresponding questions
to the players simultaneously. If the players cannot win the original game with probability better
than (1 − ǫ), what’s the best they can do in the repeated game?

We improve earlier results [Raz98, Hol07], which showed that the players cannot win all copies
in the repeated game with probability better than (1− ǫ3)Ω(n/c) (here c is the length of the answers
in the game), in the following ways:

• We prove the bound (1− ǫ2)Ω(n) as long as the game is a “projection game”, the type of game
most commonly used in hardness of approximation results. Our bound is independent of the
answer length and has a better dependence on ǫ. By the recent work of Raz [Raz08], this
bound is tight. A consequence of this bound is that the Unique Games Conjecture of Khot
[Kho02] is equivalent to:

Unique Games Conjecture There is an unbounded increasing function f : R
+ → R

+

such that for every ǫ > 0, there exists an alphabet size M(ǫ) for which it is NP-hard to
distinguish a Unique Game with alphabet size M in which a 1− ǫ2 fraction of the constraints
can be satisfied from one in which a 1 − ǫf(1/ǫ) fraction of the constraints can be satisfied.

• We prove a concentration bound for parallel repetition (of general games) showing that for
any constant 0 < δ < ǫ, the probability that the players win a (1− ǫ+ δ) fraction of the games
in the parallel repetition is at most exp

(

−Ω(δ4n/c)
)

. An application of this is in testing Bell
Inequalities. Our result implies that the parallel repetition of the CHSH game can be used to
get an experiment that has a very large classical versus quantum gap.
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1 Introduction

In this paper we study the following type of two player game (G) — the game is defined by a distribution
on questions (X,Y ) and a predicate V . A referee administers the game by sampling two questions
(x, y) and sending one question to each of the players. The players respond with answers (a(x), b(y))
and they win if and only if the predicate V (x, y, a, b) is satisfied. The players are not allowed to
communicate during the game though they may use shared randomness. The value of the game
(usually denoted by (1 − ǫ) in this paper) is the maximum probability of success that the players can
achieve. Note that any strategy for the players that involves the use of shared randomness can be
matched by a deterministic strategy that achieves the same probability of success, simply by fixing
the shared randomness in the best possible way.

These games are interesting for several reasons. Any one round two prover interactive proof (as
introduced by [BGKW88]) can be modeled as a game between the verifier and the two players. This
proof system turns out to be powerful enough to capture all of non-deterministic exponential time
(NEXP), with an exponentially small error. Such games also arise in cryptographic applications
[BGKW88, BGKW89, DFK+92, LS95], hardness of approximation results [FGL+91, ALM+98, FL92,
LY93], and have been used to prove direct product theorems for communication complexity [PRW97].

Given any game G, the n-fold parallel repetition of the game Gn is the natural game in which the
referee samples n independent questions (X1, Y1), . . . , (Xn, Yn), each distributed according to (X,Y ),
and sends all the x questions to the first player and all the y questions to the second player. The
players then each respond with n answers, and the referee decides that they win if and only if they
win in each of the n coordinates. For each player, the answer in the i’th coordinate may depend on
the question asked in some other coordinate. This paper is about bounding the probability that the
players can win the n-fold parallel repetition.

1.1 Previous Work

The first bound on the value of repeated games was obtained by Verbitsky [Ver94] who showed that
the value of the game Gn must tend to 0 as n tends to infinity. This was followed by a much stronger
bound due to Raz, which involved the answer length, of the game. The answer length is c if the number
of answers that the players can give is bounded by 2c. Raz proved that:

Theorem 1.1 (Raz [Raz98]). There is a universal constant α > 0 and a function 0 < ǫ′(ǫ) < 1 such

that the value of Gn is at most (1 − ǫ′)αn/c.

The dependence on the answer length c was shown to be almost optimal by Feige and Verbitsky
[FV02]. Raz’s proof was recently simplified by Holenstein who gave a more explicit bound:

Theorem 1.2 (Holenstein [Hol07]). There is a universal constant α > 0 such that the value of Gn is

at most (1 − ǫ)αǫ2n/c.

Proving our results requires us to revisit Holenstein’s proof and modify it at certain points, so we
include a proof of his result as well.

1.2 Projection/Unique Games

A projection game is a game in which the predicate V has a special kind of structure — every pair
(x, y) defines a function fxy and the predicate V is satisfied exactly when fxy(a) = b. If the game is
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such that fxy is a permutation for every xy, then the game is called a unique game, since every answer
of one player induces a unique answer for the other player.

Both of these types of games have played an important role in many hardness of approximation
results. Most hardness of approximation results are proved by giving a reduction to the Label Cover
problem. An instance of this problem is a bipartite graph where every edge (x, y) is associated with a
function fxy and the problem is to estimate the maximum number of edges that can be satisfied by any
assignment of values a(x), b(y) to the vertices in the graph (an edge xy is satisfied if fxy(a(x) = b(y))).
Every such instance L is associated with a projection game GL in the natural way (the referee picks a
random edge, asks the players for assignments to the vertices and checks to see that the projection is
satisfied), and the problem of finding the best assignment to L is the same as the problem of finding
the best strategy for GL. Similarly, the parallel repetition of the game Gn

L is associated with another
instance of Label Cover Ln, where again the value of Gn

L is the maximum fraction of edges of Ln

that can be satisfied by any labeling. Further, the property of being a unique or projection game is
preserved under parallel repetition.

The PCP theorem [AS98, ALM+98] shows that there exists a constant ǫ0 > 0 and an alphabet size
2c, such that it is NP-hard to distinguish a Label Cover instance with alphabet size 2c that has value
1 from an instance that has value 1 − ǫ0. Combining this with the parallel repetition theorem of Raz
mentioned above, we get that for any constant 1 > ǫ > 0, it is in fact NP-hard to distinguish instances
of Label Cover with value 1 from instances with value ǫ. This follows just by taking the instance L
obtained from the PCP theorem and using Raz’s theorem to bound the value of Ln. If L has value 1,
then Ln clearly still has value 1. On the other hand, if L has value at most 1− ǫ0, n can be chosen to
be large enough so that Ln has value at most ǫ.

For Unique Games, it is impossible to get such a 1 vs (1− ǫ) hardness result (unless P=NP) with a
small alphabet, since there is a trivial algorithm that can check if a Unique Game instance has value 1
or not — simply try all assignments to a single vertex v in the graph. Every such assignment induces
unique assignments to all other vertices in the graph if a consistent assignment exists. Still, we may
hope that the following conjecture (due to Khot [Kho02]) is true:

Conjecture 1.3 (Unique Games Conjecture). For every ǫ, there exists an answer length c(ǫ) for

which it is NP-hard to distinguish instances of Unique Games with answer length c that have value at

least 1 − ǫ from instances that have value at most ǫ.

Several tight or almost tight hardness results have been proved assuming the Unique Games Con-
jecture, including for Max 2-Lin [Kho02], Vertex Cover [KR03], Max-Cut [Kho02, KKMO04, MOO05],
Approximate Coloring [DMR06], Sparsest Cut [CKK+06, KV05] and Max 2-Sat [Aus07]. Thus the
question of whether or not the conjecture is true is of considerable interest. On the negative (al-
gorithmic) side, approximation algorithms [Tre05, CMM06, CMM06, GT06] have been designed to
approximate the value of a Unique Game. For example, given a unique games instance with value
1 − ǫ, an algorithm due to Charikar, Makarychev and Makarychev [CMM06] can find an assignment
with value 1−O(

√
ǫc). This implies that the answer length c(ǫ) in the Unique Games Conjecture must

be larger than Ω(1/ǫ) if the conjecture is to hold.
On the positive side, we might have hoped that we could use the parallel repetition thereoms of

Raz or Holenstein to reduce the task of proving the conjecture to the task of proving it for a much
smaller gap, just as we did above for the case of Label Cover, and then try and prove the conjecture
for that small gap. However, the bounds of Raz and Holenstein are problematic for this purpose. If
ǫ > δ and we try to apply Holenstein’s theorem to amplify a gap of (1− δ) vs 1− ǫ, n repetitions give
us the gap (1 − δ)n vs (1 − ǫ3)αn/c, which is the right kind of gap only if δ ≪ αǫ3/c. A conjecture
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with this kind of gap cannot hold, since the algorithm of Charikar et al. shows that if δ, ǫ, c satisfy
this constraint, we can distinguish (1 − δ) instances from (1 − ǫ) instances in polynomial time.

Another way in which a strong parallel repetition might have helped to resolve the Unique Games
Conjecture is by using a bound on the value of the parallel repetition to show that the conjecture is
equivalent to the hardness of approximating other problems. A good candidate for such a problem
is Max-Cut, every instance of which is a special kind of Unique Game. The results of Khot et al.
[Kho02, KKMO04, MOO05] show that the Unique Games Conjecture implies that that Goemans-
Williamson algorithm for Max-Cut [GW95], which can distinguish instances with value 1 − ǫ2 from
those with value 1 − ǫ, is essentially optimal. It is conceivable that the Unique Games Conjecture
is actually equivalent to the optimality of this algorithm. If we could prove a bound of the form
(1−ǫ2−)Ω(n), we could use an approximation algorithm for Unique Games to get an algorithm for Max-
Cut, just by running the algorithm on the parallel repetition of the Max-Cut instance. Unfortunately,
Raz recently discovered [Raz08] that such a bound is impossible, even if we restrict our attention to
games that come from instances of MAX-Cut (his counterexample is the MAX-Cut game played on
an odd cycle). He proved that the parallel repetition of a MAX-Cut game on an odd cycle (which is
a Unique Game) has value at least (1 − ǫ2)O(n), killing the hopes of getting such an equivalence via a
stronger parallel repetition bound.

1.3 Parallel Repetition and Bell Inequalities

Two player games also show up in the context of testing so called Bell Inequalities [Bel64] to confirm
the existence of quantum entanglement. The idea is to consider games where two players who have
access to entangled qubits can achieve a much higher success probability than two classical players can.
Perhaps the most famous example of a game where such a gap exists is the CHSH game [CHSH69].
Here the verifier sends the players random bits (x, y) and receives one bit answers (a(x), b(y)). The
players win when a ⊕ b = x ∧ y. Two classical players cannot win with probability better than 0.75,
but it can be shown that two players sharing entangled qubits can win with probability close to 0.85.

For the purpose of testing Bell Inequalities, it is important to be able to come up with games
that have a big gap between the success probability of classical players and the success probability
of entangled players, and this seems to be an issue that has warranted a significant amount of effort
[BCH+02, Gil03].

This motivates proving a concentration bound for parallel repetition. If we could prove that two
players cannot hope to win more than the expected fraction of games in the parallel repetition, we
would get a simple way to construct games with a large quantum vs classical gap. We can take the
CHSH game (any game with a small classical vs quantum gap would work) and consider its n-fold
parallel repetition. We say that the players win the repeated game as long as they win in 0.8 fraction
of the coordinates. The concentration bound would imply that if the players were classical, they can
win this game with a very small probability. On the other hand, the Chernoff bound shows that the
obvious quantum strategy (play each game in the repetition independently) is sure to win the game
with all but exponentially small probability.

1.4 Our Results

• We prove an essentially tight bound on the value of the parallel repetition in the case that the
original game is a projection game.

Theorem 1.4 (Parallel Repetition in Projection Games). There is a universal constant α > 0
such that if G is a projection game with value at most 1− ǫ, the value of Gn is at most (1− ǫ)αǫn.
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This improves on the earlier bounds in two ways: the dependence on ǫ is better ((1 − ǫ)αǫn ≈
(1 − ǫ2)αn), and the answer length does not even show up in the bound. Of course, every
unique game is also a projection game, so this theorem can be used to amplify the gap between
unique games instances. Working out the parameters gives that the Unique Games Conjecture
is equivalent to the following statement:

Conjecture 1.5 (Unique Games Conjecture Restated). There exists an unbounded increasing

function f : R
+ → R

+ such that for every ǫ > 0, there is an answer length c(ǫ) for which it is

NP-hard to distinguish instances of unique games with answer length c that have value 1 − ǫ2

from instances that have value 1 − ǫf(1/ǫ).

As we discussed above, the work of Raz [Raz08] shows that our bound is tight upto the constant
α.

• We prove a concentration bound for parallel repetition:

Theorem 1.6 (Concentration in General Games). There is a universal α > 0 such that if G is

a game with value 1− ǫ and answer length c, for every ǫ ≥ δ > 0, the probability that the players

win more than a 1 − ǫ + δ fraction of the games in the n-fold parallel repetition is bounded by

exp
(

−αδ4n
c

)

.

Following our discussion, this bound shows that the parallel repetition of the CHSH game gives
a game with a large classical vs quantum gap.

1.5 Techniques

Our proofs build on the work of Raz and Holenstein. In this section we shall be vague (and slightly
inaccurate) in order to convey what is new about our work without revealing too many technical
details.

Fix a strategy for Gn. We use the notation Xn = X1, . . . ,Xn and Y n = Y1, . . . , Yn to denote the
questions that are asked to the players in Gn. It turns out that the heart of all the earlier proofs (and
our own) is a lemma of the following type:

Informal Lemma 1.7. Let S ⊂ [n] be any set of small size k and WS denote the event that the

players win the games corresponding to the coordinates in S. Then, if Pr[WS ] is large enough there

exists an index i /∈ S such that the probability that the players win the i’th coordinate conditioned on

WS is at most 1 − ǫ/2.

Here we need Pr[WS ] to be larger than some function of ǫ, n, k and the answer length c. Once
we have this kind of lemma, it is not too hard to show that the players cannot win Gn with a high
probability, and we leave this to the formal parts of the paper.

The lemma is proved via a reduction — we can show that if the lemma is false, i.e. if there exists
a small set S and a dense event WS for which the lemma is false, we can find a strategy for G that
wins with probability larger than 1− ǫ, which is a contradiction. Suppose there exists such a set S for
which WS is dense. Then the players decide on an index i ahead of time. When asked the questions
(X,Y ), the players place these questions in the i’th coordinate and use shared randomness to generate
n− 1 other pairs of questions (Xj , Yj) such the joint distribution of the questions they end up with is
ǫ/2 close to

(

Xn, Y n
∣

∣WS

)

in statistical distance. Since the lemma is assumed to be false, the players
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can then use the i’th coordinate answers dictated by the strategy for Gn to win G with probability
more than 1 − ǫ.

The questions are actually generated in two steps. In the first step, the players simultaneously

sample two random variables R,A, i.e. they end up with the same sample for these random variables
with high probability. The random variable A is just the answers of the first player in the coordinates in
S. The random variable R contains at least one question from every pair (Xj , Yj), and both questions
from the pairs corresponding to the coordinates in S. These properties allow us to argue that for
every r, a,

(

Xn, Y n
∣

∣(R,A) = (r, a) ∧ WS

)

is a product distribution. This means that once the players
have agreed on the sample for R,A, they can use independent randomness to sample the rest of the
questions conditioned on the information they have, and end up with a distribution on questions that
is close to

(

Xn, Y n
∣

∣WS

)

.
It turns out that Pr[WS ∧ A = a|R = r] needs to be large enough for typical fixings of R = r for

this argument to go through. Raz and Holenstein argue that this quantity is large, just by counting.
They argue that if the answer length is c bits, Pr[WS ∧ (R,A) = (r, a)]/Pr[WS ∧R = r] is typically at
least 2−ck, since there are at most 2ck possible ways to set the random variable A if the answer length
is c. In our work, we get a stronger bound by observing that in the case of a projection game, the
players cannot be using all of their answers equally often.

For simplicity, let us assume that the game is unique. Then note that for every fixing of R = r, the
bijection between the answers of the players in the coordinates of S is determined, but the answers are
now two independent random variables. It is not too hard to show that if two independent random
variables satisfy some bijection with probability γ, there must exist a set of size 100/γ such that the
probability that the bijection is satisfied and the first random variable does not land in this set is less
than γ/100 (simply take the the set to be the elements of weight at least γ/100). The argument also
works in the case that the constraints are projections instead of bijections.

So we can argue that for every fixing of R = r, there is a small set of heavy answers that the
players must be using. This argument lets us get a lowerbound on Pr[WS ∧ (R,A) = (r, a)] that is
independent of the answer length.

To prove the concentration bound, we first observe that the lemma above can be generalized slightly
in the following way:

Informal Lemma 1.8. Let S ⊂ [n] be any set of small size k and E be any event that is determined

by what happens in the games of S. Then, if Pr[E] is large enough, most indices i /∈ S are such that

the probability that the players win the i’th coordinate conditioned on E is at most 1 − ǫ/2.

Once we have this lemma, we can show that if the referee samples a small fraction of the coordinates
uniformly at random and checks that the players have won in those coordinates, his count of how many
games the players have won in the random sample behaves like a supermartingale; conditioned on the
result of his sampling so far, the outcome at the next random coordinate is biased towards losing. This
allows us to bound the probability that the referee sees a larger fraction of wins than he should. On
the other hand, the Chernoff bound gives that with high probability, the referee’s experiment gives a
good estimate for the fraction of games that the players won. These arguments allow us to bound the
probability that the players win a large fraction of the games.
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2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, capital letters to denote random variables and small letters
to denote instantiations of random variables/elements of sets. We shall use the same letter to denote
objects of this type that are related to each other. For example, we shall use X to denote a random
variable taking values in the set X and x to denote an instantiation of that random variable.

In this paper we shall often need to start with some probability space and modify it in certain
ways. We explain our notation with the help of some examples. If A,B,C are random variables in
some probability space taking values in A,B, C, then:

• A′B′C ′
def
= {A} {B} {C} defines a new probability space in which A′, B′, C ′ take values in A,B, C

such that
Pr[A′ = a ∧ B′ = b ∧ C ′ = c]

def
= Pr[A = a] Pr[B = b] Pr[C = c]

• A′B′C ′
def
= {AB} {C} means

Pr[A′ = a ∧ B′ = b ∧ C ′ = c]
def
= Pr[A = a ∧ B = b] Pr[C = c]

• A′B′C ′
def
= {AB}

{

C
∣

∣B
}

means

Pr[A′ = a ∧ B′ = b ∧ C ′ = c]
def
= Pr[A = a ∧ B = b] Pr[C = c|B = b]

• Let Ã be a random variable taking values in supp(A). Then A′, B′
def
=
{

Ã
}{

B
∣

∣Ã
}

means

Pr[A′ = a ∧ B′ = b]
def
= Pr[Ã = a] Pr[B = b|A = a]

2.2 Statistical Distance

Sometimes the distributions we get are not exactly the distributions we want, but they may be close

enough. The measure of closeness we will use is this one:

Definition 2.1. Let D and F be two random variables taking values in a set S. Their statistical

distance is

|D − F | def
= max
T ⊆S

(|Pr[D ∈ T ] − Pr[F ∈ T ]|) =
1

2

∑

s∈S

|Pr[D = s] − Pr[F = s]|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F . We shall also use the notation D
ǫ≈ F to mean D

is ǫ-close to F .

Proposition 2.2. Let D and F be any two random variables over a set S s.t. |PD − PF | ≤ ǫ. Let g
be any function on S. Then |g(D) − g(F )| ≤ ǫ.

Proposition 2.3 (Triangle Inequality). Let A,B,C be random variables over S, with A
ǫ1≈ B

ǫ2≈ C.

Then A
ǫ1+ǫ2≈ C.
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Proposition 2.4 (Conditioning Close Distributions). Let A,B be two random variables and let E1, E2

be two events with Pr[Ei] = µ. Then |A|E1 − B|E2| ≤ |A − B|/µ.

Proposition 2.5. Let A,A′ be two random variables over A in the same probability space such that

Pr[A 6= A′] ≤ ǫ. Then |A − A′| ≤ ǫ.

Proof. Let S ⊂ A be any set. Then by the union bound we get Pr[A ∈ S] ≤ Pr[A′ ∈ S] + Pr[A 6= A′],
which clearly implies the proposition.

2.3 Games

In this paper, a game is defined by a distribution (X,Y ) on a set of questions, X ×Y, a set of possible
answers A × B and a predicate V : X × Y × A × B. A strategy for the game is a pair of functions
a : X → A and b : Y → B. The value of the game is the maximum of PrX,Y [V (X,Y, a(X), b(Y )], over
all choices of strategies a(·), b(·).

We call a game a projection game if there exists a family of functions fx,y indexed by X ×Y such
that V (x, y, a, b) is equivalent to fx,y(b) = a.

A game is called unique if it is a projection game with the additional property that all function
fx,y are bijections.

The answer length of a game is the quantity log |A| + log |B|.
Given a game Gn the parallel repetition of the game is the game with distribution on questions

obtained by taking n independent samples (X1, Y1) · · · (Xn, Yn). A strategy for the new game is
specified by two functions a : X n → An and b : Yn → Bn. When the game is played, the referee
samples n independent pairs of questions as above and sends one question from each pair to each of
the players. The players respond with n answers each. The referee then checks that the players win
by checking the AND of the predicate in the original game in each of the n copies. Thus the value
of the game is the maximum of Pr[V (X1, Y1, a1(X1), b1(Y1) ∧ · · · ∧ V (Xn, Yn, an(Xn), bn(Yn)], over all
choices of strategies a(·), b(·).

3 Main Theorems

In this section, we prove our main theorems, assuming two lemmas which we prove in a later section.
Fix an optimal strategy for the repeated game. For any set S ⊂ [n], we let WS denote the event that
the players win all the games in coordinates included in the set S.

Lemma 3.1 (Main Lemma for General Games). Let S ⊂ [n] be of size k. If the game G is such that

one player gives answers from a set of size 2c and Pr[WS] ≥ 2−
ǫ2(n−k)

342
+kc

, then Ei/∈S

[

Pr[W{i}|WS ]
]

≤
1 − ǫ/2.

Lemma 3.2 (Main Lemma for Projection Games). Let S ⊂ [n] be of size k. If G is a projection game

with n − k ≥ 5(68)2 log(4/ǫ)
2ǫ2

and Pr[WS ] ≥ 2
−

ǫ2(n−k)

5(68)2 , then Ei/∈S

[

Pr[W{i}|WS ]
]

≤ 1 − ǫ/2.

We can now prove the theorems assuming these lemmas.

Theorem 3.3 (Main Theorem for General Games). If G is a game with value (1 − ǫ) and answer

length c bits, then the n-fold parallel repetition has value at most (1 − ǫ/2)
ǫ2n

352+342c .
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Proof. We have chosen the exponent t = ǫ2n
352+342c

in the theorem so that it satisfies ǫt ≤ ǫ2(n−t)
342 − tc.

Suppose for the sake of contradiction that Pr[W[n]] > (1 − ǫ/2)t. Then for every set H ⊂ [n],
Pr[WH ] > (1 − ǫ/2)t. Let k be the smallest number for which every set H ⊂ [n] of size k + 1 satisfies
Pr[WH ] > (1 − ǫ/2)k+1.

Our assumption means that k + 1 ≤ t ⇒ k < t. By the choice of k, there must exist a set S ⊂ [n]
of size k for which Pr[WS ] ≤ (1 − ǫ/2)k. Then

Pr[WS ] ≥ (1 − ǫ/2)t ≥ 2−ǫt ≥ 2−
ǫ2(n−t)

342
+tc ≥ 2−

ǫ2(n−k)

342
+kc

Where here we used the inequality (1− ǫ/2) ≥ 2−ǫ for ǫ ∈ [0, 1], the fact that k < t and the bound
on ǫt. We can now apply Lemma 3.1 to show that there exists an index i with

Pr[WS∪{i}] = Pr[W{i}|WS ] Pr[WS ] ≤ (1 − ǫ + 17ǫ/34)(1 − ǫ/2)k = (1 − ǫ/2)k+1

contradicting our choice of k.

Next we give the theorem for projection games.

Theorem 3.4 (Main Theorem for Projection Games). If G is a projection game with value (1 − ǫ),

the n-fold parallel repetition has value at most (1 − ǫ/2)
ǫn

6(68)2 .

Proof. First we prove the theorem for the case that n ≥ 6(68)2 log(4/ǫ)
2ǫ2

. The proof is very similar to the

proof of the previous case. We have engineered the exponent t = ǫn
6(68)2

to satisfy ǫt ≤ ǫ2(n−t)
5(68)2

. The

bound on n was chosen to ensure n − t ≥ 5(68)2 log(4/ǫ)
2ǫ2

.
Suppose for the sake of contradiction that there is a strategy for which Pr[W[n]] > (1−ǫ/2)t, which

implies that for every set H ⊂ [n], Pr[WH ] > (1− ǫ/2)t. Let k be the smallest number for which every
set H ⊂ [n] of size k + 1 satisfies Pr[WH ] > (1 − ǫ/2)k+1.

Then we get that k + 1 ≤ t ⇒ k < t. By our choice of k, there must exist a set S ⊂ [n] of size k
for which Pr[WS ] ≤ (1 − ǫ/2)k. Then

Pr[WS ] ≥ (1 − ǫ/2)t ≥ 2−ǫt ≥ 2
−

ǫ2(n−t)

5(68)2 ≥ 2
−

ǫ2(n−k)

5(68)2

Where here we used the inequality (1 − ǫ/2) ≥ 2−ǫ for ǫ ∈ [0, 1] and the fact that k < t. We also

have that n − k ≥ n − t ≥ 5(68)2 log(4/ǫ)
2ǫ2 . We can now apply Lemma 3.2 to show that there exists an

index i with

Pr[WS∪{i}] = Pr[W{i}|WS ] Pr[WS ] ≤ (1 − ǫ/2)(1 − ǫ/2)k = (1 − ǫ/2)k+1

contradicting our choice of k.
Next note that if the above bound holds for large n, it must hold for small n1. Specifically, if there

is some strategy for the players that achieves a probability of success greater than (1 − ǫ/2)
ǫn

6(68)2 in
the n-fold repetition, then for every r, simply repeating this strategy on disjoint coordinates gives a

strategy for the nr-fold repetition with probability of success of (1 − ǫ/2)
ǫnr

6(68)2 . Setting r to be large
enough contradicts the previous case.

1This argument was suggested by an anonymous referee
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4 Sampling From Close Distributions

Fix a set A. A variant of the following lemma was proved by Holenstein [Hol07]. The proof we sketch
here is due to Boaz Barak.

Lemma 4.1 (Sampling similar distributions [Hol07]). There exists a protocol for l non-communicating

players such that given distributions A1, . . . , Al taking values in A such that |Al − Ai| ≤ ǫi for every

i ∈ [l], the players can use shared randomness to sample B1, . . . , Bl with the property that:

• For every i, Bi has the same distribution as Ai.

• For every i < l − 1, Pr[Bl 6= Bi] ≤ 2ǫi.

• Pr[all samples are the same] ≥ 1 − 2
∑l−1

i=1 ǫi

Proof Sketch: First note that the last guarantee follows from the second guarantee and the union
bound.

To prove the first two guarantees, let us first consider the case that the Ai’s are promised to be
uniform over (possibly different) subsets of A. In this case the protocol for the players is simple: the
shared randomness is interpreted as a permutation of the universe A. Each player then samples the
first element of the permutation that lies in the support of her distribution. The lemma is then easily
seen to be true.

To handle the general case, identify each distribution Ai with the uniform distribution on the set
∪a∈A{a} × [0,Pr[A′i = a]], which is a subset of A× [0, 1]. Then by tiling the set A× [0, 1] with a fine
enough grid, we can interpret the shared randomness as a permutation of the parts of this grid to get
a protocol that is arbitrarily close to getting the bounds promised above.

5 Conditioning Product Distributions

Lemma 5.1. Let A,B be random variables in some probability space. Let A′ be another random

variable such that |A − A′| ≤ ǫ. Then
∣

∣{AB} − {A′}
{

B
∣

∣A′
}∣

∣ ≤ ǫ.

We shall need a basic definition:

Definition 5.2 (Informational Divergence). Given two random variables U, V taking values in the
same set U , we define the informational divergence

D
(

U
∣

∣

∣

∣V
) def

=
∑

u∈U

Pr[U = u] log

(

Pr[U = u]

Pr[V = u]

)

where we adopt the convention that 0 log 0 = 0. If there exists a u ∈ U for which Pr[V = u] = 0 but
Pr[U = u] 6= 0, we say that that D

(

U
∣

∣

∣

∣V
)

= ∞.

The following are standard facts about informational divergence:

Fact 5.3. D
(

V
∣

∣

∣

∣U
)

≥ |U − V |2

Fact 5.4. If V is a random variable, E is any event and Ṽ
def
= V |E, in the same space with Pr[E] =

2−d, then D

(

Ṽ
∣

∣

∣

∣V
)

≤ d.
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Proof.

D

(

Ṽ
∣

∣

∣

∣V
)

=
∑

v∈V

Pr[V = v|E] log

(

Pr[V = v|E]

Pr[V = v]

)

=
∑

v∈V

Pr[V = v|E] log

(

Pr[E|V = v]

Pr[E]

)

= log(1/Pr[E]) +
∑

v∈V

Pr[V = v|E] log(Pr[E|V = v])

≤ log(1/Pr[E]) since every term in the sum is at most 0

Fact 5.5. If U1, . . . , Un are independent random variables and V1, . . . , Vn are other random variables,

n
∑

i=1

D
(

Vi

∣

∣

∣

∣Ui

)

≤ D
(

V1 . . . Vn

∣

∣

∣

∣U1 . . . Un

)

A key part of the proof will be showing that if we condition a product distribution on an event
whose probability is not too low, there must be some coordinate which remains distributed how it was
before the conditioning.

Lemma 5.6 ([Raz98]). Let U1, U2, . . . , Un be independent random variables. Suppose E is any event

in the same probability space such that Pr[E] = 2−d, then

E
i∈[n]

[∣

∣{Ui} −
{

Ui

∣

∣E
}∣

∣

]

≤
√

d

n

Proof.

E
i∈[n]

[∣

∣{Ui} −
{

Ui

∣

∣E
}∣

∣

]2

≤ E
i∈[n]

[

∣

∣{Ui} −
{

Ui

∣

∣E
}∣

∣

2
]

by convexity of the square function

≤ E
i∈[n]

[

D
({

Ui

∣

∣E
} ∣

∣

∣

∣ {Ui}
)]

by Fact 5.3

≤ 1

n
D
((

U1U2 . . . Un

∣

∣E
) ∣

∣

∣

∣U1 . . . Un

)

by Fact 5.5

≤ d

n
by Fact 5.4

Next, we show that all of the above still holds if in addition to dense event, we condition on the
value of some random variable with small support, and the variables are only independent in convex
combination:

Corollary 5.7. Let R,U1, U2, . . . , Un, A be random variables and E be an event with Pr[E] = 2−d

such that
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• For every r, U1, . . . , Un are independent conditioned on the event R = r.

• For every r, |supp
(

A
∣

∣E ∧ (R = r)
)

| ≤ 2h

Then,

E
i∈[n]

[∣

∣

{

RA
∣

∣E
}{

Ui

∣

∣R
}

−
{

RAUi

∣

∣E
}∣

∣

]

≤
√

d + h

n

Proof.

E
i∈[n]

[∣

∣

{

RA
∣

∣E
} {

Ui

∣

∣R
}

−
{

RAUi

∣

∣E
}∣

∣

]2

= E
i∈[n]

(a,r)←(AR|E)

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]2

≤ E
(a,r)←(AR|E)

[

E
i∈[n]

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]2

]

by convexity

≤ E
(a,r)←(AR|E)

[

log(1/Pr[E ∧ A = a|R, r])

n

]

by Lemma 5.6

≤ (1/n) log



 E
r←(R|E)





∑

a∈supp(A|E∧R=r)

Pr[A = a|E ∧ (R = r)]

Pr[E ∧ A = a|R = r]







 by concavity of log

= (1/n) log



 E
r←(R|E)





∑

a∈supp(A|E∧R=r)

Pr[R = r]

Pr[E ∧ R = r]









≤ (1/n) log

(

2h
E

r←(R|E)

[

Pr[R = r]

Pr[E ∧ R = r]

]

)

= (1/n) log

(

2h
E

r←(R|E)

[

Pr[R = r]

Pr[E] Pr[R = r|E]

]

)

= (1/n) log

(

2h
∑

r∈R

Pr[R = r] Pr[R = r|E]

Pr[E] Pr[R = r|E]

)

= (1/n) log
(

2h/Pr[E]
)

=
d + h

n

6 Proof of Main Lemmas

In this section, we shall prove Lemma 3.1 and Lemma 3.2.
These lemmas say that as long the probability of winning in the k coordinates in S is not too

small, then on average, the players must be doing pretty badly on the remaining coordinates even
conditioned on winning in WS.
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Without loss of generality, we assume that S = {n − k + 1, n − k, . . . , n}. We shall prove these
lemmas by contradiction. Fix a strategy for Gn. Suppose for the sake of contradiction that Pr[WS ]
is high and Ei/∈S

[

Pr[W{i}|WS ]
]

> 1 − ǫ/2. Then we shall use the players strategy for Gn to get an
extremely good strategy for G, one that wins with probability more than 1− ǫ, and thus contradicting
the bound on the value of G.

6.1 Intuition for the proof

We first outline a natural way to use a strategy for Gn to get a strategy for G, which we shall ultimately
refine to complete the proof: the players decide on an index i such that given questions (X,Y ) in G,
they can use shared randomness to generate n − 1 pairs of questions such that when the questions
(X,Y ) are placed in the i’th coordinate, and the rest of the questions are placed in the appropriate
coordinates, the resulting distribution is statistically close to the distribution (X1, Y1) . . . (Xn, Yn)|WS .
If the players can find such an index i, then they could just use the strategy of the players for Gn to
win G in the i’th coordinate with probability more than 1 − ǫ.

There are a couple of obstacles to getting this approach to work. The most immediately apparent
obstacle is that it must be true that there exists an index i for which (Xi, Yi)|WS is statistically close
to (X,Y ). This obstacle can easily be circumvented via Lemma 5.6. A more subtle issue is that the
players have to generate the rest of the questions without communicating. Dealing with this issue will
take up most of our effort in the proof. To understand under what circumstances it is possible for two
players to generate questions that satisfy the above properties, let us first look at some simple cases.
Below, let Xn denote (X1, . . . ,Xn) and Y n denote (Y1, . . . , Yn).

Independent Distributions. Suppose every (x, y) ∈ (X ,Y) was such that
(

Xn, Y n
∣

∣WS ∧ (Xi = x)
)

and
(

Xn, Y n
∣

∣WS ∧ (Yi = y)
)

are both product distributions. Then given the questions (x, y), the first
player can sample

(

Xn
∣

∣WS ∧ (Xi = x)
)

and the second player can independently sample
(

Y n
∣

∣WS ∧ (Yi = y)
)

. It is then easy to see that if X,Y was statistically close to (Xi, Yi)|WS (which
we can guarantee using Lemma 5.6), the players do sample questions which are statistically close to
XnY n|WS . Of course the assumption that we have such independence is unreasonable. In general, the
first player’s questions are not independent of the second players questions. Even if the game was such
that (X,Y ) is a product distribution, conditioning on WS could potentially introduce complicated
dependencies between the questions of the players.

Completely correlated distributions. Next suppose we could somehow prove that there exists
some random variable R and functions f, g such that for every x ∈ X , y ∈ Y:

• Learning R would allow both players to generate the random variables they want using their
inputs

f(R,x), g(R, y) ≈
(

Xn, Y n
∣

∣WS ∧ (Xi = x) ∧ (Yi = y)
)

• Although R may depend on (Xi, Yi), all the information needed to generate R is contained in
any one of these variables:

(

R
∣

∣WS ∧ (Xi = x)
)

≈
(

R
∣

∣WS ∧ (Yi = y)
)

≈
(

R
∣

∣WS ∧ (Xi = x) ∧ (Yi = y)
)

Given these conditions, it is easy to design a protocol for the players — each player computes
the distribution for R based on his question and they then use Lemma 4.1 to agree on a sample
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for
(

R
∣

∣WS ∧ (Xi = x) ∧ (Yi = y)
)

. The lemma and the second condition above guarantee that the
distribution they end up with will be statistically close to the right one. Once they have generated
the sample for R, they simply apply the functions f, g to generate their corresponding questions.

The solution for the general case will be a mixture of the solutions in the above two cases. We
shall identify an index i and a random variable R such that:

• Fixing R = r will determine at least one question of (Xi, Yi) for every coordinate i. If A denotes
the answers of one of the players in the coordinates n−k+1, . . . , n, this condition guarantees that
for every r, a, x, y, Xn, Y n are independent conditioned on the event (R,A,Xi) = (r, a, x) ∧WS .
Similarly Xn, Y n are independent conditioned on the event (R,A, Yi) = (r, a, y) ∧ WS .

• Conditioned on WS , all the information needed to generate RA given (Xi, Yi) is contained in
any one of these variables:

{

XiYi

∣

∣WS

} {

RA
∣

∣Xi ∧ WS

}

≈
{

XiYiRA
∣

∣WS

}

≈
{

XiYi

∣

∣WS

}{

RA
∣

∣Yi ∧ WS

}

Once we are able to determine such R,A and prove the above properties, we shall be done.
On receiving the questions x, y, the players will use the protocols from Lemma 4.1 to generate
(

RA
∣

∣(Xi, Yi) = (x, y) ∧ WS

)

. Once they have sampled this random variable, they can generate the
rest of their questions independently. This would prove that Pr[W{i}|WS ] must be small.

The stronger results that apply to projection games in this paper come about by proving that
in these kinds of games, the only way the player can win is by using a strategy that restricts itself
to using a few possible answers. We can define a new sub-event of WS that ensures that not only
do the players win in the coordinates of S, they do so by using answers that have a relatively high
probability. We can show that this event has an extremely high density in WS , so that conditioning
on WS is essentially the same as conditioning on this event. Thus allows to carry out the proof as if
the effective answer size of the provers is much smaller than it actually is.

6.2 The proof

Let A = An−k+1 . . . An and B = Bn−k+1 . . . Bn denote the answers of the players in the last k games.
Let V = V1, V2, . . . , Vn−k denote uniformly random bits.

For i = 1, 2, . . . , n − k, let Ti denote a random question in every coordinate:

Ti
def
=

{

Xi if Vi = 1,

Yi if Vi = 0.

Let Ui’s denote the opposite questions:

Ui
def
=

{

Xi if Vi = 0,

Yi if Vi = 1.

Set Q
def
= Xn−k+1Xn−k+2 . . . XnYn−k+1Yn−k+2 . . . Yn — the “won” questions.

Set R
def
= V QT1T2 . . . Tn−k — the “won” questions and a random question from each of the re-

maining question pairs.

Set R−j def
= V QT1T2 . . . Tj−1Tj+1 . . . Tn — removing the j’th coordinate from R.

The most technical part of the proof is the following lemma:
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Lemma 6.1. Let E be any event that is determined by ABR and h, z be positive integers such that

• Pr[E] ≥ 2−
ǫ2(n−k)

z2 +h
.

• For every r, |supp(A|R = r ∧ E)| ≤ 2h.

Then Ei/∈S

[

Pr[W{i}|E]
]

≤ 1 − ǫ + 17ǫ/z.

Before proving this lemma, let us first see how we can use it to prove Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. Set E = WS. It is clear that E is determined by QAB which is contained in
ABR. If the game is such that each answer comes from a set of size 2c, |supp(A|R = r∧E)| is trivially
bounded by 2kc. Set h = kc and apply Lemma 6.1 to get the lemma.

Next we give the proof for the case of projection games.

Proof of Lemma 3.2. Recall that in a projection game, we have the condition that there is some
function fQ, determined by the questions Q such that WS holds exactly when fQ(B) = A.

For any tuple (a, r) ∈ (A,R), say that (a, r) is heavy if Pr[A = a|R = r] ≥ 2−h, where h is a
parameter that we shall fix later. The intuition behind this definition is that conditioned on R = r,
the answers A,B|R = r are independent. Thus the players should be able to win the projection game
with a decent probability only when they pick one of the heavy elements, and there cannot be too
many of those. For instance, imagine that f was the identity function. Then it is easy to check that
if A,B are independent and Pr[A = B] is γ, there must be a set of size O(1/γ) (namely the elements
with weight at least γ/100) which A lands in with high probability.

Let G denote the event that (A,R) is heavy. We shall argue that when the players win, they
usually win inside the event G. Note that for every r, A,B|R = r is a product distribution.

Pr[WS ∧ Gc] =
∑

(b,r) s.t. (fq(b),r) is not heavy

Pr[R = r,B = b] Pr[A = fq(b)|R = r] ≤ 2−h

In particular this means that whenever WS happens, G happens with high probability (if we pick
h to be large enough):

Pr[G|WS ] =
Pr[G ∧ WS]

Pr[WS ]
=

Pr[WS ] − Pr[WS ∧ Gc]

Pr[WS ]
≥ 1 − 2−h/Pr[WS ]

Set E = G ∧ WS . Again note that E is determined by ABR. For every random variable O in
the space, the last inequality implies that |O|E − O|WS| ≤ 2−h/Pr[WS ]. In particular, for every i,
Pr[W{i}|WS ] ≤ Pr[W{i}|E] + 2−h/Pr[WS ].

Set h = (3/5) ǫ2(n−k)
682 . Then we get that:

Pr[E] = Pr[G|WS ] Pr[WS ] ≥ Pr[WS ] − 2−h

≥ 2−(1/5)
ǫ2(n−k)

682 − 2−3/5
ǫ2(n−k)

682

= 2−(2/5)
ǫ2(n−k)

682 (2(1/5)
ǫ2(n−k)

682 − 2−1/5
ǫ2(n−k)

682 )

≥ 2−(2/5) ǫ2(n−k)

682

= 2−
ǫ2(n−k)

682
+h
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satisfying the first condition of Lemma 6.1 with z = 68.
Applying the lemma, we get that

E
i/∈S

[

Pr[W{i}|WS ]
]

≤ E
i/∈S

[

Pr[W{i}|E]
]

+ 2−h/Pr[WS ]

≤ 1 − ǫ + ǫ/4 + 2
−

ǫ22(n−k)

5(68)2

≤ 1 − ǫ/2

Where the last inequality comes from the lowerbound on n − k in the hypothesis.

Finally, we prove Lemma 6.1.

Proof of Lemma 6.1. We shall first show that in expectation over a random choice of the index i, if
the players use the protocol from Lemma 4.1 to generate AR−i|E assuming that their questions came
from the distribution XiYi|E, then with high probability they sample the same value for this variable
which implies that the distribution they sample is close to

{XiYi}
{

AR−i
∣

∣EXiYi

}

≈
{

XiYi

∣

∣E
} {

AR−i
∣

∣EXiYi

}

Then we shall argue that if the players complete the rest of the questions they need independently,
the joint distribution of questions they get is close to XnY n|E.

We shall use the following shorthand to simplify notation: an expression like Fi
γ≈Ei/∈S

Gi stands
for the statement Ei/∈S [|Fi − Gi|] ≤ γ.

Claim 6.2.
{

XiYi

∣

∣E
} ǫ/z

≈ Ei/∈S
{XiYi} =Ei/∈S

{XY }

Proof. The claim follows by Lemma 5.6 applied to the event E and the product distribution of the
questions:

E
i/∈S

[∣

∣

{

XiYi

∣

∣E
}

− {XiYi}
∣

∣

]

≤
√

ǫ2(n − k) − h

z2(n − k)
≤ ǫ/z

We apply Corollary 5.7 to get that:

E
i/∈S

[∣

∣

{

AR
∣

∣E
}{

Ui

∣

∣R
}

−
{

ARUi

∣

∣E
}∣

∣

]

≤
√

ǫ2(n − k) − h + h

z2(n − k)
= ǫ/z

Note that for every i,
{

AR
∣

∣E
}{

Ui

∣

∣R
}

=
{

AR
∣

∣E
} {

Ui

∣

∣TiVi

}

, since Ui is independent of all the
other random variables in R. Conditioning on Vi = 1, by Proposition 2.4, we get

{

ARUi

∣

∣E
} ǫ/z

≈ Ei/∈S

{

AR
∣

∣E
} {

Ui

∣

∣TiVi

}

⇒
{

AR−iYiXi

∣

∣E
} 2ǫ/z

≈ Ei/∈S

{

AR−iYi

∣

∣E
} {

Xi

∣

∣Yi

}

(1)
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We can then argue that

{XiYi}
{

AR−i
∣

∣YiXiE
}

ǫ/z
≈ Ei/∈S

{

XiYi

∣

∣E
}{

AR−i
∣

∣YiXiE
}

by Claim 6.2

=Ei/∈S

{

AR−iXiYi

∣

∣E
}

rearranging

2ǫ/z
≈ Ei/∈S

{

AR−iYi

∣

∣E
}{

Xi

∣

∣Yi

}

by Equation 1

=Ei/∈S

{

Yi

∣

∣E
}{

Xi

∣

∣Yi

}{

AR−i
∣

∣YiE
}

rearranging

ǫ/z
≈ Ei/∈S

{Yi}
{

Xi

∣

∣Yi

}{

AR−i
∣

∣YiE
}

by Claim 6.2

=Ei/∈S
{XiYi}

{

AR−i
∣

∣YiE
}

rearranging

Repeating the argument but conditioning on Vi = 0, we get

Claim 6.3. {XiYi}
{

AR−i
∣

∣XiE
} 4ǫ/z

≈ Ei/∈S
{XiYi}

{

AR−i
∣

∣XiYiE
} 4ǫ/z

≈ Ei/∈S
{XiYi}

{

AR−i
∣

∣YiE
}

At this point we have made a lot of progress. We have shown that each player has roughly the
same information about the random variable AR−i, even in the event E. We imagine that we run the
protocol promised by Lemma 4.1 using the two players in our game, plus an additional player who gets
access to both questions (x, y). All players generate AR−i conditioned on E and whatever questions
they have. Then by Lemma 4.1 we get a protocol which has the effect that

• player 1’s variables have the distribution {Xi}
{

AR−i
∣

∣XiE
}

• player 2’s variables have the distribution {Yi}
{

AR−i
∣

∣YiE
}

• player 3’s variables have the distribution {XiYi}
{

AR−i
∣

∣XiYiE
}

• Ei/∈S [Pr[the players have inconsistent variables when they use the index i]] ≤ 2(4ǫ/z)+2(4ǫ/z) =
16ǫ/z

This means that the joint distribution that the first two players get is 16ǫ/z-close to the distribution
of the third player. But this third player samples from a distribution that is close to the one we want:

E
i/∈S

[∣

∣{XiYi}
{

AR−i
∣

∣XiYiE
}

−
{

XiYiAR−i
∣

∣E
}∣

∣

]

≤ E
i/∈S

[∣

∣{XiYi} −
{

XiYi

∣

∣E
}∣

∣

]

≤ ǫ/z by Claim 6.2

These facts give that for an average i, the first two players sample from a distribution that
is 17ǫ/z close to the correct distribution. To end the proof, observe that for every i, x, y, a, r−i,
(

Xn, Y n
∣

∣(Xi, R
−i, A) = (x, r−i, a)

)

and
(

Xn, Y n
∣

∣(Yi, R
−i, A) = (y, r−i, a)

)

are both product distribu-
tions. This means that if the players sample the rest of the questions they need conditioned on the
information they have, we will generate a distribution that is 17ǫ/z close to XnY n|E. This gives us
our final bound:

1 − ǫ ≥ E
i/∈S

[

Pr[W{i}|E]
]

− 17ǫ/z
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7 The Concentration Bound

In this section we prove the following concentration bounds for parallel repetition:

Theorem 7.1 (Concentration in General Games). Let G be a game with value 1 − ǫ and answer set

size 2c. Then for any δ > 0, the probability that the players can win more than a 1− ǫ + δ fraction of

the games in the n-fold parallel repetition is bounded by 3 exp
(

− δ4n
162(35)2c

)

.

Here we made no effort to optimize the constants appearing in the bound. It is conceivable that
these can be improved significantly. In analogy with the the results from the earlier section, the bounds
can easily be improved in the case of projection games to remove the dependence on c.

We shall rely on the following incarnation of the Chernoff bound:

Theorem 7.2 (Chernoff Bound). Let F1, . . . , Fm be independent boolean random variables with Pr[Fi =
1] = µ. Then for every constant δ > 0, Pr[

∑

i Fi < (1 − δ)µm] < exp(µmδ2/2).

Our proof will rely on the following well known facts about supermartingales.

Definition 7.3 (Supermartingale). A sequence of real valued random variables J0, J1, . . . , Jm is called
a supermartingale if for every i > 1, E [Ji|J0, . . . , Ji−1] ≤ Ji−1.

We have the following concentration bound for super-martingales:

Theorem 7.4 (Azuma-Hoeffding Inequality). If J0, . . . , Jm is a supermartingale with Ji+1 − Ji ≤ 1,

Pr[Jm > J0 + α] ≤ exp(−α2m/2)

Armed with this inequality, we can now prove our concentration bound. Recall that Lemma 6.1
was the heart of the proofs of the parallel repetition theorems that we have seen. The idea behind the
concentration bound is to exploit the fact that this lemma shows that for every set S, not only is there
a single index i for which Pr[W{i}|WS ] is small, but that even if we pick a random i, the expected
value of this probability is small.

Imagine that the referee in the game doesn’t check that the players win in all the coordinates, but
merely samples a few coordinates at random and checks that they win in those coordinates. Then the
random variables of whether or not the players have won should behave somewhat like a martingale
— conditioned on the outcome in a few coordinates, the outcome in the next coordinate should still
be biased towards losing. We can use the Azuma-Hoeffding inequality to bound the probability that
the referee sees an unusually large fraction of won games in her random sample. On the other hand,
by the Chernoff bound the fraction of won games that the referee sees is a very good estimate for the
total fraction of games that the players won. We can use these two facts to show that the players win
a larger fraction of games with only negligible probability.

Proof of Theorem 7.1. Let δ be as in the hypothesis. Set ν
def
= δ/3, z

def
= 34ǫ/ν and m

def
= ν2n

352c
.

Let V
def
= V1, . . . , Vm be independent random integers from [n] and let V i denote this sequence

truncated after i integers. For any integer i, let Wi denote the random variable that takes the value 1 if

the event W{i} holds and 0 otherwise. Set D
def
= WV1 , . . . ,WVM

and let Di be this sequence truncated
after the i’th bit.

Given a vector di = (d1, . . . , di) ∈ {0, 1}i and vi = (v1, . . . , vi) ∈ [n]i, say that (di, vi) are typical if

Pr
[

Di = di|V i = vi
]

≥ 2−2m
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Let Gi denote the event that (Di, V i) are typical. Then note that Gc
i ⇒ Gc

i+1 and

Pr[Gc
m] =

∑

atypical (v,d)

Pr [D = d|V = v] Pr[V = v] < 2−m

Set J0 to be the random variable taking the value 0 with probability 1. Set γ
def
= ǫ−17ǫ/z−m/n ≥

ǫ − ν/2 − ν/2 = ǫ − ν by our choice of parameters. For every i = 1, . . . ,m, set

Ji
def
=

{

Ji−1 + γ if W{Vi} ∧ Gi−1,

Ji−1 + γ − 1 otherwise.

Given any fixing (di−1, vi−1) of (Di−1, V i−1), if (di−1, vi−1) are not typical, then Ji = Ji−1 +
γ − 1 < Ji−1. On the other hand, if (di−1, vi−1) are typical, let E denote the event V i−1 =

vi−1 ∧ Di−1 = di−1. Then Pr[E] ≥ 2−2m ≥ 2−
ǫ2(n−m)

z2 +c by our choice of parameters. Also, E is
determined by the answers and questions in the games corresponding to V1, . . . , Vi−1. Lemma 6.1
then gives: E

[(

Di

∣

∣V i−1 = vi−1 ∧ Di−1 = di−1
)]

≤ m/n + 1 − ǫ + 17ǫ/z = 1 − γ, which implies that

E [Ji|Gi−1, J0, . . . , Ji−1] ≤ Ji−1. Thus,

Claim 7.5. J0, . . . , Jm is a supermartingale.

Theorem 7.4 then gives us the bound:

Pr

[

m
∑

i=1

Di ≥ (1 − ǫ + 2ν)m

]

≤ Pr[Gc
m] + Pr[Jm ≥ (1 − ǫ + 2ν)mγ − (ǫ − 2ν)(1 − γ)m]

≤ 2−m + Pr[Jm ≥ m(γ − (ǫ − 2ν))]

≤ 2−m + Pr[Jm ≥ m(ǫ − ν − (ǫ − 2ν))]

≤ 2−m + exp(−ν2m/2)

< 2 exp(−ν2m/2)

To finish the proof, we note that by the Chernoff bound, we expect that the vector D gives a good
estimate for the fraction of games that were won by the players. Specifically, Theorem 7.2 promises
that:

Pr

[

m
∑

i=1

Di < (1 − ǫ + 2ν)m ∧
n
∑

i=1

Wi ≥ (1 − ǫ + 3ν)n

]

≤ Pr

[(

m
∑

i=1

WVi < (1 − ǫ + 2ν)m
∣

∣

n
∑

i=1

Wi ≥ (1 − ǫ + 3ν)n

)]

< exp

(

−m
1 − ǫ + 3ν

2

(

1 − 1 − ǫ + 2ν

1 − ǫ + 3ν

)2
)

= exp

(

−m
1 − ǫ + 3ν

2

(

ν

1 − ǫ + 3ν

)2
)

< exp(−mν2/2)
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This gives us our final estimate:

Pr

[

n
∑

i=1

Wi ≥ (1 − ǫ + δ)n

]

= Pr

[

n
∑

i=1

Wi ≥ (1 − ǫ + 3ν)n

]

≤ Pr

[(

m
∑

i=1

Di < (1 − ǫ + 2ν)m

)

∧
(

n
∑

i=1

Wi ≥ (1 − ǫ + 3ν)n

)]

+ Pr

[

m
∑

i=1

Di ≥ (1 − ǫ + 2ν)m

]

≤ 3 exp(−mν2/2)

= 3 exp

(

− δ4n

162(35)2c

)
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