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ABSTRACT

In Valiant’s theory of arithmetic complexity, the classes VP
and VNP are analogs of P and NP. A fundamental problem
concerning these classes is the Permanent and Determinant
Problem: Given a field F of characteristic 6= 2, and an inte-
ger n, what is the minimum m such that the permanent of
an n×n matrix X = (xij) can be expressed as a determinant
of an m × m matrix, where the entries of the determinant
matrix are affine linear functions of xij ’s, and the equal-
ity is in F[X]. Mignon and Ressayre (2004) [11] proved a
quadratic lower bound m = Ω(n2) for fields of characteristic
0. We extend the Mignon-Ressayre quadratic lower bound
to all fields of characteristic 6= 2.

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complex-

ity]: Numerical Algorithms and Problems—Computations

in finite fields, Computations on matrices, Computations on

polynomials

General Terms

Theory

Keywords

Permanent, determinant, arithmetic complexity, finite field

1. INTRODUCTION
Given a set of n2 indeterminates X = (xi,j)i,j=1,...,n over

a field F, we can define

det(X) =
∑

π∈Sn
sign(π)

∏n
i=1 xi,π(i), and

per(X) =
∑

π∈Sn

∏n
i=1 xi,π(i).

The determinant function is certainly one of the most well-
studied functions in mathematics. The permanent function

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

is also well-studied, especially in combinatorics [12]. For
example, if A is a 0-1 matrix then per(A) counts the number
of perfect matchings in a bipartite graph with adjacency
matrix A.

These well-known functions took on important new mean-
ings when viewed from the computational complexity per-
spective. It is well known that the determinant can be com-
puted in polynomial time. In fact it can be computed in the
complexity class NC2. By contrast, Valiant [22, 21] showed
that computing the permanent is #P-complete.

In fact, Valiant [21] (see also [4, 5]) has developed a sub-
stantial theory. The complexity classes VPF and VNPF are
the analogs of P and NP in this theory of arithmetic com-
plexity, and det and per functions are the central objects in
the two classes, respectively. It was shown that the com-
plexity of computing the permanent characterizes the class
VNPF and the complexity of computing the determinant (al-
most) characterizes the class VPF.

More precisely, a family of polynomials {fn} is in VPF if

deg(fn) = nO(1) and there is a family of arithmetic circuits

of size nO(1) computing {fn}. A family of polynomials {gn}
is in VNPF if deg(gn) = nO(1), and there exists a family of
polynomials {fn} ∈ VPF such that

gn(x1, ..., xn) =
∑

y1,...,ym∈{0,1}

fn+m(x1, ..., xn, y1, ..., ym),

where m = nO(1). We say that {fn} is a projection of {gm}
if there are some α1, α2, . . . , αm ∈ F ∪ {x1, . . . , xn}, such
that fn(x1, . . . , xn) = gm(α1, . . . , αm). It is a p-projection if

m = nO(1). A projection is a particularly simple reduction.
It is a special case of an affine linear reduction, where each
αi is an affine linear function of xi’s. Valiant proved that

Theorem 1 (Valiant). For any field F, per ∈ VNPF.

Moreover, for any F with char F 6= 2, any {fn} ∈ VNPF is

a p-projection of per.

It is also known that det is in VPF [23]. More exact char-
acterizations of det were given in terms of polynomial-sized
arithmetic branching programs [7, 19, 24].

Theorem 2 (Valiant). Any polynomial fn is a pro-

jection of detm of an m × m matrix, where m is linear in

the formula size of fn. In particular, if {fn} has polyno-

mial formula size, then {fn} is a p-projection of det. Also

if {fn} ∈ VPF, then fn is the projection of detm for some

m = nO(log n).

491



By Ryser’s formula [12], pern has formula size O(n22n).
Thus by Valiant’s theorem it is the projection of detm, where
m = O(n22n). Furthermore if we view Ryser’s formula as
on the truncated linear row sums directly (instead of on the
variables), then Valiant’s theorem implies that

Theorem 3. For every n, there exists a collection A of

affine linear functions Ak,l(X) over n2 variables, where 1 ≤
k, l ≤ m = O(2n), such that pern(X) = detm(A(X)).

It is remarkable that this is the best general upper bound
known for this.

Definition 1. The determinantal complexity dc of fn is

the minimum integer m, such that there exist affine linear

functions Ak,l(X), where 1 ≤ k, l ≤ m, such that fn(X) =
detm(A(X)).

The question addressed in this paper is about dc(pern).
Valiant’s analog of P 6= NP will follow if one can show a
lower bound dc(pern) = nω(log n).

In some sense this problem has a longer history. Pólya [14]
was the first to ask a question on when one can express a
permanent as a modified determinant. He noticed that

per

(

a b
c d

)

= det

(

a −b
c d

)

,

and asked if there are any similar equations, by affixing ±1 to
the variables, for n ≥ 3. This was answered in the negative
by Szegö [18]. This line of inquiry culminated in

Theorem 4 (Marcus, Minc). If char F = 0 and n ≥
3, then there are no homogeneous linear functions fk,ℓ in the

indeterminates xi,j (1 ≤ i, j, k, ℓ ≤ n) such that per(xi,j) =
det(fk,ℓ).

In terms of dc(pern), this celebrated theorem is equivalent
to dc(pern) ≥ n + 1, over fields of char F = 0 (note that if
the permanental matrix is also n × n, then clearly constant
terms in affine linear equations do not help, as seen by the
homogeneous part.).

The first non-trivial lower bound for dc(pern) is by von zur

Gathen [25], who showed that dc(pern) ≥
√

8/7n. (This was
proved for p-projections.) Von zur Gathen’s result was then
improved independently by Babai and Seress (as reported
in [26]), by Cai [6], and by Meshulam [10]. Their results
were (ignoring lower order terms) dc(pern) ≥

√
2n.

This rather weak lower bound stood as the best bound
until 2004, when Mignon and Ressayre [11] proved that
dc(pern) ≥ n2/2, over any field of char F = 0. Over a field of
char F = p 6= 2, the best bound is a very recent unpublished
result by Valiant [20], which is Ω(n5/4) for projections.

More important than the bound
√

8/7n, von zur Ga-
then [25] introduced a method of taking derivatives and
then comparing appropriate dimensions/ranks. The follow-
up improvements to

√
2n all use this approach.

The Mignon-Ressayre breakthrough [11] uses a new idea:
Take second-order derivatives.

The key step in their proof [11] is to lower bound the rank
of the second derivative matrix H of the permanent at a
certain matrix X0. However, their proof encounters a major
difficulty when char F 6= 0. The matrix H has various non-
zero entries, which is a necessary condition to being of high
rank. But these non-zero entries are all divisible by large
factorials. Thus when char F = p, these entries are all zero,

and the matrix H becomes 0. In this paper we overcome
this difficulty by considering another explicit construction
of matrix X0.

We mention some other related results. In [9], Jerrum and
Snir showed that any monotone arithmetic circuit family
that computes permanent must have exponential size. For
depth-three arithmetic circuits over fields of characteristic 0,
Shpilka and Wigderson [17] proved that the permanent (and
determinant) requires circuit size Ω(n2). For depth-three
arithmetic circuits over finite characteristic, Grigoriev and
Razborov [8] showed an exponential lower bound for both
determinant and permanent. Raz [15] proved a lower bound

of nO(log n) on the size of families of multilinear formulas
computing permanent and determinant. For syntactically
multilinear arithmetic circuits, Raz, Shpilka and Yehuday-
off [16] proved a Ω(n4/3/ log2 n) lower bound for an explicit
multilinear function. A survey of some work on the Perma-
nent and Determinant Problem can be found in [1], where
it also discusses an algebraic geometry approach by Mulmu-
ley and Sohoni [13] and connections to the pseudorandom
generator used in the AKS proof for primality [2, 3].

This paper is organized as follows. In Section 2, we discuss
the general approach by Mignon and Ressayre, and state our
result. In Section 3, we prove an Ω(n2) lower bound valid
for all characteristic 6= 2. In Section 4 we indicate how to
improve the leading constant in Ω(n2) to match the Mignon-
Ressayre bound.

2. THE APPROACH AND THE THEOREM

2.1 The Proof by Mignon and Ressayre
Given an n × n matrix X = (xi,j)i,j=1,2,...,n over a field

F, the determinant det(X) and the permanent per(X) are
both polynomials of degree n over n2 variables. Their partial
derivatives of all orders are defined formally.

We use H(X) = (Hij,kl)i,j,k,l=1,2,...,n to denote the Hes-

sian matrix of per(X):

Hij,kl =
∂2per(X)

∂xi,j ∂xk,l
∈ F[X], for all 1 ≤ i, j, k, l ≤ n.

Similarly, we can define the Hessian matrix of det(X), and
denote it by Hdet(X).

Now suppose that there exists a collection A of m2 affine
linear functions, where A = {Ak,l(x1,1, x1,2, . . . , xn,n), k, l :
1 ≤ k, l ≤ m}, such that in the polynomial ring F[X],

pern(X) = detm

(

(Ak,l(X))1≤k,l≤m

)

. (1)

The first step in the proof by Mignon and Ressayre [11]
is to transform A to a normal form. Consider a fixed ma-
trix X0 ∈ Fn×n such that per(X0) = 0. We expand the
affine linear functions Ak,l(X) at X0, and write (Ak,l(X)) =
(Lk,l(X−X0))+Y0 for some homogeneous linear functions
Lk,l and some matrix Y0 ∈ Fm×m. It follows from (1) that
det(Y0) = per(X0) = 0. Let C and D be two non-singular
matrices such that CY0D is a diagonal matrix

(

0 0

0 Is

)

, where s < m.

It follows from previous work [26, 6, 10] that if (1) holds then
this s must be m − 1. (But it will also follow easily from
the Mignon-Ressayre proof.) Since the first row and column
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of CY0D are both zero, we may multiply diagonal matrices
diag(det(C)−1, 1, . . . , 1) and diag(det(D)−1, 1, . . . , 1) to the
left and right, so we may just assume det(C) = det(D) = 1.
It follows that, by (multiplying matrices C and D to the left
and right, and) renaming Lk,l and Y0, we may assume (1)
takes the form

per(X) = det
(

(

Lk,l (X− X0)
)

+ Y0

)

,

where Y0 = diag(0, 1, . . . , 1).
Now we can take second-order derivatives, and evaluate

them at X0. By the chain rule,

H(X0) = L · Hdet(Y0) · LT ,

where L is an n2×m2 matrix over F. It follows immediately
that rank(H(X0)) ≤ rank(Hdet(Y0)).

It is relatively easy to derive a O(m) upper bound for
the rank of Hdet(Y0). Notice that when one takes a partial
derivative ∂/∂xij on the determinant (as well as on the per-
manent), one simply gets the minor after striking out row i
and column j. Second order derivative ∂2/∂xij∂xkl simply
strikes out rows {i, k} and columns {j, l}. By the form of
Y0, to get a non-zero value for an entry (ij, kl) in Hdet(Y0),
it must be that 1 ∈ {i, k} and 1 ∈ {j, l}. In fact the only
non-zero entries are

(ij, kl) = (11, tt), (tt, 11), (1t, t1) or (t1, 1t),

for all t > 1. This immediately gives a 2m upper bound for
rank(Hdet(Y0)). (If we did not assume s = m − 1, then it
would have been even more difficult to get a non-zero entry
in Hdet(Y0). If s = m − 2, there could be at most O(1)
many non-zero entries. If s < m − 2, there are no non-zero
entries.)

The real work of their proof is to find an explicit X0 such
that per(X0) = 0 and yet rank(H(X0)) is high. For the case
when char F = 0, they constructed an infinite sequence of
n × n matrices X0 such that pern(X0) = 0 and the rank of
the n2 ×n2 matrix H(X0) is full. This gives their quadratic
lower bound m = Ω(n2).

Theorem 5 (Mignon and Ressayre). For any field

of characteristic 0, dc(pern) ≥ n2/2.

However, their matrices X0 do not work for fields F with
small characteristics, e.g., 3. All entries of H(X0) are di-
visible by large factorials, and thus, divisible by char F. As
a result, H(X0) becomes the zero matrix of rank 0. In a
way, to get non-zero values for entries in H(X0), which are
permanental minors of X0, and yet to be able to analyze the
rank, the most natural approach is to assign pretty uniform
values for X0. This is what was done. But these entries are
non-zero by virtue of the fact that they are sums of constant
terms with a large factorial number of terms. Thus the ap-
pearance of large factorials in H(X0) is not surprising. To
avoid these factorials, we have to be more judicious in our
choice of X0. We need it to be not terribly uniform, and yet
sufficiently structured so that we can still calculate the rank
for H(X0).

2.2 Our Main Result
Our main result is a new construction of matrix X0 such

that H(X0) has almost full rank over any field of char F 6=
2. More exactly, we will prove the following theorem in
Section 4:

Theorem 6. Let p > 2 be a prime, then

1. If p 6= 23, then for any n > 2 that satisfies p
∣

∣(n + 1),
there exists an (n + 1) × (n + 1) matrix X0 over finite

field Fp, such that per(X0) ≡ 0 (mod p) and

rank(H(X0)) ≥ (n − 2)(n − 3);

2. If p 6= 3, 5, then for any n > 1 that satisfies p
∣

∣(n + 2),
there exists an (n + 1) × (n + 1) matrix X0 over finite

field Fp, such that per(X0) ≡ 0 (mod p) and

rank(H(X0)) ≥ (n − 2)(n − 3).

This implies the lower bound for dc(pern) over field Fp. (We
remark that a lower bound for Fp is also valid over Q.)

Corollary 1. For any prime p 6= 2, dc(pern) ≥ (n −
2)(n − 3)/2 over a field of char F = p.

To prove the theorem, we introduce, for any v ∈ Fp, and
integer n ≥ 1, the following (n + 1) × (n + 1) matrix Mn

v =
(Mi,j): M(n+1),(n+1) = v, Mi,i = M(n+1),i = Mi,(n+1) = 1
for all i : 1 ≤ i ≤ n, and Mi,j = 0 otherwise. For example,
M3

2 is given by

M
3
2 =









1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 2









.

We will prove the two cases of Theorem 6 using Mn
1 and Mn

2

respectively. Given v and n, the following lemma essentially
defines the Hessian matrix H(Mn

v ) of Mn
v .

Lemma 1. Let H(Mn
v ) = (Hij,kl) ∈ F

(n+1)2×(n+1)2

p , then

for all i, j : 1 ≤ i 6= j ≤ n and k, l : 1 ≤ k 6= l ≤ n, we have

Hij,kl ≡



















v + n − 2 if k = j and l = i;

1 if k = j and l 6= i, j;

1 if l = i and k 6= i, j;

0 otherwise.

Given v ∈ Fp and n ≥ 1, for i and j : 1 ≤ i 6= j ≤ n, we
use Hij to denote the (n2−n)-dimensional vector truncated
from the (ij)th row of H(Mn

v ): here we only keep its (kl)th

entry if 1 ≤ k 6= l ≤ n. For all i, j, k, l satisfying 1 ≤ i 6=
j ≤ n and 1 ≤ k 6= l ≤ n, the following lemma shows the
possible values of the inner product Hij · Hkl.

Lemma 2. Assume i and j satisfy 1 ≤ i 6= j ≤ n, then

1. Hij · Hij = (v + n − 2)2 + 2(n − 2);

2. Hij · Hji = 0;

3. when 1 ≤ k ≤ n and k 6= i, j, Hij · Hik = Hij · Hkj =
2(v + n − 2) + (n − 3);

4. when 1 ≤ k ≤ n and k 6= i, j, Hij ·Hki = Hij ·Hjk = 1;

5. when 1 ≤ k 6= l ≤ n and {k, l}∩{i, j} = ∅, Hij ·Hkl =
2.

Proof. We only prove the first and third cases here. The
other cases can be proved similarly.

For the first case, we run all possibilities (kl) where 1 ≤
k 6= l ≤ n, and the only non-zero entries in Hij · Hij are
(v + n − 2)2 for the index (ji), and 1 for indices (jt) and
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(ti), where 1 ≤ t ≤ n and t 6= i, j. As a result, Hij · Hij =
(v +n− 2)2 +2(n− 2). For the third case, the only non-zero
entries in Hij ·Hik are (v + n − 2) for indices (ji) and (ki),
and 1 for indices (ti), where 1 ≤ t ≤ n and t 6= i, j, k, thus
Hij · Hik = 2(v + n − 2) + (n − 3).

We also need the following lemma concerning the det of
matrices of a specific form.

Lemma 3. Let A = (Ai,j)i,j=1,...,n be an n × n matrix

over Fp satisfying Ai,i = α for all 1 ≤ i ≤ n and Ai,j = β
otherwise. Then,

det(A) =
(

α + (n − 1)β
)

(α − β)n−1.

3. A WEAKER THEOREM
In this section, we prove the following weaker version of

Theorem 6.

Lemma 4. Let p > 2 be a prime, then for any sufficiently

large n satisfying p |(n + 1), we have per(Mn
1 ) ≡ 0 (mod p)

and rank(H(Mn
1 )) = Ω(n2).

Proof. In the proof, we denote matrix Mn
1 by M. Clearly

per(M) = n + 1 ≡ 0 (mod p), so we only need to prove the
second part.

Let S be a maximal subset of integers {i : 1 ≤ i < n/2}
with |S| ≡ 2 (mod p), and T be a maximal subset of {j :
n/2 ≤ j ≤ n} with |T | ≡ 2 (mod p). Both |S| and |T | are
Ω(n).

We will show that there exists a sub-matrix R of H(M)
with |S| · |T | rows, such that, det(RRT ) is non-zero. As a
result, we have

rank
(

H(M)
)

≥ rank(R)

≥ rank(RR
T ) = |S| · |T | = Ω(n2),

and the lemma follows.
To get the matrix R, we choose the following subset of

rows and columns of H(M): rows (ij), where i ∈ S and
j ∈ T ; and columns (kl), where 1 ≤ k 6= l ≤ n. So R is an
(|S| · |T |) × (n2 − n) matrix. Let S = { i1, i2, . . . , i|S| } and
T = {j1, j2, . . . , j|T | }, then we can write R as

R =

























Hi1j1

Hi1j2

...
Hi1j|T |

Hi2j1

...
Hi|S|j|T |

























,

where Hij is the (n2−n)-dimensional vector truncated from
the (ij)th row of H(M).

Consider the inner products of arbitrary two rows of R.
By Lemma 2, we have for i ∈ S and j ∈ T ,

1. Hij ·Hij = (v+n−2)2 +2(n−2) ≡ −2 (mod p), since
v = 1, n ≡ −1 (mod p);

2. when j′ 6= j and j′ ∈ T , Hij · Hij′ = 2(v + n − 2) +
(n − 3) ≡ −8 6≡ 0 (mod p);

3. when i′ 6= i and i′ ∈ S, Hij · Hi′j ≡ −8 6≡ 0 (mod p);

4. when i′ 6= i, j′ 6= j, i′ ∈ S and j′ ∈ T , Hij · Hi′j′ ≡ 2
(mod p).

Now we can write RRT as an |S| × |S| block matrix:

RRT =













A B B · · · B

B A B · · · B

B B A · · · B
...

...
...

. . .
...

B B B · · · A













, where

A =













a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a













, B =













b c c · · · c
c b c · · · c
c c b · · · c
...

...
...

. . .
...

c c c · · · b













,

are both |T | × |T | matrices with a = −2, b = −8 and c = 2.
Next we apply the following operations to RRT : subtract

the second last column from the last column of RRT (here
what we mean by “a column” is a whole block column of
RRT ). Then subtract the third last column from the second
last column . . . till subtract the first column from the second
column. We end up with

















A B −A 0 · · · 0
B A− B B −A · · · 0
B 0 A −B · · · 0
...

...
...

. . .
...

B 0 0 · · · B − A

B 0 0 · · · A − B

















.

Then we add the first row to the second row. Add the second
row to the third row, etc. Finally, we get

















A B − A 0 0 · · · 0
A + B 0 B −A 0 · · · 0
A + 2B 0 0 B −A · · · 0

...
...

...
...

. . .
...

A + (|S| − 2)B 0 0 0 · · · B −A

A + (|S| − 1)B 0 0 0 · · · 0

















.

Clearly, all these operations do not change its determinant.
By using Lemma 3, we have (here we use s and t to denote
|S| − 1 and |T | − 1, respectively)

det(RR
T ) = ±det(A + sB) · (det(B −A))s

= ± (a + sb + t (b + sc)) (a + sb − (b + sc))t

(

(b − a + t (c − b)) (b − a − (c − b))t)s

≡ ±(−16)(−4)t((4)(−16)t)s 6≡ 0 (mod p),

since p > 2. Therefore, we have rank(RRT ) = |S| · |T |, and
the lemma is proven.

4. PROOF OF THE MAIN THEOREM
In this section, we prove Theorem 6. As already men-

tioned in Section 2.2, we will use Mn
1 and Mn

2 to prove the
two cases, respectively. The idea behind the proof is similar
to the previous one. However, the sub-matrix R we pick
this time is a square matrix with n2 − n rows. By showing
that the rank of RRT is almost full, the theorem follows.

Proof of Theorem 6. Let v = 1 in the first case and
v = 2 in the second case. Note that in both cases, we have
n ≡ −v (mod p).

Let S = {(i, j) : 1 ≤ i 6= j ≤ n}, then we use Rv to denote
the following sub-matrix of H(Mn

v ): Row (or column) (ij)
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of H(Mv) is selected if and only if (i, j) ∈ S. Thus, Rv is
an (n2 − n) × (n2 − n) matrix. Again, we write Rv as

Rv =



























H12

H13
...

H1n

H21

H23
...

Hn(n−1)



























,

where Hij is the (n2−n)-dimensional vector truncated from
the (ij)th row of the original matrix H(Mn

v ).
Again use Lemma 2 we have the following cases (under

the assumption that n ≡ −v (mod p)): For (i, j) ∈ S,

1. Hij · Hij = (v + n − 2)2 + 2(n − 2) ≡ −2v (mod p).
We denote −2v by a.

2. Hij · Hji = 0.

3. when 1 ≤ k ≤ n and k 6= i, j, Hij · Hik = Hij · Hkj =
2(v + n− 2) + (n− 3) ≡ −(v + 7) (mod p). We denote
−(v + 7) by b.

4. when 1 ≤ k ≤ n and k 6= i, j, Hij ·Hki = Hij ·Hjk = 1.

5. when 1 ≤ k 6= l ≤ n and {k, l}∩{i, j} = ∅, Hij ·Hkl =
2.

As a result, RvR
T
v is an n × n-block matrix and each block

is an (n − 1) × (n − 1) matrix. An example, when n = 6, is
shown in Fig.1.

In Fig.1, notice that the (1, 2)th block can be transformed
into the (1, 6)th block with the following operations: Move
the 1st row to the 5th row and then move the 2nd −5th rows
up by one row. One can also transform the (1, 6)th block
into the (5, 6)th block by moving the 1st column to the 5th

column and moving the 2nd − 5th columns one column left.
Let A and B be the following (n − 1) × (n − 1) matrices,

A =

















a b b b · · · b
b a b b · · · b
b b a b · · · b
b b b a · · · b
...

...
...

...
. . .

...
b b b b · · · a

















,B =

















0 1 1 1 · · · 1
1 b 2 2 · · · 2
1 2 b 2 · · · 2
1 2 2 b · · · 2
...

...
...

...
. . .

...
1 2 2 2 · · · b

















then we formally state the property observed above in the
following lemma.

Lemma 5. The (1, 2)th block of matrix RvR
T
v is B. For

any i : 1 ≤ i ≤ n − 1, let Ci denote the following (n − 1) ×
(n − 1) matrix:

Ci =





































0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

















i×i

In−1−i





















.

Then for all i, j such that 1 ≤ i < j ≤ n, the (i, j)th block

of matrix RvR
T
v is CT

j−1BCi.

Proof. To prove the lemma it suffices to show that, for
all 1 ≤ i < j < n, the (i, j + 1)th block of RvR

T
v can be

obtained from its (i, j)th block by exchanging the (j − 1)th

and jth rows; and for all 1 ≤ i < j − 1 < n, the (i + 1, j)th

block of RvR
T
v can be obtained from its (i, j)th block by

exchanging the ith and (i+1)th columns. We only prove the
first statement here. Assume i and j satisfy 1 ≤ i < j < n.
We define the following mappings:

γ(l) =











l l 6= j, j + 1;

j + 1 l = j;

j l = j + 1,

and σr(l) =

{

l l ≤ r − 1;

l + 1 l ≥ r,

for all r ∈ Z. One can easily check that for any l ∈ Z, we
have γ(σj(l)) = σj+1(l).

First, our analysis of Hij · Hkl implies that

Hij · Hkl = Hγ(i)γ(j) · Hγ(k)γ(l).

This is because the value of Hij · Hkl only depends on the
equality relations between indices i, j and k, l (e.g., whether
i is equal to k). As a result, exchanging j and j +1 does not
change the inner product.

Second, for all k, k′ : 1 ≤ k, k′ ≤ n − 1, we observe that
the (k, k′)th entry of the (i, j)th block of RvR

T
v is Hi,σi(k) ·

Hj,σj(k′), while the (k, k′)th entry of its (i, j + 1)th block is
Hi,σi(k) ·Hj+1,σj+1(k′). To compare the two blocks, we need
to consider the following cases about k:

1. k < j−1. Then σi(k) ≤ k+1 < j, and thus, γ(σi(k)) =
σi(k). As a result,

Hi,σi(k) · Hj,σj(k′) = Hγ(i),γ(σi(k)) · Hγ(j),γ(σj (k′))

= Hi,σi(k) · Hj+1,σj+1(k′).

2. k > j. Similarly, one can show that

Hi,σi(k) · Hj,σj(k′) = Hi,σi(k) · Hj+1,σj+1(k′).

3. k = j − 1, then γ(σi(k)) = j + 1 = σi(j). So,

Hi,σi(k) · Hj,σj(k′) = Hγ(i),γ(σi(k)) · Hγ(j),γ(σj (k′))

= Hi,σi(j) · Hj+1,σj+1(k′).

4. k = j, then γ(σi(k)) = j = σi(j − 1). Similarly,

Hi,σi(k) · Hj,σj(k′) = Hγ(i),γ(σi(k)) · Hγ(j),γ(σj (k′))

= Hi,σi(j−1) · Hj+1,σj+1(k′).

As a result, the lemma is proven.

Now we know RvR
T
v has the following form (here we let ∗

denote the blocks we don’t care, although we know exactly
what they are, since RvR

T
v is symmetric):























A CT
1 BC1 CT

2 BC1 · · · CT
n−2BC1 CT

n−1BC1

∗ A CT
2 BC2 · · · CT

n−2BC2 CT
n−1BC2

∗ ∗ A · · · CT
n−2BC3 CT

n−1BC3

...
...

...
. . .

...
...

∗ ∗ ∗ · · · A CT
n−1BCn−1

∗ ∗ ∗ · · · ∗ A























.

Again, we will apply matrix operations to RvR
T
v . But before

that, we need to prove the following key property about
the block matrices in RvR

T
v : The difference between the

(i + 1, j + 1)th and (i + 1, j)th blocks is exactly the same as
the difference between the (i, j + 1)th and (i, j)th blocks.
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12 13 14 15 16 21 23 24 25 26 31 32 34 35 36 41 42 43 45 46 51 52 53 54 56 61 62 63 64 65

12 a b b b b 0 1 1 1 1 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2
13 b a b b b 1 b 2 2 2 0 1 1 1 1 1 2 b 2 2 1 2 b 2 2 1 2 b 2 2
14 b b a b b 1 2 b 2 2 1 2 b 2 2 0 1 1 1 1 1 2 2 b 2 1 2 2 b 2
15 b b b a b 1 2 2 b 2 1 2 2 b 2 1 2 2 b 2 0 1 1 1 1 1 2 2 2 b
16 b b b b a 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 0 1 1 1 1

21 0 1 1 1 1 a b b b b b 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2 2
23 1 b 2 2 2 b a b b b 1 0 1 1 1 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2
24 1 2 b 2 2 b b a b b 2 1 b 2 2 1 0 1 1 1 2 1 2 b 2 2 1 2 b 2
25 1 2 2 b 2 b b b a b 2 1 2 b 2 2 1 2 b 2 1 0 1 1 1 2 1 2 2 b
26 1 2 2 2 b b b b b a 2 1 2 2 b 2 1 2 2 b 2 1 2 2 b 1 0 1 1 1

31 1 0 1 1 1 b 1 2 2 2 a b b b b b 2 1 2 2 b 2 1 2 2 b 2 1 2 2
32 b 1 2 2 2 1 0 1 1 1 b a b b b 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2
34 2 1 b 2 2 2 1 b 2 2 b b a b b 1 1 0 1 1 2 2 1 b 2 2 2 1 b 2
35 2 1 2 b 2 2 1 2 b 2 b b b a b 2 2 1 b 2 1 1 0 1 1 2 2 1 2 b
36 2 1 2 2 b 2 1 2 2 b b b b b a 2 2 1 2 b 2 2 1 2 b 1 1 0 1 1

41 1 1 0 1 1 b 2 1 2 2 b 2 1 2 2 a b b b b b 2 2 1 2 b 2 2 1 2
42 b 2 1 2 2 1 1 0 1 1 2 b 1 2 2 b a b b b 2 b 2 1 2 2 b 2 1 2
43 2 b 1 2 2 2 b 1 2 2 1 1 0 1 1 b b a b b 2 2 b 1 2 2 2 b 1 2
45 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 b b b a b 1 1 1 0 1 2 2 2 1 b
46 2 2 1 2 b 2 2 1 2 b 2 2 1 2 b b b b b a 2 2 2 1 b 1 1 1 0 1

51 1 1 1 0 1 b 2 2 1 2 b 2 2 1 2 b 2 2 1 2 a b b b b b 2 2 2 1
52 b 2 2 1 2 1 1 1 0 1 2 b 2 1 2 2 b 2 1 2 b a b b b 2 b 2 2 1
53 2 b 2 1 2 2 b 2 1 2 1 1 1 0 1 2 2 b 1 2 b b a b b 2 2 b 2 1
54 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 1 1 1 0 1 b b b a b 2 2 2 b 1
56 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b b b b b a 1 1 1 1 0

61 1 1 1 1 0 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 a b b b b
62 b 2 2 2 1 1 1 1 1 0 2 b 2 2 1 2 b 2 2 1 2 b 2 2 1 b a b b b
63 2 b 2 2 1 2 b 2 2 1 1 1 1 1 0 2 2 b 2 1 2 2 b 2 1 b b a b b
64 2 2 b 2 1 2 2 b 2 1 2 2 b 2 1 1 1 1 1 0 2 2 2 b 1 b b b a b
65 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 1 1 1 1 0 b b b b a

Figure 1: An example of matrix RvR
T
v when n = 6

Lemma 6. For all 1 ≤ i < j ≤ n such that i + 1 < j and

j + 1 ≤ n, we have

(CT
j − C

T
j−1)BCi+1 = (CT

j − C
T
j−1)BCi.

Proof. For 1 ≤ k ≤ n − 1, we use Bk to denote the kth

row vector of B. We also use B′ to denote (CT
j − CT

j−1)B,

and B′
k to denote the kth row of B′. It is not hard to check

that B′
j−1 = Bj − B1, B′

j = B1 − Bj , and B′
k = 0 for all

k 6= j − 1, j.
On the other hand, all the entries of Bj − B1 are equal

to 1 except the jth entry which is equal to b − 1. As we
assumed that i + 1 < j, we have B′Ci+1 = B′Ci = B′, and
the lemma is proven.

We apply the following operations to RvR
T
v : subtract the

second last column from the last column of RvR
T
v , then

subtract the third last column from the second last column
. . . till subtract the first column from the second column. Let
P denote the upper right sub-matrix, after the operations,
of RvR

T
v containing (n − 1) × (n − 1) blocks (see Fig.2).

Next, we transform P as follows: Subtract the second last
row from the last row, then subtract the third last row from
the second last row . . . till subtract the first row from the
second row. We only need to focus on the lower right part
of P containing (n − 2) × (n − 2) blocks, which we denote

by P∗. It directly follows from Lemma 6 that P∗ is a lower
triangular block matrix, and the block matrices along the
diagonal are:

(

CT
i (B − A)Ci − (CT

i − CT
i−1)BCi−1

)

, i = 2, ..., n − 1.

On the other hand, as implied by the proof of Lemma 6, the
rank of (CT

i − CT
i−1)BCi−1 is exactly 1, so

rank(RvR
T
v ) ≥ rank(P∗)

≥
n−1
∑

i=2

rank
(

C
T
i (B− A)Ci − (CT

i − C
T
i−1)BCi−1

)

≥ (n − 2)
(

rank(B − A) − 1
)

.

Finally, by Lemma 3, the determinant of the lower right
(n − 2) × (n − 2) sub-matrix of B − A is

(

(b − a) + (n − 3)(2 − b)
)(

(b − a) − (2 − b)
)n−3

≡
{

(−46)(−16)n−3 (mod p) when v = 1;

(−60)(−16)n−3 (mod p) when v = 2.

As a result, we have rank(H(Mn
1 )) ≥ rank(R1R

T
1 ) ≥ (n−

2)(n−3) when p 6= 23; and rank(H(Mn
2 )) ≥ rank(R2R

T
2 ) ≥

(n − 2)(n − 3) when p 6= 3, 5.
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P =















CT
1 (B− A)C1 (CT

2 − CT
1 )BC1 (CT

3 − CT
2 )BC1 · · · (CT

n−1 − CT
n−2)BC1

∗ CT
2 (B − A)C2 (CT

3 − CT
2 )BC2 · · · (CT

n−1 − CT
n−2)BC2

∗ ∗ CT
3 (B −A)C3 · · · (CT

n−1 − CT
n−2)BC3

...
...

...
. . .

...
∗ ∗ ∗ · · · CT

n−1(B −A)Cn−1















Figure 2: Matrix P transformed from RvR
T
v

A natural question is what makes this sequence of matrices
works for the proof. We can only offer our take on this. We
believe that probably most matrices X, where per(X) = 0,
will work, i.e., its Hessian will have a quadratic rank. The
problem is rather how to prove this. Over characteristic 0,
Mignon and Ressayre gave a construction which is essentially
the all 1 matrix (except the (1, 1) entry to make per(X) = 0).
This makes most second derivatives in the Hessian of the
permanent a constant (but involving a large factorial). The
key to our matrix is to choose it sufficiently uniform so that
we can still prove its rank analytically, but not so uniform
so as to involve large factorials.
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