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ABSTRACT: We give a short proof that any k-uniform hypergraph H on n vertices with bounded
degree � has Ramsey number at most c(�, k)n, for an appropriate constant c(�, k). This result was
recently proved by several authors, but those proofs are all based on applications of the hypergraph
regularity method. Here we give a much simpler, self-contained proof which uses new techniques
developed recently by the authors together with an argument of Kostochka and Rödl. Moreover, our
method demonstrates that, for k ≥ 4,

c(�, k) ≤ 22..
.2c�

,

where the tower is of height k and the constant c depends on k. It significantly improves on the
Ackermann-type upper bound that arises from the regularity proofs, and we present a construction
which shows that, at least in certain cases, this bound is not far from best possible. Our methods also
allows us to prove quite sharp results on the Ramsey number of hypergraphs with at most m edges.
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1. INTRODUCTION

For a graph H, the Ramsey number r(H) is the least positive integer N such that, in every
two-coloring of the edges of complete graph KN on N vertices, there is a monochromatic
copy of H. Ramsey’s theorem states that r(H) exists for every graph H. A classical result
of Erdős and Szekeres, which is a quantitative version of Ramsey’s theorem, implies that
r(Kk) ≤ 22k for every positive integer k. Erdős showed using probabilistic arguments that
r(Kk) > 2k/2 for k > 2. Over the last 60 years, there have been several improvements on
these bounds (see, e.g., [4]). However, despite efforts by various researchers, the constant
factors in the above exponents remain the same.

Determining or estimating Ramsey numbers is one of the central problems in combina-
torics, see the book Ramsey theory [17] for details. Besides the complete graph, the next
most classical topic in this area concerns the Ramsey numbers of sparse graphs, i.e., graphs
with certain upper bound constraints on the degrees of the vertices. The study of these Ram-
sey numbers was initiated by Burr and Erdős [2] in 1975, and this topic has since played
a central role in graph Ramsey theory. Burr and Erdős conjectured, and it was proved by
Chvátal, Rödl, Szemerédi, and Trotter [3], that for every graph G on n vertices and maximum
degree �,

r(G) ≤ c(�)n.

Their proof of this theorem is a classic application of Szemerédi’s beautiful regularity
lemma. However, the use of this lemma makes the upper bound on c(�) grow as a tower
of 2s with height exponential in �. Eaton [8] used a variant of the regularity lemma to
obtain the upper bound c(�) ≤ 22c�

for some fixed c. A novel approach of Graham, Rödl,
Rucinski [15] that did not use any form of the regularity lemma gives the upper bound
c(�) ≤ 2c� log2 � for some fixed c. In the other direction, in [16] they proved that there is
a positive constant c such that, for every � ≥ 2 and n ≥ � + 1, there is a bipartite graph
G with n vertices and maximum degree at most � satisfying r(G) ≥ 2c�n. Recently, the
authors [5,12] closed the gap for bipartite graphs by showing that, for every bipartite graph
G with n vertices and maximum degree �, r(G) ≤ 2c�n for some fixed c.

A hypergraph H = (V , E) consists of a vertex set V and an edge set E, which is a
collection of subsets of V . A hypergraph is k-uniform if each edge has exactly k vertices.
The Ramsey number r(H) of a k-uniform hypergraph H is the smallest number N such
that, in any 2-coloring of the edges of the complete k-uniform hypergraph K (k)

N , there is
guaranteed to be a monochromatic copy of H. The existence of these numbers was proven
by Ramsey [23], but no proper consideration of the values of these numbers was made
until the paper by Erdős and Rado [11]. To understand the growth of Ramsey numbers for
hypergraphs, it is useful to introduce the tower function ti(x), which is defined by t1(x) = x
and ti+1(x) = 2ti(x), i.e.,

ti+1(x) = 22..
.2x

,

where the number of 2s in the tower is i. Erdős and Rado showed that for H being the
complete k-uniform hypergraph K (k)

l , r(H) ≤ tk(cl), where the constant c depends on k. In
the other direction, Erdős and Hajnal (see [17]) proved that for H = K (k)

l , r(H) ≥ tk−1(cl2),
where the constant c depends on k.

One can naturally try to extend the sparse graph Ramsey results to hypergraphs.
Kostochka and Rödl [19] showed that for every ε > 0, the Ramsey number of any k-uniform
hypergraph H with n vertices and maximum degree � satisfies
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r(H) ≤ c(�, k, ε)n1+ε ,

where c(�, k, ε) only depends on �, k, and ε. Since the first proof of the sparse graph
Ramsey theorem used Szemerédi’s regularity lemma, it was therefore natural to expect that,
given the recent advances in developing a hypergraph regularity method [14,22,24], linear
bounds might as well be provable for hypergraphs. Such a program was indeed recently
pursued by several authors (Cooley, Fountoulakis, Kühn, and Osthus [6, 7]; Nagle, Olsen,
Rödl, and Schacht [21]), with the result that we now have the following theorem:

Theorem 1. Let � and k be positive integers. Then there exists a constant c(�, k) such
that the Ramsey number of any k-uniform hypergraph H with n vertices and maximum
degree � satisfies

r(H) ≤ c(�, k)n.

In this article we will give a short proof of this theorem, which is much simpler and
avoids all use of the regularity lemma, building instead on techniques developed recently
by Conlon [5] and by Fox and Sudakov [12] to study embeddings of sparse bipartite graphs
in dense graphs.

The first main result of this article is an extension of this work from graphs to hypergraphs.
An l-uniform hypergraph is l-partite if there is a partition of the vertex set into l parts such
that each edge has exactly one vertex in each part. We prove the following Turán-type result
for l-uniform l-partite hypergraphs:

Theorem 2. There exists a constant c = c(l) such that if F is an l-uniform l-partite hyper-
graph with n vertices and maximum degree � and G is an l-uniform l-partite hypergraph
with parts of size N ≥ (ε/2)−c�l−1

n and at least εNl edges, then G contains a copy of F.

Then, in Section 3, we will prove Theorem 1 by applying an argument of Kostochka and
Rödl which shows that the Ramsey problem for general hypergraphs may be reduced to an
application of the Turán theorem in the l-uniform l-partite case. This argument combined
with our Theorem 2 shows that, for k ≥ 4 and k-uniform hypergraph H with n vertices and
maximum degree �,

r(H) ≤ tk(c�)n,

where the constant c depends on k. For k = 3, the proof shows that r(H) ≤ t3(c� log �)n.
This is clearly much better than the Ackermann-type upper bound that arises from the regu-
larity proofs. The tower-type upper bound cannot be avoided as demonstrated by the lower
bound of Erdős and Hajnal for the Ramsey number of the complete k-uniform hypergraph
on n vertices. This hypergraph has maximum degree � = (n−1

k−1

)
and Ramsey number at

least tk−1(c�
2

k−1 )n, where the constant c depends on k.
For k-uniform hypergraphs H1, . . . , Hq, the multicolor Ramsey number r(H1, . . . , Hq)

is the minimum N such that, in any q-coloring of the edges of the complete k-uniform
hypergraph K (k)

N with colors 1, . . . , q, there is a monochromatic copy of Hi in color i for
some i, 1 ≤ i ≤ q. The proof of Theorem 1 presented here extends in a straightforward
manner to the multicolor generalization, which states that for all positive integers �, k,
and q, there exists a constant c(�, k, q) such that, if H1, . . . , Hq are k-uniform hypergraphs
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4 CONLON, FOX, AND SUDAKOV

each with n vertices and maximum degree �, then r(H1, . . . , Hq) ≤ c(�, k, q)n. The proof
demonstrates that we may take c(�, k, q) ≤ tk(c�) for k ≥ 4 and c(�, 3, q) ≤ t3(c� log �),
where the constant c depends on k and q. In the other direction, in Section 4 we construct,
for each sufficiently large �, a 3-uniform hypergraph H with maximum degree at most �

for which the 4-color Ramsey number of H satisfies r(H, H, H, H) ≥ t3(c�)n, where n
is the number of vertices of H. This example shows that our upper bound for hypergraph
Ramsey numbers is probably close to being best possible.

The same example also shows that there is a 3-uniform hypergraph H with m edges for
which the 4-color Ramsey number of H is at least t3(c

√
m). On the other hand, one can easily

deduced from the proof of Theorem 1 that for any k-uniform hypegraph H with m edges,
we have that the q-color Ramsey number of H satisfies r(H, · · · , H) ≤ t3(c

√
m log m) for

k = 3, and r(H, · · · , H) ≤ tk(c
√

m) for k ≥ 4, where c depends on k and q.

2. A TURÁN THEOREM FOR l -UNIFORM l -PARTITE HYPERGRAPHS

The following is a generalization to hypergraphs of a lemma which has appeared increasingly
in the literature on Ramsey theory, whose proof uses a probabilistic argument known as
dependent random choice. Early versions of this technique were developed in the papers
[13,18,25]. Later, variants were discovered and applied to various Ramsey and density-type
problems (see, e.g., [1, 5, 12, 19, 20, 26]). We define the weight w(S) of a set S of edges in
a hypergraph to be the size of the union of these edges, i.e., the number of vertices that are
contained in at least one of these edges.

Lemma 1. Suppose s, � are positive integers, ε, β > 0, and Gr = (V1, · · · , Vr ; E) is
an r-uniform r-partite hypergraph with |V1| = |V2| = · · · = |Vr| = N and at least εNr

edges. Then there exists an (r − 1)-uniform (r − 1)-partite hypergraph Gr−1 on the vertex
sets V2, · · · , Vr which has at least εs

2 Nr−1 edges and such that for each nonnegative integer
w ≤ (r − 1)�, there are at most 4r�ε−sβswr�rwNw dangerous sets of edges of Gr−1 with
weight w, where a set S of edges of Gr−1 is dangerous if |S| ≤ � and the number of vertices
v ∈ V1 such that for every edge e ∈ S, e + v ∈ Gr is less than βN.

Proof. Let C be the complete (r −1)-uniform (r −1)-partite hypergraph on the vertex sets
V2, · · · , Vr . For any edge e in C, let d(e) be the degree of e in Gr , i.e., the number of vertices
in V1 such that e + v ∈ Gr . Let T be a set of s random vertices of V1, chosen uniformly
with repetitions. Let A be the set of edges in C which are common neighbors of the vertices
of T , i.e., an edge e of C is in A if e + v is an edge of Gr for all v ∈ T . Let X denote the
cardinality of A. We will show that with positive probability, the set A will be the edge set
of a hypergraph Gr−1 on vertex sets V2, . . . , Vr with the desired properties. By linearity of
expectation and by convexity of f (z) = zs,

E[X] =
∑
e∈C

P[e ∈ A] =
∑
e∈C

(
d(e)

N

)s

≥
Nr−1

(∑
e∈C d(e)

Nr−1

)s

Ns
≥ Nr−1(εN)s

Ns
= εsNr−1.
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Note that X ≤ Nr−1 since C has Nr−1 edges. Letting p denote the probability that
X ≥ E[X]/2, we have

E[X] ≤ (1 − p)E[X]/2 + pNr−1 ≤ E[X]/2 + pNr−1.

So the probability p that X ≥ E[X]/2 ≥ εsNr−1/2 satisfies p ≥ E[X]
2Nr−1 ≥ εs/2.

The number of subsets S of V2 ∪ . . . ∪ Vr of size w is
(
(r−1)N

w

)
. For a given w-set S, the

number of collections {e1, . . . , et} of size t with |ei| = r − 1, and ei ⊂ S for 1 ≤ i ≤ t is(( w
r−1)

t

)
. Hence, summing over all nonnegative t ≤ �, the number of sets of edges of C with

weight w and size at most � is at most

�∑
t=0

(( w
r−1

)
t

)(
(r − 1)N

w

)
≤ wr�(rN)w = wr�rwNw.

Let Yw denote the random variable counting the number of dangerous sets S of edges of
Gr−1 with weight w. We next give an upper bound on E[Yw]. For a given set S of edges of
C, the probability that S is a subset of edges of Gr−1 is

( |N(S)|
N

)s
, where N(S) denotes the set

of vertices v ∈ V1 with v + e an edge of Gr for all e ∈ S. So if S satisfies |N(S)| < βN , then
the probability that S is a subset of edges of Gr−1 is less than βs. By linearity of expectation,
we have E[Yw] < βswr�rwNw.

Let α = 4r�ε−s. Since Yw is a nonnegative random variable, Markov’s inequality implies
that P(Yw ≥ αE[Yw]) ≤ 1

α
. Hence, the probability that there is a nonnegative integer

w ≤ (r − 1)� with Yw ≥ αβswr�rwNw is at most r�/α = εs/4. Since the probability that
X ≥ εs

2 Nr−1 is at least εs/2, we can satisfy the conditions of the lemma with probability at
least εs/4.

By simply iterating the previous lemma l − 1 times, we obtain the following corollary.

Corollary 1. Suppose s, � are positive integers, ε, β > 0, and Gl = (V1, · · · , Vl; El) is
an l-uniform l-partite hypergraph with |V1| = |V2| = · · · = |Vl| = N and at least εNl

edges. Let δl = ε and δr−1 = δs
r/2 for 2 ≤ r ≤ l. Then, for 1 ≤ r ≤ l − 1, there are

r-uniform r-partite hypergraphs Gr = (Vl−r+1, . . . , Vl, Er) with the following properties:

1. Gr has at least δrNr edges for 1 ≤ r ≤ l, and
2. for 2 ≤ r ≤ l and each nonnegative integer w ≤ (r − 1)�, there are at most

4r�δ−s
r βswr�rwNw dangerous subsets of Gr−1 with weight w, where a set S of edges

of Gr−1 is dangerous if |S| ≤ � and the number of vertices v ∈ Vl−r+1 such that for
every edge e ∈ S, e + v ∈ Gr is less than βN.

This is all the preparation we need before proving our main contribution, Theorem 2.
For the proof, we will use Corollary 1 and then show how to embed F into G. The latter
part is closely related to the many embedding results proven by Fox and Sudakov in [12].
We will actually prove the following more precise version of Theorem 2:

Theorem 3. Let l ≥ 3, F be an l-uniform l-partite hypergraph, on vertex sets W1, · · · , Wl,
with at most n vertices and maximum degree �. Let Gl be an l-uniform l-partite graph, on
vertex sets V1, · · · , Vl with |V1| = · · · = |Vl| = N, with at least εNl edges. Then, provided
that N ≥ (ε/2)−(2l�)l−1

n, Gl contains a copy of F.

Random Structures and Algorithms DOI 10.1002/rsa



6 CONLON, FOX, AND SUDAKOV

Proof. We apply Corollary 1 with s = 2l�, δl = ε, δi−1 = δs
i /2 for 2 ≤ i ≤ l, and β =

2(ε/2)(2l�)l−1
to get hypergraphs Gl−1, . . . , G1 with the properties guaranteed by Corollary

1. It is easy to check by induction on i that δl−i = 2−(si−1)/(s−1)εsi
, so

δ1 = 2−(sl−1−1)/(s−1)εsl−1 ≥ 2(ε/2)(2l�)l−1 = β

and δ1N ≥ βN ≥ 2n.
We now construct an l�-uniform bad hypergraph B with vertex set V1 ∪ . . . ∪ Vl where

each edge of B has exactly � vertices in each Vi. A set T ⊂ V1 ∪ . . . ∪ Vl which contains
exactly � vertices in each Vi is an edge of B if and only if there is a dangerous set S of edges
of Gr for some r, 1 ≤ r ≤ l − 1, such that the union of the edges of S is a subset of T . In
other words, an edge of B is just an extension of the union of the edges of a dangerous set.
For a particular dangerous set S of edges with weight w in some Gr , the number of edges of
B that are extensions of the union of the edges in S is at most Nl�−w since there are at most
N ways to pick each of the l�− w remaining vertices that make up an edge. Summing over
all r and w, and using the fact that l ≥ 3 and, for r ≥ 2, δs

r ≥ δs
2 = 2δ1 ≥ 2β, the number

of edges of B is at most

l∑
r=2

(l−1)�∑
w=0

4r�δ−s
r βswr�rwNl� ≤ l2� · 2l�βs−1(l�)l�ll�Nl� = 2l3�2(l2�)l�β l�−1β l�Nl�

≤ 21+3(l�)2
β l�−1β l�Nl� ≤ 21+3(l�)2

2(1−(2l�)l−1)(l�−1)β l�Nl�

≤ 2−4(l�)2
β l�Nl� <

(
β

4l�

)l� (
N

l�

)
.

Call a set U ⊂ V1 ∪ . . . ∪ Vl with at most � vertices in each Vi bad if there are at least

(
β

4l�

)l�−|U| ( N

l� − |U|
)

edges of B that contain U; otherwise call U good. Note that the above calculation on the
number of edges of B demonstrates that the empty set is good. We next prove the following
important claim.

Claim 1. If S is a dangerous set of edges in Gr for some r, 1 ≤ r ≤ l − 1, and U is a
good set, then the union of the edges in S is not a subset of U.

Proof. Suppose for contradiction that the union of the edges in S is a subset of U. The
number of extensions of U to a set which contains exactly � vertices in each Vi is

l∏
i=1

(
N − |Vi ∩ U|
� − |Vi ∩ U|

)

since we can pick for each i any �−|Vi ∩U| vertices of Vi \U to extend U. By definition, all
of these sets are edges in B. Using the simple fact that if x1, . . . , xl are nonnegative integers

Random Structures and Algorithms DOI 10.1002/rsa
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then
∏l

i=1 xi! ≤ (
∑l

i=1 xi)!, it is straightforward to check that

l∏
i=1

(
N − |Vi ∩ U|
� − |Vi ∩ U|

)
≥ (N/2)l�−|U|

l∏
i=1

(� − |Vi ∩ U|)!−1 ≥
(

1

2

)l�−|U| ( N

l� − |U|
)

≥
(

β

4l�

)l�−|U| ( N

l� − |U|
)

,

which contradicts U being good.

Given a good set U with |Vi ∩ U| < � and v ∈ Vi \ U, we say v is bad with respect to U
if U ∪ {v} is bad. Let BU denote the set of vertices that are bad with respect to U. We will
show that for U good we have |BU | ≤ βN

4l� . Indeed, suppose |BU | >
βN
4l� . Then the number

of pairs (T , v) with T an edge of B, U ⊂ T , v ∈ T \ U, and U ∪ {v} is bad is at least

|BU |
(

β

4l�

)l�−|U|−1 (
N

l� − |U| − 1

)
.

Therefore, the number of edges of B containing U is at least

|BU |
l� − |U|

(
β

4l�

)l�−|U|−1 (
N

l� − |U| − 1

)
>

(
β

4l�

)l�−|U| ( N

l� − |U|
)

,

contradicting the fact that U is good.
Fix a labeling {v1, · · · , vn} of the vertices of F such that all vertices in Wi+1 precede all

those in Wi for all i = 1, · · · , l − 1. For each i, let Li = {v1, · · · , vi}. For each vertex vh, the
trace neighborhood N(vh) is the set of vertices vm with m < h that are in an edge of F with
vh. Note that N(vh) contains at most � vertices in each Wr since F has maximum degree
�. We will find an embedding f of the vertices of F such that f (Wr) ⊂ Vr for 1 ≤ r ≤ l
and for each i ≤ n,

1. f (N(v) ∩ Li) is good for each vertex v of F, and
2. f (e ∩ Li) is an edge of Gr for each edge e of F, where r = |e ∩ Li|.

The proof will be complete once we find such an embedding f since, for each edge e of F,
f (e ∩ Ln) = f (e) is an edge of Gl, so f provides an embedding of F in Gl. The embedding
will be constructed one vertex at a time, in increasing order of subscript, so the proof will be
by induction on i. As noted earlier, the empty set is good, so our base case i = 0 is satisfied.

Suppose then that at step i, we have found an embedding f of v1, . . . , vi such that

1. for each vertex v of F, f (N(v) ∩ Li) is good, and
2. for each edge e of F, f (e ∩ Li) is an edge of Gr , where r = |e ∩ Li|.

Let j be such that vi+1 ∈ Wj. Let e1, . . . , ed denote the edges of F that contain vi+1 and
e′

1, . . . , e′
d denote the truncations of e1, . . . , ed by deleting all j vertices from each et that

are in some Wh with h ≤ j. Each e′
t consists of one vertex from each Wh with h > j. Also,

d ≤ � since F has maximum degree �.
Since F has maximum degree �, there are less than l� vertices v for which vi+1 ∈ N(v).

For each such v, f (N(v) ∩ Li) is good, so there are at most β

4l� N vertices w in Vj for which

Random Structures and Algorithms DOI 10.1002/rsa
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f (N(v) ∩ Li) ∪ w is bad. Adding over all such v, we conclude that there are at most β

4 N bad
vertices in all associated with vi+1.

Suppose we are still embedding vertices of Wl in Vl. Since the edge set of G1 is just a
subset of Vl whose size by Corollary 1 is at least δ1N = βN , then we can choose any of
these at least βN vertices other than f (v1), . . . , f (vi) for f (vi+1) to satisfy the second of the
two desired properties for f (vi+1). We see that there are at least βN − i− β

4 N >
3βN

4 −n > 0
vertices to choose from for f (vi+1) to satisfy both of the desired properties.

If, now, we have chosen all of the vertices in Wl, · · · , Wj+1 and we are trying to embed
vertex vi+1 in Wj (we may have already embedded other vertices in Wj), we can do so. To
see this, by the induction hypothesis, f (N(vi+1) ∩ Li) = f (N(vi+1)) = ⋃d

t=1 f (e′
t) is good.

By Claim 1, this implies that the set {f (e′
1), . . . , f (e′

d)} of edges of Gl−j is not dangerous, i.e.,
there are at least βN vertices v ∈ Vj such that f (e′

t) ∪ v is an edge of Gl−j+1 for 1 ≤ t ≤ d.
Therefore, since there are at most β

4 N bad vertices associated with vi+1 and we have already
chosen f (v1), . . . , f (vi), we have at least 3

4βN − i > 3
4βN −n > 0 choices for f (vi+1), which

completes the proof.

3. THE RAMSEY THEOREM

We are now ready to prove Theorem 1 in the following form:

Theorem 4. Let � and k ≥ 3 be positive integers. Then the Ramsey number of any
k-uniform hypergraph H with n vertices and maximum degree � satisfies

r(H) ≤ rk(k�)(2k�2)k�
n,

where rk(l) = r(K (k)

l ).

Proof. We use the argument of Kostochka and Rödl [19] together with Theorem 3. Let
l = (k−1)�+1. Suppose we have a red-blue coloring of the complete k-uniform hypergraph
on N vertices. Let G be the hypergraph consisting of all the red edges and let rk(l) be the
Ramsey number of the hypergraph K (k)

l . Then, in each subset of the vertices of size rk(l),
there is at least one monochromatic K (k)

l . Counting over all such sets and dividing out by
possible multiple counts we see that we have at least

( N
rk (l)

)
( N−l

rk (l)−l

) ≥ Nl

rk(l)l

monochromatic K (k)

l . Therefore, either G or its complement G contains at least Nl/2rk(l)l

cliques K (k)

l . We will suppose that it is G.
Consider now the l-uniform hypergraph G(l) on the same vertex set as G whose edges

are exactly those l-tuples which form a complete K (k)

l in G. This hypergraph has at least
Nl/2rk(l)l edges. Partition its vertex set randomly into l parts V1, · · · , Vl of equal size
N/l. The total number of partitions is N !

(N/l)!l and, for any given edge e, there are l! (N−l)!
(N/l−1)!l

Random Structures and Algorithms DOI 10.1002/rsa
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partitions such that each vertex of this edge is in a different part of the partition. Therefore,
the expected number of edges with one vertex in each set of the random partition is at least

e(G(l))

(
l! (N − l)!

(N/l − 1)!l
/

N !
(N/l)!l

)
≥ Nl

2rk(l)l
· l! (N − l)!

(N/l − 1)!l
(N/l)!l

N !
≥ Nl

2rk(l)l

l!
ll

= l!
2rk(l)l

(
N

l

)l

.

Now choose such a partition and let Ĝ(l) be the l-uniform l-partite subhypergraph of G(l)

consisting of those edges of G(l) which have one edge in each partite set. Note that Ĝ(l) has
N/l vertices in each part and at least ε

(
N
l

)l
edges, where ε = l!

2rk (l)l .

Now we extend H to an l-uniform l-partite hypergraph H (l). We first note that the vertices
of H can be partitioned into l subsets A1, . . . , Al such that each edge of H has at most one
vertex in each part. This is equivalent to saying that the graph H ′ with the same vertex set
as H and with two vertices adjacent if they lie in an edge of H has chromatic number at
most l. Since H ′ has maximum degree at most (k − 1)�, it has chromatic number at most
(k − 1)� + 1 = l. For each edge e of H, we add one auxiliary vertex to each Ai which is
disjoint from e (in total l − k vertices). Note that the maximum degree of H (l) remains �.
The total number of auxiliary vertices added is at most �n

k · (l − k) < �(� − 1)n since
there are l − k auxiliary vertices for each edge and the total number of edges of H is at most
�n
k . Hence, H (l) has less than �2n vertices.

Applying Theorem 3 with F = H (l), Gl = Ĝ(l), and ε = l!
2rk (l)l we see that, provided

N

l
≥ (ε/2)−(2l�)l−1 · �2n,

Ĝ(l) contains a copy of H (l). But now, by the construction of H (l), this implies that every
edge in H is contained inside an edge of Ĝ(l). But Ĝ(l) was chosen in such a way that every
k-tuple within any edge of Ĝ(l) is an edge in G. Therefore G contains a copy of H , so we
are done.

As mentioned in the introduction, the proof of Theorem 1 presented here extends in a
straightforward manner to the following multicolor generalization.

Theorem 5. For all positive integers �, k, and q, there exists a constant c(�, k, q) such
that, if H1, . . . , Hq are k-uniform hypergraphs each with n vertices and maximum degree �,
then

r(H1, . . . , Hq) ≤ c(�, k, q)n.

The only difference in the proof is in Theorem 4, where we replace rk(l) by rk(l; q),
the q-color Ramsey number for the complete k-uniform hypergraph on l vertices. Erdős
and Rado [11] showed that rk(l; q) ≤ tk(cl), where the constant c depends on k and q. We
therefore may take c(�, k, q) ≤ tk(c�) for k ≥ 4 and c(�, 3, q) ≤ t3(c� log �), where the
constant c depends on k and q.

Remark. The strong chromatic number of a hypergraph H is the minimum number of
colors required to color the vertices of H so that each edge of H has no repeated color.
The proof of Theorem 4 demonstrates that if H is a k-uniform hypergraph with n vertices,

Random Structures and Algorithms DOI 10.1002/rsa



10 CONLON, FOX, AND SUDAKOV

maximum degree �, and strong chromatic number l, then the q-color Ramsey number of
H satisfies

r(H, · · · , H) ≤ rk(l; q)(2l�)l · n.

Indeed, in the proof of Theorem 4, we only used the fact that the vertices of H can be
partitioned into l parts such that every edge has at most one vertex in each part.

4. LOWER BOUND CONSTRUCTION

The following theorem demonstrates that our upper bound for hypergraph Ramsey numbers
proved in the previous section in some cases cannot be improved significantly.

Theorem 6. There is c > 0 such that for each sufficiently large �, there is a 3-uniform
hypergraph H with maximum degree at most � for which the 4-color Ramsey number of H
satisfies

r(H, H, H , H) ≥ 22c�
n,

where n is the number of vertices of H.

Proof. Our proof uses the same 4-edge-coloring of the complete 3-uniform hypergraph
that was constructed by Erdős and Hajnal (see, e.g., [17]). Not only does this coloring have
no large monochromatic complete 3-uniform hypergraph, but we show it also does not have
any monochromatic copies of a much sparser 3-uniform hypergraph H.

Let n ≥ 4 be even, m = 	2n/4
, and suppose the edges of the complete graph Km are
colored red or blue in such a way that neither color contains a monochromatic copy of the
graph Kn/2. Such an edge-coloring exists by the lower bound of Erdős (see [17]) on the
Ramsey number of the complete graph.

Let V = {v1, · · · , vn} be a set of vertices and let H be the 3-uniform hypergraph on V
whose edge set is given by {vi, vi+1, vj} for all 1 ≤ i, j ≤ n. (Note that when i = n, we
consider i + 1 to be equal to 1.) It is straightforward to check that every vertex in H has
degree � ≤ 3n.

We are going to define a 4-coloring of the complete 3-uniform hypergraph on the set

T = {(γ1, · · · , γm) : γi = 0 or 1}
in such a way that there is no monochromatic copy of H. Note that then we will be done,
since T has size 2m ≥ 22n/4

while H has maximum degree � ≤ 3n.
To define our coloring, we need some definitions:
If ε = (γ1, · · · , γm), ε ′ = (γ ′

1, · · · , γ ′
m), and ε �= ε ′, define

δ(ε, ε ′) = max
{
i : γi �= γ ′

i

}
,

that is, δ(ε, ε ′) is the largest coordinate at which they differ. We can now define an ordering
on T by

ε < ε ′ if γδ = 0, γ ′
δ = 1,

ε ′ < ε if γδ = 1, γ ′
δ = 0,

Random Structures and Algorithms DOI 10.1002/rsa
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where δ = δ(ε, ε ′). Another way of looking at this ordering is to assign to each ε the number
b(ε) = ∑m

i=1 γi2i−1. The ordering then says simply that ε < ε ′ iff b(ε) < b(ε ′).
It is important to note the following two properties of the function δ:

(a) if ε1 < ε2 < ε3, then δ(ε1, ε2) �= δ(ε2, ε3);
(b) if ε1 < ε2 < · · · < εr , then δ(ε1, εr) = max1≤i≤r−1 δ(εi, εi+1).

Now we are ready to define our coloring of the complete 3-uniform hypergraph τ on
vertex set T . To begin, suppose that {ε1, ε2, ε3} with ε1 < ε2 < ε3 is an edge in τ . Write
δ1 = δ(ε1, ε2), δ2 = δ(ε2, ε3). Then we color as follows:

C1, if {δ1, δ2} is red and δ1 < δ2;

C2, if {δ1, δ2} is red and δ1 > δ2;

C3, if {δ1, δ2} is blue and δ1 < δ2;

C4, if {δ1, δ2} is blue and δ1 > δ2,

where red and blue refer to the edge-coloring of Km.
Now, let S = {ε1, . . . , εn}< be an ordered n-tuple (that is, ε1 < ε2 < · · · < εn) within τ

and suppose that there is a copy of H on S which is colored by C1. Suppose that the natural
cycle {v1, . . . , vn} associated with H occurs as {επ(1), . . . , επ(n)} where π is a permutation of
1, . . . , n. For each i, 1 ≤ i ≤ n, let φ(i) = max(π(i), π(i + 1)) and ψ(i) = min(π(i), π(i +
1)).

We claim that δφ(i)−1 = δ(εφ(i)−1, εφ(i)) must be larger than δj = δ(εj, εj+1) for all j <

φ(i) − 1. Suppose that ψ(i) < φ(i) − 1 and consider the triple {εψ(i), εφ(i)−1, εφ(i)}<, which
is an edge of the copy of H on S. The coloring C1 implies that

δφ(i)−1 = δ(εφ(i)−1, εφ(i)) > δ(εψ(i), εφ(i)−1) = max
ψ(i)≤j<φ(i)−1

δj.

This proves the claim for ψ(i) ≤ j < φ(i) − 1. Next consider the triple {εj, εψ(i), εφ(i)}<

with j < ψ(i), which is also an edge of the copy of H on S. The coloring C1 implies that

δj ≤ δ(εj, εψ(i)) < δ(εψ(i), εφ(i)) = δφ(i)−1,

since δφ(i)−1 > δj for all ψ(i) ≤ j < φ(i) − 1. This proves the claim in the remaining cases
1 ≤ j < φ(i) − 1.

Consider the set {φ(2i − 1)}n/2
i=1, which contains n/2 distinct elements since φ(2i −

1) = max(π(2i − 1), π(2i)) and these pairs are disjoint. Let j1, . . . , jn/2 be a permutation
of the odd numbers up to n − 1 such that φ(j1) < · · · < φ(jn/2). By the claim in the
previous paragraph, we have δφ(j1)−1 < · · · < δφ(jn/2)−1. Consider, for each r < s with
r, s ∈ {1, · · · , n/2}, the triple {εψ(jr ), εφ(jr ), εφ(js)}<, which is an edge of the copy of H
on S. Since ψ(jr) < φ(jr) < φ(js), by property (b) of function δ and the claim above,
δ(εψ(jr ), εφ(jr )) = δφ(jr )−1 and δ(εφ(jr ), εφ(js)) = δφ(js)−1. Therefore, by the definition of C1 we
must have that {δφ(jr )−1, δφ(js)−1} is red. Hence we get a clique of size n/2 in our original
coloring. But this cannot happen so we have a contradiction. All other cases follow similarly,
so we’re done.

This result is closely related to another interesting question: what is the maximum of
r(H) over all k-uniform hypergraphs with m edges (we assume here that the hypergraphs
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we consider do not have isolated vertices)? For graphs, this question was posed by Erdős
and Graham [10] who conjectured that the Ramsey number of a complete graph is at least
the Ramsey number of every graph with the same number of edges. As noted by Erdős [9],
this conjecture implies that there is a constant c such that for all graphs G, r(G) ≤ 2c

√
e(G).

The best result in this direction, proven by Alon, Krivelevich, and Sudakov [1], is that
r(G) ≤ 2c

√
e(G) log e(G). For hypergraphs, one can naturally ask a question similar to the

Erdős-Graham conjecture, i.e., is there a constant c = c(k) such that for every k-uniform
hypergraph H , r(H) ≤ tk(c k

√
e(H))? The proof of Theorem 6 has the following corollary:

Corollary 2. There is a positive constant c such that for each positive integer m, there is
a 3-uniform hypergraph H with at most m edges such that the 4-color Ramsey number of

H satisfies r(H, H , H, H) ≥ 22c
√

m
.

Indeed the 3-uniform hypergraph H constructed in the proof of Theorem 6 has n vertices
and less than n2 edges, while r(H, H, H, H) ≥ t3(n/4) ≥ t3(

√
e(H)/4). This corollary

demonstrates that the multicolor version of the hypergraph analogue of the Erdős-Graham
conjecture is false.

In the other direction, we prove the following theorem:

Theorem 7. The q-color Ramsey number of any k-uniform hypergraph H with m edges
satisfies

r(H, · · · , H) ≤ tk(c
√

m)

for k ≥ 4, and
r(H, · · · , H) ≤ t3(c

√
m log m)

for k = 3, where constant c depends only on k and q.

Theorem 7 follows immediately from the remark after the proof of Theorem 4 together
with the following lemma.

Lemma 2. Every k-uniform hypergraph H with m edges has strong chromatic number
at most k

√
m.

Proof. Let H ′ be the graph on the same vertex set as H with two vertices adjacent if they
lie in an edge of H. The strong chromatic number of H is clearly equal to the chromatic
number of H ′. The number e(H ′) of edges of H ′ is at most

(k
2

)
m ≤ (k

√
m

2

)
since each edge of

H gives rise to at most
(k

2

)
edges of H ′. To finish the proof, note that the chromatic number

χ of any graph with t edges satisfies
(
χ

2

) ≤ t because in an optimal coloring there should
be an edge between any two color classes.

5. CONCLUSION

Throughout this article we have aimed for simplicity in the exposition. Accordingly, in
proving Theorem 2, we have cut some corners to make the proof as pithy as possible. The
resulting constant, c = (2l)l−1, is doubtless far from best possible, but we believe that this
loss is outweighed by the resulting brevity of exposition.
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As we noted in the introduction, our Theorem 4 implies that, for k ≥ 4, there exists
a constant c = c(k) such that, for any graph H on n vertices with maximum degree �,
r(H) ≤ tk(c�)n, where the constant c depends only on k. For k = 3, however, it only
implies that

r(H) ≤ 22c� log �
n, (1)

which could perhaps be improved a little. It is also worth noting that for k = 2, the best
known bound, proved by Graham, Rödl, and Ruciński [15] using a very different method is

r(H) ≤ 2c� log2 �n. (2)

In light of the situation for higher k as well as the lower bound constructions for k = 2, 3,
the following is a natural question:

Problem 1. Can the log factors in the highest exponent of the upper bounds (1) and (2)
be removed?

This problem is certainly difficult in the k = 2 case, but maybe a different extension
of the methods of [12] or an appropriate generalization of the work of Graham, Rödl, and
Ruciński could resolve the k = 3 case.

It also seems likely to us that the lower bound for this problem is essentially the same
as the upper bound. So we have the following open problem:

Problem 2. Is it true that for all k and � and sufficiently large n, there exists a k-uniform
hypergraph H with maximum degree � and n vertices such that r(H) ≥ tk(c�)n, where
c > 0 only depends on k?
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