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Abstract
This paper considers two questions in cryptography.

1. Simultaneous Hardcore Bits. Let f be a one-way function. We say that a block of bits of x are

simultaneously hard-core for f(x)if given f(x), they cannot be distinguished from a random string
of the same length. Although there are many examples of (candidate) one-way functions with one
hardcore bit (or even O(logn) simultaneously hardcore bits), there are very few examples of one-
way functions (and even fewer examples of trapdoor one-way functions) for which a linear number
of the input bits are simultaneously hardcore.
We show that for the lattice-based (injective) trapdoor function recently proposed by Gentry, Peik-
ert and Vaikuntanathan (STOC 2008), which is in turn based on the one-way function of Regev
(STOC 2005), an n — o(n) number of input bits are simultaneously hardcore (where n is the total
number of input bits).

2. Cryptography Against Memory-Freezing Attacks. The absolute privacy of the secret keys as-

sociated with cryptographic algorithms has been the corner-stone of modern cryptography. Still, it
has been clear that in practice keys do get compromised at times, by various means. In a partic-
ularly devastating side-channel attack, termed the “freezing attack™ which was proposed recently,
a significant fraction of the bits of the secret key can be measured if the secret key is ever stored
in the part of memory which can be accessed (even after power has been turned off for a short
amount of time). Such an attack has been shown to completely compromise the security of various
cryptosystems, including the RSA cryptosystem and variants.
We show that the public-key encryption scheme of Regev (STOC 2005), and the identity-based
encryption scheme of Gentry, Peikert and Vaikuntanathan (STOC 2008) are remarkably robust
against freezing attacks where the adversary can measure a large fraction of the bits of the secret-
key. This is done without increasing the size of the secret key, or by introducing any complication
of the natural encryption and decryption routines.

Although seemingly completely different, these two problems turn out to be very similar: in partic-
ular, our results demonstrate that the proof techniques that can be used to solve both these problems are
intimately related.

*Institute of Advanced Study, Princeton, NJ and DIMACS, Rutgers. EMAIL: akavia@ias.edu

TMIT and Weizmann Institute. Supported in part by NSF grants CCF-0514167, CCF-0635297, NSF-0729011 and the Israel
Science Foundation 700/08. EMAIL: shafi @csail.mit.edu

¥MIT and IBM Research. Supported in part by NSF grants CCF-0635297 and Israel Science Foundation 700/08. EMAIL:
vinodv @alum.mit.edu



1 Introduction

This paper considers two questions in cryptography. The first is the ability to prove that many input bits are
simultaneously hardcore for efficient trapdoor one-way functions f. The second is to construct a public-key
encryption scheme and an identity-based encryption scheme that withstand a strong kind of side-channel
attack that was recently proposed in the literature, called “memory-freezing attacks”[18]]. Although seem-
ingly completely different, we show that these two problems are in fact related. In particular, our results
demonstrate that the techniques that can be used to solve both problems are very closely related.

We go on to elaborate on each of these problems, and our contributions in some detail.

1.1 Simultaneous Hard-Core Bits

The notion of hard-core bits for one-way functions was introduced very early in the developement of the
theory of cryptography [17, 4, [38]]. Indeed, the existence of hard-core bits for particular proposals of one-
way functions (see, for example [4, [1, [19} 22]) and later for any one-way function [14], has been central
to the constructions of secure public (and private) key encryption schemes, and strong pseudo-random bit
generators, the cornerstones of cryptography.

The main questions which remain open in this area concern the generalized notion of “simultaneous
hard-core bit security” loosely defined as follows. Let f be a one-way function and A an easy to compute
function. We say that h is a simultaneously hard-core function for f if given f(z), h(x) is computationally
indistinguishable from random. In particular, we say that a block of bits of = are simultaneously hard-
core for f(x) if given f(x), they cannot be distinguished from a random string of the same length (this
corresponds to a function & that outputs a subset of its input bits).

The question of how many bits of x can be proved simultaneously hard-core has been studied for general
one-way functions as well as for particular candidates in [37, [1, 126} 20} (15} [14], but the results obtained are
far from satisfactory. For a general one-way function (modified in a similar manner as in their hard-core
result) [14] has shown the existence of A that outputs log k bits (where k is the security parameter) which
is a simultaneous hard-core function for f. For particular candidate one-way functions such as the the
exponentiation function (modulo a prime p), the RSA function and the Rabin function [37, [26]] have pointed
to particular blocks of O(log k) input bits which are simulateously hard-core given f(z) (where k is the
security parameter).

The only known examples of one-way functions that have more than O(log k) simultaneous hardcore
bits are the modular exponentiation function f(z) = ¢* mod N [20, [15], where N is an RSA composite,
and the Pallier function[31]]. [20, [15] show that for the modular exponentiation function (modulo an RSA
composite V), half the bits of x (resp, any constant fraction of the bits of z) are simulatenously hard-
core, given g mod NN, under the factoring assumption (resp. a stronger variant of the discrete logarithm
assumption [32]). In the case of the Paillier function, [6] show that any constant fraction of the bits of the
input are hardcore, under a strong variant of Paillier’s assumption (or, the composite residuosity assumption).
In particular, the Paillier function is the only known trapdoor function where a linear fraction of the input
bits are simultaneously hardcore. [6] raised the question of whether it is possible to construct other natural
and efficient trapdoor functions with many simultaneous hardcore bits.

In this paper, we show for the lattice-based (injective) trapdoor function recently proposed by Gentry,
Peikert and Vaikuntanathan [13] (based on the one-way function of Regev [35]), an n — o(n) number of
input bits are simultaneously hardcore. The one-wayness of the function is based on the hardness of the
learning with error (LWE) problem with dimension (security parameter) n which is defined as follows:



given polynomially many pairs of the form (a;, (a;,s) + x;) where s € Zy and a; € Zj (for some prime
q = poly(n)) are uniformly random and independent and the x; are chosen from some “error distribution”
(in particular, think of x;’s as being small in magnitude), find s.

In particular, we show:

Informal Theorem 1. There exists an injective trapdoor function for which n — k bits are simultaneously
hardcore (for any k), assuming that the hardness of the learning with error (LWE) assumption with dimen-
sion k against polynomial-time adversaries. Here, n is the input-length of the trapdoor function.

Regev [35]] showed that the complexity of LWE is intimately connected to the worst-case complexity
of many lattice problems. In particular, he showed that any algorithm that solves the LWE problem (for
appropriate parameters m and ¢ and an error distribution x) can be used to solve many lattice-problems in
the worst-case using a quantum algorithm. Thus, the one-wayness of this function is based on the worst-case
quantum hardness of lattice problems as well.

Our proof is simple, and general: one of the consequences of the proof is that the related one-way
function based on learning parity with noise (in GF'(2)) [2] also has n — o(n) simultaneous hardcore bits

(See Sections[2.1]and [).

1.2 Security against Memory-Freezing Side-Channel Attacks

The absolute privacy of the secret-keys associated with cryptographic algorithms has been the corner-stone
of modern cryptography. Still, in practice keys do get compromised at times for a variety or reasons. A
particularly disturbing loss of secrecy is as a result of side channel attacks. One may distinguish, as we do
here, between two types of side-channel attacks on secret-keys: computational and memory-freezing.

Informally, a computational side-channel attack is the leakage of information about the secret key which
occurs as a result of preforming a computation on the secret-key (by some cryptographic algorithm which
is a function of the secret-key). Some well-known examples of computational side-channel attacks are
timing attacks [23], power attacks [24] and cache attacks [30] (see [27] for a glossary of various side-
channel attacks). A basic defining feature of a computational side-channel attack, as put forth by Micali
and Reyzin [29] in their work on “Physically Observable Cryptography” is that in this case computation
and only computation leaks information. Portions of memory which are not involved in computation do
not leak during that computation. There has been a growing amount of interest in designing cryptographic
algorithms robust against computational side-channel attacks, as evidenced by the many recent works in this
direction [29, 21} 34, [16l [11]. A major approach in designing cryptographic algorithms against computa-
tional side-channel attacks is to somehow limit the portions of the secret key which are involved in each step
of the computation [21}, 34, 16} [11].

A different type of attack entirely which has recently received much attention, is the memory-freezing
attack intrduced by Felton et al. [18]]. In this attack, a significant fraction of the bits of the secret key can
be measured if the secret key is ever stored in the part of memory which can be accessed (even after power
has been turned off for a short amount of time), and even if it has not been touched by computation. This
attack violates the basic assumption of [29] that only computation leaks information. Obviously, if the attack
uncovers the entire secret key, there is no hope for any cryptography. However, it seems that such an attack
usually only recovers some fraction of the secret key.

The question that emerges is whether cryptosystems can sustain their security in presence of such an
attack. There are two natural directions to take in addressing this question.



The first is to look for redundant representations of secret-keys which will enable battling memory
freezing attacks. The works of [} 21]] can be construed in this light. Naturally, this entails expansion of the
storage required for secret keys and data.

The second approach would be to examine natural and existing cryptosystems, and see how vulnerable
they are to memory-freezing attacks which uncovers a fixed fraction of bits of the secret key. Indeed, [18]
shows that uncovering half of the bits of the secret key stored in the natural way completely compromises the
security of cryptosystems, such as the RSA and Rabin cryptosystems. This follows from the work of Rivest
and Shamir, and Coppersmith [36, [7], and has been demonstrated in practice by [18]: their experiments
described successfuly recovered RSA and AES keys.

In this paper, we take the second approach: we prove that the public-key encryption scheme of Regev[35]]
and the identity-based encryption scheme of Gentry, Peikert and Vaikuntanathan [13]] are remarkably robust
against the memory-freezing attack.

In particular, we differentiate between two flavors of this attack The first is non-adaptive a-freezing
attacks. Intuitively, in this case, a function h with output-length « is chosen by the adversary first, and
the adversary is given (PK, h(SK)), where (PK, SK) is a random key-pair produced by the key-generation
algorithm. The key point to note is that the function A is fixed in advance, independent of the parameters
of the system and in particular PK. We remark that even though seems like a weak attack, it is the attack
specified in [18]] as it corresponds to the fact that the bits measured are a function of the hardware or rather
the storage medium used, and do not depend on the choice of the public key (See the definition in Section
and the discussion that follows).

In this case we show:

Informal Theorem 2. (Under variants of the LWE assumption) there exists a public-key encryption scheme
and an identity-based encryption scheme that are secure against a non-adaptive (n — o(n))-freezing attack,
where n is the size of the secret-key.

The second, stronger flavor is adaptive memory freezing attacks. In this case, the key generation al-
gorithm is run first to output a pair (PK, SK), and then the adversary on input PK chooses functions h;
adaptively (depending on the PK and the outputs of h;(SK), for j < ¢) and receives h;(SK). In this case,
we show:

Informal Theorem 3. (Under variants of the LWE assumption) there exists a public-key encryption scheme
and an identity-based encryption scheme that are secure against an adaptive Wog(n)-freezing attack, where
n is the size of the secret-key.

We find it extremely interesting to construct encryption schemes which are secure against a-freezing
attacks, where « is an arbitrary polynomial in the size of the secret-key. Of course, if the secret-key is kept
static, this is not achievable (since the adversary can measure the entire secret-key, as soon as « is larger than
the length of the secret-key). Thus, it seems that to achieve this goal, some off-line (randomized) refreshing
of the secret key must be done periodically. We do not deal with these further issues in this paper. (However,
for more on this issue, see the discussion in Section[2.3).

2 Preliminaries and Definitions

We will let bold capitals such as A denote matrices, and bold small letters such as a denote vectors. If A is
an m x n matrix and S C [n] represents a subset of the columns of A, we let A g denote the restriction of

'In this paper, we are concerned with designing public-key encryption and identity-based encryption schemes. Thus, our
description will be tailored to the case of encryption schemes.



A to the columns in .S, namely the m x |S| matrix consisting of the columns with indices in S. In this case,
we will write A as [Ag, Ag].

2.1 Cryptographic Assumptions

The cryptographic assumptions we make are related to the hardness of learning-type problems. In partic-
ular, we will consider the hardness of learning parity over GF(2) with noise (equivalently, the hardness
of decoding random linear codes over GF'(2)) and the hardness of learning with error. The latter problem
was introduced by Regev [35] where he showed a relation between the hardness of this problem, and the
worst-case hardness of certain problems on lattices.

Learning With Error (LWE). Learning with Error, defined by Regev[33]], is a variant of learning parity
with noise. The interesting feature of this problem is the relation between its average-case hardness and the
(quantum) worst-case hardness of standard lattice-problems.

Our notation here follows [35}133]]. Before we define the problem, we will define a normal distribution
over R and its discretization. The normal distribution with mean 0 and variance o2 (or standard deviation

o) is the distribution on R having density function a-\}ﬂ exp(—22/20?). It is possible to efficiently sample

from a normal variable to any desired level of accuracy.

For o € R™ we define ¥, to be the distribution on [0, 1) of a normal variable with mean 0 and standard
deviation a/+/27, reduced modulo 1| For any probability distribution ¢ : T — R and an integer q € Z*
(often implicit) we define its discretization ¢ : Zs; — RT to be the discrete distribution over Z, of the
random variable |¢ - X | mod ¢, where X has distribution ¢

Consider the family of functions Fywg, parametrized by numbers m(n) € N and ¢(n) € N and a
probability distribution x(n) : Z; — R, defined the following way: Let n be a security parameter. Each
function f4 is indexed by a matrix A € Zg**". The input of fa is (s,x) where s is chosen uniformly at
random from Zf; and x = (z1,...,Ty) is chosen such that the x;’s are independent and each x; < . The
output is fa (s, x) = As + x, where all operations are performed in Z,.

The hardness of LWE is parametrized chiefly by the dimension n. Therefore, we let all other parameters
(m, q and x) be functions of n, sometimes omitting the explicit dependence for notational clarity.

We say that the (m(n), ¢(n), x(n))-LWE problem is t(n)-hard if for every family of circuits Adv of size
at most t(n),

1
Pr[Adv(A, A =5/ < —
r[Adv(A, As +x) =s] < 1)
where the probability is over the choice of a random A € Z7**", random s € Z; and a vector x =
(21,...,xy) is chosen such that each x; is chosen independently from the distribution x.

In other words, the assumption says that fo (for a randomly chosen A) is a one-way function against
adversaries of size t(n). Regev[33] showed that if fo is a one-way function, then it is a pseudorandom
generator as well (where the distinguishing probability is worse by a factor of m(n), the length of the
output).

Regev [35]] demonstrated a connection between the LWE problem for certain moduli ¢ and error distri-
butions x, and worst-case lattice problems. In particuar, he showed that LWE, , is as hard as solving several
standard worst-case lattice problems using a quantum algorithm. We state a version of his result here.

For € R, 2 mod 1 is simply the fractional part of .
3For a real z, |z] is the result of rounding z to the nearest integer.



Proposition 1 ([35]). Let o = a(n) € (0,1) and let ¢ = q(n) be a prime such that o - ¢ > 2+/n. If there
exists an efficient (possibly quantum) algorithm that solves LWE 0T then there exists an efficient quantum
algorithm for solving the worst-case lattice problems SIVP and GapSVP in the {5 norm.

We stress that our cryptosystems will be defined purely in relation to the LWE problem, without explic-
itly taking into account the connection to lattices (or their parameter restrictions). The connection to lattices
for appropriate choices of the parameters will then follow by invoking Proposition [I] which will ensure
security assuming the (quantum) hardness of lattice problems.

Learning Parity With Noise (LPN). See Appendix

2.2 Cryptographic Definitions

The notion of a meaningful/meaningless public-key encryption scheme was first proposed by Kol and
Naor [25]] lﬂ Such encryption schemes have two types of public-keys: meaningful public-keys, which re-
tain full information about the encrypted message (which can be recovered using a matching secret-key)
and meaningless public-keys, which lose all information about the message. Moreover, meaningful and
meaningless public-keys are computationally indistinguishable. A formal definition follows.

Definition 1. ([23]) A triple of algorithms PKE = (GEN,ENC, DEC) is called a meaningful/meaningless
encryption scheme if it has the following three properties.

e Meaningful Keys: With high probability over (PK, SK) < GEN(1"), for every message m and ci-
phertext ¢ +— ENC(PK, m), DECgk (¢) = m.

e Meaningless Keys: There is an efficient algorithm BADGEN such that with high probability over
PK < BADGEN(1"), for every two messages mg and my, ENCpg (mg) =5 ENCpg (m1).

¢ Indistinguishability of Meaningful and Meaningless Keys: The following two distributions are
computationally indistinguishable.

{PK : (PK, SK) «+ GEN(1")} ~. {PK : PK « BADGEN(1")}

Semantic security for meaningful meaningless encryption schemes follow from these three properties:
to see this, observe that given a meaningless public-key, no (even unbounded) algorithm can distinguish
between encryption of mg and encryption of m; under the public-key. Thus, if an adversary manages to
distinguish between the encryptions of mg and m; using the meaningful public-key, it must mean that the
adversary is also an efficient distinguisher between meaningful and meaningless public keys. Since these
two kinds of keys are indistinguishable, semantic security follows. (For a stronger statement and proof, see
Lemma [)).

2.3 Defining Memory-Freezing Attacks

In this section, we define the security of cryptographic primitives against freezing attacks. In particular,
we define the semantic security of public-key encryption schemes, and identity-based encryption schemes

* A definition of a similar flavor has been around in the context of commitment schemes even earlier. See the mixed commitment
primitive of [8].



against freezing attacks. The definitions in this section can be extended to other cryptographic primitives as
well, but we omit these extensions.

Generally speaking, we follow similar definitions that appeared in the literature before (most notably, the
definitional framework of Micali and Reyzin [29]) except for a few important differences: on the one hand,
whereas the definition of Micali and Reyzin captures computational side-channel attacks, our goal is to cap-
ture the stronger notion of memory-freezing attacks. In particular, [29] make the key axiomatic assumption
(used in many of the later works, for instance [16}[12]) that “only computation leaks information”. This
assumption, although reasonable in the context of computational side-channel attacks, is simply false when
considering memory-freezing attacks: for that reason, our definition does not make such an assumption.

On the other hand, one of the consequences of our definitions is that they are achievable only against
side-channel attacks in which the total number of bits measured during the attack is upper-bounded by the
length of the original secret-key (for more discussion on this issue, see Section [2.3.1)).

We proceed to define two flavors of semantic security against freezing attacks, security against non-
adaptive freezing attacks, and against adaptive freezing attacks.

Semantic Security Against Non-Adaptive Freezing Attacks. Non-adaptive freezing attacks capture the
scenario in which the measurement function h is fixed in advance (possibly as a function of the encryption
scheme, and the underlying hardware), but independent of the parameters of the system, for example the
public-key of the encryption scheme. The definition is parametrized by a function «(n), and requires that for
any h whose output-length is bounded by «(s(n)) (where s(n) is the length of the secret-key output by the
key-generation algorithm) the scheme remains semantically secure (just as in Goldwasser and Micali [17]),
even if the adversary is also given h(SK). The formal definition follows.

Definition 2. Let « : N — N be a function, and let the size of the secret-key output by GEN(1") be s(n).
A public-key encryption scheme PKE = (GEN, ENC, DEC) is semantically secure against non-adaptive c(n)-
freezing attacks if for any function h : {0,1}°*™ — {0,1}*CM)_ and for any PPT adversary A = (A, As),
the probability that A wins in the following experiment differs from % by a negligible function in n:

(PK, SK) < GEN(1")

(mo, mi, state) — Al(PK, h(SK)) s.1. ’TTLO| = |m1|
y < ENCpg (myp) where b € {0, 1} is a random bit
b — As(y,state)

The adversary A wins the experiment if b/ = b.

Semantic Security Against Adaptive Freezing Attacks. An adaptive freezing attack is a strong form of
side-channel attack, where the adversary can request for functions h of the secret-key SK (adaptively, and
depending on the public-key and the results of the previous measurements). The definition is parametrized
by a function «(n), and requires that as long as the total number of bits that the adversary gets as a result
of all his measurements is at most «(s(n)) (where s(n) is the length of the secret-key), he cannot break
the semantic security of the encryption scheme. We stress that the adversary is allowed to choose his
measurement function h at a certain point depending on all the information he has so far, including the
public-key and the results of his previous measurements.

In the formal definition, the adversary gets access to an oracle Ssk (parametrized by the secret-key SK)
which takes as input a polynomial-size circuit » and outputs /(SK).



Definition 3. Let o : N — N be a function, and let the size of the secret-key output by GEN(1") be s(n).
Let Ssx (parametrized by the secret-key SK) denote the oracle that gets as input a polynomial-size circuit h
and outputs h(SK). A public-key encryption scheme PKE = (GEN, ENC, DEC) is semantically secure against
adaptive «(n)-freezing attacks if for any PPT adversary A = (A1, Ay), the probability that A wins in the
following experiment differs from % by a negligible function in n.

(PK, SK) < GEN(1")

(mo, my, state) — ASSK(PK) s.1. [mo| = |ma]

y < ENCpg (myp) where b € {0, 1} is a random bit
b — As(y,state)

The adversary A wins the experiment if both (a) b' = b, and (b) the total numbers of bits that A receives as
part of the answers for the queries to the Ssk oracle is at most a(s(n)).

The definitions of (chosen-identity) semantic security against freezing attacks for identity-based encryp-
tion schemes is similar in spirit, and is given in Appendix [D}]

2.3.1 Definitional Issues and Remarks about the Definition

The goal of this subsection is to address several questions that arise about the definitions. We address these
questions one by one.

Why is the non-adaptive definition interesting? In the non-adaptive definition, the measurement function
h is (adversarially) chosen, independent of the parameters of the system, for example the public-key. This
captures the case when the information that leaks from the hardware is a characteristic of the hardware only.

One might, in this case, wonder if we can design the decryption algorithm that is tailor-made for the par-
ticular h function. However, this means designing a new software (for example, the decryption algorithm)
for every possible piece of hardware (for example, a smart-card implementing the decryption algorithm).
This is highly impractical. Moreover, it seems that such a solution will involve artificially expanding the
secret-key, which we wish to avoid. We stress that our goal is to show that a natural and efficient encryption
scheme is secure against freezing attacks.

Why does the adversary get to measure only the secret-key, but not the “secret-memory”? The secret-
memory refers to the entire configuration of the decryption machine that is intended to be private. This
includes the secret-key, as well as the results of intermediate computations. Potentially, measuring these
intermediate values might give more information than measuring just the secret-key.

We have two answers to this issue: first of all, in the case of our adaptive definition, we do not lose any
generality by restricting the adversary to measure just the secret-key. This is because the computation of the
decryption machine is deterministic and is a function of only the secret and the public keys (and the inputs
that it receives). This whole computation can be captured using an h-function query to the Ssk oracle.

In the non-adaptive case, it turns out that even though the definition may not generalize, the construc-
tions are secure even under a stronger definition which allows measurement of the secret-memory. Roughly
speaking, the reason is that in the schemes we present, the decryption algorithm can be implemented using
a small amount of space. This means that most of the memory is occupied by the secret-key, at any point of
time. We omit further consideration of these issues, for the sake of clarity.

Which functions a(n) (in the definition of o(n)-freezing attacks) are achievable? Clearly o(n) can be



at most n since otherwise, the adversary can read out the entire secret-key. In our case, we achieve a(n)

up to n — w(log?n) in the case of the non-adaptive definition and upto log’; - in the case of the adaptive

definition.

We find it extremely interesting to generalize our definition to a repeated (arbitrary) polynomial number
of meaurements. Obviously, in this case, some off-line refreshing of the secret key must be done periodi-
cally (by the discussion in the above paragraph). Our definition currently does not capture refreshing the
secret-key, and we do not deal with these further issues in this paper.

Why does the adversary As (in the adaptive definition) not get access to the oracle Ssx? It is easy to
see that if Ao (which gets as input a challenge ciphertext) gets to ask even one query to Ssx, it can break the
semantic security of the encryption scheme. Intuitively, this is because A, can use the oracle Ssk to decrypt
the challenge ciphertext. This issue is similar to the one that arises in the definition of CCA2-security of
encryption schemes, where one has to prohibit the adversary from querying the decryption oracle on the
challenge ciphertext. Unfortunately, whereas the solution to this issue in the CCA2-secure encryption case
is straightforward (namely, explicity disallow querying the decryption oracle on the challenge ciphertext),
it seems far less clear in our case (for example, the adversary could construct a circuit that asks for the
decryption of the challenge ciphertext in a number of ways, and it is unclear how we can explicitly rule out
all these ways). Extending our definition to handle this is an interesting open question.

3 Public-key Encryption Secure Against Freezing Attacks

In this section, we construct public-key encryption schemes that are secure against memory-freezing attacks.

In Section [3.1} we show that a minor modification of the lattice-based public-key encryption scheme of
Regev [35] is semantically secure against a non-adaptive «(n)-freezing attack, where a(n) < n —w(log2 n),
where n is the size of the secret-key E} We show the semantic security of this encryption scheme against
a(n)-freezing attacks, under the assumption that the LWE problem is hard (for polynomial-time algorithms)
with security parameter (or dimension) n — «(n). The best known polynomial-time (in n) algorithm solves
LWE upto security parameter O (log n log log n)[3]], and the best conjectured bound is O (log? n). Thus, with
a(n) = n —w(log? n), the scheme is secure against a(n)-freezing attacks under the (plausible) assumption
that LWE is hard with security parameter w(log? n).

The modified encryption scheme is different from Regev’s encryption scheme only in the way the public-
key is generated, and in particular, retains all the efficiency parameters of the [35] system.

In Section[3.2] we show that the Regev encryption scheme (without any modifications) is secure against

adaptive a(n)-freezing attacks, for any a(n) = o(logn). The semantic security against the k(n)-freezing

attack is under the assumption that LWE is hard for algorithms that run in time 2k(") . We show the se-
mantic security of this encryption scheme against a(n)-freezing attacks, under the assumption that the
LWE problem with security parameter n is 22(")+«(1°87)_hard, namely hard for algorithms that run in time
go(n)+w(logn) The best known algorithm to solve n-dimensional LWE runs in time on/logn 3], Thus, with
a(n) = o(g5g5 ), the scheme is secure against o(n)-freezing attacks under the (plausible) assumption that
LWE is 20("/1087)_hard for security parameter n.

We stress, however, that both the results are fully parametrized and works for the whole range of a(n),

under the LWE assumption with related security parameters, and hardness thresholds.

SHere, the size of the secret-key is measured as the number of elements in Z, that the secret-key is made up of (for some number
q). Thus, the bit-length of the secret-key is n log ¢ and the security holds against freezing attacks that measure «(n) log g bits. For
simplicity, we will omit the log g factor, when it is clear from the context.



The Regev Encryption Scheme. First, we describe the public-key encryption scheme of Regev, which
we denote RPKE, as well as our modification which we call RPKE'.

The encryption scheme RPKE = (RGEN, RENC, RDEC) works as follows. Let n be the security parameter
and let g(n), m(n) € N and the probability distribution x(n) over Z, be parameters of the system.

e RGEN(1") picks a random matrix A € Z;**", arandom vector s € Zy and a vector X = (21, ..., Tp)
where each z; is chosen independently from the probability distribution x. Output PK = (A, As+ x)
and SK = s.

e RENC(PK, b), where b is a bit, works as follows. First, pick a vector r at random from {0, 1}". Output
(rA,r(As+x)+0b[4]).

e RDEC(SK, c) first parses ¢ = (¢, 1), computes b’ = ¢; — cl's and outputs 0 if ¥’ is closer to 0 than to
4, and 1 otherwise.
Our modification to the Regev encryption, which we denote RPKE' = (RGEN’, RENC’, RDEC’) is dif-
ferent from RPKE only in the key-generation algorithm. Let k(n) € N be an additional parameter of the
system. RGEN’ works as follows.

e RGEN’(1™) picks two random matrices B € Zg’”k and C € Z’; "™, a random vector s € Zy and a
vector X = (x1,...,Tmy) Where each z; is chosen independently from the probability distribution x.
Let A = BC. Output PK = (A, As + x) and SK = s.

Regev’s proof of semantic-security of RPKE in fact shows that it is a meaningful/meaningless encryption
scheme, to use terminology that was developed later (and therefore, a fortiori, that it is also semantically
secure). The distribution of meaningless keys in RPKE is the uniform distribution of (A.,y) over Z* ("1,
It is easy to show that RPKE’ is a meaningful/meaningless encryption scheme as well, under the LWE
assumption with security parameter k(n). In RPKE’, the distribution of meaningless public-keys is (A,y)
where A = BC is a product of a random m(n) x k(n) matrix B, and a a random k(n) x n matrix C (both
with entries in Zg), and y is a random vector in Z; (we omit the proofs of these claims). Let RBADGEN’
denote an algorithm the samples a meaningless public-key.

3.1 Security Against Non-Adaptive Freezing Attacks

Theorem 1. The public-key encryption scheme RPKE' is secure against a non-adaptive o(n)-freezing attack,
assuming that the LWE problem with security paramter (dimension) (n — a(n) — w(logn)) is hard for
polynomial-time algorithms. (where the implicit parameters m(n) and q(n) in the LWE definition are both
polynomial in 1)

Proof. First, we show that the meaningful and meaningless public-keys of RPKE’ are computationally in-
distinguishable, even given some information about the (real) secret-key. In particular, we show that for any
function h : ZZ} — Zg(n),

{(PK, h(SK)) : (PK,SK) + RGEN'(1")} ~. {(PK’, h(SK)) : PK' +— RBADGEN'(1"), (PK, SK) + RGEN'(1")}

Secondly, we show that if the meaningful and meaningless keys are computationally indistinguishable given
h(sK) for any h : Ly — Zg‘(n), then the encryption scheme is semantically secure against non-adaptive
a(n)-freezing attacks as well. The proof of this statement essentially follows from similar lemmas that
appear in [25] 33]. The proof of the theorem follows from these two claims. For the full proof, see Ap-
pendix [C| O



3.2 Security Against Adaptive Freezing Attacks

In this section, we show that the Regev encryption scheme [35] RPKE (without any modifications) is secure
against «(n)-freezing attacks, assuming that the LWE problem with dimension n is g0(n)+w(logn) _pard, (for
polynomial m(n) and g(n)).

Theorem 2. The public-key encryption scheme RPKE is secure against an adaptive o(n)-freezing attack, as-
suming that the LWE problem with security parameter (dimension) n is ge(n)tw(logn) _pgrgd (for polynomial

m(n) and q(n)).

Proof. (Sketch.) Our proof proceeds in three steps. First, we show that without loss of generality, it suffices
to consider a simpler adversary in the definition of semantic security against adaptive freezing attacks. Recall
that the adversary A, on input a public-key PK, adaptively queries an oracle on many polynomial-size circuits
h; and gets h;(SK) (the choice of h is adaptive, and can depend on the PK as well as the answers £ (SK) for
j < 7). The adversary then tries to break the (regular) semantic security of the encryption scheme.

We show that for every adversary A that gets a total of «(n) bits from the oracle, there is a circuit
ha :{0,1}P(M+5(") (where p(n) and s(n) are the sizes of the public-key and secret-key, respectively) such
that A and the following adversary A’ are equivalent. A’ gets as input (PK, h4(PK, SK)), and tries to break
the regular semantic security of the encryption scheme. In particular, A" does not get oracle access to Ssi.
Roughly speaking, h 4 “simulates” the computation of A on input PK and oracle access to Ssk: h4 can do
this because it has SK as one of the inputs. For the rest of the proof, we will consider an adversary A’ of this
form.

In the next two steps, we will establish that RPKE is a meaningful/ meaningless encryption scheme even
in the presence of the auxiliary information h 4. In particular, we show that for the encryption scheme RPKE,

1. for every circuit h : {0,1}5() — {0,1}*(™), there is a distribution D}, such that (a) D}, is com-
putationally indistinguishable from a public-key PK generated by RGEN(1"), even given h(PK, SK)
assuming that the LWE problem is 22()+«(°87)_hard, and (b) D, has min-entropy at least p(n) —
(a(n) + w(logn)), where p(n) is the size of the public-key (See Claim|I).

2. For any distribution D with min-entropy at least p(n) — (n+1) log ¢+w(log n), with high probability,
a public-key sampled from D is meaningless. (See Claim [2).

Together, these two steps mean that RPKE is a meaningful/meaningless encryption scheme even in the
presence of auxiliary information h 4, as long as p(n) — (a(n)+w(logn)) > p(n)—(n+1)log ¢+w(logn),
which holds if a(n) < (n + 1)logq — w(logn) (which is trivially true). The proof of semantic security
against adaptive attacks now follows by an argument similar to the one in Lemma] and is omitted.

O

Claim 1. Assuming that the LWE problem is 2¢(™M+<(18")_hard, for every circuit h = {0,1}5") — {0, 1},
there is a distribution Dy, such that (a) Dy, is computationally indistinguishable from a public-key PK gen-
erated by RGEN(1"), even given h(PK, SK) and (b) Dy, has min-entropy at least p(n) — (a(n) + w(logn)),
where p(n) is the size of the public-key.

Proof. (Sketch.) A public-key PK generated by RGEN(1") is of the form (A, As + x) where A € Z;"*"
is a random matrix, s € Zy is a random vector and x € x" is a vector each of whose entries is chosen
independently at random from the error-distribution x (think of the parameters m, ¢ and y as fixed). The
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LWE assumption implies that the distribution of (A, As+ x) is computationally indistinguishable from uni-
formly random in Z}""*", and in particular that the function G(A, s, x) = (A, As + x) is a pseudorandom
generator.

We now use a lemma of Dziembowski and Pietrzak, which informally states that the output of any
(sufficiently secure) PRG has high HILL-entropy, even given the result of a function A (with bounded output
length) applied on the seed of the PRG. A formal statement of (a variant of) [[11, Lemma 3], specialized to
the case of RPKE, is given in Lemmall]

The claim follows as a direct consequence of this lemma, applied to the PRG G and the function

h(PK,SK) = h(A,As +x,_ s )= h(A,s,x) (for some related h). O
SK
—PK =

Lemma 1. ([I1, Lemma 3], simplified) Ler G : {0,1}" — {0,1}™ be any 20(M+«{0gn)_gocyre PRG.
Then, for every function h : {0,1}"* — {0,1}*"), there exists a distribution Dy, with min-entropy at least
m — (a(n) +w(logn)) such that

(G(Un), M(Un)) =c (y — Dn, h(Un))

Claim 2. For any distribution D with min-entropy at least p(n) — (n + 1)logq + w(logn), with high
probability, a public-key sampled from D is meaningless for the encryption scheme RPKE.

Proof. (Sketch.) Peikert, Vaikuntanathan and Waters [33, Lemma 7.4] prove that the number of meaningless
public-keys in RPKE is very large. A quantitative version of their lemma is given as Lemma 2] In particular,
Lemma 2| implies that the number of meaningless public-keys is at least 27’(")(1 - qn1+1 ). Thus, if the

min-entropy of D is at least p(n) — (n + 1) log ¢ + w(log n), then a sample from D will be a meaningless
public-key 1 — negl(n) fraction of the time. O

Lemma 2. ([33] Lemma 7.4], simplified) Let m > 3(n + 1) log gq. Then we have
E]g[SD(PK’ Up(n)) > qi(n+1)/2] < 1/qn+1

The probability is taken over a uniformly random choice of PK from 2P(") \where p(n) is the bit-length of
PK.

4 Simultaneous Hardcore Bits

In this section, we show that for the trapdoor (injective) one-way function proposed recently by Gentry,
Peikert and Vaikuntanathan [13]] (based on the one-way function Fiywg of Regev [35]), n — o(n) bits of the
input are simultaneously hardcore (where n is the length of the input). The one-wayness of the function is
based on the hardness of the learning with error (LWE) problem (in this paper, we are not concerned with
exactly how the trapdoor inversion works; therefore, we refrain from describing it).

We remark that the exact same proof can also be used to show that n — o(n) bits are simultaneously
hardcore for the one-way function | py based on the hardness of learning parity with noise (in GF'(2)). We
do not discuss this extension further in this paper.

The rest of this section is devoted to proving the following theorem.

Theorem 3. Let fa(s,x) = Ax + 1, where A is a random matrix in Z;n(n)xn, S is a random vector in

Zq and X is a vector where each component x; is chosen independently from the error-distribution x(n).

Then, for every subset S C [n], s|g is simultaneously hardcore for fa, assuming that the LWE problem with

dimension n— |S| is hard for polynomial-time algorithms. That is, (A, As+x,s[s) ~c (A, As+x,U,s)).
q

11



Proof. We show this by a hybrid argument. Hybrid H; denotes the distribution (A, Ax + v, x|g). This is

the distribution on the left in the statement of the theorem. Hybrid H; denotes the distribution (A, Uzgm, U e ).
q

Note that all the components of Hs are uniformly random (and independent) in their respective domains.
Hybrid H; denotes the distribution (A, Ax+1), U, s ). This is the distribution on the right in the statement
q

of the theorem.
We will show that Hy ~, H; (Claim[3)) and (2) H; ~. Hs (Claim[d)), which proves the theorem. ]

Claim 3. HO g Hl.

Proof.: We want to show that (A, As + x,s|s) ~¢ (A,Uzp,U, s ). We will show this by contradiction:
q

suppose a PPT algorithm D distinguishes between the two distributions. Then, we construct a PPT algorithm
E that breaks the LWE assumption with security parameter n — |S|.

(n—=15])

E gets as input (A’ y’) where A is uniformly random in Z;nx and works as follows: F first sets

Az = A/, picks Ag at random from ZZM‘S‘ and sets A = [Ag, Ag]. E also picks sg «— Z|qs| uniformly
at random and computes y = y’ + Agsg. E then runs D with input (A,y,sg), and outputs whatever D
outputs.

We show that E distinguishes between the case where 4’ = A’s’+x and where ¢/ is a uniformly random
string of the same length. If (A’,y’) is distributed according to LWE (that is, it is of the form (A’, A's’+x))
then (A,y =y’ + Agxg) is distributed identical (A, As + x), that is an LWE distribution with dimension
n. In this case, the input to D is distributed identical to Hy.

On the other hand, if (A’,y’) is uniformly random, then (A, y =y’ + Agxg, Xg) consists of uniformly
random and independent entries (which is exactly H;). Thus, F distinguishes between LWE with security
parameter n — |.S| and uniform, at least as often as D distinguishes between H and H.

Since distinguishing between the LWE distribution and uniform is equivalent to breaking the LWE
assumption [35)], we are done. J

Claim 4. H{ ~; H>.

Proof. We want to show that (A, As+x,U,s|) ¢ (A, Uzp, U, s)). Itis easy to see that this is equivalent
q q

to distinguishing between the LWE distribution and uniform, which by [35] is equivalent to solving LWE
with security parameter n. O

Open Questions. In this paper, we design public-key and identity-based encryption schemes that are se-
cure against freezing attacks. The first question that arises from our work is whether it is possible to (define
and) construct other cryptographic primitives such as signature schemes, identification schemes and even
protocol tasks that are secure against freezing attacks. The second question is whether it is possible to
protect against freezing attacks that measure an arbitrary polynomial number of bits. Clearly, this requires
some form of (randomized) refreshing of the secret-key, and it would be interesting to construct such a
mechanism. Finally, it would be interesting to improve the parameters of our construction, as well as the
complexity assumptions, and also to design encryption schemes against freezing attacks under other cryp-
tographic assumptions.

Acknowledgments. The third author would like to gratefully acknowledge delightful discussions with
Rafael Pass about the simultaneous hardcore bits problem in the initial stages of this work.
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A Some More Definitions

Learning Parity With Noise (LPN). The learning parity with noise assumption was first formulated and
used for cryptographic purposes in the work of Blum, Furst, Kearns and Lipton [2].

Consider the family of functions Fi py, parametrized by numbers m(n) € N and p(n) € [0, %), defined
the following way: Let n be a security parameter. Each function f4 is indexed by a matrix A € ZJ"*". The
input of fa is (s,x) where s is chosen uniformly at random from Z5 and x = (21, ..., %) is chosen such
that each z; is 1 with probability p = p(n) and 0 otherwise. The output is fa (s, x) = As + x.

The hardness of LPN is parametrized chiefly by the dimension n. Therefore, we let all other parameters
(m and p) be functions of n, often omitting the explicit dependence for notational clarity. For our purposes,
we will be concerned with m(n) being a polynomial in n, and p(n) being the inverse of a polynomial in 7.

We say that the (m(n), p(n))-LPN problem is ¢(n)-hard if for every family of circuits Adv of size at
most ¢(n),

1
Pr[Adv(A, A =s] < ——
r[Adv(A, As +x) =s| < i)
where the probability is over the choice of a random A € Z;**", random s € Z; and a vector X =
(21, ...,xm) is chosen such that each x; is 1 with probability p = p(n) and 0 otherwise.

In other words, the assumption says that fo (for a randomly chosen A) is a one-way function against
adversaries of size t(n). Furthermore, [2] showed that if fa is a one-way function, then it is a pseudorandom
generator as well (for m(n) > n).

The best algorithm to solve LPN runs in time O(2°(/1027)) [3] 28].

B Techniques: Min-Entropy and Randomness Extraction

If X is a random variable, we will also denote by X the probability distribution on the range of the variable.
We let U, denote the uniform distribution on Z;* (note that the support of this distribution is Z", rather
than the usual {0, 1}™). If a random variable occurs twice in the same expression, it means that the same
value is used in both, rather than two independent samples.

A standard measure of the (worst-case) entropy of a random variable X is its min-entropy Huo (X),
defined as Hoo (X)) = — log(maxgep Pr[X = d]). In addition, we would like to define a notion of “condi-
tional min-entropy” of a random-variable X given a possibly correlated random variable Y. The notion that
is most appropriate for our purposes is called average min-entropy HNOO(X |Y") defined by Dodis, Reyzin and
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Smith [[10]:
Hoo(X|Y) = —log Egep max Pr[X = z|Y = d] = — log Eg._p2 He(XV=v)
x
Average min-entropy satisfies the following weak chain-rule [9]]: if the support of Y is of size at most

2*, then Hoo (X ]Y) > Hoo(X) — A. Roughly, this can be interpreted as saying that revealing any \ bits of
information about X causes its min-entropy to go down by at most A. More generally,

Proposition 2. For any random variables X and Y, Hoo (X |Y) > Hoo(X) — log(|Supp(Y)
Supp(Y) is the support of the random variable Y .

), where

If X and Y are distributions with a common support D, then let SD(X, Y') denote the statistical distance
between distributions X and Y. That is,

SD(X,Y) = % > |Pr[X =d] - Pr[Y =d|
deD

We need the following standard fact about how statistical distance changes when a function is applied to a
random variable.

Proposition 3. For any two random variables X andY and any (possibly randomized) function f, SD(f(X), f(Y)) <
SD(X,Y).

Matrix Multiplication and Randomness Extraction. Consider the family of functions 1 = {h¢ : Zj; —
Zf;} ceznxt defined by ho(x) = C - x. We show that this family of functions defines a good randomness
extractor. Note that this is not a universal (or even almost-universal) family of hash functions, and therefore,
the leftover hash lemma does not apply directly.

Proposition 4. Let H be the family of pairwise independent hash functions from Z, — Zf,. Let X and 'Y
be random variables such that X € 7 and Hoo(X|Y) > k. Then, for h¢ «— 'H, we have

SD((Y, C, he (X)), (Y,C,Up)) < €
as long as { < k —logq — 2log(1/e).

The proof of this lemma is essentially the same as in [[10], and we omit it: the only difference in
the statement of the lemma is the extra log ¢ factor, which comes in because we do not have a pairwise
independent hash function at hand.

C Security Against Non-Adaptive Freezing Attacks

Here, we give the full proof of Theorem I}

Theorem 4. The public-key encryption scheme RPKE' is secure against a non-adaptive o (n)-freezing attack,
assuming that the LWE problem with security paramter (dimension) (n — a(n) — w(logn)) is hard for
polynomial-time algorithms. (where the implicit parameters m(n) and q(n) in the LWE definition are both
polynomial in n)
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Proof. First, in Lemma we show that the meaningful and meaningless public-keys of RPKE’ are compu-
tationally indistinguishable, even given some information about the (real) secret-key. In particular, we show

that for any function h : Zj — Zé,‘“(”),

{(PK, h(SK)) : (PK, SK) < RGEN'(1")} =~ {(PK’, h(SK)) : PK' +— RBADGEN'(1"), (PK, SK) + RGEN'(1")}

Secondly, in Lemma 4 we show that if the meaningful and meaningless keys are computationally indistin-
guishable given h(SK) for any A : Ly — Zf;(n), then the encryption scheme is semantically secure against
non-adaptive «(n)-freezing attacks as well. The proof of Lemmaessentially follows from similar lemmas
that appear in [25, [33].

The proof of the theorem follows from Lemmas [3] and 4] O

Lemma 3. Let k(n) € Nand let h : Zj — Zg(n) be any function. Assuming that LWE with security
parameter (n — a(n) — w(logn)) is hard for polynomial time algorithms, a random meaningful public-key
of RPKE' is computationally indistinguishable from a random meaningless public-key, even given h(SK),
where SK is the real secret-key. In particular,

{(PK, h(SK)) : (PK,SK) + RGEN'(1")} ~. {(PK’, h(SK)) : PK' +— RBADGEN'(1"), (PK, SK) + RGEN'(1")}

Proof. What we need to prove is the following: for any function h : Z; — Z;‘(”)

A, As + x is pseudorandom, given h(s). That is,

, given a random matrix

(A, As +x,h(s)) ~c (A, Uzn, h(s))

First, consider the distribution of s, conditioned on h(s). We claim that this distribution has (average)
min-entropy (n — a(n)) log ¢. From Proposition[2]

Hoo(s | h(s)) = Hoo(s) — log|Z§™| > (n — a(n)) log g

Now, by the leftover hash lemma (using matrix multiplication as the hash function) we get (by Proposition )
that
(C,Cs, h(s)) =~ (C, UZ’;(")’ h(s))
for a random C € Z’;(n)xn and arandom s € Zy as long as k(n) < n — a(n) — w(logn).
By Proposition 3} (B, C,BCs + x, h(s)) =5 (B, C,Bt + x, h(s)) where t is uniformly random and
independent of all other components. Using the fact that A = BC, this means that

(A, As +x,h(s)) ~s (A, Bt +x, h(s)) ~c (A, Uz, h(s))

where the second indistinguishability follows, using the LWE assumption with security parameter k(n), and
the fact that (A, At 4 x) is statistically independent of s.
This proves the lemma. O

Lemma 4. Let PKE = (GEN,ENC, DEC) be any meaningful/meaningless public-key encryption scheme.
PKE is secure against non-adaptive «(n)-freezing attacks if meaningful and meaningless public-keys are
computationally indistinguishable given h(sK), for every h : {0,1}*() — {0,1}*6M) (where s(n) is the
size of the secret-key SK). That is, if

{(PK, h(SK)) : (PK, SK) + GEN(1")} =~ {(PK’, h(SK)) : PK' +— BADGEN(1"), (PK, SK) « GEN(1")}
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Proof. (Sketch.) The proof follows the ideas of [25} 33]. We sketch the proof here. By the definition of
meaningless public-keys, even an unbounded adversary cannot distinguish between the encryptions of any
two messages mg and m; under a meaningless public-key PK’ (and this is true even given h(SK), since
SK a random secret-key, sampled independently of PK’). Now, if the adversary could distinguish between
the encryptions of mg and m; under a meaningful public-key PK (when given h(SK) for the matching
secret-key SK) then it must mean that the adversary distinguishes between meaningful and meaningless
public-keys, given h(SK). Thus, the encryption scheme is secure against non-adaptive freezing attacks, if
the two distributions in the statement of the lemma are computationally indistinguishable. 0

D Identity-Based Encryption Secure Against Freezing Attack

In this section, we construct identity-based encryption schemes that are secure against memory-freezing
attacks. We show that the identity-based encryption scheme of Gentry, Peikert and Vaikuntanathan [13]]
is semantically secure against both a non-adaptive and an adaptive «(m)-freezing attack, where a(m) <
m — o(m), where m is the length of the secret-key. We show the semantic security of this encryption
scheme against «(m)-freezing attacks, under the standard LWE assumption, namely that the LWE problem
with security parameter n is hard for polynomial-time algorithms.

First, we describe the [13]] IBE.

The GPV ID-based Encryption Scheme. Let n be the security parameter and let g(n), m(n), k(n) € N
and the probability distribution x(n) over Z, be parameters of the system.

The master-public key in the encryption scheme is A € Z;**", the public-key PK corresponding to an
identity id is y = H (id) € Z; (where H is a random oracle) and the secret-key SK is a vector r € {0, 1}™
such that y = rA.E]

e GPVKEYDER sk (id) lets y = H (id) and outputs SKjq to be a vector r € {0, 1} such thatrA =y.

e GPVENC(id, b), where b is a bit, works as follows. Let PK = h(id). Pick a random vector s € Z and
let the vector x = (x1,...,zy,) and the number 7 consist of values chosen independently from the
probability distribution . Output the ciphertext (As + x,y’s +n+b|1]).

T

e GPVDEC(SK, ¢) first parses ¢ = (cg, 1), computes b’ = ¢; — r' ¢ and outputs 0 if &’ is closer to 0

than to £, and 1 otherwise.

D.1 Security Against Non-adaptive Freezing Attacks

Theorem 5. The identity-based encryption scheme GPVIBE is secure against a non-adaptive and adaptive
a(m)-freezing attack (where m is the bit-length of the secret-key) for a(m) < m — nlogq — w(logn),
assuming that L\WE with security parameter n is hard for polynomial time algorithms.

Proof. (Sketch.) We will prove this in two steps. First, we show that security against non-adaptive freezing
attacks follows from the fact that the distribution of H (id) for any id is statistically close to random, even

SThe actual GPV secret-key derivation algorithm does not produce secret keys r € {0,1}™ but only r’s such that the length
[|Ir|]2 is small. This complicates the precise quantitative statements of our theorems. For the sake of the present paper, we assume
that r € {0,1}™, to allow for simpler to state theorems.
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given n — o(n) bits of the secret-key (this is similar to the proof of E]) and is omitted). Secondly, we show
that this is the case.

The proof of the latter claim follows from leftover hash lemma and the fact that matrix multiplication
is a good extractor. If the adversary measures a(m) bits of r, then we are still left with m — a(m) bits of
min-entropy. That is, at least m — (m — nlogq — w(logn)) > nlogq + w(m)) bits of min-entropy. Now,
since the output of r A is n log ¢ bits, it follows from the left-over hash lemma that (A, rA) is statistically
close to uniform even given A(r).

To handle an adaptive attack, note that if the h function measures both PK (i.e, (A,rA)) and SK (i.e,
r) then the distribution of PK together with h(PK, SK) is no longer uniform but has large min-entropy.
Nevertheless, we can show that the encryption scheme is secure even with such a public-key, assuming
exponential hardness of LWE.

We omit the details. O
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