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Abstract

In the undirected Edge-Disjoint Paths problem with Congestion (EDPwC), we are
given an undirected graph with V nodes, a set of terminal pairs and an integer c. The
objective is to route as many terminal pairs as possible, subject to the constraint that
at most c demands can be routed through any edge in the graph. When c = 1, the
problem is simply referred to as the Edge-Disjoint Paths (EDP) problem. In this paper,
we study the hardness of EDPwC in undirected graphs.

Our main result is that for every ε > 0 there exists an α > 0 such that for 1 6 c 6
α log log V

log log log V
, it is hard to distinguish between instances where we can route all terminal

pairs on edge-disjoint paths, and instances where we can route at most a 1/(logV )
1−ε

c+2

fraction of the terminal pairs, even if we allow congestion c. This implies a (log V )
1−ε

c+2

hardness of approximation for EDPwC and an Ω(log log V/ log log log V ) hardness of
approximation for the undirected congestion minimization problem. These results hold

assuming NP 6⊆ ∪dZPTIME(2logd
n).

In the case that we do not require perfect completeness, i.e. we do not require
that all terminal pairs are routed for “yes-instances”, we can obtain a slightly better

inapproximability ratio of (log V )
1−ε

c+1 . Note that by setting c = 1 this implies that the

regular EDP problem is (log V )
1
2
−ε hard to approximate.

Using standard reductions, our results extend to the node-disjoint versions of these

problems as well as to the directed setting. We also show a (log V )
1−ε

c+1 inapproximability
ratio for the All-or-Nothing Flow with Congestion (ANFwC) problem, a relaxation of
EDPwC, in which the flow unit routed between the source-sink pairs does not have to
follow a single path, so the resulting flow is not necessarily integral.
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1 Introduction

In the edge-disjoint paths (EDP) problem we are given a graph G and a set {(s1, t1), (s2, t2),
. . . , (sk, tk)} of pairs of vertices called terminals. The objective is to connect as many
pairs as possible via edge-disjoint paths. Even highly restricted cases of EDP correspond
to well-studied important optimization problems. For instance, EDP on trees of height
one is equivalent to the graph matching problem. EDP and its variants also have a host
of applications to network routing, resource allocation, and VLSI design. It is then not
surprising that EDP is one of the most well-studied problems in combinatorial optimization.
In directed graphs, the problem becomes NP-hard even when we are given only two source-
sink pairs [21]. In undirected graphs, the seminal work of Robertson and Seymour [36] gives
a polynomial time algorithm for any constant number of pairs. These results are suggestive
of the inherent differences between the undirected and directed versions of EDP. However,
the tractability of undirected EDP with constant number of pairs does not hold once the
number of pairs is allowed to grow as a function of the input size. In particular, the problem
is NP-hard even on planar graphs [23].

Consequently, much of the recent work on EDP has focused on understanding the
polynomial-time approximability of the problem. While constant or poly-logarithmic ap-
proximation algorithms are known for restricted classes of graphs such as trees, meshes,
and expanders [7, 15, 20, 24, 29, 30], the approximability of EDP in general graphs is not
well understood. The best approximation algorithm for EDP in directed graphs has a ratio
of Õ(min(V 2/3,

√
E)) [14, 31, 32, 38, 39] where V and E denote the number of vertices and

edges respectively in the input graph. For undirected graphs and directed acyclic graphs,
this factor improves to an O(

√
V )-approximation ratio [13]. In directed graphs, the approx-

imation ratio is matched by an Ω(E
1
2
−ε)-hardness due to Guruswami et al. [25]. In contrast,

only APX-hardness was known for undirected EDP until the work of [3] which showed an

Ω(log
1
3
−ε V ) hardness, unless NP ⊆ BPTIME(npoly(log n)).

In this paper we study EDP together with a natural generalization known as edge-
disjoint paths with congestion (EDPwC), in which the goal is to route as many terminal
pairs as possible subject to the constraint that at most c paths are routed through any edge.
For constant congestion c > 2, there exists an O(V 1/c) approximation [8, 9, 32]. When
the congestion is allowed to be O(log V/ log log V ) we get a constant approximation via
randomized rounding [34]. For planar graphs, when congestion 2 is allowed, an O(log V )-
approximation has recently been derived [11, 12]. We note that the performance of an
approximation algorithm for EDPwC is measured with respect to an optimal solution with
no congestion.

Another related problem is the all-or-nothing (ANF) flow problem where for each routed
pair, it suffices to provide a unit of (not necessarily integral) flow. Thus ANF is a re-
laxation of EDP. Recent work has shown that in undirected graphs, ANF is O(log2 V )-

approximable [10, 12]. The Ω(log
1
3
−ε V ) hardness result in [3] extends to ANF as well.

We also study the variant of ANF where congestion is allowed, referred to as ANF with
Congestion (ANFwC).

The last problem that we discuss is the Congestion Minimization Problem (CMP) in
which the goal is to find the minimum value of the congestion c such that all terminal
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pairs can be routed. The randomized rounding result of [34] implies that CMP can be
approximated to within a factor Ω(log V/ log log V ). In [4], it was shown that undirected
CMP is hard to approximate to within a factor (log log V )1−ε. For directed graphs [6] showed
a hardness ratio of (log V )1−ε. This was improved to the tight bound of Ω(log V/ log log V )
in [17].

1.1 Our results

Our main result are as follows.

Theorem 1. For every ε > 0 there exists α > 0 such that for every integer-valued function
c : N → N satisfying 1 6 c(n) 6

α log log n
log log log n (and computable in time polynomial in n), it is

impossible to distinguish in randomized polynomial time between the following cases:

• [Yes Instances:] There are edge-disjoint paths connecting all the terminal pairs.

• [No Instances:] With congestion c = c(V ), at most a 1/(log V )
1−ε
c+2 fraction of the

terminal pairs can be routed.

unless NP ⊆ BPTIME(npoly(log n)) Hence undirected EDPwC is hard to approximate to

within a factor 1/(log V )
1−ε
c+2 under the above complexity assumption.

An important feature of the reduction implied by the above result is that it has perfect
completeness, i.e. all terminal pairs are routed in the case of yes-instances. If we do not
require perfect completeness then we obtain the following slightly stronger gap.

Theorem 2. The reduction of Theorem 1 can be adapted so that for some parameter f it
is impossible to distinguish in randomized polynomial time between the following cases:

• [Yes Instances:] There are edge-disjoint paths connecting an f -fraction of the ter-
minal pairs.

• [No Instances:] At most an f/(log V )
1−ε
c+1 fraction of the terminal pairs can be routed

with congestion c = c(V ).

unless NP ⊆ BPTIME(npoly(log n)). Hence undirected EDPwC is hard to approximate to

within a factor 1/(log V )
1−ε
c+1 under the above complexity assumption.

We remark that simple modifications to the reductions used in the proofs of Theo-
rems 1 and 2 immediately imply analogous hardness results for the Node-Disjoint Paths
with Congestion problem in which the congestion constraint applies to the vertices of the
graph instead of the edges. In addition, we also show that the result of Theorem 2 can be

extended to give a hardness of (log V )
1−ε
2c for the ANFwC problem.

We now highlight two consequences of the above theorems that we believe are of par-
ticular interest. First, the perfect completeness of Theorem 1 means that it implies a gap
in the amount of congestion required to connect all terminal pairs.
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Corollary 3. It is impossible to distinguish in randomized polynomial time between the
following cases:

• [Yes Instances:] There are edge-disjoint paths connecting all the terminal pairs.

• [No Instances:] With congestion c = Ω(log log V/ log log log V ), not all terminal
pairs can be routed.

unless NP ⊆ BPTIME(npolylog (n)). Hence undirected CMP is hard to approximate to within
a factor Ω(log log V/ log log log V ).

This improves the (log log V )1−ε hardness of [4]. Second, by setting c = 1 in Theorem 2
and in our result for ANFwC, we obtain the following hardness results for regular EDP and
ANF.

Corollary 4. For every constant ε > 0, undirected EDP and ANF are both hard to approx-
imate to within a factor (log V )

1
2
−ε.

This improves the (log V )
1
3
−ε hardness of [3]. These corollaries imply that our results

capture (and improve) in a unified way hardness results for EDP, ANF, EDPwC and CMP
that were presented in the sequence of papers [3, 4, 2]. In particular, we believe that the
current proof unifies the previous work also in terms of the proof techniques, by basing the
reduction from the “correct” general constraint satisfaction problem — one defined over a
large (non-Boolean) domain and that is hard with perfect completeness and near-optimal
amortized query complexity [37, 27].

We also present a simple family of instances that shows that the integrality gap of the
well-studied multicommodity flow relaxation is (log V )Ω(1/c) for both EDPwC and ANFwC.

Theorem 5. For any congestion 2 6 c 6 O
(

log log V
log log log V

)

, the integrality gap of the multi-

commodity flow relaxation for undirected EDPwC is Ω
(

1
c · ( log V

(log log V )2
)

1
c+1

)

. For ANFwC,

the integrality gap with congestion c is Ω
(

1
c2

· ( log V
(log log V )2

)
1

c+1

)

. In particular, there exists

a congestion c = Θ
(

log log V
(log log log V )2

)

for which the integrality gaps for both problems remain

superconstant.

We note that an immediate consequence of Theorem 5 is that for any fixed integer i,
the gap between (1/i)-integral multicommodity flow (i.e. each flow path carries an inte-
gral multiple of 1/i units of flow) and fractional multicommodity flow is super-constant in
undirected graphs. To our knowledge, prior to our work, it was not known if there was a
superconstant gap even between half-integral flow and fractional flow in directed or undi-
rected graphs. The instances used in establishing the integrality gap have a surprisingly
simple structure.

1.2 Overview of Techniques

This paper represents a merging of three papers [26, 5, 16]. A preliminary version containing
results from [5, 16] appeared in a conference paper [2]. The hardness construction presented
here is based on [26] and may be seen as unifying all three constructions.
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Our hardness construction is based on a Constraint Satisfaction Problem due to [27] (and
thus avoids an intermediate step taken by [3] of creating an independent set instance). The
high-level idea of the reduction is as follows. Given an instance φ of 3SAT, we construct
a graph Gφ which contains a sufficiently large collection of edge-disjoint paths for each
accepting configuration u of the verifier on φ. These paths are referred to as the canonical
paths of u. The canonical path collections for any two accepting configurations u and v that
disagree on some variable are made to “randomly intersect” with each other to encode this
conflict.

The graph Gφ serves as the input graph for the EDPwC instance. The source-sink pairs
are formed by grouping together end-points of the canonical path collections. Pairs that are
routed along canonical paths conflict with high probability and thus create high congestion
whenever the underlying configurations are in conflict with each other. However, these
conflicts can be avoided if pairs choose paths that are not canonical. In order to deal with
such non-canonical paths we employ an idea from [1] and construct the random graph Gφ

so that on average, paths that deviate significantly from canonical paths are much longer
than canonical paths and thus consume much more of the routing capacity of the graph.
As a result, whenever φ is not satisfiable, with high probability, a much smaller fraction of
pairs can be routed in the graph Gφ. This gap enables us to establish our hardness result.

1.3 Organization

In Section 2, we present a simple integrality gap construction that establishes Theorem 5.
Sections 3 and 4 present the hardness construction and analysis underlying Theorem 1 and
Corollary 3. In Section 5, we establish Theorem 2 and Corollary 4 as well as describe an
extension of our hardness results to node-disjoint paths problem.

2 Integrality Gap of the Multicommodity Flow Relaxation

In this section, we will show a family a instances that realize the integrality gap results stated
in Theorem 5. The instances will be characterized by a parameter n, and we will construct,
for each integral c 6 O((log log n)/(log log log n)), an EDP instance of size O(n log n) for
which the integrality gap is Ω(( log n

(log log n)2
)1/c)/c) when congestion is restricted to be strictly

less than c. Our construction will use two additional parameters, β1 = 1
4( log n

150(log log n)2
)1/c

and β2 = 6(2β1)
c−1 lnβ1. The integrality gap of our EDP instance will be Ω(β1/c). Towards

the end, we sketch how these results extend to ANF with congestion.

2.1 The Multicommodity Flow Relaxation

We start by presenting the standard multicommodity flow relaxation for EDP (ANF). Given
a graph G and a set {(s1, t1), (s2, t2), . . . , (sk, tk)} of source-sink pairs, let Pi denote the set
of all paths joining si and ti in G. Also, let P = ∪iPi. The multicommodity flow relaxation
uses two variables: (i) a variable f(P ) for each path P ∈ P that gives the amount of flow
sent on P , and (ii) a variable xi that indicates the total flow routed for the pair (si, ti). We
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let f̄ denote the flow vector with a component for each path P , and we denote by |f̄ | the
value

∑

i xi. Then the LP relaxation for EDP (ANF) is as following.

max

k
∑

i=1

xi s.t

xi −
∑

P∈Pi

f(P ) = 0 1 6 i 6 k

∑

P :e∈P

f(P ) 6 1 ∀e ∈ E

xi, f(P ) ∈ [0, 1] 1 6 i 6 k, P ∈ P

When considering the integrality gaps for EDPwC and ANFwC, we restrict the fractional
solution to obey the same constraints as above, but allow the integral solution to route up
to (c − 1) paths through any edge e.

2.2 Auxiliary Hypergraph Construction

Our starting point is a random hypergraph H with vertex set V (H) = {v1, . . . , vn}, and
β2n hyper-edges, h1, . . . , hnβ2 . Each hyper-edge hi, for 1 6 i 6 nβ2 is a c-tuple of vertices,
chosen randomly and independently. Our EDP instance will be derived from the hypergraph
H.

We now establish some properties of H. Let S ⊆ V (H) be a subset of vertices of size
n/β1. We say that S is bad if it contains none of the nβ2 hyper-edges. We say that event
E1 happens, if there is at least one bad subset S ⊆ V (H) of size n/β1.

Lemma 6. The probability that E1 happens is at most 1/4.

Proof: Fix some subset S ⊆ V (H) of size n/β1 The probability that a random hyper-edge
is contained in S is:

(n/β1

c

)

(

n
c

) =

n
β1

·
(

n
β1

− 1
)

· · ·
(

n
β1

− c + 1
)

n · (n − 1) · · · (n − c + 1)
>

(

n
β1

− c

n

)c

>
1

(2β1)c

Therefore,

Pr[S is bad] 6

(

1 − 1

(2β1)c

)β2n

6 e
− β2n

(2β1)c

Since number of possible sets S is
( n
n/β1

)

which can be upper-bounded by (eβ1)
n/β1 6

β
2n/β1

1 , using the union bound, we get that the probability that any set S of size n/β1 is
bad, is at most:

β
2n
β1
1 · e

−β2n

(2β1)c 6 e
n
β1

(2 ln β1− β2

2cβ
c−1
1

)
6 e

−n ln β1
β1 6

1

4
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Given a vertex v ∈ V (H), we say that it is a high-degree vertex, if it participates in more
than 10β2c hyper-edges in H. We say that event E2 happens, if the number of high-degree
vertices in H is greater than n/β1. Using Chernoff bounds, we can show the following.

Lemma 7. The probability of E2 happening is at most 1/4.

Proof: A vertex v occurs in a random c-tuple with probability c/n. Thus the expected
number of hyper-edges in which a vertex is contained is β2c. By Chernoff bounds, for any
δ > 2e − 1, the probability that a vertex is contained in more than (1 + δ)β2c hyper-edges
can be bounded by

1/2(1+δ)β2c < 1/(4β1).

The expected number of high degree vertices is at most n/(4β1). By Markov inequality,
the probability that there are more than n/β1 such vertices is at most 1

4 .

2.3 The EDP Instance

The construction of the EDP instance G is based on hyper-graph H defined above. For
each vertex v ∈ V (H), graph G contains a source and sink pair (s(v), t(v)). Additionally,
for each hyper-edge hi : 1 6 i 6 β2n, it contains two vertices `i, ri, which are connected by
a special edge. Consider now some vertex v ∈ V , and assume it participates in hyper-edges
hi1 , hi2 , . . . , hik , where i1 < i2 < · · · < ik. We add the following regular edges to graph G:
(s(v), `i1), (rik , t(v)), and for each j : 1 6 j 6 k − 1, we add a regular edge (rij , `ij+1). We
define a canonical path corresponding to v as follows: P (v) = (s(v), `i1 , ri1 , . . . , `ik , rik , t(v)).

Properties of the EDP Instance: We will establish here that with high probability,
the instance created above satisfies some properties that would be useful in establishing our
gap.

Let g > 2 be some fixed integer, and let Kg be the total number of cycles of length at
most g in G. We say that event E3 happens, if Kg > (6β2c

2)g+1.

Lemma 8. The probability that E3 happens is at most 1
4 .

Proof: Let G′ be a graph obtained from G by shrinking each special edge (`i, ri) into a
vertex ui, and let K ′

g be the number of cycles of length at most g in G′. Since Kg 6 K ′
g, it

is enough to bound K ′
g.

Notice that all the source and sink vertices in G have degree 1, and thus do not par-
ticipate in any cycle. A cycle C of length k in graph G′ is defined as an ordered k-tuple
of vertices ui1 , . . . , uik , where ik = max{i1, . . . , ik}, and edges e1 = (ui1 , ui2), . . . , ek−1 =
(uik−1

, uik), ek = (uik , ui1) belong to G′ For each j : 1 6 j 6 k−2, we bound the probability
that edge ej exists given the existence of edges e1, . . . , ej−1. Let A ⊆ V (H) be the c-tuple
of vertices participating in hyper-edge hij . If edge ej exists, then hyper-edge hij+1 must

7



contain at least one vertex from A. The probability of this happening (given the existence

of e1, . . . , ej−1) is at most c2

n .

We now bound the probability of edges ek, ek−1 belonging to G′, given the existence of
e1, . . . , ek−2. Consider the hyper-edges hi1 , hik−1

of graph H, and let X,Y,Z be disjoint
subsets of V (H), such that X ∪ Y are the vertices participating in hi1 , and Y ∪ Z are the
vertices participating in hik−1

. Notice that if hyper-edge hk contains only vertices belonging
to Y (but not to X or Z), then at least one of the edges ek−1, ek does not belong to G′

(this follows from the fact that the canonical path of each vertex v ∈ V (H) traverses the
hyper-edges of H monotonically). Therefore, in order for edges ek−1, ek to belong to G′,
hyper-edge hk must overlap with at least two out of the three sets X,Y,Z. We bound the
probability that it overlaps with both X and Y . The probabilities of hk overlapping with
X and Z and with Y and Z are bounded similarly.

Let X , Y be the events that hik ∩ X 6= ∅ and hik ∩ Y 6= ∅, respectively. Then:

Pr [X ∧ Y|e1, . . . , ek−1] = Pr [X|Y, e1, . . . , ek−1] · Pr [Y|e1, . . . , ek−1]

6 Pr [X|e1, . . . , ek−1] · Pr [Y|e1, . . . , ek−1] 6
c4

n2

Therefore, the total probability that both edges ek−1, ek belong to G′ is at most 3 c4

n2 ,

and the probability that cycle C of length k belongs to G′ is at most: 3
(

c2

n

)k
.

The number of potential cycles of length k can be bounded by (β2n)k. Thus, the
expected number cycles of length k is at most (3β2c

2)k. Summing up over all k : 3 6 k 6 g,
we get that E[Kg] 6 (3β2c

2)g+1, and using Markov’s inequality, we get the claimed bound.

With probability at least 1/4, none of the events E1, E2, and E3 happen; we assume this
from now on.

2.4 Integrality Gap Analysis

The fractional solution can route at least n
c units of flow, by sending 1

c units of flow on each
canonical path. This gives us a fractional solution with congestion 1.

Consider now some integral solution whose congestion is at most c−1, and let P denote
the set of paths routed in the integral solution. Set g = 3β1β2c

2. We partition P into
three subsets: P1 contains canonical paths, P2 contains non-canonical paths whose length
is greater than g, and P3 contains non-canonical paths whose length is smaller than g. We
bound the size of each one of these sets separately.

|P1| 6
n
β1

if event E1 does not happen. Otherwise, there must be c paths that go through
a single special edge and the solution has congestion c.

|P2| 6 n/β1. Total number of edges in G can be bounded by 3β2cn. Since we allow a
congestion of c, total capacity available in the graphs is at most 3β2c

2n. Thus the number

of paths of length greater than g can be no more than 3β2c2n
g = 3β2c2n

3β1β2c2 = n
β1

.
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To analyze P3, we first remove from P3 all paths that correspond to vertices which occur
in more than 10β2c hyper-edges of H. Since event E2 does not happen, we discard at most
n/β1 paths. Let P ′

3 be the set that remains. For any s(v)-t(v) pair routed in P ′
3, the length

of its canonical path is at most 10β2c. Thus the non-canonical path in P ′
3 and the canonical

path for s(v)-t(v) form a cycle of length at most g + 10β2c 6 2g. By Lemma 8, the number
of cycles of length at most 2g can be bounded by (6β2c)

2g+2. Since each edge is allowed
a congestion of up to (c − 1), and each path in P ′

3 uses an edge on such a cycle, |P ′
3| is

bounded by 2gc(6β2c)
2g+2.

Therefore, |P ′
3| can be bounded as follows:

|P ′
3| 6 2gc(6β2c

2)2g+2

6 (β2c
2)3g

6 24g log β2

= 212β1β2c2 log β2

6 212β1·6(2β1)c−1 lnβ1·2c lnβ1

= 272(4β1)c·ln2 β1

6
√

n

6 n/β1

In total, |P| 6 4n/β1, and the integrality gap is at least β1

4c , giving the bound in Theo-
rem 5.

To show an integrality gap for ANF with congestion, classify each routed pair to be of
type A or B based on how much flow is routed on canonical versus non-canonical paths. It
is type A if more than a (c−1)/c-fraction of the flow is routed on the pair’s canonical path,
and type B otherwise. It is easy to see that no more than (c− 1) type A pairs can traverse
a special edge without causing a congestion greater than c − 1. Thus essentially the same
analysis as given above for P1 applies. For type B pairs, we proceed as above for P2 and
P3 noting that for each routed pair, we have only 1/c-fraction of the flow to be supported.

3 The Hardness Construction

We now establish Theorems 1 and 2 by using a randomized reduction from a general con-
straint satisfaction problem (CSP) over large (non-Boolean) domains.

3.1 A Constraint Satisfaction Problem

An instance of p-ary k-CSP consists of variables {x1, . . . , xN} that take values in {1, 2, . . . , p}
and constraints C1, . . . , CM on subsets of the variables of size k. The goal is to find an
assignment to the xi’s that satisfies as many constraints as possible. Both p and k can
be functions of the number of variables N . Specifically, our starting point is the following
strong hardness result for constraint satisfaction due to H̊astad and Khot [27]. The two
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features about this result that are important to us are (i) perfect completeness, and (ii)
the maximum number of satisfying assignments to any constraint is much smaller than the

reciprocal of the soundness (below, the former is at most p10
√

` while the latter is at least

p`−10
√

`, and for large ` the ratio of the logarithm for these quantities tends to 0). The result
of Samarodnitsky and Trevisan [37], which was extended to larger, non-Boolean domains
by Engebretsen [18], achieves the second property above but lacks perfect completeness.

Theorem 9. For all large enough integers ` and every function p : N → N that takes prime
values, there is a reduction from 3SAT to p-ary `-CSP with the following properties:

1. [Reduction complexity]: For a 3SAT instance of size n, the reduction runs in time

nO(` log p) · ppO(`)
, and produces a p-ary `-CSP instance with at most nO(` log p) · ppO(`)

variables and constraints, where each constraint in the instance has at most p10
√

`

satisfying assignments. (Here we use the shorthand p = p(n).)

2. [Perfect completeness]: If the original 3SAT instance is satisfiable, the p-ary
`-CSP instance is also satisfiable.

3. [Soundness]: If the original SAT instance is not satisfiable, then at most a fraction

p−`+10
√

` of the constraints in the p-ary `-CSP instance are satisfiable.

While the above gives a quasi-polynomial time reduction for p(n) up to polylog(n), we
will use it with p(n) at most O((log log n)3). In this case the reduction from 3SAT to the
above CSP instance will run in nO(log log log n) time.

We say a few words about how the parameters arise in [27], since the result for non-
constant functions p(n) is not explicit in [27]. The starting point for the above result, like
so many other PCP results, is the u-parallel version of the basic 2-prover 1-round (2P1R)
proof system for Gap3SAT(5) (3SAT where each variable occurs exactly in five clauses, and
the goal is distinguish satisfiable instances from those that are most η-satisfiable for some
absolute constant η < 11). By Raz’s parallel repetition theorem, the parallelized 2P1R has
soundness cu

0 for some absolute constant c0 < 1. The size of the 2P1R instance (viewed
naturally as a bipartite graph) is nO(u), if n is the size of the 3SAT instance, and the answers
from the provers consist of at most 3u bits. To get the hardness for p-ary CSP, the verifier
expects as proofs the p-ary long codes of the answers of the 2P1R — each of these long
codes has one position for each p-ary function on a domain of size 2O(u), and thus has size
p2O(u)

. Thus the total number of variables in the CSP instance is nO(u)p2O(u)
. For any

integer f > 1, H̊astad and Khot give a verifier that makes ` = 4f + f2 queries, has perfect

completeness, and soundness p−f2
+ c

Ω(u)
0 . Note that a completely random proof will be

accepted with probability p−` and they show that if the 3SAT instance is not satisfiable,
no proof is accepted with probability much more than this random threshold. By picking
u = d0` log p for a large enough (absolute) constant d0 > 0, the soundness can be made

at most 2p−f2
6 p−`+10

√
`. By a simple inspection of their construction, the total number

of different query patterns (which correspond to constraints in the CSP view) is at most

nO(u)pf2O(u)
. For the choice u = Θ(` log p), the size of the CSP instance, and the time

complexity of the reduction, are both nO(` log p)ppO(`)
as claimed.

1There exists such η for which the problem is NP-hard, according to the PCP theorem.
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3.2 A new CSP by serial repetition

We will boost the soundness of the above CSP by forming a new instance via λ-fold serial
repetition for an integer parameter λ = λ(n). Specifically, we will form a new p-ary k-
CSP instance for k = λ`, where there is a constraint for each λ-tuple of constraints in
the original CSP (with repetitions), and this constraint is satisfied iff all the λ constituent
constraints are satisfied. Note that the number of constraints of the new CSP is bounded
by nO(`λ log p)2pO(`)λ log p. An assignment that satisfies all constraints of the p-ary `-CSP
instance satisfies all constraints of the p-ary k-CSP instance, so perfect completeness is

preserved. The soundness gets raised to the λ’th power, and is thus at most p−(`−10
√

`)λ.

3.3 The Reduction to EDPwC instance

The overall reduction first constructs the p-ary `-CSP instance guaranteed by Theorem 9,
followed by serial repetition with parameter λ. We now describe the choice of these param-
eters.

Suppose an arbitrary constant ε > 0 is given and we seek hardness for congestion c(n)
where the function c(n) satisfies 1 6 c(n) 6

log log n
10 log log log n . We first specify the parameters

`, p = p(n) and λ = λ(n) to construct the p-ary k = λ`-CSP instance as above. For conve-
nience, we also define two other parameters h, b that are closely related to the congestion
c = c(n).

` = `(ε) is a large enough constant, `(ε) > 10000/ε2 (1)

h = c = c(n) (2)

b = c + 1 (3)

p = Any prime such that b2 < p < b3 (4)

λ =

⌈

log log n

(b + 1) log p

⌉

(5)

k = λ` . (6)

We note that since c(n) 6
log log n

10 log log log n , log log n
(b+1) log p > 1 so that λ =

⌈

log log n
(b+1) log p

⌉

6 2 log log n
(b+1) log p .

We now describe the reduction from the resulting p-ary k-CSP to routing in undirected
graphs. Let N be the number of variables and M the number of constraints. Recall that
we have

M 6 nO(`λ log p)2pO(`)λ log p
6 nO(log log n) . (7)

We define some more notation concerning the p-ary k-CSP instance.

• Let J be an upper bound on number of satisfying assignments to any of the constraints

(we have J 6 p10
√

`λ = p10k/
√

`).

• Let Bi denote the number of constraints in which variable xi participates in. Note
that

∑

i Bi = kM . Let T = maxi Bi be the maximum number of constraints any
variable participates in.

11



The reduction will use two other integer parameters Y,Z which will be defined in Sec-
tion 3.4.

For a positive integer K, we will use the notation [K] to denote the set {1, 2, . . . ,K}. In
what follows, i ∈ [N ] will be typically be used for a variable index, j ∈ [M ] for a constraint
index, and q ∈ [p] to refer to a possible value assigned to a variable. For each q ∈ [p] and
for constraint Cj containing xi, let Γijq be the set of satisfying assignments to Cj that set
xi to q and let Γiq be the set of all pairs (Cj , γ) such that Cj contains xi and γ ∈ Γijq.

The main building blocks in the construction are certain variable gadgets. For each
variable xi, we give a randomized construction of a gadget called Gi that we describe in
detail below. Recall that Bi 6 T denotes the number of occurrences of xi in the constraints.
For notational simplicity, we omit the subscript i in Bi and refer to it as simply B when i is
obvious from the context(we do not assume that all Bi’s are equal). For each z ∈ [Z], the

variable gadget Gi has a matching M
(i)
z consisting of Y JB special edges ei

z,s = (ui
z,s, v

i
z,s)

for s ∈ [Y JB] — the vertex ui
z,s (resp. vi

z,s) will be referred to as the left (resp. right)
endpoint of the edge ei

z,s.

These disjoint matchings will be strung together by Z+1 intermediate levels of connector
vertices in a random way as described below. Let τ = (Cj , γ, y) be a triple where γ is a
satisfying assignment for Cj and y ∈ [Y ]; we call such a triple an accepting interaction. For

each z ∈ [Z + 1] and q ∈ [p], we have a set W
(i)
q,z of Y |Γiq| connector vertices, each labeled

by an accepting interaction (Cj , γ, y) where the pair (Cj , γ) belongs to Γiq and y ∈ [Y ]
(that is, there are Y vertices for each pair (Cj, γ) where Cj contains xi and the satisfying

assignment γ to Cj assigns the value q to xi). We will denote by wi,z
Cj ,γ,y the vertex in

W
(i)
q,z that is labeled by the accepting interaction (Cj , γ, y). Note that, for each z, we have

∑

q∈[p] |W
(i)
q,z | 6 Y JB. Now comes the crucial interconnection of the different matchings via

the connector vertices. For each q ∈ [p] and z ∈ [Z], pick independently and uniformly

at random a subset S
(i)
q,z of the matching M

(i)
z of size |W (i)

q,z |. Connect the left endpoints

of the edges in S
(i)
q,z to the vertices W

(i)
q,z via a random matching. If the left endpoint of

an edge in S
(i)
q,z is connected to the vertex labeled wi,z

Cj ,γ,y, then the right endpoint of that

edge is connected to the corresponding node wi,z+1
Cj ,γ,y in the (z + 1)’th level. Moreover, we

will call this special edge as f i,z
Cj ,γ,y. Note that the collection of the edges f i,z

Cj ,γ,y as (Cj , γ)

ranges over Γiq and y ranges over Y is precisely the submatching S
(i)
q,z of M

(i)
q,z.

We now identify and give names to certain collections of “canonical” paths through
the variable gadget Gi that correspond to the p possible value assignments to xi. Fix a
value q for xi. For each pair (Cj , γ) ∈ Γiq and for each y ∈ [Y ], we can define a canonical

path Pi[j, γ, y] as the unique path going through the connecting vertices labeled wi,z
Cj ,γ,y :

z ∈ [Z + 1]. Note that for each q ∈ [p] and i ∈ [N ], the at most Y JBi canonical paths
Pi[j, γ, y] : (Cj , γ) ∈ Γiq, y ∈ [Y ] are edge disjoint. Moreover, at each level z ∈ [Z], Pi[j, γ, y]
passes through a special edge ei

z,s where s is distributed uniformly in [Y JB].

This defines a variable gadget. The graph is constructed by linking together the variable
gadgets as follows. For each constraint Cj there are Y source-sink pairs (Sj,y, Tj,y). Let
xi1 , . . . , xik be the k variables in constraint Cj in some order. For each such assignment γ
that satisfies Cj, we string together from Sj,y to Tj,y by connecting:

12



Figure 1: Gadget Gi for p = 3, Z = 3 and Y = 2. The special edges are shown in bold.
One of the canonical paths is shown dotted.

1. Sj,y to the vertex wi1,1
Cj ,γ,y by an edge of weight Z, “implemented” as a simple path of

length Z (with fresh degree two internal vertices that are not used elsewhere)2,

2. wit,Z+1
Cj ,γ,y to w

it+1,1
Cj ,γ,y for t ∈ [k − 1] by an edge, and

3. wik ,Z+1
Cj ,γ,y to Tj,y by a weight Z edge, again implemented by a simple path of length Z

(again, the internal vertices of this path have degree two).

This naturally defines the canonical paths P [j, γ, y] connecting Sj,y to Tj,y that pass through
Pit [j, γ, y] for each t ∈ [k]. Note that for each (Sj,y, Tj,y) pair, we have a choice among the
canonical paths P [j, γ, y] corresponding to which assignment γ satisfies Cj. Each of these
canonical paths has O(kZ) edges.

Note that the number of source-sink pairs is MY , each of which has at most J canonical
paths of length O(kZ) connecting them. Therefore, the total number of edges in the graph
is O(MY JkZ), and the graph can be constructed in time polynomial in the number of
edges. This completes the construction.

3.4 The parameters

For easy reference, recall again the following parameters concerning the instance of p-ary
k-CSP instance we start with:

2The use of a long path instead of an edge for this connection will be very convenient in a later step in

our analysis.
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• p = p(n) is a prime in the range (b2, b3) where b = c(n)+1, and 1 6 c(n) 6
log log n

10 log log log n
is the congestion for which we seek hardness.

• k = λ` where λ =
⌈

log log n
(b+1) log p

⌉

and ` = `(ε) is a large enough constant, `(ε) > 10000/ε2

.

• N , the number of variables

• M , the number of constraints, M = nO(log log n)

• J , the maximum number of satisfying assignments to any constraint (J 6 p10k/
√

`)

• Bi, the number of constraints in which variable xi participates. We have
∑N

i=1 Bi =
kM .

We now discuss the values for the other parameters Y,Z that were used in the above
reduction, and define some other parameters that will be useful in the analysis. Note the
parameters are defined in order of dependence.

r = pk/3
> (log n)

`
3(b+1) (8)

ρ = pkJr (9)

Z = 128bρb (10)

g = Zρ (11)

Y = 4Mgg2g+1 (12)

Xi = Y JBi (for i ∈ [N ]) (13)

X = max
i

Xi (14)

Ai = 2Xi/ρ . (15)

We give some intuition for the parameters here. The final gap we get is r and ρ is
roughly (not much larger than) r. The best gap we can hope for is the soundness of the

p-ary k-CSP, which is p−(`−10
√

`)λ and surely at most p−k/3. This determines our choice of
the gap r.

Since there is a source-sink path for every assignment to the corresponding constraint,
two such paths form a cycle. Since each cycle allows a demand using an edge on the cycle to
avoid a particular heavily loaded edge, we need the notion of almost-canonical paths. The
capacity argument we use for flows that use several detours requires us to set the threshold
for almost-canonical to be ρ detours.

Z has to be roughly ρb−1 for the measure concentration part of the balls-and-bins ar-
gument, that guarantees that for every setting of flows, the number of bins with too many
balls is close to its expectation. However, since we allow almost-canonical paths to deviate
on about ρ edges, the expected number of bad bins has to be large enough, which requires
us to set Z to be about ρb.

Once again, to make a capacity argument, we need to set the threshold g defining a long
cycle to be about Zρ. The number of short cycles then is exponential in g, which requires
us make Y exponential in g as well. Thus Y is roughly 2ρb+1

and the hardness we get is

14



about log
1

b+1 Y . The total number of vertices, say V , in the final graph H is O(MY JkZ)

which is at most Y 2, so we get a gap of about Ω(log
1

c+2 V ) as a function of the number V
of vertices. For future reference, we formally record the following bound on r.

Lemma 10. With the above choice of parameters, we have r = Ω(log
1−ε
c+2 V ), where V is

the number of vertices in the graph H output by the reduction.

Proof: Let us bound log Y from above in terms of r. We have log Y = O(g(log M +log g).
Since M = nO(log log n) and g 6 logO(1) n, so we have log Y = O(g log2 n). By definition,
g = 128bρb+1 = O(ρb+1 log n) (since b 6 log log n), so that log Y = O(ρb+1 log3 n). We have

ρ = pkJr 6 p20k/
√

`r = r1+60/
√

`
6 r1+ε/2 ,

if ` > 10000/ε2 . Also log3 n 6 r(b+1)9/` 6 r(b+1)ε/2. Plugging these, we get log Y =

O(r(b+1)(1+ε)), which gives r = Ω((log Y )
1−ε
b+1 ). Recalling that V 6 Y 2 and b = c + 1, we

have the claim.

3.5 Time complexity

The time complexity of the reduction is polynomial in Y , which for the above choice of pa-

rameters is easily seen to be 2logO(`) n if n is the size of the original SAT instance. Therefore,
we have a quasi-polynomial time reduction.

4 Hardness Gap Analysis

We now analyze the hardness gap achieved by the preceding reduction.

4.1 Completeness

When there is a satisfying assignment to the p-ary k-CSP instance, all MY pairs (Sj,y, Tj,y)
can be routed on edge-disjoint paths. Indeed, let a be an assignment that satisfies all
constraints, and let γ be the projection of a to constraint Cj. Then, for each y ∈ [Y ],
connect (Sj,y, Tj,y) via the canonical path P [j, γ, y].

4.2 Soundness

We now show that if no assignment satisfies more than a small fraction of the constraints,
then it is impossible to route many of the (Sj,y, Tj,y) paths, even if congestion c is allowed.
This part is complicated with several steps and using several of the ideas developed by
Andrews and Zhang in their paper [4] on hardness of congestion minimization.

Due to the fact that we are aiming for perfect completeness, we have to handle an
additional complication. We call a source-sink pair (Sj,y, Tj,y) risky if for some assignments
γ 6= γ′ satisfying Cj , the canonical paths P [j, γ, y] and P [j, γ′, y] intersect. We now argue
that the number of risky paths is small with high probability.
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We call a canonical path Pi[j, γ, y] risky if for some γ′ 6= γ, Pi[j, γ, y] intersects Pi[j, γ
′, y].

Note that γ′ and γ must assign different values to xi for them to intersect. In this case
their matching edges ei

z,s are chosen independently at each level, and hence the probability

that Pi[j, γ, y] intersects Pi[j, γ
′, y] is at most Z

Y JBi
. Taking a union bound over the at most

J possible γ′’s, the probability that Pi[j, γ, y] is risky is at most Z
Y Bi

< Z
Y . A demand

(Sj,y, Tj,y) is risky if one of its canonical paths is risky. Taking a union bound over the
k variables and the at most J assignments γ, we get an overall bound of kJZ

Y . Thus
the expected number of risky demand pairs is MkJZ. Using Markov’s inequality, with
probability 99/100, the number of risky demand pairs is at most 100MkJZ.

It is easy to verify that for the above setting of parameters, this quantity is Mpolylog(Y ),
which is negligible compared to MY , the total number of demands. Moreover, it is easy
to find all risky demand pairs in an instance, and delete them. The resulting graph still
has MY (1 − o(1)) source-sink pairs, inherits the perfect completeness, and has no risky
demands. For the rest of the paper, we assume that we have an instance with no risky
demands.

We take an arbitrary routing of some subset of the Sj,y–Tj,y pairs and divide the paths
used for the routing into two classes: almost-canonical and non-canonical, defined as follows.

Definition 11. For j ∈ [M ] and y ∈ [Y ], an Sj,y–Tj,y path Π is said to be almost-canonical
if there is a satisfying assignment3 γ ∈ [J ] to Cj such that for each variable xi present in
constraint Cj , the path Π uses more than Z−ρ out of the Z matching edges in M i

z, z ∈ [Z],
that are used by P [j, γ, y]. In other words, Π deviates from the canonical path P [j, γ, y] in
at most ρ special edges in each variable gadget.

For such an almost-canonical path Π, we say that the value highlighted by Π for xi equals
the value that satisfying assignment γ assigns to xi (note that each almost-canonical path
highlights exactly one value for each variable present in the associated constraint).

Definition 12. For j ∈ [M ] and y ∈ [Y ], an Sj,y–Tj,y path is said to be non-canonical if it
is not almost-canonical.

We will bound the number of almost-canonical and non-canonical paths separately.

4.3 Bounding almost-canonical paths

We divide almost-canonical paths into two categories: heavy and light, defined below, and
bound each of these in turn.

Definition 13 (Heavy and Light Paths). For i ∈ [N ] and q ∈ [p], a variable-value pair
(xi, q) is said to be heavy if more than Ai almost-canonical paths highlight the value q for
xi.

An almost-canonical path Π connecting Sj,y to Tj,y is said to be heavy if (xi, qi) is heavy
for each variable xi in Cj where qi is the value highlighted by Π for xi.

An almost-canonical path that is not heavy is said to be light.

3There can be more than one such γ. If so, we pick one of them arbitrarily.
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4.3.1 Light almost-canonical paths

It is very easy to bound the number of light almost-canonical paths. Indeed this number
is at most p

∑

i Ai, since for a pair (xi, q) at most Ai almost-canonical paths can be light
because of it. We record this as:

Lemma 14. In any routing of a subset of the Sj,y–Tj,y pairs, there can be at most p
∑N

i=1 Ai

light almost-canonical paths.

4.3.2 Heavy almost-canonical paths

Definition 15 (Over-ambiguous variables). Define a variable xi to be over-ambiguous if
the variable-value pair (xi, q) is heavy for more than h values of q ∈ [p].

The above notion is an important one for our analysis. On the one hand, if there
are no over-ambiguous variables, then the soundness of the original CSP implies a bound
on number of heavy almost-canonical paths (Lemma 16 below). On the other hand, the
existence of an over-ambiguous variable xi implies that with high probability the almost-
canonical paths that pass through the variable gadget Gi create congestion more than h = c
(provided parameters such as Z are picked appropriately). The intuition behind the latter
phenomenon can be explained as follows. For each value q for which (xi, q) is heavy, the

heavy almost-canonical paths pass through a random subset of the matching M
(i)
z of size

Ai. For different values q, these subsets are chosen independently for each z. If more than
h such subsets of size Ai (out of Xi) are chosen, then with high probability they will all
collide on some element creating congestion h + 1, provided Z is large enough. This is the
“balls and bins” intuition behind our reduction.

Lemma 16. If there are no over-ambiguous variables in a routing of a subset of Sj,y–Tj,y

pairs, then the number of heavy almost-canonical paths is at most p10k/
√

`(h/p)kMY .

Proof: Let C̃ denote the set of constraints Cj for which for some y ∈ [Y ] there is a heavy
almost-canonical flow path connecting Sj,y to Tj,y. Consider the following assignment to
each xi. Pick an element from the set Vi = {q | (xi, q) is heavy} uniformly at random. Note
that for each constraint in C̃, this assignment satisfies it with probability at least 1/hk, since
|Vi| 6 h for all xi. Therefore, the expected number of constraints satisfied by this assignment

is at least |C̃|/hk. This quantity must be at most pλ(−`+10
√

`)M = p−k+10k/
√

`M due to the
soundness of p-ary k-CSP. It follows that the total number of heavy almost-canonical paths

is at most |C̃|Y 6 p10k/
√

`(h/p)kMY .

We now show that if there is an over-ambiguous variable, then we must get congestion
at least h + 1, with high probability over the construction of our instance.

Consider a variable xi and let α1, . . . , αb be b = h + 1 distinct possible values of xi.
Denote by Xi = Y JBi the number of matching edges in each of the matchings M i

z (recall
that Bi 6 T is the number of occurrences of variable xi in the constraints Cj , j ∈ [M ]). For
convenience, we shall omit the subscript i in the rest of this section and use A and X to
refer to Ai and Xi respectively. For s ∈ [b], let Is be a set of A triples (j, γ, y) such that Cj
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uses xi and γ assigns the value αs to xi. Thus by construction, the set of matching edges
used by (the canonical paths corresponding to) triples in Is is a uniformly random subset
of size A. We expect about (A/X)bX of the matching edges to be used by a triple from
each of the Is’s.

Definition 17. We say that I1, . . . , Ib are highly congesting at level z ∈ [Z] if at least
( A
2X )bX matching edges in M i

z are used by a triple each from I1, . . . , Ib (in other words,
they have congestion b).

We say bad event B(α1, . . . , αb, I1, . . . , Ib, z) occurs if at level z, if the sets I1, . . . , Ib are
not highly congesting (at level z).

Lemma 18. Pr[B(α1, . . . , αb, I1, . . . , Ib, z)] 6 2e
− Ab

16(2X)b−1 .

Proof: The event that the sets I1, . . . , Ib are not highly congesting at level z has the same
probability as the following event: For each color 1, . . . , b, we are throwing A balls into X
distinct bins and we want to compute the probability that fewer than ( A

2X )bX bins have a
ball of every color. Let βs = ( A

2X )s.

Suppose that we have thrown balls for s of these colors and assume inductively that the

probability that there are at least βsX bins with q balls each is at least 1 −∑s
t=1 e−

βtX

8 .
Suppose that βsX bins indeed have s balls each. Let Yj be the number of (s + 1)-loaded
bins after we have thrown the jth ball of color (s + 1) and let Y ′

j = Yj+1 − Yj . As long
as Yj 6 2βs+1X, Y ′

j is 1 with probability at least (βs − 2βs+1). Thus the probability
that YA < βs+1X is bounded above by the probability that the sum of A independent
0-1 random variable each with mean (βs − 2βs+1) is less than βs+1X. Assuming A < X

10

and using Chernoff bounds, the latter probability is at most e−
βs+1X

8 . Hence the induction
holds. The claim follows.

Let B(α1, . . . , αb, I1, . . . , Ib) be the event that the above bad event happens at no less
than Z

2 of the Z levels. Then

Pr[B(α1, . . . , αb, I1 . . . , Ib)] 6

(

Z
Z
2

)

e
− ZAb

32(2X)b−1

6 2Ze
− ZAb

32(2X)b−1 .

Let B(α1, . . . , αb) be the event that there exist sets I1, . . . , Ib such that this bad event
occurs. Then

Pr[B(α1, . . . , αb)] 6

(

X

A

)b

2Ze
− ZAb

32(2X)b−1

6 (
eX

A
)bA2Ze

− ZAb

32(2X)b−1

6 ebA(log X+1−log A)+Z ln 2−ZX
16

( A
2X

)b

Plugging in the values of A in terms of X, the negative of the exponent is at least
X( Z

16ρb − 2b(log ρ+1)
ρ − Z ln 2

X ). Since Z > 128bρb > 64bρb−1(log ρ+1), the first term is at least
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twice the second. The third term is easily seen to be much smaller. The negative of the
exponent is thus ω(X).

Thus the probability that for a given variable xi there is a set of values α1, . . . , αb for
which B(α1, . . . , αb) occurs is at most pb as much, which is still o(exp(−X)). Taking a
union bound over the n variables, the probability of any bad event is o(1).

Suppose that no bad events occur, but that a variable xi is over-ambiguous with b = h+1
heavy values α1, . . . , αb. Let Ps be a set of A almost-canonical paths that highlight value
αs for xi. Let Is be the set of triples corresponding to the almost canonical paths in Ps; by
definition, each path in Ps deviates from the corresponding canonical path in Is in at most
ρ levels. On the other hand, the event B(α1, . . . , αb, I1, . . . , Ib) did not occur and hence at
least Z

2 > 16bρb levels are highly congested by the canonical paths in I1, . . . , Iq. At each such
level, at least ( A

2X )bX of the paths in ∪b
s=1Ps must deviate from the corresponding canonical

path, or else some edge at this level has congestion b. The total number of deviations is
thus ( A

2X )bX(16bρb) which is at least 8bAρ. Since we are looking at only bA paths, one
of them must deviate at 8ρ levels, which is a contradiction since almost-canonical paths
deviate from the associated canonical path at most ρ times. We have thus proved:

Lemma 19. With high probability (over the choice of random matchings in the construc-
tion), if a routing of some subset of Sj,y-Tj,y pairs has an over-ambiguous variable, then it
creates congestion at least h + 1 on some edge.

In summary, combining Lemmas 14, 16 and 19, we conclude the following:

Lemma 20. With high probability over the construction of the graph H from the p-ary k-

CSP instance, the following holds when the k-CSP instance is at most p−k+10k/
√

`-satisfiable:
The number of Sj,y-Tj,y pairs which can be routed using almost-canonical paths using con-
gestion c is at most

p10k/
√

`(h/p)kMY + p

N
∑

i=1

Ai .

4.4 Bounding non-canonical paths

At a high level we bound the number of non-canonical paths by classifying them into
long and short ones. The long ones are few because of volume arguments. The short
ones are few for they create short cycles in a certain random graph that has few short
cycles in expectation. The details of the overall analysis are technical, mainly due to
“guaranteed” cycles in H comprising of two different canonical paths between an Sj,y-Tj,y

pair. Specifically, following [4], we argue about cycles in an auxiliary graph, called the
incidence graph.

We define an auxiliary (undirected) graph G based on the instance, say H, of edge-
disjoint paths constructed in Section 3.3. The nodes in G consist of:

• A demand node dj,y for each Sj,y-Tj,y pair

• A path node p for each canonical path P [j, γ, y]
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• A special edge node f for each edge in the matchings M
(i)
z for i ∈ [N ] and z ∈ [Z].

The edges in G are defined as follows:

• An edge (dj,y, p) for each demand node dj,y and path node p corresponding to P [j, γ, y]
for all satisfying assignments γ to Cj. Note that each path node is connected to a
unique demand node, namely the one whose source and destination it connects.

• An edge between a path node p and special edge node f if f belongs to p.

(Thus G is obtained from H by shrinking each special edge, identifying each source sink
pair and identifying all connector nodes corresponding to each canonical path.)

A route in the original graph H maps into a route in G in a natural way. Each route of
length 2 that connects two special edges f1 and f2 (via a connector vertex) along canonical
path p maps to a two-edge route f1 → p → f2 in G. The two-edge route between a
source node Sj,y to a special edge f (through some connector vertex) along canonical path
p corresponds to a two-edge route dj,y → p → f in G. Likewise, the route between special
edge f and node Tj,y via a canonical path p corresponds to a two-edge route f → p → dj,y

in G.

The following easy lemma says that long routes in G correspond to long routes in the
original graph H.

Lemma 21. An Sj,y-Tj,y route in H that passes through x special edges corresponds to a
route of length at most 2x + 2 in G.

We are now in a position to tackle non-canonical paths used for routing in H. Consider
a demand d = dj,y and let π be the (simple) path that d is routed along in H. This path
maps naturally to a (non-simple) path in G and thus induces a subgraph of G. There are
two scenarios to consider, depending on whether or not this subgraph is cyclic — this is the
precise dichotomy of non-canonical paths used to bound them.

4.4.1 π forms a cycle in G

This case is further divided into two subcases, depending on whether the cycle is of length
at most g or more than g.

Lemma 22. With probability at least 3/4, in the graph G the number of demands which
are within distance g of a cycle of length less than g is at most 4Mgg2g+1.

Proof: For the sake of simplicity, let us shrink all d-p edges in G thus getting a bipartite
(multi)graph G′. Since the demands d in G are not risky , every cycle in G uses at least
two demand nodes. Thus each cycle in G is still a cycle (of no larger length) in G′. Each d
node is now connected to at most J of the Xi f -nodes for each variable i participating in
its constraint, at each level. Let us estimate the expected number of cycles in G′ containing
g′ < g nodes. The number of prospective cycles is at most (2ZY J

∑

Bi)
g′ = (2ZY JkM)g

′
,

since G′ has no more than 2Z
∑

Xi nodes. Conditioned on at most g′ 6 Y/2 other edges,
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each edge of this cycle occurs with probability no more than maxi J/(Xi − g′) 6 2J/Xi 6

2/Y . Thus the expected number of cycles of length g′ is at most (2ZY JkM)g
′
(2/Y )g

′
6

(4kZJM)g
′
.

Therefore, the expected number of cycles of length less than g is at most (4kZJM)g ,
and so with probability at least 3/4 the number of cycles of length less than g is at most
4(4kZJM)g . The maximum degree of the graph is at most max{kJZ, p} = kJZ, so at
most g(kJZ)g nodes are within distance g of any particular cycle of length less than g.
This leads to a total of at most 4g(4k2J2Z2M)g demands which are within distance g
of some cycle of length less than g. Now 2kJ 6 pkJ 6 ρ and g = Zρ, so we have
4g(4k2J2Z2M)g 6 4g(g2M)g, which gives the desired upper bound.

In view of the above lemma, we conclude the following. Except for possibly 4Mgg2g+1

demands, all demands routed that fall under this case are connected by paths of length at
least g − kZ > g/2. Since the total capacity of all special edges in a congestion c routing is
at most c times the number of special edges (which is O(MY JkZ)), there can be at most
O(MY JkZc/g) = O(MY Jkc/ρ) routed demands that fall in this category. We remark that
demands of this form force us to take g to be about Zρ.

4.4.2 π does not form a cycle in G

In this case, we have the following crucial lemma.

Lemma 23. If a demand is routed along a path π (in H) which does not form a cycle in
G, then either π is almost-canonical or π has length at least Zρ.

Proof: The proof of this lemma relies on the following claim:

Claim 24. Suppose that the path π in H maps to an acyclic subgraph in G. Let π̂ be the
canonical path to which the first edge of π belongs. Then

• π passes through each connector node in π̂ (in H).

• Each component of π \ π̂ (in H) has length at least Z.

Assuming the claim, we now prove the lemma. Let χ be the number of components in
π \ π̂. Since π is simple and contains all the connector nodes of π̂ it deviates from π on at
most χ special edges. If χ 6 ρ, the path π must be almost-canonical. On the other hand,
since each component of π \ π̂ has length at least Z, if χ > ρ, the total length of π is at
least Zρ.

Proof of claim: We now prove claim 24. Consider the image of π in G: since
it induces an acyclic subgraph and s and t are both mapped to the same node
d, it is a closed walk along a tree. Thus

Fact 25. If the image of π leaves a node u in G along the edge (u, v), it returns
to u along the edge (v, u).
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Let the nodes of π̂ be s,w1, u1, v1, . . . , wi, ui, vi, wi+1, . . . wL, t, where the wi’s
are connector nodes and fi = (ui, vi) are special edges on it. Suppose that π
does not traverse (vi, wi+1) for some i and let wi+1 be the first such node. Thus
π enters wi using (vi−1, wi) and hence must leave using (wi, ui). In G this
corresponds to traversing the edge (π̂, fi). Thus it must traverse this edge in
the opposite direction and since π is a simple path in H, the reverse traversal of
the edge (fi, π̂) must correspond to the edge (vi, wi+1) in H, contradicting the
assumption. This proves the first part of the claim.

Consider now a component of π \ π̂. Its image must leave π̂ along the edge
(fi∗ , p

′) for some p′ 6= π̂. Let p′ be the path s′, w′
1, u

′
1, v

′
1, . . . , w

′
i, u

′
i, v

′
i, w

′
i+1, . . . w

′
L, t′

where f ′
i = (ui, vi). The edge (fi∗ , p

′) (=(f ′
i∗ , p

′)) can correspond to either edge
(u′

i∗ , w
′
i∗) or to the edge (v′i∗ , w

′
i∗+1) in H. The two cases are analogous and

we assume the former. Since π is a simple path, the edge (u′
i∗ , w

′
i∗) must be

immediately followed by the edge (w′
i∗ , v

′
i∗−1) which maps to the edge (p′, f ′

i∗−1)
in G. Thus we must revisit p′ using the edge (f ′

i∗−1, p
′). Since π is a simple path

in H, this must correspond to using the edge (u′
i∗−1, w

′
i∗−1) and must therefore

be followed by the edge (w′
i∗−1, v

′
i∗−2) which maps to the edge (p′, f ′

i∗−2) in H.
Inducting in this fashion, π must eventually use the edge (p′, d′). Using fact 25
again, π must use the edge (d′, p′). By simplicity of π in H, these edges must
correspond to edges (w′

1, s
′) and (t′, w′

L) in H respectively. Since the edge (w′
i, s

′)
has weight Z (i.e., the actual edge is a path of length Z), this means that this
component of π \ π̂ must have length at least Z, as desired.

2

It follows that there can be at most O(MY JkZc/Zρ) = O(MY kJc/ρ) non-canonical
paths that are routed within congestion c and which fall in this category.

In summary, we record the following bound on the total number of non-canonical paths.

Lemma 26. With probability at least 3/4, the number of demands that can be routed on
non-canonical paths using congestion c is at most

O(MY kJc/ρ) + 4Mgg2g+1 .

4.5 Final Accounting with Chosen Parameters

By combining the bounds on almost-canonical and non-canonical paths from Lemmas 20
and 26, we can bound from above the total number of demands routed with congestion c
by

p10k/
√

`(h/p)kMY + p

N
∑

i=1

Ai + O(MY kJc/ρ) + 4Mgg2g+1 . (16)

We now bound each of the terms in (16) above one by one. We shall show that each of
the terms is O(MY/r).

1. The first term p10k/
√

`(h/p)kMY . Since p > h2, this term is at most

p10k/
√

`−k/2MY 6 p−k/3MY = MY/r .
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if ` > 3600.

2. The second term p
∑

i Ai. Recall that
∑

i Bi = kM and Ai = 2Xi/(pkJr) = 2Y JBi/(pkJr).
So p

∑

i Ai = 2MY/r.

3. The third term O(MY kJc/ρ). Since ρ = pkJr and p > c, this term is at most
O(MY/r).

4. The fourth term 4Mgg2g+1. By definition, this equals Y . Now r 6 (log n)` � M , so
this term is at most MY/r as well.

Recalling the lower bound on r from Lemma 10, we get the claimed gap in terms of

the number of vertices of the graph. Also, since V 6 2logO(`) n and the result holds for
congestion c(n) 6

log log n
10 log log log n , in terms of V , we get a result for congestion up to α log log V

log log log V
where α is a constant that depends on ` (and hence on ε). The claim of Theorem 1 follows.

5 Non-Perfect Completeness, Node-Disjoint Paths and All-

or-Nothing Flow

In this section we extend our results to the cases of non-perfect completeness, Node-Disjoint
Paths and All-or-Nothing flow.

5.1 Non-Perfect Completeness

First, we show how to prove Theorem 2, i.e. we show that in the case that perfect complete-

ness is not desired, we can improve the inapproximability factor for EDPwC from (log V )
1−ε
c+2

to (log V )
1−ε
c+1 . In particular we wish to adapt the reduction such that for some parameter

f , in the case of yes-instances there are edge-disjoint paths connecting an f -fraction of the

terminal pairs and in the case of no-instances we can connect at most an f/(log V )
1−ε
c+1

fraction of the terminal pairs, even if we allow congestion c.

Proof of Theorem 2. The proof is extremely similar to the proof of Theorem 1 for the
perfect completeness case. In the following we list the main differences.

• We “split up” the canonical paths so that each canonical path P [j, γ, y] has a separate
source node Sj,γ,y and destination node Tj,γ,y. We now have at most MY J demands,
each of which is now associated with a single canonical path.

• We define Z = 128bρb−1 instead of Z = 128bρb. This change in the definition of Z
allows us to obtain the improved hardness factor.

• For yes-instances we can route MY demands on edge-disjoint canonical paths. Note
that the total number of demands in the system is more than MY and so we no longer
have perfect completeness.

• We no longer concern ourselves with the concept of an almost-canonical path that can
deviate from a canonical path a limited number of times. We simply classify demands
according to whether they use their entire canonical path or some other path.
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• The analysis of canonical paths is almost identical to the analysis in Section 4.3. The
only difference is that we no longer have to account for deviations from the canonical
path which allows us to use the new definition of Z.

• The analysis of non-canonical paths is simpler under the new reduction. Note that
in the proof of Theorem 1, each demand had multiple canonical paths. These paths
created unavoidable cycles since they shared the same source and destination node.
A large part of the analysis of Section 4.4.2 was concerned with showing that these
cycles cannot be used to create short non-canonical paths. In the new reduction each
demand has a single canonical path and so those cycles do not appear. In this case
the analysis of Section 4.4.2 gives us the following simpler analog of Lemma 23.

Lemma 27. If a demand is routed along a path π (in H) which does not form a cycle
in G, then the path π must be a canonical path.

This implies that if π is a non-canonical path then we only need to consider the case
that π forms a cycle in G. This can be handled in the same manner as in Section 4.4.1.
The remainder of the proof is exactly the same as for Theorem 1. In particular we

obtain that for no-instances we can connect at most MY/(log V )
1−ε
c+1 terminal pairs.

2

5.2 Node-Disjoint Paths with Congestion

In the undirected Node-Disjoint Paths with Congestion (NDPwC) problem we wish to route
as many demands as possible subject to the constraint that at most c paths pass through any
node. The reductions that we used to prove Theorems 1 and 2 for EDPwC apply directly to
NDPwC. For yes-instances it is easy to see that the canonical paths that correspond to the
satisfying assignment of the CSP instance are node-disjoint as well as edge-disjoint. The
results for no-instances follow directly from the fact that any solution with edge-congestion
c automatically has node-congestion at least c.

5.3 All-or-Nothing Flow with Congestion

All-or-Nothing Multicommodity Flow with Congestion is a relaxation of EDPwC in which
each demand is allowed to be routed on fractional paths subject to the constraint that
the total demand routed through an edge is at most c. The objective is to maximize the
number of demands for which the entire demand is routed. There is no natural analog of
our perfect completeness result (Theorem 1) for ANFwC since the multicommodity flow
relaxation gives a polynomial-time algorithm to decide whether or not it is possible to route
all demands fractionally with congestion c.

We can however adapt our non-perfect completeness result (Theorem 2). Note that
in our construction without perfect completeness each demand has exactly one canonical
path. For the case of yes-instances we can route MY demands integrally on edge-disjoint
paths. For the case of no-instances we classify any routed demand according to two types.
We say that a routed demand is a Type 1 demand if strictly more than half the demand
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is routed along its canonical path, otherwise it is a Type 2 demand. Since the capacity of
each edge is c, the total number of Type 1 demands whose canonical paths can be routed
through any edge is at most 2c − 1. Our canonical path analysis therefore implies that the

total number of Type 1 demands is at most MY/(log V )
1−ε
2c . Moreover, an almost identical

argument to the analysis of Section 4.4 implies that the total amount of demand routed

along non-canonical paths is at most MY/(log V )
1−ε
c+1 , even if this demand is fractionally

routed. This in turn allows us to say that the total number of Type 2 demands is at most

2MY/(log V )
1−ε
c+1 . The combination of these two results implies that for any ε, ANFwC is

hard to approximate to within (log V )
1−ε
2c .

6 Concluding remarks

We have shown a Ω(log1/2−ε V ) inapproximability result for EDP, ANF, and node-disjoint
paths (NDP) on undirected graphs, for any constant ε > 0. When congestion c, 1 6 c 6

O( log log V
log log log V ), is allowed in the routing, we obtained a hardness factor of log

1−ε
c+1 V (and a

slightly weaker log
1−ε
c+2 V factor with perfect completeness, i.e., when one is promised that

the instance has an edge-disjoint routing of all the source-destination pairs).

There is still a large gap between the hardness result for EDP and NDP and the best
known ratio of V Ω(1) achieved by polynomial time approximation algorithms. Closing this
gap remains a central open question. For ANF, there is less of a gap, since a factor O(log2 V )
approximation algorithm is known [10, 12]. Another interesting point is that for the edge-
disjoint cycles (EDC) problem on undirected graphs, where the goal is to pack a maximum
number of cycles that are edge-disjoint, there is a O(

√
log V ) approximation algorithm [33].

It has been shown in [22] that our techniques for EDP hardness, specifically the version
in [16], also yield a tight inapproximability factor of log1/2−ε V for EDC. This is a rather
surprising approximation threshold for a natural optimization problem and also highlights
some limitations of our techniques. In order to improve our hardness factor for EDP, we
need to develop techniques that will not work for EDC, and in order to get a hardness factor
that is greater than poly(log V ), we need techniques that are less general and won’t apply
for ANF. These intricacies make the challenge of pinning down the approximability of EDP
on undirected graphs all the more important and exciting.
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