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Abstract

We show that if A is a finite set of d × d well-conditioned matrices with complex entries, then
the following sum–product estimate holds |A + A| × |A · A| = Ω(|A|5/2).

1. Introduction

Let A be a finite subset of a ring Z. The sum–product phenomenon, first investigated by
Erdős and Szemerédi [4], suggests that either A · A or A + A is much larger than A. This
was first proved for Z, the ring of integers, in [4]. Recently, many researchers have studied
(with considerable success) other rings. Several of these results have important applications in
various fields of mathematics. The interested readers are referred to Bourgain’s survey [1].

In this paper we consider Z being the ring of d × d matrices with complex entries. (We are
going to use the notation ‘matrix of size d’ for d × d matrices.) It is well known that one cannot
generalize the sum–product phenomenon, at least in the straightforward manner, in this case.
The archetypal counterexample is the following:

Example 1.1. Let I denote the identity matrix and let Eij be the matrix with only one non-
zero entry at position ij and this entry is one. Let Ma := I + aE1d and let A = {M1, . . . ,Mn}.
It is easy to check that |A + A| = |A · A| = 2n − 1.

This example suggests that one needs to make some additional assumptions in order to
obtain a non-trivial sum–product estimate. Chang [2] proved the following

Theorem 1.2. There is a function f = f(n) tending to infinity with n such that the
following holds. Let A be a finite set of matrices of size d over the reals such that for any
M �= M ′ ∈ A, we have det(M − M ′) �= 0. Then we have

|A + A| + |A · A| � f(|A|)|A|.

The function f in Chang’s proof tends to infinity slowly. In most applications, it is desirable
to have a bound of the form |A|1+c for some positive constant c. In this paper, we show that this
is indeed the case (and in fact c can be set to be 1

4 ) if we assume that the matrices are far from
being singular. Furthermore, this result provides a new insight into the above counterexample
(see the discussion following Theorem 2.2).
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Notation. We use asymptotic notation under the assumption that |A| = n tends to
infinity. Notation such as f(n) = Ωξ(m) means that there is a constant c > 0, which depends
on ξ only, such that f(n) � cm for every large enough n. Throughout the paper letter ξ might
be a number like d or a vector like κ, d or α, r. The notation f(n) = Oξ(m) means that there is
a constant c, which depends on ξ only, such that f(n) � cm for every large enough n. In both
cases m is a function of n or it is the constant one function, m = 1, in which case we write
Ωξ(1) or Oξ(1). Throughout the paper symbol C denotes the field of complex numbers.

2. New results

The classical way to measure how close a matrix is to being singular is to consider its condition
number.

For a matrix M of size d, let σmax(M) and σmin(M) be the largest and smallest singular
values of M . The quantity κ(M) = σmax(M)σmin(M)−1 is the condition number of M . (If M
is singular, then σmin(M) = 0 and κ(M) = ∞.)

Our main result shows that if the matrices in A are well conditioned (that is, their condition
numbers are small, or equivalently they are far from being singular), then |A + A| + |A · A| is
large.

Definition 2.1. Let κ be a positive number at least one. A set A of matrices is called
κ-well conditioned if the following conditions hold.

(i) For any M ∈ A, we have κ(M) � κ.
(ii) For any M,M ′ ∈ A, we have det(M − M ′) �= 0, unless M = M ′.

Theorem 2.2. Let A be a finite κ-well-conditioned set of size d matrices with complex
entries. Then we have

|A + A| × |A · A| � Ωκ,d(|A|5/2).

Consequently, we have

|A + A| + |A · A| � Ωκ,d(|A|5/4).

Theorem 2.2 is a generalization of the first author’s sum–product bound on complex numbers
[7]. Some elements in the proof of Theorem 2.2 were inspired by techniques applied in [7]. The
idea of using geometry for sum–product problems was introduced by Elekes [3].

Remark 2.3. By following the proof closely, one can set the hidden constant in Ω as ( c
κ )d2

,
where c is an absolute constant ( 1

100 , say, would be sufficient).

Remark 2.4. We reconsider the set in the counterexample. It is easy to show that both
σmax(Ma) and σmin(Ma)−1 are Ωd(a). Thus κ(Ma) = Ωd(a2), which, for a typical a, is Ωd(|A|2).
Hence, the matrices in the counterexample have very large condition numbers.

Remark 2.5. Note that if the entries of a matrix M of size d are random integers from
{−n, . . . , n}, then, with probability tending to one as n tends to infinity, κ(M) = Od(1).
(In order to see this, note that by Hadamard’s bound, σmax(M) � dn with probability one.
Moreover, it is easy to show that with high probability |det M | = Ωd(nd), which implies that
σmin(M) = Ωd(n).)
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The proof of Theorem 2.2 is presented in Sections 3–6.

3. Neighborhoods

Consider a matrix M of size d. We can view M as a vector in C
d2

by writing its entries (from
left to right, row to row) as the co-ordinates. From now on we consider A as a subset of C

d2
.

The matrix operations act as follows:
(i) addition: this will be viewed as vector addition;
(ii) multiplication: this is a bit more tricky. Take a matrix M of size d and a d2-vector

M ′. To obtain the vector M ′M , we first rewrite M ′ as a matrix, then do the matrix
multiplication M ′M , and finally rewrite the result as a vector. This multiplying by M
is a linear operator on C

d2
.

Next, we need a series of definitions. Note that here we are considering M as a vector in C
d2

.
The norm ‖M‖ indicates the length of this vector in C

d2
. Then we have the following.

(i) Radius of M , that is, r(M) := minM ′∈A\{M} ‖M − M ′‖.
(ii) Nearest neighbor of M , that is, n(M) is an M ′ such that ‖M − M ′‖ = r(M) (if there

is more than one M ′ then choose one arbitrarily).
(iii) Ball of M , that is, B(M) is the ball in C

d2
around M with radius r(M).

The following lemma will be used frequently in the proof. Let x, y, z be three different points
in C

r. The angle xyz is the angle between the rays yx and yz. We understand that this angle
is at most π. In C

r there are various ways of defining the angle between two vectors x and y.
(See [6] for a survey of some possible choices.) We are using the

∠(x, y) = arccos
Re(y∗x)
‖x‖‖y‖

notation, where Re(y∗x) is the real part of the Hermitian product, (y∗x) =
∑r

i=1 ȳixi. It is
important to us that with this definition the law of cosines remains valid, and we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ cos(∠(x, y)). (3.1)

Lemma 3.1. For any positive integer r and any constant 0 < α � π, there is a constant
C(α, r) such that the following holds. There are at most C(α, r) points on the unit sphere in
C

r such that for any two points z, z′, the angle zoz′ is at least α. (Here o denotes the origin.)

This lemma is equivalent to the statement that a unit sphere in C
r has at most C(δ, r) points

such that any two has distance at least δ. It can be proved using a simple volume argument.
(See [5] for a more advanced approach.) The optimal estimate for C(α, r) is unknown for most
pairs (α, r), but this value is not important in our argument.

Lemma 3.2. For any positive integer r there is a positive constant C1(r) such that the
following holds. Let A be a set of points in C

r. Then for z ∈ C
r there are at most C1(r)

elements M of A such that z ∈ B(M).

Proof. Let M1, . . . ,Mk be elements of A such that z ∈ B(Mi) for all i. By the definition
of B(M) the distance between two distinct elements, Mi and Mj , is at least as large as their
distances from z. Then, by (3.1), the angle MizMj is at least π/3 for any i �= j. The claim
follows from Lemma 3.1.
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4. K-normal pairs

Let K be a large constant to be determined. We call an ordered pair (M,M ′) product K-normal
if the ellipsoid B(M)M ′ contains at most K(|A · A|/|A|) points from A · A. (Recall that
multiplying by M ′ is a linear operator on C

d2
, and thus it maps a ball into an ellipsoid.)

Lemma 4.1. There is a constant C2 = C2(d) such that the following holds. For any fixed
M ′ and K � C2, the number of M such that the pair (M,M ′) is product K-normal is at least
(1 − C2/K)|A|.

Proof. Let M1, . . . ,Mm be the elements of A, where (Mi,M) is not product K-normal. By
definition, we have

m∑
i=1

|B(Mi)M ∩ A · A| � Km
|A · A|
|A| .

Set ε := m/|A|. By the pigeon hole principle, there is a point z in A · A belonging to at least
Kε ellipsoids B(Mi)M . By applying the map M−1, it follows that zM−1 belongs to at least
Kε balls B(Mi). By Lemma 3.2, Kε = O(d2) = O(d). Thus, ε = O(d)/K, proving the claim.

By the same argument, we can prove the sum version of this lemma. An ordered pair (M,M ′)
is sum K-normal if the ball B(M) + M ′ contains at most K(|A + A|/|A|) points from A + A.

Lemma 4.2. For any fixed M ′, the number of M such that the pair (M,M ′) is sum
K-normal is at least (1 − C2/K)|A|.

5. Cones

For a ball B in C
r and a point x /∈ B, define the cone Cone(x,B) as

Cone(x,B) := {tx + (1 − t)B|0 � t � 1}.

Now let α be a positive constant at most π. For two different points x and y, we define the cone
Coneα(x, y) as Cone(x,Bα(y)), where Bα(y) is the unique ball around y such that the angle
of Cone(x,Bα(y)) is exactly α. (The angle of Cone(x,Bα(y)) is given by maxs,t∈Bα(y) ∠sxt.)

Lemma 5.1. For any positive integer r and any constant 0 < α � π, there is a constant
C(α, r) such that the following holds. Let A be a finite set of points in C

r and let L be any
positive integer. Then for any point x ∈ C

r, there are at most C(α, r)L points y in A such that
the cone Coneα(x, y) contains at most L points from A.

Proof. Case 1: We first prove the case L = 1. In this case, if y ∈ A and Coneα(x, y) contains
at most one point from A, then it contains exactly one point which is y. For any two points
y1, y2 ∈ A such that both Coneα(x, y1) and Coneα(x, y2) contain exactly one point from A,
the angle y1xy2 is at least α, by the definition of the cones. Thus, the claim follows from
Lemma 3.1.

Case 2 : We reduce the case of general L to the case L = 1 by a random sparsifying
argument. Let Y = {y1, . . . , ym} be a set of points in A such that Coneα(x, yi) contains at
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most L points from A for all 1 � i � m. We create a random subset A′ of A by picking each
point with probability p (for some 0 < p � 1 to be determined), randomly and independently.
We say that yi survives if it is chosen and no other points in A ∩ Coneα(x, yi) are chosen. For
each yi ∈ Y, the probability that it survives is at least p(1 − p)L−1. By linearity of expectations,
the expected number of points that survive is at least mp(1 − p)L. Thus, there are sets
Y ′ ⊂ A′ ⊂ A, where |Y ′| � mp(1 − p)L with the property that each point yi ∈ Y ′ is the only
point in A′ that appears in Cone(x, yi) ∩ A′. By the special case L = 1, we conclude that
mp(1 − p)L−1 � |Y ′| = Oα,r(1). The claim of the lemma follows by setting p = 1/L.

6. Proof of the main theorem

Consider a point M and its nearest neighbor n(M). Let M1 be another point, viewed as a
matrix. We consider the multiplication with M1. This maps the ball B(M) to the ellipsoid
B(M)M1 and n(M) to the point n(M)M1.

Since the condition number κ(M1) is not too large, it follows that B(M)M1 is not degenerate.
In other words, the ratio between the maximum and minimum distance from MM1 to a point
on the boundary of B(M)M1 is bounded from above by Oκ(1).

Let b(M,M1) be the largest ball contained in B(M)M1 and Cone(M,M1) be the cone with
its tip at n(M)M1 defined by

Cone(M,M1) := {tn(M)M1 + (1 − t)b(M,M1)|0 � t � 1}.

The assumption that M1 is well conditioned implies that the angle of this cone is bounded from
below by a positive constant α depending only on κ and d. Thus, we can apply Lemma 5.1 to
this system of cones.

Let T be the number of ordered triples (M0,M1,M2) such that (M0,M1) is product
K-normal and (M0,M2) is sum K-normal.

We choose K sufficiently large so that the constant (1 − C2/K) in Lemmas 4.1 and 4.2 is
at least 9

10 . It follows that for any fixed M1 and M2, there are at least 4
5 |A| matrices M0 such

that (M0,M1) is product K-normal and (M0,M2) is sum K-normal. This implies that

T � 4
5
|A|3. (6.1)

Now we bound T from above. First we embed the triple (M0,M1,M2) into the quadruple
(M0, n(M0),M1,M2). Next, we bound the number of (M0, n(M0),M1,M2) from above.

The κ-well-conditioned assumption of Theorem 2.2 guarantees that the quadruple
(M0, n(M0),M1,M2) is uniquely determined by the quadruple

(M0M1, n(M0)M1,M0 + M2, n(M0) + M2).

In order to see this, set A = M0M1, B = n(M0)M1, C = M0 + M2 and D = n(M0) + M2. Then
(M0 − n(M0))M1 = A − B and M0 − n(M0) = C − D. Since M − M ′ is invertible for any M �=
M ′ ∈ A, we have M1 = (C − D)−1(A − B). (This is the only place where we use this condition.)
Since M1 is also invertible (as it has a bounded condition number), it follows that M0 = AM−1

1 ,
n(M0) = BM−1

1 and M2 = C − M0.
It suffices to bound the number of (M0M1, n(M0)M1,M0 + M2, n(M0) + M2).
We first choose n(M0)M1 from A · A. There are, of course, |A · A| choices. After fixing this

point, by Lemma 5.1 and the definition of product K-normality, we have Oκ,d(K(|A · A|/|A|))
choices for M0M1. Similarly, we have |A + A| choices for n(M0) + M2 and for each such choice,
we have Oκ,d(K(|A + A|/|A|)) choices for M0 + M2. It follows that

T � |A · A| · Oκ,d

(
K

|A · A|
|A|

)
· |A + A| · Oκ,d

(
K

|A + A|
|A|

)
. (6.2)
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Recall that K is also a constant depending only on κ and d. Putting (6.1) and (6.2) together,
we obtain

4
5
|A|3 � Oκ,d

(
|A · A||A + A|

|A|2
)

,

concluding the proof.

Acknowledgements. The authors thank an anonymous referee for useful comments on a
previous draft.

References

1. J. Bourgain, ‘More on the sum–product phenomenon in prime fields and its applications’, Int. J. Number
Theory 1 (2005) 1–32.

2. M.-C. Chang, ‘Additive and multiplicative structure in matrix spaces’, Comb. Probab. Comput. 16 (2007)
219–238.

3. Gy. Elekes, ‘On the number of sums and products’, Acta Arith. 81 (1997) 365–367.
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