
Finding Significant Fourier Transform Coefficients
Deterministically and Locally

Adi Akavia∗

November 9, 2008†

Abstract

Computing the Fourier transform is a basic building block used in numerous applications. For data
intensive applications, even theO(N logN) running time of the Fast Fourier Transform (FFT) algo-
rithm may be too slow, andsub-linearrunning time is necessary. Clearly, outputting the entire Fourier
transform in sub-linear time is infeasible, nevertheless,in many applications it suffices to find only the
τ-significant Fourier transform coefficients, that is, the Fourier coefficients whose magnitude is at least
τ-fraction (say, 1%) of the energy (i.e., the sum of squared Fourier coefficients). We call algorithms
achieving the latterSFT algorithms.

In this paper we present adeterministicalgorithm that finds theτ-significant Fourier coefficients of
functions f over any finite abelian group Gin time polynomial in log|G|, 1/τ andL1(f̂) (for L1(f̂)
denoting the sum of absolute values of the Fourier coefficients of f). Our algorithm is robust to random
noise.

Our algorithm is the first deterministic and efficient (i.e., polynomial in log|G|) SFT algorithm to
handle functions over any finite abelian groups, as well as the first such algorithm to handle functions
overZN that are neither compressible nor Fourier-sparse. Our analysis is the first to show robustness to
noise in the context of deterministic SFT algorithms.

Using our SFT algorithm we obtain (1) deterministic (universal and explicit) algorithms for sparse
Fourier approximation, compressed sensing and sketching;(2) an algorithm solving the Hidden Number
Problem with advice, with cryptographic bit security implications; and (3) an efficient decoding algo-
rithm in the random noise model for polynomial rate variantsof Homomorphism codes and any other
concentrated & recoverable codes.

∗Institute for Advanced Study, Princeton NJ 08540 and DIMACS, Rutgers University, Piscataway, NJ 08854. This research
was supported in part by NSF grant CCF-0514167, by NSF grant CCF-0832797, and by Israel Science Foundation 700/08. Email:
akavia@ias.edu

†A preliminary version of this work appears in authors PhD dissertation [2].

0

Electronic Colloquium on Computational Complexity, Report No. 102 (2008)

ISSN 1433-8092

1 Introduction

Computing the Fourier transform is a basic building block used in numerous algorithms arising in the context
of a wide variety of applications. The best known algorithm for computing the entire Fourier transform is
the Fast Fourier Transform (FFT) algorithm [14] that computes the Fourier transform in timeO(N logN) for
N the input size.

For data intensive applications, even the running time of the FFT algorithm may be too slow, andsub-
linear running time is necessary. Clearly, achieving sub-linear running time is infeasible when computing
the entire Fourier transform, because the output itself is of length N. Nevertheless, in many applications
it is not necessary to compute the entire Fourier transform;instead it suffices to find only theτ-significant
Fourier transform coefficients, that is, the indices and approximate values of the Fourier coefficients whose
magnitude is at leastτ-fraction (say, 1%) of the sum of squared Fourier coefficients.

In a sequence of works [4, 23, 24, 27, 34–36, 38, 39] starting with the seminal work of Goldreich and
Levin [27], it was shown that finding the significant Fourier transform coefficients (aka,SFT algorithms)
can be done in time polynomial in logN and 1/τ, that is, much much faster than computing the entire Fourier
transform.1 We use the termefficient to address SFT algorithms with running time polynomial in logN and
1/τ.

The above algorithms differ on thedomainof the considered input functions (varying from the boolean
cubeF

n
2 in [27] to any finite abelian group given by its generators andtheir orders in [4]), as well as on

whether they arerandomized algorithms[4, 23, 24, 27, 39] ordeterministic ones[34–36, 38]. Domains
addressed by the deterministic algorithms are direct product of groupsZ

n
k for small modulus k= poly(n)

in [38] andZN in [34–36].
The deterministic algorithms [34–36, 38] areuniversal, that is, they read thesameset of entries in

all input functions over the same domainG (provided the same input parameters are given). In addition,
they areexplicit, that is, they choose the set of read entries efficiently and deterministically. In contrast, the
randomized algorithms [4,23,24,27,39] are not only non-explicit but also non-universal, that is, they choose
fresh entries to be read for each given input function.

Being universal necessitates some sort of restriction on the input function: It is impossible to find the
significant Fourier coefficients ofall functions when reading the same fewfixedset of entries, because for
any function f , changing the few read values to zero has very little affect on the Fourier transform, and yet,
clearly the algorithms cannot find the significant Fourier coefficients from reading only those zero values.
This issue is addressed in [34–36,38] by givingefficientalgorithms only for functionsf s.t.:

• L1(f̂) ≤ polylogN for L1(f̂) = ∑α

∣∣∣ f̂ (α)
∣∣∣ the sum of Fourier coefficient of the input functionf and

N the domain size in [38].

• f is p-compressiblefor p≥ 1+ Ω(1), i.e., ∀b = 1, . . . ,N theb-th largest Fourier coefficient off is of
magnitude at mostO(b−p), in [34,35].

• f is m-Fourier sparsefor m≤ polylogN, i.e., f has at mostmnon-zero Fourier coefficients, in [36].

1We remark that [39] only implicitly gives an SFT algorithm, whereas explicitly it addresses interpolation of sparse polynomials.
The interpolation algorithm requires evaluating polynomials on increasing powers of 2, resulting with an (implicit) SFT algorithm
which is applicable only to functions over groupsZN for N a power of2 (or direct products of such groups). Alon-Mansour [5] de-
randomized the interpolation algorithm [39] for the case ofpolynomials overZN for prime N. This does not result in a deterministic
SFT algorithm as it holds for primeN rather than powers of 2. We suspect nevertheless that [5] could be extended to give a
deterministic SFT algorithm for functions overZN whereN is a power of 2.

1

We point out that the best (i.e., weakest) of the above restrictions is the first one (when we assume w.l.o.g.

that f is normalized to have∑α

∣∣∣ f̂ (α)
∣∣∣
2
= 1). In general, [34–36, 38] achieve the following complexity in

terms ofL1(f̂), p andm: running time polynomial in logN, 1/τ andL1(f̂) in [38]; running time polynomial
in logN and(1/τ)(p+1)/(p−1) in [34,35]; and running time polynomial in logN andm in [36].

We use the termlocal to address algorithms with running time polynomial in logN, 1/τ andL1(f̂). The
algorithm of [38] is local, whereas the algorithms of [34–36] are not local.

1.1 New Results

Our main result in this paper is adeterministic, local androbustSFT algorithm for functions overany finite
abelian group G.

Main result: deterministic local SFT algorithm. There is a deterministic (universal and
explicit) algorithm that, given any finite abelian groupG (by its generators and their orders), a
significance parameterτ∈ (0,1], a boundt > 0, and oracle access to a complex-valued function
f : G→ C s.t. L1(f̂)≤ t, outputs allτ-significant Fourier coefficients off in running time and
query complexity polynomial in log|G|, 1/τ andt.

In particular fort = L1(f̂) the complexity of our algorithm is polynomial in log|G|, 1/τ andL1(f̂).
Robustness.Our SFT algorithm succeeds also in the presence of random noise. That is, with probability

at least 0.99 over the noise, the algorithm outputs the significant Fourier coefficients off even when given
oracle access only to a corrupted versionf ′ = f +η for η random noise of parameterO(τ) sufficiently small;
where we say thatη random noise of parameterε if entries ofη are drawn independently at random from
distributions of expected absolute values at mostε. We remark that clearly the SFT algorithm also handles
adversarial noises.t. L1(η̂)≤ t.2

Our result improves on other deterministic SFT algorithms [34–36,38] in giving:

1. The first efficient deterministic SFT algorithm for functions overarbitrary finite abelian groups G. In
comparison, other deterministic algorithms apply to functions overZn

k for small modulusk = poly(n)
[38], or overZN [34–36] where the latter is further restricted to handle only compressible or Fourier
sparse functions.

Handling functions overany finite abelian groupis motivated by the wide range of domains arising in
applications, such as: 1-dimensional functions for audio processing, 2- and 3-dimensional functions
for image and video processing and multi-dimensional functions for processing feature spaces arising
in machine learning applications,i.e., domainsZN1× . . .×ZNk with k = 1,2,3 and largek.

2. The first local deterministic SFT algorithm for functions overZN that handlesany function f in
running time polynomial in logN, 1/τ andL1(f̂). In particular, our algorithmefficientlyhandles the
class of all functionsf s.t. L1(f̂) ≤ polylogN. This class of functions is strictly larger than the
previously handled functions, asL1(f̂) = O(1) for the(1+Ω(1))-compressible functions in [34,35]),
andL1(f̂)≤ polylogN for the polylogN-Fourier sparse functions in [36]) (where we assume w.l.o.g

that functions are normalized to have unit energy∑α

∣∣∣ f̂ (α)
∣∣∣
2
= 1).

2Looking ahead, in Section 7 we present theRobust SFTalgorithm that handles adversarial noiseη s.t. ‖η‖22 = O(τ) in query
complexity polynomial in log|G|, 1/τ andL1(f̂), and in running timesub-linearin the domain size.

2

Handling this wider class of functions is motivated both by the complexity theoretic goal of deter-
mining the limits of de-randomization, as well as by naturalfamilies of functions arising in data
intensive applications havingL1(f̂) = poly(log|G|), e.g., poly-log depth decision trees and decision
lists (c.f. [38]).

3. The first analysis showing robustness to noise in the context of universal SFT algorithms.

We point out that when it comes to handling noise there is a vast difference between randomized and
universal algorithms: For therandomizedalgorithms [4, 23, 24, 27, 39], being robust to noise (even
adversarial noise) is fairly straightforward: when run with parameterτ′ = (τ− ε) instead ofτ, the
randomized algorithms find all the significant Fourier coefficients of f even when given access only
to its corrupted versionf ′ = f + η s.t.‖η‖22 ≤ ε. In contrast, for theuniversalalgorithms [34–36,38]
even random noise is out of scope, as the corrupted functionf ′ = f + η typically has very large
L1(f̂ ′)≈

√
N even ifL1(f̂) was bounded, andf ′ is typically not Fourier sparse even iff was Fourier

sparse.

Using our SFT algorithm we obtain: (1) deterministic algorithms for sparse approximation, compressed
sensing and sketching; (2) an algorithm solving the Hidden Number Problems (HNP) with advice with
cryptographic bit security implications; and (3) an algorithm for decoding polynomial rate variants of ho-
momorphism and concentrated & recoverable codes (details follow). The determinism/universality of our
SFT algorithm is essential for all those results.

1.1.1 New: Deterministic sparse approximation, compressed sensing & sketching algorithms

We present deterministic (universal and explicit) algorithms for sparse approximation, compressed sensing
and sketching achieving:

1. The firstdeterministicalgorithm for finding a near optimalm-sparse Fourier approximation for func-
tions overZN (and any finite abelianG) in time polynomial in logN, m/ε andL1(f̂) (for ε the approx-
imation parameter). The input to the algorithm isN, m, ε, L1(f̂) and oracle access tof .

In comparison, other sparse Fourier approximation algorithms are either randomized [4,23,24,27,39];
or deterministic but restricted to either functions overZ

n
k for k = poly(n) [38], or to compressible

functions overZN [34,35], or to Fourier sparse functions overZN [36].

2. A deterministiccompressed sensing and sketching algorithms for vectorsx ∈ R
N with number of

linear measurements and recovery time polynomial in logN, m/ε and L1(x) = ∑N
i=1 |xi | (for m the

number of non-zero terms in the recovered representation and ε the approximation parameter).

Similar performance can be derived from the prior deterministic algorithms for sparse Fourier approx-
imation [38] and for sparse interpolation of polynomials [5].

In comparison, other compressed sensing and sketching algorithms either rely on a randomized choice
of measurements [4, 10, 13, 15, 17, 21, 23, 24, 39]; or are universal but non-explicit [6, 11, 16, 18, 25,
26, 33, 42]; or are deterministic but with a number of measurements and a recovery time greater than
any polynomial in logN [19,28,32] (and further restricted to handle only to sparseinputs [32]); or are
deterministic and efficient but restricted only to compressible inputs [16,34,35], sparse inputs [36], or
to specific input functions (e.g., “bucket histograms”) [22]. Our algorithm falls short of some of the
aforementioned algorithms in having polynomial rather than linear dependence onm.3

3A few remarks. Compressed sensing algorithms are implicit in [4, 5, 23, 24, 38, 39] as they preceded the introduction of the

3

Robustness.The above results holds even if the oracle tof or the linear measurements ofx are corrupted
by noiseη which is either (1) random noise of parameterO(ε/m), or (2) adversarial noise of boundedL1

norm:L1(η̂)≤ L1(f̂) for the sparse Fourier approximation algorithm, andL1(η)≤ L1(x) for the compressed
sensing and sketching algorithm. In the random noise case, the algorithm succeeds with 0.99 probability
over the noise. Furthermore, we present an extension of the above algorithms to handle adversarial noiseη
s.t.‖η‖22≤O(ε/m) in query complexity polynomial in logN, m/ε andL1(f̂), and in running timesub-linear
in the domain sizeN.

In comparison prior works handling comparable amounts of noise have running time polynomial in
the domain sizeN (rather than in logN) [10, 17]. Prior works with sub-linear running time addressonly
limited amounts of noise: noise flippingO(1/ logN) fraction of the read entries [17], noiseη s.t. L1(η) ≤
O(1/ logm) [25], no noise [5,38].4

1.1.2 New: Solving Hidden Number Problem with advice, and bit security implications

The Hidden Number Problemwas formalized by Boneh and Venkatesan [8] in the context of presenting
the best known result on the bit security of the Diffie-Hellman function. A relaxation of this problem to
a Hidden Number Problemwith advicewas subsequently formalized in the context of a security proof for
cryptographic functions such as Okamoto conference key sharing scheme and a modified ElGamal’s public
key encryption scheme [9].

In the Hidden Number Problem (HNP) with advice, forp a large prime andg a generator of the multi-
plicative groupZ∗p, the goal is to find a hidden numbers∈ Z

∗
p when given ashort advice stringthat depends

only on p andg and oracle access to the functionPs(a) = MSBk(s·ga mod p)) mappinga∈ {1, . . . , p} to
thek most significant bits in the binary representation ofs·ga mod p.

Boneh and Venkatesan [9] gave an algorithm solving the HNP with advice for anyk≥ O(log logp) in
running time polynomial in logp. They then use this algorithm to show that computing the value of the
k most significant bits is as hard as breaking the scheme for theOkamoto conference key sharing scheme
and for a modified ElGamal’s public key encryption scheme (where “as hard” here means that there is a
polylog p time reduction from the latter to the former). This is interpreted as evidence for the security of
thesek bits (assuming the underlying functions are secure).

In this paper, we give an algorithm solving the HNP with advice for anyk≥ 1, and even in the presence
of random noise. This improves on prior works [9] in (1) handling k≥ 1 rather thank≥ O(log logp), and
(2) being robust to random noise.

We then use this improved algorithm to strengthen the security results of [9] for the Okamoto con-
ference key sharing scheme and their variant of ElGamal’s public key encryption scheme: We show that
non-uniformly computing even thesinglemost significant bit of the aforementioned cryptographic func-
tions is as hard as breaking these schemes (where “non-uniformly” here means in the presence of advice
depending only ong andp).

compressed sensing paradigm [10, 21]. The algorithms [5, 38, 39] are restricted to input lengthsN that are powers of 2 [38, 39]
or primes [5]; nevertheless, they can handle any input length N by padding the input with zeros to reach the nearest appropriate
lengthN′. [5] focus on sparse input polynomials; nevertheless inspecting their algorithm shows it also handles non-sparse inputs
with complexity depending on theirL1 norm.

4We remark that in some prior works a weaker notion of noise wasconsidered, where an input is called “noisy” if it is not
sparse. The notion considered here is stronger: we address non-sparse inputs with the additional noise incurred by inaccurate
measurements.

4

1.1.3 New: Decoding polynomial rate concentrated & recoverable codes

An error correcting codeC is a collection ofcodewords Cm encodingmessages min a redundant way to allow
decoding, that is, recovery of the message even in the presence of noise. Homomorphism codes(G,C)-Hom
encode messagesm in a finite abelian groupG by the truth table of the characterχm: G→C corresponding
to m (where the characters are all homomorphisms fromG to the complex unit sphere, and they correspond
to elementsm∈ G according to an isomorphism betweenG and the group of its characters). For example,
the well know Hadamard code is the homomorphism code over theboolean cubeG= F

n
2. In homomorphism

codes(G,C)-Hom, the codewords length is|G| which isexponentialin the information rate log|G| (i.e., in
the messages binary representation length).

We ask whether there are restrictions of the codewords of(G,C)-Hom to a small subset of their entries
yielding newefficiently decodablecodes of codewords lengthpolynomialin the information rate. For ho-
momorphism codes over somesmall groupssuch restrictions are known; for example, the Sipser-Spielman
codes [44] can be viewed as a restriction of the Hadamard codes achieving linear codewords length and
efficient decoding in the adversarial noise model. In contrast, for homomorphism codes overlarge groups,
say,G = ZN, such restrictions are not known.

In this paper we show thatfor everyhomomorphism code(G,C)-Hom with G a finite abelian group,
there is an explicit subsetSof the entries of its codewords such that restricting all codewords to the entries in
Syields a new code that achieves: (1) codewords lengthpolynomialin the information rate log|G|, and (2)
efficient decodingin the random noise model. Furthermore, we show that the suchrestrictions exist for all
codes in the class ofconcentrated and recoverable codes. (The class of concentrated and recoverable codes
was introduced in [4] and includes in particular all homomorphism code(G,C)-Hom as well as boolean-
ization of homomorphism codes called Multiplication Codes[4].)

Related prior works.Local testing of homomorphism codes with constant query complexity was given in
[7]. Local list decoding of homomorphism codes in poly-logarithmic query and time complexity were given
for the Hadamard codes [27], for homomorphism codes(G,C)-Hom [4], and for arbitrary homomorphism
codes [20].

1.1.4 Techniques

Our deterministic SFT algorithm builds on the randomized algorithm of [4] while using a new set of read
entries and providing a new analysis. To define the set of entries we introduce a new combinatorial property
–small bias on intervals– which is a strict generalization of small biased sets. We then construct the set of
read entries from sets that are small biased on intervals of sizes 2̀ for ` = 1, . . . ,b(logN)c. We prove that
our set is universal for all input functions with boundedL1(f̂) relying on Fourier analysis of the constructed
set. This Fourier analysis does not extend to handling functions corrupted by random noise due to their large
L1 values. Instead we prove universality for noisy functions by showing the algorithm behaves similarly on
the noisy and non-noisy functions.5 We remark that the definition of small bias on intervals may beuseful
beyond this work.

In comparison, other deterministic SFT or compressed sensing algorithms rely on combinatorial proper-
ties such as small biased sets [38],K-majorityk-strongly selective sets [34,35], Restricted Isometry Property
(RIP) [12,19,28], and extractor graphs [32].

5We remark that a preliminary version of our new proof appearsin the authors PhD dissertation [2].

5

Paper Organization

The rest of this paper is organized as follows. Some preliminaries are given in section 2. Our SFT algorithm
for functions overZN and its analysis are presented in section 3; see section 8 forthe case of functions
over arbitrary finite abelian groups. Our results on sparse approximation/compressed sending/sketching, on
cryptographic bit security, and on decoding polynomial rate concentrated & recoverable codes appear in
sections 4-6. The extension of our algorithm to handling adversarial noise is outlined in section 7.

2 Preliminaries

In this section we summarize some preliminary terminology,notations and theorems.

Inner product, norms, convolution. The inner productof complex valued functionsf ,g over a domainG

is 〈 f ,g〉 de f
= 1
|G| ∑x∈G f (x)g(x). We denote thenormalized̀ 2 normand thè ∞ normof f by ‖ f‖2

de f
=
√
〈 f , f 〉

and‖ f‖∞
de f
= max{| f (x)| |x∈G}, and denote theun-normalized L1-norm by L1(f) = ∑x∈G | f (x)|. The

convolutionof f andg is the functionf ∗g: G→ C defined byf ∗g(x)
de f
= 1
|G| ∑y∈G f (y)g(x−y).

Characters and Fourier transform. We denote byZN
de f
= Z/NZ the additive group of integers modulo

N. Thecharactersof ZN are the functions{χα : ZN→ C}α∈ZN
defined byχα(x)

de f
= ωαx

N for ωN = e2πi/N a
complexN-th root of unity. For arbitrary finite abelian groupsG, the characters are the set of all homomor-
phismχ : G→C from G into the complex unit sphere. TheFourier transformof a complex valued function

f overG is the function f̂ : G→ C defined by f̂ (α)
de f
= 〈 f ,χα〉. A few useful properties:Parseval Identity

says that‖ f‖22 = ∑α

∣∣∣ f̂ (α)
∣∣∣
2
. By theconvolution-multiplication duality, f̂ ∗g(α) = f̂ (α) · f̂ (α). The Fourier

coefficients for the functiong = f ·χ−α0 areĝ(α) = f̂ (α−α0) (where subtraction is moduloN).
Significant Fourier coefficients.For anyα ∈ ZN, valα ∈C andτ,ε ∈ [0,1], we say thatα is aτ-significant

Fourier coefficientiff
∣∣∣ f̂ (α)

∣∣∣
2
≥ τ‖ f‖22, and we say thatvalα is anε-approximation forf̂ (α) iff

∣∣∣valα− f̂ (α)
∣∣∣<

ε. We denote the set ofτ-significant Fourier coefficients off by Heavyτ(f).

Small biased sets [41].We say that a setA⊆ ZN is γ-biased inZN if |Ex∈A[χα(x)]| ≤ γ for every non trivial
characterχα of the groupZN, α 6= 0.

Fact 1 ([1, 37, 43]). There exists a deterministic algorithm that, given any integer N > 0 and realγ > 0,
outputs a set A⊆ [0..N−1] that isγ-biased inZN. The size|A| and the running time are poly(logN,1/γ).

New definition: (γ, I)-bias in G. For any abelian groupG and subsetsB, I ⊆G, we say thatB is (γ, I)-biased
in G if for every characterχ of the groupG, |Ex∈B∩I [χ(x)]−Ex∈I [χ(x)]| ≤ γ.

Fact 2 ([3]). There exists a deterministic algorithm that, given any integers0< M < N and realγ > 0, out-
puts a set B⊆ [0..M] that is(γ, [0..M])-biased inZN. The size|B| and the running time are poly(logN,1/γ).

Remark.Theconstructionof [3] is simple given Fact 1, as [3] show that anyγ′-small biased sets inZM for
sufficiently smallγ′ = poly(γ,1/ logN) is (γ, [0..M])-biased inZN. Their proof is the main novelty in [3].

Tail inequality. Chernoff/Hoeffding theorem bounds the deviation of a sum ofindependent random vari-
ables from its expectation:

Theorem 3 (Chernoff/Hoeffding Bound [29]). Let X1, . . . ,Xt be independent random variables of expecta-

tions µ1, . . . ,µy and bounded values|Xi| ≤M. Then,∀η > 0, Pr[
∣∣1

t ∑t
i=1Xi− 1

t ∑t
i=1 µi

∣∣≥η]≤ 2·exp
(
−2tη2

M2

)
.

6

Characters average over intervals.Denote bySt(α) = 1
t ∑t−1

x=0χα(x) the average value of the characterχα
of ZN over an interval[1..t], t < N. ThenSt(α) decrease fast with the growth ofα (c.f.proof in [4]):

Proposition 4. ∀α ∈ ZN, |St(α)|<
√

2
3

(
N/t

abs(α)

)
for abs(α) = min{α,N−α}.

3 Finding Significant Fourier Coefficients Deterministically and Locally

In this section we present our algorithm for finding significant Fourier coefficients and its analysis. We focus
here on the case of functions overZN; see section 8 for the case of arbitrary finite abelian groupsG.

Our algorithm is composed of two parts: (1)Queries generatingpart, where a set of entriesS =
S(G,τ, t) ⊆ G is chosen, givenG, τ and t, and (2)Fixed queriespart, where the significant Fourier coef-
ficients of a functionf : G→C s.t.L1(f̂)≤ t are found, givenG, τ and the restriction toSof f (or are found
with high probability given the restriction toSof a f ′ a corruption off in random noise model).

3.1 Queries Generating

Our queries generating algorithm constructs the set of entriesSusing sets that are small biased on intervals
[0..2`] for ` = 0, . . . , logN (c.f.Fact 2 and the preceding definition in section 2):

Algorithm 5. Queries Generating. Given any positive integer N and positive realsτ and t, output a set
S=

⋃b(logN)c
`=1 (A−B`) for A,B1, . . . ,Bb(logN)c each of size polynomial inlogN and1/γ for γ = O(τ/t2(1+

logN)) sufficiently small s.t.

• A is γ-biased inZN

• B` is (γ, [0..2`])-biased inZN for ` = 1, . . . ,b(logN)c

The sets A,B1, . . . ,Nb(logN)c are constructed deterministically in time polynomial inlogN and1/γ using the
algorithms guaranteed in Facts 1-2, section 2. We remark that A−B` is the difference set{a−b |a∈ A,b∈ B`}.

Remark 6. To obtain auniversal(albeit, non explicit) SFT algorithm it suffices to give a randomized al-
gorithm generating a set of queries S=

⋃b(logN)c
`=1 (A−B`) for A,B1, . . . ,Bb(logN)c satisfying the properties

in Algorithm 5. A randomized algorithm that outputs such a set S with constant success probability is the
algorithm that chooses sets A⊆ ZN and B̀ ⊆ [0..2`] each of size O((logN)(log logN)/γ2) uniformly at ran-

dom, and outputs S= ∪b(logN)c
`=1 (A−B`). The size of the resulting set is|S| = O((logN)7 · (t/τ)4); and in

particular, |S| = O((log7N)/τ4) for compressible functions (as for such functions t= L1(f̂) is a constant).
Verifying that a set S satisfies the properties from Algorithm 5 can be done in quasi-linear time O(|S| ·N).

3.2 Fixed Queries SFT

We give an overview of the fixed queries (FQ-SFT) part of our algorithm. At a high level, theFQ-SFT is a
binary search algorithm that repeatedly:

1. Partitions the set of potentially significant Fourier coefficients intotwo halves.

2. Tests each half to decide if it (potentially) contains a significant Fourier coefficient. This is done
by estimating whether the sum of squared Fourier coefficients in each half exceeds the significance
thresholdτ.

7

3. Continues recursivelyon any half found to (potentially) contain significant Fourier coefficients.

At each step of this search, the set of potentially significant Fourier coefficients is maintained as a
collectionJ of intervals: At the first step of the search, all Fourier coefficients are potentially significant, so
J contains the single intervalJ = [1..N]. At each following search step, every intervalJ∈ J is partitioned into
two sub-intervalsJ1 andJ2 containing the lower and upper halves ofJ respectively, and the setJ is updated
to hold only the sub-intervals that pass the test,i.e., those that (potentially) contain a significant Fourier
coefficient. After logN steps this search terminates with a collectionJ of length one intervals revealing
the frequencies of the significant Fourier coefficients. Forall frequenciesα of of the significant Fourier
coefficients, we then compute as anO(τ)-approximation forf̂ (α) the valuevalα = 1

|A| ∑x∈A−y f (x)χα(x) for

some arbitraryy∈ ∪b(logN)c
`=1 B`; to simplify notations in the following we assume w.l.o.g. thaty = 0.

The heart of the algorithm is the test deciding which intervals potentially contain a significant Fourier
coefficient (aka, distinguishing procedure). The distinguishing procedure we present, given an interval

J, answers YES if its Fourier weightweight(J) = ∑α∈J

∣∣∣ f̂ (α)
∣∣∣
2

exceed the significance thresholdτ, and

answers NO if the Fourier weight of a slightly larger interval J′ ⊇ J is less thanτ/2. This is achieved by
estimating thè 2 norm (i.e., sum of squared Fourier coefficients) of a filtered version ofthe input function
f , when using a filterh that passes Fourier coefficients inJ and decays fast outside ofJ.

The filtersh that we use for depth̀of the search are the (normalized)periodic square functionof support
size 2̀ or Fourier domain translations of this function:

h`,c(y) =

N
2` ·χ−c(y) y∈ [0..2`]

0 otherwise

The filter h = h`,c passes all frequencies that lie within the lengthN/2` interval J centered aroundc, and
decays fast outside ofJ. The filtered version off is f ∗ h, and we estimate its̀2 norm ‖ f ∗ h‖22 by the
estimator:

esth,A,B`
(f) =

1
|A| ∑x∈A

(
1
|B`| ∑

y∈B`

χ−c(y) f (x−y)

)2

for A,B1, . . . ,B` ⊆ ZN as specified in the Queries Generating Algorithm 5.
A pseudo-code of theFQ-SFT algorithm follows; we denote by{a,b} the interval[a..b] and byCandidatè

the collectionJ as reached at search depth`.

Algorithm 7. FQ-SFT Algorithm
Input : N ∈ N, τ ∈ (0,1], A,B1, . . . ,BlogN ⊆ ZN and{(x, f (x))}x∈S for S= A−⋃logN

`=1 B`

Output : L ⊆ ZN

Steps:

1. Candidate0← {{0,N}}, ∀` = 1, . . . , logN, Candidatè= φ

2. For ` = 0, . . . , log2N−1

(a) For each{a′,b′} ∈Candidatè

For each{a,b} ∈
{{

a′, a′+b′
2

}
,
{

a′+b′
2 +1,b′

}}

i. Run Distinguishing Algorithm 8 on input{a,b}, τ‖ f‖22, A,B`+1, and{(x, f (x))}x∈S; denote
its output by “decision”

8

ii. If decision= 1, Candidatè+1←Candidatè+1
⋃{{a,b}}

3. Output L=
{

α |{α,α} ∈CandidatelogN
}

and
{

valα = 1
|A| ∑x∈A f (x)χα(x)

}
α∈L

Algorithm 8. Distinguishing Algorithm.
Input : {a,b} ∈ ZN×ZN, τ ∈ R

+, A,B⊆ ZN, {(x, f (x))}x∈A−B
Output : 1 or 0
Steps:

1. Computeesta,b← 1
|A| ∑x∈A

(
1
|B| ∑y∈B χ−b(a+b

2)c(y) f (x−y)
)2

2. If esta,b≥ 5
36τ, decision= 1, else decision= 0

We remark that to ease the reading of the above pseudo-code wemade the simplifying assumptions that
(a′+b′)/2 is an integer, that‖ f‖22 is known, and thatA⊆ S. When this is not the case mild changes are due:
When(a′+b′)/2 is not an integer, we partition{a′, . . . ,b′} into two disjoint subintervals{a′, . . . ,c},{c+1, . . . ,b′}
of roughly the same length. When‖ f‖22 is not known we estimate it with precisionO(τ‖ f‖22) sufficiently
small by the estimator∑x∈A f (x)2. WhenA is not contained inS, we computevalα = 1

|A| ∑x∈A f (x−y)χα(x−
y) for arbitraryy in

⋃logN
`=1 B`.

3.3 Analysis

In this section we analyze our SFT algorithm proving our mainresult. Recall thatHeavyτ(f) is the set of

τ-significant Fourier coefficients off , and thatvalα is anε-approximation forf̂ (α) iff
∣∣∣valα− f̂ (α)

∣∣∣< ε.

We first show that our SFT algorithm succeeds when there’s no noise.

Theorem 9. For every positive integer N, positive realsτ, t, and a complex valued function f: ZN→ C s.t.
L1(f̂) ≤ t, our SFT algorithm given N,τ, t and oracle access to f , outputs a list L⊇ Heavyτ(f) together
with O(τ)-approximations for̂f (α) ∀α ∈ L in running time polynomial inlogN, 1/τ and t.

Proof. Combining lemmas 11 and 13 below shows that our SFT algorithmsucceeds in finding theτ-
significant Fourier coefficients of all functionsf s.t. L1(f̂)≤ t.

We next show that our SFT algorithm succeeds also in the presence of noise, that is, the algorithm
outputs the significant Fourier coefficients off even when given only oracle access to a corrupted version
f ′ = f + η. The noiseη may be either (1)Random noiseof parameterε = O(τ) sufficiently small, that
is, entries ofη are drawn independently at random from a distribution of expected absolute valueε, or (2)
Adversarial noises.t. L1(η̂)≤ t.

Theorem 10 (Robustness to noise). For every positive integer N, positive realsτ, t, and complex valued
functions f,η : ZN→ C s.t. L1(f̂)≤ t,

• Our SFT algorithm, given N,τ, t and oracle access to f′ = f + η for η random noise of parameter
O(τ) sufficiently small, outputs a list L⊇ Heavyτ(f) together with O(τ)-approximations forf̂ (α)
∀α ∈ L with probability at least1−1/NΘ(1) over the noiseη.

• Our SFT algorithm, given N,τ, t and oracle access to f′= f +η for η adversarial noise s.t. L1(η̂)≤ t,
outputs a list L⊇ Heavyτ(f) together with O(τ)-approximations for̂f (α) ∀α ∈ L.

9

The running time of the SFT algorithm polynomial inlogN, 1/τ and t.

Proof. Combining lemmas 11 and 14 below shows that our SFT algorithmsucceeds with probability at least
1−1/NΘ(1) to output theτ-significant Fourier coefficients of all functionsf ′ = f +η s.t. L1(f̂)≤ t andη is
random noise and their approximations; where the probability is taken over the choice of the random noise
η. The proof for the case of adversarial noiseη s.t. L1(η̂)≤ t is analogous while replacing Lemma 14 with
Lemma 15.

We give a sufficient condition for the success of theFQ-SFT algorithm on any particular input function.

Lemma 11. For every function f: ZN → C and thresholds t,τ > 0, theFQ-SFT algorithm returns a list
L ⊇ Heavyτ(f) together withτ-approximations forf̂ (α) ∀α ∈ L in running time polynomial inlogN, 1/τ
and t if the following conditions hold:

(∗)
∣∣esth,A,B`

(f)−‖ f ∗h‖22
∣∣< cτ ∀` ∈ [b(logN)c],c∈ ZN and h= h`,c as defined above, and

(∗′)
∣∣∣∣∣

1
|A| ∑x∈A

f (x)χα(x)− f̂ (α)

∣∣∣∣∣< cτ ∀α ∈ ZN

for c > 0 a sufficiently small absolute constant.

Proof. The lemma is established by showing that if condition (*) holds then theFQ-SFT algorithm efficiently
returns allτ-significant Fourier coefficients off . The fact that the outputted valuesvalα = ∑x∈A f (x)χα(x)
areO(τ)-approximations for thêf (α) follows immediately from condition(∗′).

Correctness.To establish the correctness of the algorithm it suffices to show that the distinguishing
procedure answers YES whenever the considered intervalJ contains a significant Fourier coefficient,i.e.,
esth,A,B`

(f) ≥ Ω(τ) for the used filterh = h`,c (with c, N/2`−1 the center ofJ and its length). This is
true because whenJ contains aτ-significant Fourier coefficient, then by Proposition 12 Item (1),‖ f ∗h‖22≥
Ω(∑α∈J

∣∣∣ f̂ (α)
∣∣∣
2
)≥Ω(τ), implying by condition (*) that alsoesth,A,B`

(f)≥Ω(τ), and thus the distinguishing

procedure decides YES.
Efficiency. To establish the efficiency of the algorithm it suffices to show that the distinguishing proce-

dure does not answer YES too often. If the distinguishing procedure answers YES on a considered interval
J, thenesth,A,B`

(f) ≥Ω(τ) implying by condition (*) that‖h∗ f‖22 ≥ Ω(τ). By Proposition 12 Item (2) the
latter implies that for a slightly larger intervalJ′ ⊇ J, |J′|/ |J| ≤ O(1/γ), its Fourier weight (that is, sum of
squared Fourier coefficients with frequencies inJ′) is greater thanΩ(τ). This implies that the distinguishing
procedure cannot answer YES too often because there are at most O(1/τ) disjoint intervals whose Fourier

weight exceedsΩ(τ) (by Parseval Identity), and thus at mostO(1
τ
|J′|
|J|) (possibly, overlapping) intervalsJ′

whose Fourier weight exceedsΩ(τ).

For integers̀ ,c > 0 and realγ > 0, let J̀ ,c =
{

α |abs(α−c)≤ N
2`

}
be an interval in[0..N−1] and let

its extension beJ′`,c,γ =
{

α |abs(α−c)≤
√

2
3γ · N

2`

}
. Then the following holds (see proof in section A):

Proposition 12. (1) ‖h`,c ∗ f‖22≥ 1
6 ∑α∈J̀ ,c

∣∣∣ f̂ (α)
∣∣∣
2
, and (2)‖h`,c ∗ f‖22 ≤∑α∈J′`,c,γ

∣∣∣ f̂ (α)
∣∣∣
2
+ γ.

The following lemma shows that when using a set of queriesSgenerated by algorithm 5, conditions (*)
and (*’) hold for every functionf of boundedL1(f̂).

10

Lemma 13. Let S=
⋃logN

`=1 (A−B`) be the output of the queries generating algorithm 5, then forevery
function f: ZN→ C s.t. L1(f̂)≤ t, conditions (*) and (*’) hold.

Proof. We first argue that condition (*) holds. FixN, ` ∈ [b(logN)c], A γ-biased inZN, andB = B` (γ, I)-
biased inZN for I = [0..2`]. Denotegx(y) = χ−c(y) f (x−y) for y ∈ I and gx(y) = 0 otherwise. By the
definition ofesth,A,B(f) and‖h∗ f‖22,

∣∣esth,A,B(f)−‖h∗ f‖22
∣∣ =

∣∣∣∣∣ E
x∈A

(
E

y∈B
gx(y)

)2

− E
x∈ZN

(
E

y∈I
gx(y)

)2
∣∣∣∣∣≤ (i)+ (ii)

for: (i) =

∣∣∣∣∣ E
x∈A

(
E

y∈B
gx(y)

)2

− E
x∈A

(
E

y∈I
gx(y)

)2
∣∣∣∣∣

(ii) =

∣∣∣∣∣ E
x∈A

(
E

y∈I
gx(y)

)2

− E
x∈ZN

(
E

y∈I
gx(y)

)2
∣∣∣∣∣

We show below that(i)≤ γ ·L1(f̂)2 ·O(logN) and(ii)≤ γ ·L1(f̂)2. Combining these bounds we get that
∣∣esth,A,B(f)−‖h∗ f‖22

∣∣≤ γL1(f̂)2(O(logN)+1)

Thus, forγ = O(τ
t2(1+logN)

) sufficiently small,
∣∣est(f)−‖h∗ f‖22

∣∣≤O(τ) for all f s.t. L1(f̂)≤ t.

We next argue that condition(∗′) holds. Observe that when switching to the Fourier representation of f ,
1
|A| ∑x∈A f (x)χα(x) is equal to f̂ (α)+ ∑β6=α f̂ (β) 1

|A| ∑x∈A χβ−α(x). So,
∣∣∣ 1
|A| ∑x∈A f (x)χα(x)− f̂ (α)

∣∣∣ is upper

bounded by∑β6=α

∣∣∣ f̂ (β)
∣∣∣
∣∣∣ 1
|A| ∑x∈A χβ−α(x)

∣∣∣ which is in turn upper bounded byγL1(f̂) for anyγ-biased setA.

Finally, this implies condition (*’) for the choice ofγ < O(τ/L1(f̂)) in our algorithm.

Bounding term (i). Rewrite(i) as
∣∣∣Ex∈A

[
(Ey∈B gx(y))

2− (Ey∈I gx(y))
2
]∣∣∣ and observe that the expectation

overA is upper bounded by the maximum overA. Namely, denotingg(y) = gx0(y) for thex0 ∈ A where the
maximum is obtained, we have that

(i)≤
∣∣∣∣∣

(
E

y∈B
g(y)

)2

−
(

E
y∈I

g(y)

)2
∣∣∣∣∣

Using the identitya2−b2 = (a−b)(a+ b) and observing thata+ b≤ 2‖ f‖∞ for a = Ey∈B gx(y) andb =

Ey∈I gx(y) (where we use here the fact that‖χ−c‖∞ ≤ 1), we get that:

(i)≤ 2‖ f‖∞

∣∣∣∣ E
y∈B

g(y)− E
y∈I

g(y)

∣∣∣∣

Switching to the Fourier representation ofg and using the triangle inequality we get that:

(i) ≤ 2‖ f‖∞ ∑
α∈ZN

|ĝ(α)|
∣∣∣∣ E
y∈B

χα(y)− E
y∈I

χα(y)

∣∣∣∣ ≤ 2γ‖ f‖∞L1(ĝ)

where the last inequality follows from the fact thatB is γ-biased onI . Observing that by switching to the

Fourier representation off , ‖ f‖∞ = maxx

∣∣∣∑α f̂ (α)χα(x)
∣∣∣ ≤ ∑α

∣∣∣ f̂ (α)
∣∣∣ = L1(f̂), we conclude that

(i) ≤ 2γ ·L1(f̂) ·L1(ĝ)

11

We next boundL1(ĝ). Observe thatg(y) = h′(y) fy(x) for h′(y) = χ−c(y) if y∈ I andh′(y) = 0 otherwise,
and fy(x) = f (x−y). By the convolution theorem̂g = ĥ′ ∗ f̂y, implying that

L1(ĝ)≤ L1(ĥ′) ·L1(f̂)

where the last inequality follows from the fact that∑α ĥ′ ∗ f̂y(α)≤ L1(ĥ′) ·L1(f̂y), and that
∣∣∣ f̂y(α)

∣∣∣=
∣∣∣ f̂ (α)

∣∣∣
for all α. Finally, we computeL1(ĥ′). By Proposition 4,

∣∣∣ĥ′(α)
∣∣∣ = |I |

N

∣∣∣∣∣
1
|I |∑x∈I

χ−c+α(x)

∣∣∣∣∣≤
|I |
N

N/ |I |
abs(α−c)

whereabs(a) denotes min{a,N−a}. So,

L1(ĥ′) = ∑
α

1/abs(α−c) = O(logN)

We conclude that
L1(ĝ)≤O(logN) ·L1(f̂)

Combining the above bound on(i) with the bound onL1(ĝ) we conclude that:

(i)≤ γ ·L1(f̂)2 ·O(logN)

Bounding term (ii). Denotingḡ(x) = (Ey∈I gx(y))
2, we rewrite(ii) as|Ex∈A ḡ(x)−Ex∈ZN ḡ(x)|. Switching

to Fourier representation of ¯g and using the triangle inequality we upper bound this expression by:

(ii) ≤ ∑
α∈ZN

∣∣̂̄g(α)
∣∣
∣∣∣∣ E
x∈A

χα(x)− E
x∈ZN

χα(x)

∣∣∣∣≤ γL1(̂̄g)

where in the last inequality we use the fact thatA is γ-biased inZN.
We next boundL1(̂̄g). Observe that ¯g= (h∗ f)2 (sinceh∗ f = Ey∈ZN

N
|I |χ−c(y) f (x−y) = Ey∈I χ−c(y) f (x−y)).

Therefore,
L1(̂̄g)≤ L1(ĥ∗ f)2

where we use the fact that for any functions, L1(ŝ2)≤ L1(ŝ)2. Observe further that

L1(ĥ∗ f)2≤ L1(f̂)2

because
∣∣∣ĥ∗ f (α)

∣∣∣ =
∣∣∣ĥ(α)

∣∣∣ ·
∣∣∣ f̂ (α)

∣∣∣ ≤
∣∣∣ f̂ (α)

∣∣∣, where the last inequality follows since
∣∣∣ĥ(α)

∣∣∣ ≤ 1 for all α.

Combining the above bounds together we conclude that

(ii) ≤ γL1(f̂)2

�

The following lemma addresses the random noise case, and shows that when using a set of queriesS
generated by algorithm 5, conditions (*) and (*’) hold with high probability over the choice of noiseη for
every functionf ′ = f + η s.t. f has boundedL1(f̂).

12

Lemma 14. Let S=
⋃logN

`=1 (A−B`) be as in algorithm 5, then with probability at least1−1/NΘ(1), condi-
tions (*) and (*’) hold for all functions f′ = f +η s.t. L1(f̂)≤ t andη : ZN→C is random noise of expected
absolute valueε≤O(τ) sufficiently small (where the probability is taken over the choice of the noiseη).

Proof. We first argue that condition (*) holds. Observe that forf ′ = f + η,
∣∣esth,A,B`

(f ′)−‖ f ∗h‖22
∣∣ ≤

(i)+ (ii)+ (iii) for:

(i) =
∣∣esth,A,B`

(f)−‖ f ∗h‖22
∣∣

(ii) =

∣∣∣∣∣2
1
|A| ∑x∈A

(
1
|B`| ∑

y∈B`

χ−c(y) f (x−y)

)(
1
|B`| ∑

y∈B`

χ−c(y)η(x−y)

)∣∣∣∣∣
(iii) = |esth,A,B`

(η)|

We bound each of these terms. Term (i) is upper bounded byO(τ) by lemma 13 above. We show below
that for each̀ = 1, . . . ,b(logN)c, terms (ii) and (iii) are upper bounded byO(ε), each with probability
at least 1− 1/NΩ(1) (where the probability is over the choice of random noiseη). By union bound, both
these bounds hold forall ` = 1, . . . ,b(logN)c with probability at least 1−2logN/NΩ(1) = 1−1/NΩ(1). We
conclude that forε = O(τ),

∣∣esth,A,B`
(f ′)−‖ f ∗h‖22

∣∣≤O(τ) with probability at least 1−1/NΩ(1).

We next argue that condition (*’) holds. Sincef ′ = f + η, then 1
|A| ∑x∈A f ′(x)χα(x) is equal to the sum

of two terms: T1 = 1
|A| ∑x∈A f (x)χα(x) andT2 = 1

|A| ∑x∈A η(x)χα(x). By Lemma 13,
∣∣∣T1− f̂ (α)

∣∣∣ ≤ O(τ).
To bound the second term observe thatEη[T2] ≤ Eη[1

|A| ∑x∈A |η(x)|] = ε, implying by Chernoff bound that

|T2| ≤ 2ε with probability at least 1− exp(Ω(|A|ε2)) ≥ 1− 1
NΩ(1) (where the last inequality follows from

the choice of|A| used in our algorithm). Combining both these bounds and assigning ε < O(τ) we obtain

that
∣∣∣ 1
|A| ∑x∈A f ′(x)χα(x)− f̂ (α)

∣∣∣≤
∣∣∣T1− f̂ (α)

∣∣∣+ |T2| ≤O(τ) –i.e., condition (*’) holds– with probability at

least 1−1/NΩ(1).

Bounding (ii). By Cauchy-Schwarz inequality,(ii)2≤ (a) ·(b) for (a)= 1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

χ−c(y) f (x−y)
)2

and(b) = 1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

χ−cη(x−y)
)2

. We show below that|(a)| ≤O(1). To bound (b), observe that

(b) is equal to expression (iii) above,i.e., (b) = esth,A,B`
(η); and therefore from the bound on (iii) below we

get that(b) ≤ O(ε) with probability at least 1−exp(Ω(|A|ε2)). Combining both bounds we conclude that
(ii)≤O(ε).

Bounding (a). Observe that(a) = esth,A,B`
(f) for h= h`,c, implying by Lemma 13 that

∣∣(a)−‖h∗ f‖22
∣∣≤

γL1(f̂)2(1+ O(logN)). Next observe that‖h∗ f‖22 ≤ 1 since‖h∗ f‖22 = ∑α

∣∣∣ĥ(α) f̂ (α)
∣∣∣
2

where
∣∣∣ĥ(α)

∣∣∣ ≤ 1

for all α and f is normalized to have∑α

∣∣∣ f̂ (α)
∣∣∣
2
= 1. We conclude therefore that|(a)| ≤ 1+ γL1(f̂)2(1+

O(logN)) = O(1) (where the last equality follows from the fact thatγL1(f̂)2(1+O(logN)≤O(τ) for theγ
used in our algorithm, and from the fact thatτ≤ 1).

Bounding (iii). Recall thatest(η) = 1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

χ−c(y)η(x−y)
)2

which is upper bounded by

1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

|η(x−y)|
)2

. In expectationE[(iii)]≤ ε2. By Chernoff bound, we getPr[(iii) > Ω(ε)] <
exp(Ω(|A|ε2)).

13

The following lemma addresses the case of adversarial noiseη showing conditions (*) and (*’) hold for
every functionf ′ = f + η s.t. L1(f̂),L1(η̂)≤ t.

Lemma 15. Let S=
⋃logN

`=1 (A−B`) be as in algorithm 5, then conditions (*) and (*’) hold for allfunctions
f ′ = f + η s.t. L1(f̂),L1(η̂)≤ t.

Proof. Proof is similar to the proof of Lemma 14 while proving an alternative upper bound on (iii) showing
it is upper bounded byγL1(η̂)2(1+ logN). This bound follows from Lemma 13 withη replacing f in the
analysis ofesth,A,B`

(η).

4 Deterministic Sparse Approximation, Compressed Sensing& Sketching

4.1 Deterministic sparse Fourier approximation

We present a deterministic (universal and explicit) and efficient algorithm for sparse Fourier approximation.

Theorem 16(sparse Fourier approximation). There exists a deterministic (universal and explicit) algorithm
that for every finite abelian group G, integer m≥ 0, reals t,ε > 0, and bounded complex-valued function
f : G→C s.t. L1(f̂)≤ t, given G (by its generators and their orders), m, t,ε and oracle access to f , outputs
a near optimal m-terms approximation R for f s.t.

‖ f −R‖22≤ (1+ ε)‖ f −Ropt‖22
for Ropt the best m-terms approximation of f in the Fourier basis (up to finite precision). The running time
and query complexity of this algorithm is polynomial inlog|G|, m/ε and t.

Proof Sketch. Our sparse Fourier approximation algorithm follows from our SFT algorithm via known
techniques for converting SFT algorithms to algorithms finding sparse Fourier approximation [23, 39] (c.f.,
[23], Theorem 9). Applying these techniques on ourdeterministicand efficient SFT algorithm results in
a deterministicand efficient algorithm for sparse Fourier approximation: The complexity analysis follows
by observing that in the proof of Theorem 9 in [23] the SFT algorithm is run with significance parameters
τ = poly(ε/m) and on functionsf ′ for which L1(f̂ ′) ≤ L1(f̂) for f the input functions (where the latter is
true asf ′ = f −∑α∈Γ valαχα for Γ a subset of the significant Fourier coefficients of sizepoly(log|G| ,m/ε, t)
andvalα’s are approximations of the Fourier coefficientsf̂ (α)’s). �

Robustness.The above algorithm for sparse Fourier approximation is robust to random noise of expected
absolute value at mostO(ε/m) with probability .99 over the noise; in addition it is robust to anyadversarial
noiseη s.t. L1(η̂)≤ t. Furthermore, using the extension of our SFT algorithm for adversarial noise settings,
we obtain an algorithm for sparse Fourier approximation forthe case ofG= ZN that handles anyadversarial
noiseη s.t. ‖η‖22 = O(ε/m) in running timesub-linear in the domain sizeN and with query complexity
remains as in the above theorem,i.e., poly-logarithmic inN.

4.2 Deterministic compressed sensing and sketching

In recent years there’s growing interest in algorithms finding succinct approximate representations of vectors
x∈ C

N by shortsketches s∈ C
k (typically with k << N) such that givens one canrecovera near optimal

m-sparse approximationRof x. Such sketches are useful for example in the context ofstreamingalgorithms
[31, 40] where the data is too large to be represented explicitly, as well as incompressed sensing[10, 21]
where data acquisition already reads only the values requires for computing the sketch.

14

Our sparse Fourier approximation algorithm gives sketching and recovery algorithms for vectorsx with
sparse representation in theirFourier basis. The sketch is the (explicit) set of entries read by the algorithm.
The recovery algorithm is our algorithm finding sparse Fourier approximation. The sketch length and the
running time of the recovery algorithm are polynomial in logN, m/ε andL1(x̂) (for L1(x̂) the sum of absolute
values of the entries of the Fourier transform ofx).

Furthermore, by a change-of-basis we obtain sketching and recovery algorithms for vectorsx with sparse
representation in thestandard basis L1(x) = ∑N

i=1 |xi | ≤ polylogN with sketch length and the running time
of the recovery algorithm polynomial in logN, m/ε andL1(x). This is because as noted in [32] (see footnote
2 there), any algorithm for sparse Fourier approximation reading k entries gives an algorithm for sparse
approximation in the standard basis makingk linear measurementscomputing inner product ofx with ap-
propriate rows of the (inverse) Fourier matrix. The runningtime of the recovery algorithm is not affected by
this change of basis.

Theorem 17(Sparse recovery for compressed sensing and sketching). There exists two deterministic (ex-
plicit and universal) algorithms: (1) A measurement generating algorithm that, given integers N,m> 0 and
reals t,ε > 0, outputs a measurement matrix A∈ C

poly(logN,m/ε,t)×N; and (2) A recovery algorithm, given
integers N,m> 0, reals t,ε > 0 and the measurements Ax for any every vector x∈ C

N s.t. ∑N
i=1 |xi | ≤ t,

outputs an m-terms approximation R∈ C
N s.t.

‖x−R‖22≤ (1+ ε)‖x−Ropt‖22

for Ropt the best m-terms approximation of x in the standard basis. The running time of the both these
algorithms is polynomial inlogN, m/ε and t. The recovery algorithm is robust to random noiseη of
parameter O(ε/m) and to adversarial noiseη of L1(η)≤ t.

5 Solving Hidden Number Problem with Advice & Bit Security

We give an algorithm solving the HNP with advice for anyk≥ 1, and even in the presence of random noise.

Definition 18 (Hidden Number Problem (HNP) with advice [9]). For p a prime and g a generator of the
multiplicative groupZ

∗
p, the goal is to find a hidden number s∈ Z

∗
p when given ashort advice stringthat

depends only on p and g and an oracle access to the function

Ps(a) = MSBk(s·ga mod p))

mapping a∈ {1, . . . , p} to the k most significant bits in the binary representation ofs·ga mod p

Theorem 19. For any prime p and a generator g, there is an algorithm solving the Hidden Number Problem
with advice for any k≥ 1. Furthermore, with probability at least1−1/pΘ(1), the algorithm succeeds even in
the presence of random noise flipping each entry of the oraclePs independently at random with probability
ε = O(1) sufficiently small.

Proof. To prove the theorem we show that there is an advice stringAdvicep,g of lengthpolylog ps.t. for every
secrets∈ Z

∗
p, givenAdvicep,g and oracle access toPs(a) = MSB1(s·ga), the algorithm findss in running

time polynomial in logp. Furthermore, we show the algorithm succeeds in findings with probability at
least 1−1/pΘ(1) even if the oracle answers are corrupted by random noise flipping each bit with sufficiently
small constant probability.

15

Fix a primep and a generatorg of the multiplicative groupZ∗p. Let fs : Zp→{0,1} be the function

fs(x) = MSB1(s·x)

Denoteτ = maxα 6=0

∣∣∣ f̂s(α)
∣∣∣
2

andt = L1(f̂s). Fourier analysis offs shows thatτ = Θ(1); t = O(logp); the

most significant Fourier coefficient offs is located on the frequenciess and−s, and furthermore, the latter
is true with high probability even in the presence of random noise (c.f. [2]).

Theadvicewe use is discrete logs in the baseg of elements inS for S⊆ Zp the output of the Queries
Generating Algorithm 5 on inputN,τ, t:

Advicep,g = {DLp,g(x)}x∈S

whereDLp,g(x) is the elementa∈Zp−1 s.t.x= ga modp. Note that by the bounds onτ, t, the advice string
is indeed of lengthpolylog p

The algorithm for findings is as follows: (1) Run our SFT algorithm on input domain sizep, the
significance parameterτ, the boundt onL1(f̂s) and with oracle access to the restriction offs to S(that is, to
the values{ fs(x)}x∈S); denote the outputted list of frequency byL. (2) Output theα ∈ L s.t. MSB1(α ·x) has
highest agreement with the restriction offs to S.

We show that the output is indeed the hidden numbers. First observe that the SFT algorithm succeeds in
outputting the significant Fourier coefficients offs, because due to its universality it can answer all queries
to fs as the only queried entries are those inS. Next, since themostsignificant Fourier coefficients offs are
located on the frequenciess and−s (and furthermore this holds with high probability even in the presence
of random noise), thens,−s∈ L, which in turn implies thats is outputted by the algorithm (with high
probability over the random noise).

The running time of this algorithm is dominated by the running time of the SFT algorithm which is
polynomial in logp, 1/τ = O(1) andt = O(logp). �

As a corollary we obtain a strengthening of the security results of [9] for the Okamoto conference key
sharing scheme and their variant of ElGamal’s public key encryption scheme: We show that non-uniformly
computing even thesinglemost significant bit of the aforementioned cryptographic functions is as hard as
breaking these schemes (where “non-uniformly” here means in the presence of advice depending ong, p).

For completeness, we write here the definitions of the Okamoto conference key sharing scheme and the
ElGamal public key encryption scheme as given in [9]:
Okamoto conference key sharing scheme.Bob picksr at random and sends to Alicec = gr . Alice picks
a randoms and sendsy = xs back. Bob computesyr−1

= gs which is the conference key they use. Since the
conference key is determined by Alice’s bits alone she can distribute the same key to all members of the
conference. Cracking this scheme needs computing the function OKg(grs,gr ,mgxr) = m.
Modified ElGamal public key encryption scheme.Bob picks a randomxand publishesy= gx as his public
key. To send a messagem to Bob, Alice picks a randomr and sendsgr ,myr . Bob can decode the message
by computingmyr/(gr)x. To break the scheme one has to compute the functionELg(gx,gxr,mgr) = m.

6 Decoding Polynomial Rate Concentrated & Recoverable Codes

We show that for every concentrated and recoverable code there is a restriction of the codewords to a subsetS
of their entries yielding a new code ofpolynomial codeword lengthwhich isefficiently decodable in random
noise model.

16

A code isconcentrated and recoverable[4] if (1) messages and codeword entries can be identified with
elements in a finite abelian groupG, and when identifying codewords with functions overG mapping entries
to values the following holds: (2) for every codewordC, L1(Ĉ) ≤ polylog|G|, and (3) there is arecovery
algorithm that given a frequencyα ∈ G and a significance thresholdτ, outputs all codewordsC whoseα
Fourier coefficient isτ-significant in running time polynomial in log|G| and 1/τ.

Examples of concentrated and recoverable codes includeHomomorphism codes(G,C)-Hom andMul-
tiplication (MPC) codesC P

G s.t. L1(P̂) ≤ poly(log|G|). Where theMPC codesC P
G are boolean-ization of

(G,C)-Hom by the boolean predicatesP, that is, their codewords encodingm∈G are

Cm = (P(χm(g1)),P(χm(g2)), . . . ,P(χm(g|G|)))

for g1, . . . ,g|G| the elements ofG andχm the character ofG corresponding tomby the isomorphism between
G and its group of characters. (The definition of MPC given heregeneralizes the definition of [4] to arbitrary
finite abelian groups.)

Therandom noise model of parameterε outputs corrupted codewordsC′ = C+η for C the uncorrupted
codeword andη a random function whose entries are drawn independently at random from distributions of
expectation absolute valueε.

The Binary Symmetric Channel (BSCε) is an example of this random noise model, whereC a binary
codeword accepting±1 values, andη is a function accepting values in{−2,0,2} whose value on each entry
i is chosen independently at random to be:η(i) =−2C(i) with probabilityε, andη(i) = 0 otherwise.

Notation. LetG a finite abelian group,S⊆G. Denote byCG a code with codewords identified with functions
C: G→ C. Denote byC S the code whose codewords are the restrictions toS of the codewordsC ∈ C to
functions overS, that is, the codewords areCS: S→ C is defined byCS(x) = C(x) ∀x∈ S.

Theorem 20. For everyτ > 0 and every concentrated and recoverable codeCG, there is a subset S⊆ G
such that the restriction codeC S is a code ofpolynomial codeword lengthwhich isefficiently decodablein
the random noise model of parameter O(τ); specifically, the codeword length and the running time of the
decoding algorithm are polynomial inlog|G| and1/τ.

Proof. Let Sbe the output of our Queries Generating algorithm when givenG (by its generators and their
orders),τ and an upper boundt on maxC∈C L1(Ĉ). We point out that it suffices to taket = 1 for the case of
Homomorphism codes, asL1(Ĉ) = 1 for all their codewords.

Given a corrupted codewordw: S→ C, we think ofw as a restriction of a corrupted codewordw′ of the
codeC. The decoding algorithm is as follows: (1) Apply our SFT algorithm to find a listL of the significant
Fourier coefficients ofw′; (2) Apply the recovery algorithm on each frequencyα ∈ L to obtain a listLα of
all codewords for whichα is a significant Fourier coefficient; (3) Return the codewordC ∈ ⋃α∈L Lα with
highest agreement with the given corrupted codewordw on the entries inS.

The success of this algorithm follows from our analysis of our SFT algorithm together with the analysis
of [4] of concentrated and recoverable codes: By the properties of our SFT algorithm, with high probabil-
ity step (1) of the above algorithm returns the significant Fourier coefficients ofw′ even in the presence of
random noise. This proves the success of our algorithm sinceit was shown in [4] that to decode concen-
trated and recoverable codes it suffices to (1’) find the significant Fourier coefficients of the given corrupted
codewordw′ and then continue as in steps (2)-(3) of the above algorithm.

The efficiency of this algorithm follows from the efficiency of the SFT and the recovery algorithms.

17

7 Robust SFT: Handling Adversarial Noise in Sub-Linear Time

We present a deterministic (universal and explicit) SFT algorithm that handlesadversarial noiseof bounded
‖η‖22 in sub-lineartime. We focus here on the case of functions overZN; the algorithm extends to functions
over arbitrary finite abelian groups, details omitted.

Theorem 21.There is a deterministic algorithm that for every positive integer N, realsτ, t > 0, and functions
f , f ′ : ZN → C s.t. L1(f̂) ≤ t, and ‖ f ′− f‖22 = O(τ), given N,τ and oracle access to f′, outputs a list
L ⊇ Heavyτ(f) together with O(τ)-approximations forf̂ (α) ∀α ∈ L in query complexity polynomial in
logN, 1/τ and t and in running time NO(ε/τ) ·O(|S|/τ1.5).

Our robust algorithm is composed of two parts: (1) queries generating and (2) fixed queries SFT. The
queries generating part is identical to Algorithm 5. We describe the fixed queries part (Robust-SFT) and
sketch its analysis.

Overview of theRobust-SFT algorithm. The high level of theRobust-SFT algorithm is similar to that of
theFQ-SFT algorithm: Both algorithms are binary search algorithms that progress via a sequence of adaptive
tests, where tests at depth` in the search tree are designed to decide whether given length N/2` intervals
potentially contain significant Fourier coefficients of theinput function. These tests are essentially achieved
by estimating the Fourier weight of the given interval (thatis, the sum of squared Fourier coefficients of the
input function over this interval) and checking whether it exceeds a thresholdO(τ). Since the lengths of
the considered intervals decrease exponentially with`, the algorithm zooms into the exact location of the
significant Fourier coefficients in logN search depth.

The Robust-SFT algorithm differ from theFQ-SFT algorithm on how each of these tests is executed.
In theFQ-SFT algorithm, tests at search tree depth` use only the input function valuesf (x) on entriesx in
the small setA−B` out of all entriesS=

⋃logN
`=1 (A−B`), namely, on only a 1/ logN-fraction of the entries.

This is not robust against adversarial noise, because an adversary corrupting even only this 1/ logN-fraction
of the entries can diverge the entire search away from findingthe significant Fourier coefficient (say, by
setting the values on these few entries to 0, thus convincingthe algorithm thatf has no significant Fourier
coefficients).

To overcome this weakness of theFQ-SFT algorithm, in theRobust-SFT algorithm, tests at each search
tree depth̀ (test`, in short) are executed relying on many more entries of the input function. Specifically,
each test̀ is composed ofO(ε/τ) logN sub-testsenumerated bỹ̀ = `, . . . , ` + O(ε/τ) logN, where each
sub-test̃̀ is executed using entries inA−B˜̀. The outcome of test̀ is determined by themajority vote over

all sub-test̃̀ .
Each of those sub-tests̀̃operates as follows. In sub-test˜̀, entriesA−B˜̀ are used for estimating the

Fourier weight of lengthN/2` > N/2˜̀ intervals as follows: The given lengthN/2` interval is divided into

sub-intervalsof length N/2˜̀ and the Fourier weight of each of these intervals is estimated usingA−B˜̀
(where the latter is achieved in the same manner as it is done in theFQ-SFT algorithm). The Fourier weight
of the entire interval is the sum of the Fourier weights of allits parts. (More precisely, instead of taking the
sum of Fourier weights, we decide that an interval potentially contains a significant Fourier coefficient if
any of the sub-intervals exceeds the appropriate thresholdO(τ).)

Overview of the analysis of theRobust-SFT algorithm. Correctness. The tests of theRobust-SFT
algorithm are robust, because an adversary flipping at mostε-fraction of the entries inScannot change the

18

majority vote over allO(ε/τ) logN sub-tests. Thus, despite the noise, each test of theRobust-SFT algorithm
returns the correct outcome. This implies the success of theentire algorithm similarly to the analysis of the
FQ-SFT algorithm.

Complexity.The running time of theRobust-SFT is dominated byNO(ε/τ). This is because the num-
ber of sub-intervals in each sub-test˜̀ of test ` is (N/2`)/(N/2˜̀) = 2˜̀−`, which is NO(ε/τ) when ˜̀=
`+O(ε/τ) logN.

We remark that while this running time is far worse than thepolylogN running time of theFQ-SFT
algorithm, yet, it is far better than theN · poly(logN) running time of the trivial exhaustive search algorithm.

8 Finding Significant Fourier Coefficients over Finite Abelian Groups

In this section we describe our SFT algorithm for the case of functions over arbitraryfinite abelian groups.
Our algorithm is composed of two parts: (1) queries generating and (2) fixed queries SFT; described in
sections 8.1-8.2 below. Analysis overview is given in section 8.3.

Theorem 22. There is a deterministic algorithm that for every finite abelian group G, positive realsτ, t, and
a complex-valued function f: G→ C s.t. L1(f̂) ≤ t, given G (by its generators and their orders),τ, t and
oracle access to f , outputs a list L⊇ Heavyτ(f) together with O(τ)-approximations for̂f (α) ∀α ∈ L. The
running time is polynomial inlogN, 1/τ and t.

Furthermore, the above holds with probability at least 1− 1/NΘ(1) over the random noise even if the
algorithm is given oracle access not tof but to a noisy versionf ′ = f +η for η : ZN→C whose entries are
drawn independently at random from a distribution of expected absolute valueO(τ) sufficiently small.

8.1 Queries Generating

The queries generating algorithm constructs the set setSof entries using sets that are small biased on (sets
isomorphic to) rectanglesR′t+1,` = ZN1× . . .×ZNt ×

{
0, . . . ,2`

}
×{0}× . . .×{0} in G.

Algorithm 23. Queries Generating. Given generators g1, . . . ,gk ∈G, their orders N1, , . . . ,Nk, and pos-
itive realsτ, t, output a set S=

⋃
`∈[b(logN)c],t∈[k](A−Bt,`) for A and Bt,`’s each of size spoly(log|G| ,1/γ) for

γ = poly(1/ log |G| ,τ,1/t) sufficiently small s.t.

• A is aγ-biased set in G

• Bt,` is (γ,Rt+1,`)-biased in G for each t= 1, . . . ,k, ` = 1, . . . , logN, where Rt+1,` is the set in G isomor-

phic to R′t+1,` = ZN1× . . .×ZNt×
{

0, . . . ,2`
}
×{0}× . . .×{0}, i.e., Rt+1,` =

{
∏k

j=1g
xj
j

∣∣∣(x1, . . . ,xk) ∈ R′t+1,`

}
.

The sets A and Bt,`’s are deterministically constructed in time polynomial inlog|G| and1/γ using the explicit
algorithms guaranteed in Fact 1 in section 2 and in corollary24 below.

The following is a corollary from Facts 1 and 2.

Corollary 24. For every finite abelian group G isomorphic toZN1× . . .×ZNk, real γ > 0, and subset J⊆G
isomorphic to J′ = ZN1× . . .×ZNt × I×{0}× . . .×{0} for an interval I= [0..M] for M < Nt+1, there exists
explicit construction (i.e., by a deterministic algorithmwith running time poly(log|G| ,1/γ)) constructing a
set B⊆G of size poly(log|G| ,1/γ) which is(γ,J)-biased in G.

19

8.2 Fixed Queries SFT

8.2.1 The CaseG = ZN1× . . .×ZNk

We next describe the SFT algorithm for functions overG = ZN1 × . . .×ZNk. The input in this case is a
description of the group byN1, . . . ,Nk, a thresholdτ and query access to a functionf : G→ C. The output

is a short list containing allτ-significant Fourier coefficients, that is, allα ∈G s.t.
∣∣∣ f̂ (α)

∣∣∣
2
≥ τ.

Algorithm overview. The SFT algorithm finds theτ-significant Fourier coefficients(α1, . . . ,αk) ∈ ZN1×
. . .×ZNk by gradually revealing its coordinates one after the other.At the first step, the algorithm finds
the first coordinates of all theτ-significant Fourier coefficients, that is, it finds length 1 prefixes of the
τ-significant Fourier coefficients. At the second step, the algorithm extends each length 1 prefix to all
its continuation into length 2 prefixes of theτ-significant Fourier coefficients. The algorithm continues
in extending prefixes of theτ-significant Fourier coefficients one coordinate at a time. After k step, the
algorithm holds lengthk prefixes, which are the list ofτ-significant Fourier coefficients.

To extend a lengtht−1 prefix (α1, . . . ,αt−1) of a τ-significant Fourier coefficient to a prefix of length
t, the algorithm searches for all valuesαt of the t-th coordinate such that(α1, . . . ,αt−1,αt) is a lengtht
prefixes of aτ-significant Fourier coefficient. This search is done in a binary search fashion, similarly to the
SFT algorithm for functions overZNt . Namely, the search proceeds by gradually refining the initial interval
{0, . . . ,Nt} into smaller and smaller subintervals, each time applying adistinguishing procedure to decide
whether to keep or discard a subinterval.

The distinguishing procedure we use here is different than the one used for the case of functions overZN.
Ideally we’d like the distinguishing procedure to keep an interval iff it containsαt such that(α1, . . . ,αt−1,αt)
is a lengtht prefix of a aτ-significant Fourier coefficient. It is not known how to efficiently compute such
a distinguishing procedure. Nevertheless, we present a distinguishing procedure with similar guarantee: it
keeps all intervals that contain aτ-significant Fourier coefficient, yet keeping only few intervals. Specifi-
cally, the distinguishing procedure, given a lengtht−1 prefixα = (α1, . . . ,αt−1) and an interval{a, . . . ,b},
computes (an approximation of) a weighted sum of squared Fourier coefficients

est≈ ∑
αt∈ZNt

cαt · ∑
α′∈ZNt+1×...×ZNk

∣∣∣ f̂ (ααtα′)
∣∣∣
2

such that the weightscαt are high (i.e., close to 1) forαt in the interval, and the weightscαt are fast decreasing
asα gets farther and farther away from the interval. The distinguishing procedure keeps the interval iff this
(approximate) weighted sum is sufficiently large. To compute (an approximation of) this weighted sum, we

define a “filter function”h whose (squared) Fourier coefficients
∣∣∣ĥ(β)

∣∣∣
2

are equal to the above coefficients

cαt when the lengtht prefix of β is the given prefixα, and they are zero otherwise. With this filter function
we express the above weighted sum as the norm of the convolution ofh and f , which we in turn approximate
by taking an average over randomly chosen values

The filter function that we use is

hG,t,`,c(y1, . . . ,yk) =

(
∏k

i=t+1 Ni
)
·χα1,...,αt−1(y1, . . . ,yt−1) ·hNt ,`,c(yt) if (yt+1, . . . ,yk) = 0k−t

0 otherwise

for hNt ,`,c(yt) = Nt
2` χNt ,−c(yt) if yt ∈ [0..2`] andhNt ,`,c(yt) = 0 otherwise;χN1,...,Nt−1,α1,...,αt−1(y1, . . . ,yt−1) =

20

∏t−1
j=1e

i 2π
Nj

α j yj a character in the groupZN1× . . .×ZNt−1; andχNt ,−c(yt) = ei 2π
Nt

(−c)yt a character in the group
ZNt . WhenG andN1, . . . ,Nk are clear from the context, we often omit their indices.

Algorithm 25. Fixed Queries SFT Algorithm
Input : A description{(1,Ni)}k

i=1 of the group G= ZN1 × . . .×ZNk, τ ∈ R
+, A, {Bt,`}t∈[k],`∈[logNt]

and
{(q, f (q))}q∈Q for Q = A−⋃t∈[k],`∈[logNt] Bt,`

Output : L ⊆ ZN1× . . .×ZNk

Steps:

1. Let Pre f ixes0 = {the empty string}, Pre f ixes1, . . . ,Pre f ixesk = φ

2. For t = 1, . . . ,k

(a) For eachαt = (α1, . . . ,αt−1) ∈ Pre f ixest−1

i. Candidateαt ,0←{{0,Nt}}, ∀` = 1, . . . , logN`, Candidateαt ,` = φ
ii. For ` = 0, . . . , log2Nt −1

A. For each{a′,b′} ∈Candidateαt ,`

For each{a,b} ∈
{{

a′, a′+b′
2

}
,
{

a′+b′
2 +1,b′

}}

• Run the Distinguishing Algorithm 26 on inputαt , {a,b}, τ, A,Bt,`+1 and{(q, f (q))}q∈A×Bt,`+1
;

denote its outputs be “decision”

• If decision= 1, Candidateαt ,`+1←Candidateαt ,`+1
⋃{{a,b}}

iii. For each{a,a} ∈Candidateαt ,logNt denoteαta = (α1, . . . ,αt−1,a). Let

Lt(αt) =
{

αta
∣∣{a,a} ∈Candidatesαt ,logNt

}

(b) Let Pre f ixest ←
⋃

αt∈Pre f ixest−1
L(αt)

3. Output Pre f ixesk

Algorithm 26. Distinguishing Algorithm.
Input : αt ∈ ZN1× . . .×ZNt−1, {a,b} ∈ ZNt ×ZNt , τ ∈R

+, A,B⊆G and{(q, f (q))}q∈A−B.
Output : 1 or 0
Steps:

1. Compute

estαt ,a,b← 1
|A| ∑x∈A

(
1
|B| ∑y∈B

χαt (yt)χ−b(a+b
2)c(yt) · f (x−y)

)2

for χαt (yt) = ∏t−1
j=1e

i 2π
Nj
·αt

j y
t
j an evaluation of theαt character of the groupZN1 × . . .×ZNt−1, and

χ−b(a+b
2)c(yt) = e−i 2π

Nt
·b(a+b

2)cyt an evaluation of the−b(a+b
2)c character of the groupZNt .

2. If estαt ,a,b≥ 5
36τ, decision= 1, else decision= 0

21

8.2.2 The CaseG is Arbitrary Finite Abelian Group

The SFT Algorithm for arbitrary finite abelian groupsG is defined by utilizing the isomorphism betweenG
and a direct product group.6 as follows.

Given a description
{
(g j ,Nj)

}k
j=1 of the groupG, a thresholdτ and query access to a functionf : G→C,

we simulate query access to a functionf ′ over a direct product group isomorphic toG, and apply the SFT
algorithm on input a description of the direct product group, the thresholdτ and query access tof ′. Output

L =
{

∏k
j=1g

xj
j

∣∣∣ (x1, . . . ,xk) ∈ L′
}

for L′ the output of the SFT algorithm.

To complete the description of the algorithm we define the function f ′ and explain how to efficiently
simulate query access tof ′ when given query access tof . The function f ′ is defined byf ′(x1, . . . ,xk) =
f (∏k

j=1g
xj
j). The functionf ′ is computable in time polynomial in log|G|.

8.3 Analysis Overview

Theorem 27. For every finite abelian group G, positive realsτ, t, and a complex valued functions f: G→C

s.t. L1(f̂) ≤ t, our SFT algorithm given G (by its generators and their orders), τ, t and oracle access to f ,
outputs a list L⊇ Heavyτ(f) together with O(τ)-approximations forf̂ (α) ∀α ∈ L. The running time is
polynomial inlog|G|, 1/τ and t.

Proof. Combining lemmas 29 and 30 below shows that when using the setSas outputted by theQueries
Generating Algorithm 23, ourFQ-SFT algorithm succeeds in finding theτ-significant Fourier coefficients
of all functions f s.t. L1(f̂)≤ t.

Theorem 28 (Robustness to random noise). For every finite abelian group G, positive realsτ, t, and a
complex valued functions f: G→ C s.t. L1(f̂)≤ t, our SFT algorithm given G (by its generators and their
orders), τ, t and oracle access to f′ = f + η, for η : G→ C whose entries are drawn independently at
random from a distribution of expected absolute value O(τ) sufficiently small, outputs a list L⊇ Heavyτ(f)
together with O(τ)-approximations for̂f (α) ∀α ∈ L with probability at least1−1/ |G|Θ(1) over the random
noise. The running time is polynomial inlog|G|, 1/τ and t.
In addition, our SFT algorithm is robust to anyadversarialnoiseη s.t. L1(η̂)≤ t.

Proof. Combining lemmas 29 and 31 below shows that when using an the set Soutputted by theQueries
Generating Algorithm 23, theFQ-SFT algorithm succeeds with high probability in finding theτ-significant
Fourier coefficients of all functionsf ′ = f + η s.t. L1(f̂) ≤ t andη is random noise; where the probability
is taken over the choice of the random noiseη. The proof for the case of adversarial noiseη s.t. L1(η̂) ≤ t
is analogous while replacing Lemma 31 with Lemma 32.

We give statements of lemmas 29-32 below. Proofs are similarto proofs of lemmas 11-15; details
omitted (see author’s dissertation [2], Chapter 3, for proof of Lemma 29).

Lemma 29. Denote by N1, . . . ,Nk the generators orders in the given generating set for G. For every function
f : G→ C and thresholds t,τ > 0, theFQ-SFT algorithm returns all theτ-significant Fourier coefficients of

6Recall that ifG a finite abelian group generated byg1, . . . ,gk of ordersN1, . . . ,Nk, respectively, thenG is isomorphic to the
direct product groupZN1× . . .×ZNk by mapping(x1, . . . ,xk) ∈ ZN1× . . .×ZNk to ∏k

j=1 g
x j

j ∈G.

22

f in time polynomial inlog|G|, 1/τ and t if the following condition holds:

(∗∗)
∣∣esth,A,B`

(f)−‖ f ∗h‖22
∣∣< cτ

∀` ∈ [b(logNt+1)c], t ∈ [k−1],c∈ ZNt+1 and h= hG,t,`,c as defined above, and

(∗∗′)
∣∣∣∣∣

1
|A| ∑x∈A

f (x)χα(x)− f̂ (α)

∣∣∣∣∣< cτ ∀α ∈G

for c > 0 a sufficiently small absolute constant.

The following lemma shows that when using a set of queriesSgenerated by algorithm 5, conditions (**)
and (**’) hold for every functionf of boundedL1(f̂).

Lemma 30. Let S be the output of the queries generating algorithm 5, then conditions (**) and (**’) hold
for every function f s.t. L1(f̂)≤ t.

The following lemma addresses the random noise case, and shows that when using a set of queriesS
generated by algorithm 5, conditions (**) and (**’) hold with high probability over the choice of noiseη for
every functionf ′ = f + η s.t. f has boundedL1(f̂).

Lemma 31. Let S be as in algorithm 5, then with probability at least1−1/NΘ(1), conditions (**) and (**’)
hold for all functions f′ = f + η s.t. L1(f̂) ≤ t andη : G→ C is random noise of expected absolute value
ε≤O(τ) sufficiently small (where the probability is taken over the choice of the noiseη).

The following lemma addresses the case of adversarial noiseη showing condition (*) holds for every
function f ′ = f + η s.t. L1(f̂),L1(η̂)≤ t.

Lemma 32. Let S=
⋃logN

`=1 (A−B`) be as in algorithm 5, then condition (**) holds for all functions f′= f +η
s.t. L1(f̂),L1(η̂)≤ t.

Acknowledgments.

The author is grateful to Shafi Goldwasser, Piotr Indyk, Vinod Vaikuntanathan, and Avi Wigderson for
helpful comments and discussions.

References

[1] M. Ajtai, H. Iwaniec, J. Komlos, J. Pintz, and E. Szemeredi. Constructions of a this set with small
fourier coefficients.Bull. London Math. Soc., 22:583–590, 1990.

[2] A. Akavia. Learning Noisy Characters, Multiplication Codes and Cryptographic Hardcore Predicates.
PhD dissertation; defended Aug 2007, MIT, EECS, Feb 2008.

[3] A. Akavia, N. Alon, V. Guruswami, and A. Wigderson. Explicit Constructions of Sets Fooling Negli-
gible Size Arithmetic Progressions. In preparation. 2008.

[4] A. Akavia, S. Goldwasser, and S. Safra. Proving Hard-Core Predicates using List Decoding. InProc.
of 44th IEEE Annual Symposium on Foundations of Computer Science (FOCS’03), pages 146–157.
IEEE Computer Society, 2003.

23

[5] N. Alon and Y. Mansour.ε-discrepancy sets and their application for interpolationof sparse polyno-
mials. IPL: Information Processing Letters, 54, 1995.

[6] R. Berinde, A. C. Gilbert, P. Indyk, H. J. Karloff, and M. J. Strauss. Combining geometry and combi-
natorics: A unified approach to sparse signal recovery.CoRR, abs/0804.4666, 2008.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.
Journal of Computer and System Sciences, 47(3):549–595, 1993.

[8] D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in diffie-
hellman and related schemes.Lecture Notes in Computer Science, 1109:129–142, 1996.

[9] D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic applications. InSODA: ACM-
SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of
Discrete Algorithms), 1997.

[10] E. J. Candes, J. K. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information.IEEE Transactions on Information Theory, 52(2):489–
509, 2006.

[11] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements.Communications on Pure and Applied Mathematics, 59(8):1207–1223, 2006.

[12] E. J. Candes and T. Tao. Decoding by linear programming.CoRR, abs/math/0502327, 2005.

[13] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.Theor. Comput.
Sci., 312(1):3–15, 2004.

[14] J.W. Cooley and J.W. Tukey. An algorithm for machine calculation of complex fourier series.Mathe-
matics of Computation, 19:297–301, Apr 1965.

[15] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its
applications.J. Algorithms, 55(1):58–75, 2005.

[16] G. Cormode and S. Muthukrishnan. Towards an algorithmic theory of compressed sensing. 2005.

[17] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In Paola Floc-
chini and Leszek Gasieniec, editors,SIROCCO, volume 4056 ofLecture Notes in Computer Science,
pages 280–294. Springer, 2006.

[18] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing: Closing the gap between per-
formance and complexity.CoRR, abs/0803.0811, 2008.

[19] R. A. DeVore. Deterministic constructions of compressed sensing matrices.J. Complex., 23(4-6):918–
925, 2007.

[20] I. Dinur, E. Grigorescu, S. Kopparty, and M. Sudan. Decodability of group homomorphisms beyond
the johnson bound. InSTOC ’08: Proceedings of the 40th annual ACM symposium on Theory of
computing, pages 275–284, New York, NY, USA, 2008. ACM.

[21] D. Donoho. Compressed sensing.IEEE Trans. on Information Theory, 42(4):1289–1306, April, 2005.

24

[22] Sumit Ganguly and Anirban Majumder. Cr-precise: A deterministic summary structure for update data
streams.CoRR, abs/cs/0609032, 2006.

[23] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse fourier repre-
sentations via sampling. InProc. of 34 ACM Annual Symposium on Theory of Computing (STOC’02),
pages 152–161. ACM Press, 2002.

[24] A. C. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal sparse fourier
representation via sampling. Inin Proc. SPIE Wavelets XI, 2005.

[25] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic linear dimension reduction in
the l1 norm for sparse vectors.CoRR, abs/cs/0608079, 2006.

[26] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. One sketch for all: fast algorithms for
compressed sensing. InSTOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 237–246, New York, NY, USA, 2007. ACM.

[27] O. Goldreich and L. Levin. A hard-core predicate for allone-way functions. InProc. 27th ACM Annual
Symposium on Theory of Computing (STOC’89), pages 25–32, 1989.

[28] V. Guruswami, J. R. Lee, and A. Razborov. Almost euclidean subspaces of̀1 via expander codes.
In SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 353–362, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[29] W. Hoeffding. Probability inequalities for sums of bounded random variables.J. Amer. Stat. Assoc,
58:13–30, 1963.

[30] Shang-Teng Huang, editor.Proceedings of the Nineteenth Annual ACM-SIAM Symposium onDiscrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008. SIAM, 2008.

[31] P. Indyk. Sketching, streaming and sub-linear space algorithms. graduate course notes, available at
http://stellar.mit.edu/s/course/6/fa07/6,895/, 2007.

[32] P. Indyk. Explicit constructions for compressed sensing of sparse signals. In Huang [30], pages 30–33.

[33] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the l1 norm. volume 49th Annual IEEE
Symposium on Foundations of Computer Science, 2008.

[34] M. A. Iwen. A deterministic sub-linear time sparse fourier algorithm via non-adaptive compressed
sensing methods.CoRR, abs/0708.1211, 2007.

[35] M. A. Iwen. A deterministic sub-linear time sparse fourier algorithm via non-adaptive compressed
sensing methods. In Huang [30], pages 20–29.

[36] M. A. Iwen and C. V. Spencer. Improved bounds for a deterministic sublinear-time sparse fourier
algorithm. InConference on Information Sciences and Systems (CISS), Princeton, NJ, 2008.

[37] M. Katz. An estimate for characters sum.J. AMS, 2(2):197–200, 1989.

[38] E. Kushilevitz and Y. Mansour. Learning decision treesusing the Fourier spectrum.SICOMP,
22(6):1331–1348, 1993.

25

[39] Y. Mansour. Randomized interpolation and approximation of sparse polynomials.SIAM J. on Com-
puting, 24(2):357–368, 1995.

[40] S. Muthukrishnan. Data streams: Algorithm and applications (invited talk at soda’03). available at
http://athos.rutgers.edu/ muthu/stream-1-1.ps, 2003.

[41] J. Naor and M. Naor. Small biased probability spaces: efficient constructions and applications. volume
22nd ACM Symposium on the Theory of Computing, pages 213–223, 1990.

[42] D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples.
Appl. Comp. Harmonic Anal., June 2008.

[43] A. Razborov, A. Wigderson, and E. Szemeredi. Constructing small sets that are uniform in arithmetic
progressions.Combinatorics, Probability and Computing, 2:513–518, 1993.

[44] M. Sipser and D. Spielman. Expander codes.IEEE Trans. Inform. Theory, 42:1710–1722, 1996.

A Proof of Proposition 12

Proof of Proposition 12. Let h = h`,c, J̀ ,c, J̀ ,c,γ be as in Proposition 12.
We first give some properties ofh derived using Fourier analysis. DenoteSt(α) = 1

t ∑t−1
y=0χα(y), and

observe that̂h(α) = S2`(α− c). By Proposition 33 below this implies the following properties of h: (i)

∀α,
∣∣∣ĥ(α)

∣∣∣
2
≤ 1, (ii) ∀α ∈ J̀ ,c,

∣∣∣ĥ(α)
∣∣∣
2
≥ Ω(1), and (iii) ∑α/∈J̀ ,c,γ

∣∣∣ĥ(α)
∣∣∣
2
≤ γ. Recall also that we assumed

w.l.o.g thatf is normalized to have (iv)∑α

∣∣∣ f̂ (α)
∣∣∣
2
= 1, which in particular implies that (v)∀α,

∣∣∣ f̂ (α)
∣∣∣
2
≤ 1.

Item (1) of Proposition 12 follows from (ii), because by Parseval Identity and the convolution-multiplication

duality,‖h∗ f‖22 = ∑α

∣∣∣ĥ(α)
∣∣∣
2 ∣∣∣ f̂ (α)

∣∣∣
2
≥Ω(1)∑α∈J̀ ,c

∣∣∣ f̂ (α)
∣∣∣
2

(where the last inequality follows from (ii)).

Item (2) of Proposition 12 follows from (i),(iii)-(v), because‖h∗ f‖22 ≤maxα

∣∣∣ĥ(α)
∣∣∣
2

∑α∈J̀ ,c,γ

∣∣∣ f̂ (α)
∣∣∣
2
+

maxα

∣∣∣ f̂ (α)
∣∣∣
2

∑α/∈J̀ ,c,γ

∣∣∣ĥ(α)
∣∣∣
2
≤ ∑α∈J̀ ,c,γ

∣∣∣ f̂ (α)
∣∣∣
2
+ γ (where the last inequality follows from (iii)-(v)). �

Proposition 33. Let t∈ 1, . . . ,N, and St as in the above definition, then the following properties hold.

1. |St(α)|2 =
1−cos(2π

N αt)

1−cos(2π
N α)

2. Pass Band:∀α ∈ ZN andγ ∈ [0,1], if abs(α)≤ γ N
2t , then|St(α)|2 > 1− 5

6γ2

3. Fast decreasing:∀α ∈ ZN, |St(α)|2 < 2
3

(
N/t

abs(α)

)2

4. Fourier bounded:∀α ∈ ZN, |St(α)|2≤ 1

Proof. Proof of Item 1. Recall thatχα(x) = ωαx for ω = ei 2π
N a primitive root of unity of orderN. By the

formula for geometric sum

St(α) =
1
t

ω−αt −1
ω−α−1

26

Implying that

|St(α)|2 =
1−cos(2π

N αt)

1−cos(2π
N α)

Proof of Item 2. For all α ∈ ZN with abs(α)≤ γ N
2t , we can utilizing Taylor approximation of the cosine

function (namely, 1− θ2

2! ≤ cos(θ)≤ 1− θ2

2! + θ4

4!) to have:

|St(α)|2≥ 1− π2

12

(
2tabs(α)

N

)2

≥ 1− π2

12
γ2

and this is greater than 1− 5
6γ2 sinceπ2 < 10.

Proof of Item 3. As cosθ = cos(−θ) and sinceabs(α)≤ N
2 we can, again, utilize Taylor approximation

to have:

|St(α)|2≤
(

N/t
abs(α)

)2 1

π2

(
1− (2π

N abs(α))
2

12

) ≤ 2
3

(
N/t

abs(α)

)2

(where in the last inequality we used the boundsabs(α) ≤N/2 and 9< π2 < 10).
Proof of Item 4. By triangle inequality,|St(α)| ≤ 1

t ∑t−1
x=0 |χα(x)| which is in turn equal to 1.

27

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

