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Abstract

We prove that approximating the MAX ACYCLIC SUB-
GRAPH problem within a factor better than 1/2 is Unique
Games hard. Specifically, for every constant ε > 0 the fol-
lowing holds: given a directed graph G that has an acyclic
subgraph consisting of a fraction (1− ε) of its edges, if one
can efficiently find an acyclic subgraph ofG with more than
(1/2 + ε) of its edges, then the UGC is false. Note that
it is trivial to find an acyclic subgraph with 1/2 the edges,
by taking either the forward or backward edges in an ar-
bitrary ordering of the vertices of G. The existence of a
ρ-approximation algorithm for ρ > 1/2 has been a basic
open problem for a while.

Our result is the first tight inapproximability result for
an ordering problem. The starting point of our reduction
is a directed acyclic subgraph (DAG) in which every cut
is nearly-balanced in the sense that the number of forward
and backward edges crossing the cut are nearly equal; such
DAGs were constructed in [2]. Using this, we are able to
study MAX ACYCLIC SUBGRAPH, which is a constraint
satisfaction problem (CSP) over an unbounded domain, by
relating it to a proxy CSP over a bounded domain. The
latter is then amenable to powerful techniques based on the
invariance principle [12, 17].

Our results also give a super-constant factor inapprox-
imability result for the MIN FEEDBACK ARC SET problem.
Using our reductions, we also obtain SDP integrality gaps
for both the problems.
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1 Introduction

Given a directed acyclic graph G, one can efficiently or-
der (“topological sort”) its vertices so that all edges go for-
ward from a lower ranked vertex to a higher ranked vertex.
But what if a few, say fraction ε, of edges ofG are reversed?
Can we detect these “errors” and find an ordering with few
back edges? Formally, given a directed graph whose ver-
tices admit an ordering with many, i.e., 1 − ε fraction, for-
ward edges, can we find a good ordering with fraction α
of forward edges (for some α → 1)? This is equivalent to
finding a subgraph of G that is acyclic and has many edges,
and hence this problem is called the MAX ACYCLIC SUB-
GRAPH (MAS) problem.

It is trivial to find an ordering with fraction 1/2 of for-
ward edges: take the better of an arbitrary ordering and its
reverse. This gives a factor 1/2 approximation algorithm
for MAX ACYCLIC SUBGRAPH. (This is also achieved by
picking a random ordering of the vertices.) Despite much
effort, no efficient ρ-approximation algorithm for a constant
ρ > 1/2 has been found for MAX ACYCLIC SUBGRAPH.
The existence of such an algorithm has been a longstanding
and central open problem in the theory of approximation al-
gorithms. In this work, we prove a strong hardness result
that rules out the existence of such an approximation algo-
rithm assuming the Unique Games conjecture. Our main
result is the following.

Theorem 1.1. Conditioned on the Unique Games conjec-
ture, the following holds for every constant γ > 0. Given a
directed graph G with m edges, it is NP-hard to distinguish
between the following two cases:

1. There is an ordering of the vertices of G with at least
(1 − γ)m forward edges (or equivalently, G has an
acyclic subgraph with at least (1− γ)m edges).

2. For every ordering of the vertices of G, there are at
most (1/2 + γ)m forward edges (or equivalently, ev-
ery subgraph of G with more than (1/2 + γ)m edges
contains a directed cycle).
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To the best of our knowledge, the above is the
first tight hardness of approximation result for an order-
ing/permutation problem. As an immediate consequence,
we obtain the following hardness result for the complemen-
tary problem of MIN FEEDBACK ARC SET, where the ob-
jective is to minimize the number of back edges.

Corollary 1.2. Conditioned on the Unique Games con-
jecture, for every C > 0, it is NP -hard to find a C-
approximation to the MIN FEEDBACK ARC SET problem.

Combining the unique game integrality gap instance of
Khot-Vishnoi [9] with the reduction, we obtain SDP inte-
grality gaps for MAX ACYCLIC SUBGRAPH problem. Our
integrality gap instances also apply to a related SDP relax-
ation studied by Newman [15]. This SDP relaxation was
shown to obtain an approximation better than half on ran-
dom graphs which were previously used to obtain integral-
ity gaps for a natural linear program [14].

1.1 Related work

MAX ACYCLIC SUBGRAPH is a classic optimization
problem, figuring in Karp’s early list of NP-hard prob-
lems [6]; the problem remains NP-hard on graphs with max-
imum degree 3, when the in-degree plus out-degree of any
vertex is at most 3. MAX ACYCLIC SUBGRAPH is also
complete for the class of permutation optimization prob-
lems, MAX SNP[π], defined in [16], that can be approxi-
mated within a constant factor. It is shown in [14] that MAX
ACYCLIC SUBGRAPH is NP-hard to approximate within a
factor greater than 65

66 .
Turning to algorithmic results, the problem is known

to be efficiently solvable on planar graphs [10, 5] and re-
ducible flow graphs [18]. Berger and Shor [1] gave a
polynomial time algorithm with approximation ratio 1/2 +
Ω(1/

√
dmax) where dmax is the maximum vertex degree in

the graph. When dmax = 3, Newman [14] gave a factor 8/9
approximation algorithm.

The complementary objective of minimizing the num-
ber of back edges, or equivalently deleting the minimum
number of edges in order to make the graph a DAG, leads
to the MIN FEEDBACK ARC SET (FAS) problem. This
problem admits a factor O(log n log log n) approximation
algorithm [19] based on bounding the integrality gap of the
natural covering linear program for FAS; see also [3]. Us-
ing this algorithm, one can get an approximation ratio of
1
2 +Ω(1/(log n log log n)) for MAX ACYCLIC SUBGRAPH.

Recently, Charikar, Makarychev, and Makarychev [2]
gave a factor (1/2 + Ω(1/ log n))-approximation algorithm
for MAX ACYCLIC SUBGRAPH, where n is the number
of vertices. In fact, their algorithm is stronger: given a
digraph with an acyclic subgraph consisting of a fraction
(1/2+δ) of edges, it finds a subgraph with at least a fraction
(1/2+Ω(δ/ log n)) of edges. This algorithm and, in partic-

ular, an instance showing tightness of its analysis from [2],
play a crucial role in our work.
1.2 Organization

We begin with an outline of the key ideas of the proof in
Section 2. In Section 3, we review the definitions of influ-
ences, noise operators and restate the unique games conjec-
ture. The groundwork for the reduction is laid in Section 4
and Section 5, where we define influences for orderings, and
multiscale gap instances respectively. We present the dicta-
torship test in Section 6, and convert it to a UG hardness
result in Section 7. Finally, SDP integrality gaps for MAX
ACYCLIC SUBGRAPH are presented in Section 8.

2 Proof Overview

In this section, we outline the central ideas of the proof.
To keep the description concise, we will set up some ba-
sic notation. For sake of brevity, let us denote [m] =
{1, . . . ,m}. Given an ordering O of the vertices of a di-
rected graph G = (V,E), let Val(O) refer to the fraction of
the edges E that are oriented correctly in O.

At the heart of all Unique Games based hardness results
lies a dictatorship testing result for an appropriate class of
functions. A function F : [m]R → [m] is said to be a dic-
tator if F(x) = xi for some fixed i. A dictatorship test
(DICT) is a randomized algorithm such that, given a func-
tion F : [m]R → [m], it makes a few queries to the val-
ues of F and distinguishes between whether F is a dictator
or far from every dictator. While Completeness of the test
refers to the probability of acceptance of a dictator function,
Soundness is the maximum probability of acceptance of a
function far from a dictator. The approximation problem
one is showing UG hardness for determines the nature of
the dictatorship test needed for the purpose.

Now let us turn to the specific problem at hand : MAX
ACYCLIC SUBGRAPH. Designing the appropriate dictator-
ship test for this problem amounts to the following: Con-
struct a directed graph over the set of vertices V = [m]R

such that :

• For a Dictator ordering O of V , Val(O) ≈ 1

• For any ordering O which is far from a dictator,
Val(O) ≈ 1

2 .

Unlike the case of functions, it is unclear as to what is the
right notion of Dictators for orderings. For every ordering
O of [m]R, define m2R functions F [p,q] : [m]R → {0, 1}
as follows:

F [p,q](x) =

{
1 if p 6 O(x) 6 q

0 otherwise

The ith coordinate is said to be influential if it has a large in-
fluence (> τ ) on any of the functions F [p,q]. Here influence
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refers to the natural notion of influence for real valued func-
tions on [m]R (see Section 3). An ordering O is said to be
τ -pseudorandom (far from a dictator) if it has no influential
coordinates (> τ ). For this notion to be useful, it is nec-
essary that a given ordering O does not have too many in-
fluential coordinates. Towards this, in Lemma 4.3 we show
that the number of influential coordinates is bounded (af-
ter certain smoothening). Further this notion of influence
is well suited to deal with orderings of multiple long codes
instead of one - a crucial requirement in translating dicta-
torship tests to UG hardness.

Armed with the notion of influential coordinates, we ob-
tain a directed graph on [m]R (a dictatorship test) for which
the following holds:
Theorem 2.1. (Soundness) IfO is any τ -pseudorandom or-
dering of [m]R, then Val(O) 6 1

2 + oτ (1).

This dictatorship test yields tight UG hardness for the
MAX ACYCLIC SUBGRAPH problem. Using the Khot-
Vishnoi [9] SDP gap instance for unique games, we obtain
an SDP integrality gap for the same.

Now we describe the design of the dictatorship test in
greater detail. At the outset, the approach is similar to re-
cent work on Constraint Satisfaction Problems(CSPs) [17].
Fix a constraint satisfaction problem Λ. Starting with an
integrality gap instance Φ for the natural semi-definite pro-
gram for Λ, [17] constructs a dictatorship test DICTΦ. The
Completeness of DICTΦ is equal to the SDP value SDP(Φ),
while the Soundness is close to the integral value INT(Φ).

Since the result of [17] applies to arbitrary CSPs, a nat-
ural direction would be to pose the MAX ACYCLIC SUB-
GRAPH as a CSP. MAX ACYCLIC SUBGRAPH is fairly sim-
ilar to a CSP, with each vertex being a variable taking values
in domain [n] and each directed edge a constraint between
2 variables. However, the domain, [n], of the CSP is not
fixed, but grows with input size. We stress here that this is
not a superficial distinction but an essential characteristic of
the problem. For instance, if MAX ACYCLIC SUBGRAPH
was reducible to a 2-CSP over a domain of fixed size, then
we could obtain a approximation ratio better than a random
assignment [4].

Towards using techniques from the CSP result, we define
the following variant of MAX ACYCLIC SUBGRAPH:

Definition 2.2. A t-ordering of a directed graph G =
(V,E) consists of a map O : V → [t]. The value of a
t-ordering O is given by

Valt(O) = Pr
(u,v)∈E

(
O(u) < O(v)

)
+

1
2

Pr
(u,v)∈E

(
O(u) = O(v)

)
In the t-Order problem, the objective is to find an t-ordering
of the input graph G with maximum value.

On the one hand, the t-Order problem is a CSP over
a fixed domain that is similar to MAS. However, to the
best of our knowledge, for the t-Order problem, there are
no known SDP gaps, which constitute the starting point
for results in [17]. For any fixed constant t, Charikar,
Makarychev and Makarychev [2] construct directed acyclic
graphs (i.e., with value of the best ordering equal to 1),
while the value of any t-ordering of G is close to 1

2 . For
the rest of the discussion, let us fix one such graph G on m
vertices. Notice that the graph G does not serve as SDP gap
example for either the MAS or the t-Order problem.

As the graph G has only m vertices, and an ordering of
value ≈ 1, it has a good t-ordering for t = m. Viewing
G as an instance of the m-Order CSP (corresponding to
predicate <), we obtain a directed graph, G, on [m]R. As
a m-order CSP, the dictator m-orderings yield value ≈ 1
on G. In turn, this implies that the Dictator orderings have
value ≈ 1 on G. Turning to the soundness proof, consider
a τ -pseudorandom ordering O. Obtain a t-ordering O∗ by
the following coarsening process : Divide the ordering O
in to t equal blocks, and map the vertices in the ith block
to value i. The crucial observation relating O and O∗ is as
follows:

“For a τ -pseudorandom ordering O, Valt(O∗) ≈
Val(O).”

Clearly, Val(O) − Valt(O∗) is bounded by the fraction
of edges whose both endpoints fall in the same block, dur-
ing the coarsening. We use the Gaussian noise stability
bounds of [12], to bound the fraction of such edges. From
the above observation, in order to prove that Val(O) ≈ 1

2 ,
it is enough to bound Valt(O∗). Notice that O∗ is a solu-
tion to t-order problem - a CSP over finite domain. Conse-
quently, the soundness analysis of [17] can be used to show
that Valt(O∗) is at most the value of the best t-ordering for
G, which is close to 1

2 .
Summarizing the key ideas, we define the notion of influ-

ential coordinates for orderings, and then use it to construct
a dictatorship test for orderings. Using gaussian noise sta-
bility bounds, we relate the value of a pseudorandom order-
ing to a related CSP, and then apply techniques from [17].

3 Preliminaries
For a positive integer t, ∆t denotes the the t dimen-

sional simplex. We will use boldface letters z to denote
vectors z = (z(1), . . . , z(R)). Let oτ (1) denote a quantity
that tends to zero as τ → 0, while keeping all other pa-
rameters fixed. For notational convenience, an ordering O
of a directed graph G = (V,E) is represented by a map
O : V → Z. On the other hand, a t-orderingO consists of a
map O : V → [t]. For a t-ordering O, the map need not be
injective or surjective, but an orderingO is required to be in-
jective. In an ordering(or t-ordering) O, an edge e = (u, v)
is a forward edge if O(u) < O(v). For a graph G, the
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quantities Val(G),Valt(G) refer to the maximum fraction
of forward edges in an ordering,t-ordering respectively.

Observation 3.1. For all directed graphs G, and integers
t 6 t′, Valt(G) 6 Valt′(G) 6 Val(G)

While the first part of the inequality is trivial, we will
elaborate on the latter half. Given a t′-orderingO, construct
a full ordering O∗ by using a random permutation of the
elements within each of the t′ blocks, while retaining the
natural order between the blocks. It is easy to see that the
expected value of the random ordering O∗ is exactly equal
to Val(O).

3.1 Noise Operators and Influences

Let Ω denote the finite probability space correspond-
ing to the uniform distribution over [m]. Let {χ0 =
1, χ1, χ2, . . . , χm−1} be an orthonormal basis for the space
L2(Ω). For σ ∈ [m]R, define χσ(z) =

∏
k∈[R] χσi(z

(k)).
Every functionF : ΩR → R can be expressed as a multilin-
ear polynomial as F(z) =

∑
σ F̂(σ)χσ(z). The L2 norm

of F in terms of the coefficients of the multilinear polyno-
mial is ||F||22 =

∑
σ F̂2(σ)

Definition 3.2. For a function F : ΩR → R, define
Infk(F) = Ez[Varz(k) [F ]] =

∑
σk 6=0 F̂2(σ).

Here Varz(k) [F ] denotes the variance of F(z) over the
choice of the kth coordinate z(k).

Definition 3.3. For a function F : ΩR → R, define the
function TρF as follows:

TρF(z) = E[F(z̃) | z] =
∑

σ∈[m]R

ρ|σ|F̂(σ)χσ(z)

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal
to z(k) with probability ρ and with the remaining probabil-
ity, z̃(k) is a random element from the distribution Ω.

Lemma 3.4. Consider two functions F ,G : [m]R → [0, 1]
with E[F ] = E[G] = µ, and Infk(T1−εF), Infk(T1−εG) 6
τ for all k. Let x,y be random vectors in [m]R whose
marginal distributions are uniform over [m]R but are ar-
bitrarily correlated. For every ε > 0, there exists small
enough µ such that the following holds :

E
x,y

[T1−2εF(x)T1−2εG(y)] 6 µ1+ε/2 + oτ (1)

Proof. The lemma essentially follows from the Majority is
Stablest theorem (see Theorem 4.4 in [13]). We bound each
factor individually as follows:

||T1−2εF||22 =
∑
σ∈[k]R

(1− 2ε)2|σ|F̂2(σ)

6
∑
σ∈[k]R

(1− ε)|σ|F̂(σ)(1− ε)2|σ|F̂(σ)

6 E[(T1−εF)(x)T1−ε(T1−εF)(x)]

Since the influences of T1−εF are low, we can apply The-
orem 4.4 from [13] to bound the last expression by noise
stability in gaussian space Γ(1−ε)(µ).

E[(T1−εF)T1−ε(T1−εF)] 6 Γ(1−ε)(µ) + oτ (1)

Using standard estimates (see Theorem B.2 in [13]),
Γ(1−ε)(µ) is bounded by µ1+ε/2 for µ small enough com-
pared to ε. Applying a similar bound for G and applying
Cauchy-Schwartz gives the result:

E
x

[T1−2εF(x)T1−2εG(y)] 6
√
||T1−2εF||22||T1−2εG||22

6 µ1+ε/2 + oτ (1) (for µ small enough)

Due to space constraints, we defer the proof of the fol-
lowing simple lemma to the full version.

Lemma 3.5. Given a function F : [m]R → [0, 1], if H =
T1−εF then

∑R
k=1 Infk(H) 6 1

e ln 1/(1−ε) 6 1
ε

3.2 Semidefinite Program

We use the following natural SDP relaxation of the MAX
ACYCLIC SUBGRAPH problem. Given a directed graph
G = (V,E) with |V | = n, the program has n variables
{u1, . . . , un} for each vertex u ∈ V . In the intended
solution, the variable ui = 1 and uj = 0 for all j 6= i if and
only if u is assigned position i.

Max. E
e

[∑
i<j

ui · vj + 1
2

∑
i

ui · vi
]

(MAS SDP)

such that ui · vj ≥ 0, ui · uj = 0 ∀u, v ∈ V, i, j ∈ [n]∑
i∈[n]

|ui|2 = 1 ∀u ∈ V

∣∣∣ ∑
i∈[n]

ui −
∑
i∈[n]

vi

∣∣∣2 = 0 ∀u, v ∈ V

3.3 Unique Games

Definition 3.6. An instance of Unique Games represented
as Υ = (A ∪ B, E,Π, [R]), consists of a bipartite graph
over node sets A,B with the edges E between them. Also
part of the instance is a set of labels [R] = {1, . . . , R},
and a set of permutations πab : [R] → [R] for each edge
e = (a, b) ∈ E. An assignment Λ of labels to vertices is
said to satisfy an edge e = (a, b), if πab(Λ(a)) = Λ(b). The
objective is to find an assignment Λ of labels that satisfies
the maximum number of edges.
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For a vertex a ∈ A ∪ B, we shall use N(a) to denote
its neighborhood. For the sake of convenience, we shall use
the following version of the Unique Games Conjecture [8]
which is equivalent to the original conjecture [7].

Conjecture 3.7. (Unique Games Conjecture [8, 7]) For all
constants δ > 0, there exists large enough constant R such
that given a bipartite unique games instance Υ = (A ∪
B, E,Π = {πe : [R]→ [R] : e ∈ E}, [R]) with number of
labels R, it is NP-hard to distinguish between the following
two cases:

• (1− δ)-satisfiable instances: There exists an assign-
ment Λ of labels such that for 1− δ fraction of vertices
a ∈ A, all the edges incident at a are satisfied.

• Instances that are not δ-satisfiable: No assignment
satisfies more than a δ-fraction of the constraints Π.

4 Orderings
In this section, we develop the notions of influences for

orderings and prove some basic results about them.

Definition 4.1. Given an ordering O of vertices V , its t-
coarsening is a t-ordering O∗ obtained by dividing O into
t-contiguous blocks, and assigning label i to vertices in the
ith block. Formally, if M = |V |/t then

O∗(u) =
⌊ |{v|O(v) < O(u)}|

M

⌋
+ 1

For an ordering O of points in [m]R, Define functions
F [p,q]
O : [m]R → {0, 1} for integers p, q as follows:

F [p,q]
O (x) =

{
1 if O(x) ∈ [p, q]
0 otherwise

We will omit the subscript and writeF [p,q] instead ofF [p,q]
O ,

when it is clear.

Definition 4.2. For an orderingO of [m]R, define the set of
influential coordinates Sτ (O) as follows:

Sτ (O) = {k | Infk(T1−εF [p,q]) ≥ τ for some p, q ∈ Z}

An ordering O is said to be τ -pseudorandom if Sτ (O) is
empty.

Lemma 4.3. (Few Influential Coordinates) For any order-
ing O of [m]R, we have |Sτ (O)| 6 400

ετ3

Proof. Although an ordering is an injective map O :
[m]R → Z, the range of O can be compressed to
{1, . . . ,mR} without affecting the set of functions {F [p,q]

O }
associated with O. After compression, it is enough to con-
sider functions {F [p,q]

O } only for p, q ∈ {0, . . . ,mR + 1}.

For integers p, q, δ1, δ2 such that |δi| < τ
8m

R, let f =
T1−εF [p,q] and g = T1−εF [p+δ1,q+δ2]. Now,

Infk(f − g) 6 ||f − g||22 6 ||F [p,q] −F [p+δ1,q+δ2]||22
= Pr

z
[F [p,q](z) 6= F [p+δ1,q+δ2](z)] 6 τ/4

Hence, using a2 6 2(b2 + (a− b)2), we get:

Infk(f) 6 2

∑
σk 6=0

ĝ2(σ) +
∑
σk 6=0

(
f̂(σ)− ĝ(σ)

)2


6 2Infk(g) + τ/2

Thus, if Infk(f) > τ , then Infk(g) > τ/4. It is easy to
see that there is a set N = {F [p,q]} of size at most 100/τ2

such that for every F [p,q] there is a F [r,s] ∈ N such that
max |p− r|, |q − s| < τmR

8 . Further, by Lemma 3.5, the
functions T1−εF [p,q] have at most 4

ετ coordinates with in-
fluence more than τ/4. Hence, |Sτ (O)| 6 400

ετ3 .

Claim 4.4. For any τ -pseudorandom ordering O of [m]R,
its t-coarsening O∗ is also τ -pseudorandom.

Proof. Since the functions {F [·,·]
O∗ } are a subset of the func-

tions {F [·,·]
O }, Sτ (O∗) ⊆ Sτ (O).

5 Multiscale Gap Instances

In this section, we will construct acyclic directed graphs
with no good t-ordering. These graphs will be crucial in
designing the dictatorship test (Section 6).

Definition 5.1. For η > 0 and a positive integer t, a (η, t)-
Multiscale Gap instance is a weighted directed graph G =
(V,E) with the following properties:

• Val(G) = 1 and Valt(G) 6 1
2 + η

• There exists a solution {ui |u ∈ V, 1 6 i 6 |V |} to
SDP with objective value at least 1 − η such that for
all u, v ∈ V and 1 6 i, j 6 |V |, we have |ui|2 = 1

|V | .

The cut norm of a directed graph, G, repre-
sented by a skew-symmetric matrix W is: ||G||C =
maxxi,yj∈{0,1}

∑
ij xiyjwij . We will need the following

theorem from [2] relating the cut norm of a directed graph
G to Val(G).

Theorem 5.2 (Theorem 3.1, [2]). If a directed graph G on
n vertices has a maximum acyclic subgraph with at least a
1
2 + δ fraction of the edges, then, ||G||C > Ω

(
δ

logn

)
.

The following lemma and its corollary construct Multi-
scale Gap instances starting from graphs that are the “tight
cases” of the above theorem.
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Lemma 5.3. Given η > 0 and a positive integer t, for ev-
ery sufficiently large n, there exists a directed graph G =
(V,E) on n vertices such that Val(G) = 1 , Valt(G) 6
1
2 + η .

Proof. Charikar et al (Section 4, [2]) construct a di-
rected graph, G = (V,E), on n vertices whose cut
norm is bounded by O (1/ log n). The graph is repre-
sented by the skew-symmetric matrix W , where wij =∑n
k=1 sin π(j−i)k

n+1 . It is easy to verify that for every 0 <

t < n,
∑n
k=1 sin

(
πtk
n+1

)
> 0. Thus, wij > 0 whenever

i < j, implying that the graph is acyclic (in other words,
Val(G) = 1).

We bound Valt(G) as follows. Let Valt(G) = 1
2 + δ

and let O : V → [t] be the optimal t-ordering. Construct
a graph H on t vertices with a directed edge from O(u)
to O(v) for every edge (u, v) ∈ E with O(u) 6= O(v).
Now, using Theorem 5.2, the cut norm of H is bounded
from below by Ω

(
δ

log t

)
. Moreover, since O is a parti-

tion of V , the cut norm of G is at least the cut norm of H .
Thus, Ω

(
δ

log t

)
6 ||H||C 6 ||G||C 6 O (1/ log n)Thus,

δ 6 O
(

log t
logn

)
implying that Valt(G) 6 1

2 + O
(

log t
logn

)
.

Choosing n to be a sufficiently gives the required result.

Corollary 5.4. For every η > 0 and positive integer t, there
exists a Multiscale Gap instance with a corresponding SDP
solution {ui|u ∈ V, 1 6 i 6 |V |} satisfying |ui|2 = 1/|V |
for all u ∈ V, 1 6 i 6 |V |.

Proof. Let G = (V,E) be the graph obtained by taking
d1/ηe disjoint copies of the graph guaranteed by Lemma 5.3
and let m = |V |. Note that the graph still satisfies the re-
quired properties: Val(G) = 1, Valt(G) 6 1

2 + η. Let O be
the ordering of [m] that satisfies every edge ofG. LetD de-
note the distribution over labellings obtained by shifting O
by a random offset cyclically. For every u ∈ V, i ∈ [m],
Pr[D(u) = i] = 1/m. Further, every directed edge is
satisfied with probability at least 1 − η. Being a distribu-
tion over integral labellings, D gives raise to a set of vec-
tors satisfying the constraints in Definition 5.1. G along
with these vectors form the required (η, t)-multiscale gap
instance.

6 Dictatorship Test

Let G = (V,E) be a (η, t)-multiscale gap instance on m
vertices, where m is divisible by t. Let {ui|u ∈ V, i ∈ [m]}
denote the corresponding SDP solution. Define distribu-
tions Pe as follows:

Definition 6.1. For an edge e = (u, v) ∈ E in a (η, t)-
multiscale gap instance G, define the local integral distribu-
tion Pe over [m]2 as Pe(i, j) = ui · vj .

Using the multiscale gap instance G, construct a dicta-
torship test DICTG on orderings O of [m]R as follows:

DICTG Test:

• Pick an edge e = (u, v) ∈ E at random from the
Multiscale gap instance G.

• Sample ze = {zu, zv} from the product distribution
PRe , i.e. For each 1 6 k 6 R, z(k)

e = {z(k)
u , z

(k)
v } is

sampled using the distribution Pe(i, j) = ui · vj .
• Obtain z̃u, z̃v by perturbing each coordinate of zu

and zv independently. Specifically, sample the kth

coordinates z̃(k)
u , z̃

(k)
v as follows: With probability

(1 − 2ε), z̃(k)
u = z

(k)
u , and with the remaining prob-

ability z̃(k)
u is a new sample from Ω.

• Introduce a directed edge z̃u → z̃v . (alternatively
test if O(z̃u) < O(z̃v))

Theorem 6.2. (Soundness Analysis) For every ε > 0,
there exists sufficiently large m, t such that : For any τ -
pseudorandom ordering O of [m]R,

Val(O) 6 Valt(G) +O(t−
ε
2 ) + oτ (1)

where oτ (1) → 0 as τ → 0 keeping all other parameters
fixed.

Let F [p,q] : [m]R → {0, 1} denote the functions asso-
ciated with the t-ordering O∗. For the sake of brevity, we
shall writeF i forF [i,i]. The result follows from Lemma 6.4
and Lemma 6.3 shown below.

Lemma 6.3. For every ε > 0, there exists sufficiently large
m, t such that : For any τ -pseudorandom ordering O of
[m]R

Val(O) 6 Valt(O∗) +O(t−
ε
2 ) + oτ (1)

where O∗ is the t-coarsening of O.

Proof. As O∗ is a coarsening of O, clearly Val(O) ≥
Valt(O∗). Note that the loss due to coarsening, is be-
cause for some edges e = (z, z′) which are oriented cor-
rectly in O, fall in to same block during coarsening, i.e
O∗(z) = O∗(z′). Thus we can write

Val(O) 6 Valt(O∗) +
1
2

Pr
(
O∗(z̃u) = O∗(z̃v)

)
Pr
(
O∗(z̃u) = O∗(z̃v)

)
=
∑
i∈[t]

E
e=(u,v)

E
zu,zv

E
z̃u,z̃v

[
F i(z̃u) · F i(z̃v)

]
=
∑
i∈[t]

E
e=(u,v)

E
zu,zv

[
T1−2εF iu(zu) · T1−2εF iv(zv)

]
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As O is a t-coarsening of O, for each value i ∈ [t], there
are exactly 1

t fraction of z for which O∗(z) = i. Hence
for each i ∈ [t], Ez[F iu(z) = 1

t ]. Further, since the
ordering O∗ is τ -pseudorandom, for every k ∈ [R] and
i ∈ [t], Infk(T1−εF ia) 6 τ . Hence using Lemma 3.4,
for sufficiently large t, the above probability is bounded by
t · t−1− ε2 + t · oτ (1) = O(t−

ε
2 ) + oτ (1) .

Lemma 6.4. For every choice of m, t, ε, and any τ -
pseudorandom t-ordering O∗ of [m]R , Valt(O∗) 6
Valt(G) + oτ (1).

Proof. The t-ordering problem is a CSP over a finite do-
main, and is thus amenable to techniques of [17]. Specif-
ically, consider the payoff function P : [t]2 → [0, 1] de-
fined by: P (i, j) = 1 for i < j, P (i, j) = 0 for i > j
and P (i, j) = 1

2 otherwise. The t-ordering problem is a
Generalized CSP(see Definition 3.1, [17]) with the payoff
function P .

For the sake of exposition, let us pretend that t = m.
In this case, the vectors {ui|u ∈ V, i ∈ [m]} form a feasi-
ble SDP solution for the t-ordering instance G. Let DICTG
denote the dictatorship test obtained by running the reduc-
tion of [17] on this SDP solution for t-ordering instance G.
DICTG is an instance of the t-ordering problem, over the
set of vertices [t]R. A t-ordering solution O∗ for DICTG
corresponds naturally to a function F : [t]R → ∆t. Now
we make the following observations :

• The t-ordering instance DICTG is identical to the dic-
tatorship test described in this section when t = m.

• For a τ -pseudorandom t-ordering O∗, for every k ∈
[R] and i ∈ [t], the corresponding function F
satisfies Infk(T1−εF i) 6 τ . In the terminology
of [17](Definitions 4.1 and 4.2), this is equivalent
to the function F = (F1, . . . ,F t) being “(γ, τ)-
pseudorandom” with γ = 0.

• By Corollary 2.2 in [17], for a (γ, τ)-pseudorandom
function F , its probability of acceptance on the dicta-
torship test is at most Valt(G) + oγ,τ (1).

Hence the above lemma is just a restatement of Corollary
2.2 of [17] for the specific generalized CSP : t-Ordering,
albeit in the language of τ -pseudorandom orderings.

Recall that the actual case of interest here satisfies t <
m. Unfortunately, in this case, a black box application of
the result from [17] does not suffice. However, the proof
in [17] can be easily adopted without any new technical
ideas. In fact, many of the technical difficulties encountered
in [17] can be avoided here. For instance, the SDP solu-
tion associates with each vertex u, the uniform probability
distribution over {1 . . .m}, unlike [17] where there are sev-
eral arbitrary probability distributions to deal with. With the
value of m fixed, this removes the need for smoothing the

SDP solution (Lemma 3.4 in [17]). Due to paucity of space,
we defer the details of the proof to the full version.

The following claim is a restatement of the Lemma 6.4
in terms of functions F : [m]R → ∆t corresponding to
pseudorandom t-orderings.

Claim 6.5. For a function F : [m]R → ∆t satisfying
Infk(T1−εF) 6 τ for all k ∈ [R],

E
[1

2

∑
i=j

F i(z̃u)F j(z̃u) +
∑
i<j

F i(z̃u)F j(z̃u)
]

6 Valt(G) + oτ (1)

where the expectation is over the edge e = (u, v), zu, zv ,
z̃u, and z̃v .

7 Hardness Reduction

Let G = (V,E) be a (η, t)-Multiscale gap instance, and
let m = |V |. Further let {ui|u ∈ V, i ∈ [m]} denote the
corresponding SDP solution. Let Υ = (A ∪ B, E,Π =
{πe : [R] → [R]|e ∈ E}, [R]) be a bipartite unique games
instance. Towards constructing a MAS instance G = (V, E)
from Υ, we shall introduce a long code for each vertex in
B. Specifically, the set of vertices V of the directed graph G
is indexed by B × [m]R.

Hardness Reduction:
Input : Unique games instance Υ = (A ∪ B, E,Π =
{πe : [R] → [R]|e ∈ E}, [R]) and a (η, t) Multiscale gap
instance G = (V,E).
Output : Directed graph G = (V, E) with set of vertices :
V = B×[m]R and edges E given by the following verifier:

• Pick a random vertex a ∈ A. Choose two neighbours
b, b′ ∈ B independently at random. Let π, π′ denote
the permutations on the edges (a, b) and (a, b′).

• Pick an edge e = (u, v) ∈ E at random from the
Multiscale gap instance G.

• Sample ze = {zu, zv} from the product distribution
PRe , i.e. For each 1 6 k 6 R, z(k)

e = {z(k)
u , z

(k)
v } is

sampled using the distribution Pe(i, j) = ui · vj .
• Obtain z̃u, z̃v by perturbing each coordinate of zu

and zv independently. Specifically, sample the kth

coordinates z̃(k)
u , z̃

(k)
v as follows: With probability

(1 − 2ε), z̃(k)
u = z

(k)
u , and with the remaining prob-

ability z̃(k)
u is a new sample from Ω.

• Introduce a directed edge (b, π(z̃u))→ (b′, π′(z̃v)).

7



Theorem 7.1. For every γ > 0, there exists choice of pa-
rameters ε, η, t, δ such that:

• COMPLETENESS: If Υ is a (1−δ)-satisfiable instance
of Unique Games, then there is an ordering O for the
graph G with value at least (1−γ). i.e. Val(G) ≥ 1−γ.

• SOUNDNESS: If Υ is not δ-satisfiable, then no order-
ing to G has value more than 1

2 +γ, i.e Val(G) 6 1
2 +γ.

In the rest of the section, we will present the proof of the
above theorem. To begin with, we fix the parameters of the
reduction.
Parameters : Fix ε = γ/8 and η = γ/4. Let τ, t be the
constants obtained from Theorem 7.5. Finally, let us choose
δ = min{γ/4, γε2τ8/109}.

7.1 Completeness

In order to show that Val(G) ≥ 1 − γ, we will instead
show that Valm(G) ≥ 1 − γ. From Observation 3.1, this
will imply the required result.

By assumption, there exists labelings to the Unique
Game instance Υ such that for 1− δ fraction of the vertices
a ∈ A all the edges (a, b) are satisfied. Let Λ : X∪Y → [R]
denote one such labelling. Define an m-ordering of G as
follows:

O(a, z) = z(Λ(a)) ∀a ∈ A, z ∈ [m]R

Clearly the mapping O : V → [m] defines an m-ordering
of the vertices V = B × [m]R. To determine Valm(O),
let us compute the probability of acceptance of a verifier
that follows the above procedure to generate an edge in E
and then checks if the edge is satisfied. Arithmetizing this
probability, we can write

Valm(O) =
1
2

Pr
(
O(b, π(z̃u)) = O(b′, π′(z̃v))

)
+ Pr

(
O(b, π(z̃u)) < O(b′, π′(z̃v))

)
With probability at least (1 − δ), the verifier picks a ver-
tex a ∈ A such that the assignment Λ satisfies all the
edges (a, b). In this case, for all choices of b, b′ ∈ N(a),
π(Λ(a)) = Λ(b) and π′(Λ(a)) = Λ(b′). Let us denote
Λ(a) = l. By definition of the m-ordering O, we get
O(b, π(z)) = (π(z))(Λ(b)) = z(π−1(Λ(b))) = z(l) for all
z ∈ [m]R. Similarly for b′, O(b′, π′(z)) = z(l) for all
z ∈ [m]R. Thus we get

Valm(O) ≥ (1−δ)·
(1

2
Pr
(
z̃(l)
u = z̃(l)

v

)
+Pr

(
z̃(l)
u < z̃(l)

v

))
With probability at least (1 − 2ε)2, for both z̃u and z̃v we
have z̃(l)

u = z
(l)
u and z̃(l)

v = z
(l)
v . Further, note that each co-

ordinate z(l)
u , z

(l)
v is generated according to the local distri-

bution Pe for the edge e = (u, v). For the local distribution

Pe corresponding to an edge e = (u, v) ∈ E,

Pr
(
z(l)
u = z(l)

v

)
=
∑
i=j

ui · vj

Pr
(
z(l)
u < z(l)

v

)
=
∑
i<j

ui · vj

Substituting in the expression for Valm(O) we get,

Valm(O) ≥ (1−δ)(1−2ε)2 E
e=(u,v)

[1
2

∑
i=j

ui·vj+
∑
i<j

ui·vj
]

Recall that the SDP vectors {ui} have an objective value at
least (1 − η). Thus for small enough choice of δ, ε and η,
we have Valm(O) ≥ 1− γ.

7.2 Soundness

Let O be an ordering of G with Val(O) ≥ 1
2 + γ. Using

the ordering, we will obtain a labelling Λ for the unique
games instance Υ. Towards this, we shall build machinery
to deal with multiple long codes. For b ∈ B, define Ob as
the restriction of the mapO to vertices corresponding to the
long code of b. Formally, Ob is a map Ob : [m]R → Z
given by Ob(z) = O(b, z). Similarly, for a vertex a ∈ A,
let Oa denote the restriction of the map O to the vertices
N(a)× [m]R, i.e Oa(b, z) = O(b, z).

7.2.1 Multiple Long Codes

Throughout this section, we shall fix a vertex a ∈ A and
analyze the long codes corresponding to all neighbours of
a. For a neighbour b ∈ N(a), we shall use πb to denote
the permutation along the edge (a, b). Let F [p,q]

b denote the
functions associated with the orderingOb. Define functions
F [p,q]
a : [m]R → R as follows:

F [p,q]
a (z) = Pr

b∈N(a)

(
Oa(b, πb(z)) ∈ [p, q]

)
= E
b∈N(a)

[F [p,q]
b (πb(z))]

Definition 7.2. Define the set of influential coordinates
Sτ (Oa) as follows:

Sτ (Oa) = {k|Infk(T1−εF [p,q]
a ) ≥ τ for some p, q ∈ Z}

An ordering Oa is said to be τ -pseudorandom if Sτ (Oa) is
empty.

Lemma 7.3. For any influential coordinate k ∈ Sτ (Oa),
for at least τ2 fraction of b ∈ N(a), πb(k) is influential on
Ob. More precisely, πb(k) ∈ Sτ/2(Ob).
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Proof. As the coordinate k is influential onOa, there exists
p, q such that Infk(F [p,q]

a ) ≥ τ . Recall that F [p,q]
a (z) =

Eb∈N(a)[F
[p,q]
b (πb(z))]. Using convexity of Inf this im-

plies,

E
b∈N(a)

[Infπb(k)(F
[p,q]
b )] ≥ τ

All the influences Infπb(k)(F
[p,q]
b ) are bounded by 1, since

each of the functions F [p,q]
b take values in the range [0, 1].

Therefore for at least τ/2 fraction of vertices b ∈ N(a), we
have Infπb(k)(F

[p,q]
b ) ≥ τ/2. This concludes the proof.

Lemma 7.4. For any vertex a ∈ A, |Sτ (Oa)| 6 800/ετ4.

Proof. From Lemma 7.3, for each coordinate k ∈ Sτ (Oa)
there is a corresponding coordinate πb(k) in Sτ/2(Ob) for
at least τ/2 fraction of the neighbours b. Further from
Lemma 4.3, the size of each set Sτ/2(Ob) is at most
400/ετ3. By double counting, we get that |Sτ (Oa)| is at
most 800/ετ4.

Theorem 7.5. For all ε, γ > 0, there exists constants t, τ >
0 such that for any vertex a ∈ A, if Oa is τ -pseudorandom
then Val(Oa) 6 Valt(G) + γ/4.

Proof. The proof outline is similar to that of Theorem 6.2.
Let O∗a denote the t-coarsening of Oa. Then we can write,

Val(Oa) 6 Valt(O∗a)

+
1
2

Pr
(
O∗a(b, πb(z̃u)) = O∗a(b′, πb′(z̃v))

)
The t-coarseningO∗a is obtained by dividing the orderOa in
to t-blocks. Let [p1 + 1, p2], [p2 + 1, p3], . . . , [pt + 1, pt+1]
denote the t blocks. For the sake of brevity, let us denote
F ia = F [pi+1,pi+1]

a and F ib = F [pi+1,pi+1]
b . In this notation,

we can write:

Pr
(
O∗a(b, πb(z̃u)) = O∗a(b′, πb′(z̃v))

)
=
∑
i∈[t]

E
e=(u,v)

E
b,b′

E
zu,zv,z̃u,z̃v

[
F ib(πb(z̃u)) · F ib′(πb′(z̃v))

]
=
∑
i∈[t]

E
e=(u,v)

E
zu,zv

E
z̃u,z̃v

[
F ia(z̃u) · F ia(z̃v)

]
=
∑
i∈[t]

E
e=(u,v)

E
zu,zv

[
T1−2εF ia(zu) · T1−2εF ia(zv)

]

As the ordering Oa is τ -pseudorandom, for every k ∈ [R]
and i ∈ [t], Infk(T1−εF ia) 6 τ . Hence by Lemma 3.4, the
above value is less than O(t−

ε
2 ) + oτ (1).

Now we shall bound the value of Valt(O∗a). In terms of
the functions F ib , the expression for Valt(O∗a) is as follows:

Valt(O∗a) = E
[1

2

∑
i=j

F ib(πb(z̃u)) · F jb′(πb′(z̃v))

+
∑
i<j

F ib(πb(z̃u)) · F jb′(πb′(z̃v))
]

= E
[1

2

∑
i=j

F ia(z̃u) · F ja(z̃v) +
∑
i<j

F ia(z̃u) · F ja(z̃v)
]

Again, since the ordering Oa is τ -pseudorandom, for ev-
ery k ∈ [R] and i ∈ [t], Infk(T1−εF ia) 6 τ . Hence by
Claim 6.5, the above value is bounded by Valt(G) + oτ (1).
From the above inequalities, we get Val(Oa) 6 Valt(G) +
O(t−

ε
2 ) + oτ (1), which finishes the proof.

7.2.2 Defining a Labelling

Define the labelling Λ for the unique games instance Υ as
follows: For each a ∈ A, Λ(a) is a uniformly random el-
ement from Sτ (Oa) if it is non-empty, and a random label
otherwise. Similarly for each b ∈ B, assign Λ(b) to be a
random element of Sτ/2(Ob) if it is nonempty, else an arbi-
trary label.

If Val(O) = Ea∈A[Val(Oa)] ≥ 1
2 + γ is greater than

1
2 + γ, then for at least γ/2 fraction of vertices a ∈ A, we
have Val(Oa) ≥ 1

2 + γ/2. Let us refer to these vertices a
as good vertices. From Theorem 7.5, for every good vertex
the order Oa is not τ -pseudorandom. In other words, for
every good vertex a, the set Sτ (Oa) is non-empty. Further
by Lemma 7.3 for every label l ∈ Sτ (Oa), for at least
τ/2 fraction of the neighbours b ∈ N(a), πb(l) belongs
to Sτ/2(Ob). For every such b, the edge (a, b) is satisfied
with probability at least 1/|Sτ (Oa)| × 1/|Sτ/2(Ob)|. By
Lemma 4.3 and Lemma 7.4, this probability is at least
ετ4/800 × ετ3/3200. Summarizing the argument, the
expected fraction of edges satisfied by the labelling Λ is at
least γε2τ8/10240000. By a small enough choice of δ, this
yields the required result.

8 SDP Integrality Gap

In this section, we construct integrality gaps for the MAS
SDP relaxation using the unique games hardness reduction.
Specifically we show,

Theorem 8.1. For any γ > 0, there exists a directed graph
G such that the value of semi-definite program (MAS SDP)
is at least 1− γ, while Val(G) 6 1

2 + γ.

The proof uses a bipartite variant of the Khot-Vishnoi [9]
Unique Games integrality gap instance as in [17, 11].
Specifically, the following is a direct consequence of [9].
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Theorem 8.2. [9] For every δ > 0, there exists a UG in-
stance, Υ = (A ∪ B, E,Π = {πe : [R] → [R] | e ∈
E}, [R]) and vectors {Vk

b } for every b ∈ B, k ∈ [R] such
that the following conditions hold :

• No assignment satisfies more than δ fraction of con-
straints in Π.

• For all b, b′ ∈ B, k, l ∈ [R] , Vk
b ·Vl

b′ > 0 and Vk
b ·

Vl
b = 0.

• For all b, b′ ∈ B, k, l ∈ [R] , Vk
b ·
∑
l∈[R] V

l
b′ =

|Vk
b |2 and

∑
k∈[R] |Vk

b |2 = 1

• The SDP value is at least 1 − δ:
Ea∈A,b,b′∈B

[∑
k∈[R] V

π(k)
b ·Vπ′(k)

b′

]
> 1− δ

LetG be a (η, t)-multiscale gap instance withm vertices.
Apply Theorem 8.2, with a sufficiently small δ to obtain a
UGC instance Υ and SDP vectors {Vk

b |b ∈ B, k ∈ [R]} ∪
{I}. Consider the instance G constructed by running the UG
hardness reduction in Section 7 on the UG instance Υ. The
set of vertices of G is given by B×[m]R. SetM = |B|×mR

and N = |B|.
The program MAS SDP on the instance G contains M

vectors {W(b,z)
i |i ∈ [M ]} for each vertex (b, z) ∈ B×[m]R

and a special vector I denoting the constant 1. Define a
solution to MAS SDP as follows: Set the vector I to be the
corresponding vector in the instance Υ. Define,

W(b,z)
i =

∑
zk=i

Vk
b ∀i ∈ [m], (b, z) ∈ B

W(b,z)
l = 0 for all other l ∈ [M ], (b, z) ∈ B

It is easy to check that the vectors {W(b,z)
i } satisfy the con-

straints of MAS SDP and have an SDP value close to 1. On
the other hand, the soundness analysis in Section 7 implies
that the integral optimum for G is at most 1

2 +γ. The details
of the proof will appear in the full version of the paper.
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