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Abstract

We define an algorithmic paradigm, the stack model, that captures many primal-dual and
local-ratio algorithms for approximating covering and packing problems. The stack model is de-
fined syntactically and without any complexity limitations and hence our approximation bounds
are independent of the P vs NP question. We provide tools to bound the performance of pri-
mal dual and local ratio algorithms and supply a (log n + 1)/2 inapproximability result for set
cover, a 4/3 inapproximability for min steiner tree, and a 0.913 inapproximability for interval
scheduling on two machines.

1 Introduction

The primal dual and local ratio schemas for approximation algorithms are two fundamental algo-
rithm design techniques. The use of the primal dual schema is pervasive, having been applied to give
good approximation algorithms for several basic NP-hard combinatorial optimization problems in-
cluding set cover, vertex cover, numerous network design problems, facility location and k-median,
Steiner forest, and many others. The origins of the primal dual schema can be found in the Bar
Yehuda and Even [7] algorithm for the weighted Vertex Cover problem. The re-introduction of the
enhanced primal dual schema leading to its current importance is due to the works of Agarwal,
Klein and Ravi [1] and Goemans and Williamson [17].

The list of problems tackled successfully by primal-dual and local-ratio algorithm is long and
impressive. For many of these problems the methods achieve the best known approximation (see
[27, 6] and references therein). But just how far can these methods go? The goal of this paper is
to shed some light on this question. Our first step in achieving this is to put the two algorithmic
schemas under a common umbrella – a syntactic computational model capturing both, that is
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devoid of complexity considerations and that is related to the LP formulation via the input model
that is used. This model is what we call the stack model and will be described in detail in Section 2.
The stack model also captures the local-ratio schema as described in the survey of Bar-Yehuda et al
[6]. This should not be taken as a surprise as Bar-Yehuda and Rawitz [9] have demonstrated that
there is an equivalence between the primal dual and local-ratio schemas. We use the correspondence
described there to argue that the stack model simulates local-ratio algorithms, and omit the explicit
description of such a simulation.

For the clarity of our exposition we will use the set cover problem as a specific running example of
a covering problem. We note that the set cover problem is a well understood problem relative to
standard complexity assumptions (see Section 3) and hence we use this problem as an illustrative
example rather than in the hope of deriving a better approximation algorithm. We shall focus
our attention on what is considered to be a common instantiation of the primal-dual schema for
covering problems. Let us be more specific: our abstraction of this method corresponds to what
Williamson [27] calls the “primal-dual algorithm with reverse delete step added” and its extension
the “general-primal dual algorithm 1”. The more restricted version of the method which was the
first to appear is called the “basic primal-dual algorithm”, and can be simulated by the priority
model of [11]. In the priority model, an algorithm considers each input item once (according to
some ordering) and immediately makes an irrevocable decision (i.e. accept or reject) about each
input item. For the simulation to be possible, the input items must correspond to the 0/1 variables
of the problem; further they contain information about their cost and about the constraints they
appear in. In the set cover example, the items are the sets and the natural representation of a set is
its weight and the list of elements it contains, which are the cost and the constraints of the natural
LP relaxation respectively. We elaborate on this somewhat subtle issue of input representation
when we discuss the specific applications we deal with. Returning to priority algorithms, there is
some natural restriction on what orderings are permissible and we shall argue that the primal dual
schema always leads to a permissible ordering. Roughly speaking, the permissible orderings are
those that are induced by any (not necessarily computable) mapping of all possible input items into
R. Also, the ordering in adaptive priority algorithms can be established afresh at every iteration of
the algorithm.

A substantial leap forward in terms of the applicability of the primal-dual approach was made at the
beginning of the nineties, with the introduction of the “reverse delete step” [17, 20, 24]. Roughly
speaking, this is a phase that guarantees that the output of the algorithm is a minimal feasible
solution (with respect to set inclusion). This property is shown to be crucial in the analyses of
problems such as minimum Steiner tree, the feedback vertex set problem, generalized Steiner forests,
and others. As is shown in [27] the analysis may sometime depend not only on the minimality of
the produced solution, but also on the exact process that ensures this minimality. The analogous
leap in the world of abstract models leads us to the definition of the stack model. Here, instead of
irrevocably rejecting/accepting an item, the algorithm decides whether to reject or to push an item
onto a stack. Then the items in the stack are popped and deleted when this is possible.

In contrast to the extensive use of primal-dual and local-ratio for covering problems, the primary use
of either schema for packing problems is the approximation of the bandwidth allocation problem in
Bar-Noy et al [5]. As was shown in [5], the local ratio technique can optimally solve the one machine

1Williamson defines the primal dual method in terms of a general hitting set problem which in turn models a
number of covering problems.

2



weighted interval selection problem whereas the negative result in [11] precludes the possibility of
any constant approximation to the problem within the priority model. This provably shows that it
is sometimes necessary to have a second “clean-up” stage to obtain good approximation bounds.

It is important to note that, while most of the known applications of primal-dual fall under “primal-
dual with reverse delete”, there are several applications that do not fit within the stack model
framework. Of these, one of the most prominent examples is Jain and Vazirani’s [19] use of primal
dual method for the approximation of metric facility location and k-median problems [19]. Notice
that these problems are not covering or packing problems, and therefore may inherently be in need
of a more specialized algorithmic paradigm within the primal dual context 2. A more basic example
is the Steiner tree algorithm in [21] for the special class of quasi-bipartite graphs. Their method
provides a 3/2 + ǫ approximation by combining local search with primal dual and using the so
called bidirected LP relaxation as a starting point. (This method utilizes a non-standard input
representation by considering each edge as two directed edges and hence automatically falls outside
of our model.) Another example of a primal-dual/local-ratio algorithm that does not fit our model
are the so called fractional local-ratio/primal-dual algorithms ([8],[10]) which first solve an LP,
and then use the LP solution as a guide to ordering items.

2 The Stack Model and its ancestor the Primal-Dual Schema

Consider an integer program for a covering problem, and assume that the variables to the problem
are the natural 0/1 variables of the problem, and that the constraint matrix A and the cost vector
c are nonnegative. The primal dual schema considers an LP relaxation of this IP and its dual
maximization problem and proceeds as follows:

• (i) start with the feasible dual solution ~y = 0

• (ii) increase components of ~y continuously until one (or more) dual constraint(s) becomes
(simultaneously) tight

• (iii) when a dual constriant becomes tight, the corresponding primal variable enters the
solution

• (iv) continue as long as the primal solution generated so far is not feasible

• (v) go over the primal variables in the solution in reverse order accepting variables needed
for feasibility and deleting variables that are not needed for feasibility (given the variables
already accepted and the variables remaining on the stack)

Returning to our set cover example, the dual variables in the natural LP relaxation are elements of
the ground set. We uniformaly increase all the dual variables that do not occur in a tight equation
(uncovered elements), until a new set (dual constraint) becomes tight, in which case this set joins
the solution. Step (v), the reverse-delete, deletes a set if it is not needed, while following the reverse
order.

2The second phase of the Jain and Vazirani [19] primal dual algorithm uses a more involved process to delete
certain facilities that were opened during the first phase.
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We now get to the critical observation that later leads to the abstraction of the model and to our
lower bounds. Notice that the above process induces, at each iteration, an ordering on the primal
variables that have not yet entered the solution. If at any point an adversary announces that a
primal variable that has not yet become tight has never existed, this has no effect on the runtime
history of the algorithm has no way of such a change as it has no effect on the algorithm’s history.
An adversarial approach can be developed from this limitation of the algorithm and may lead to
inapproximability results.

This sets the stage for the stack model. We consider a two-pass algorithm, in which the first pass,
the push phase, resembles an adaptive priority algorithm, as defined in [11] and formalized in [13],
and the second pass, the pop phase, is a simple greedy phase that is not under the control of
the algorithm; here is a precise description. The algorithm first orders the input items by some
valid ordering. This essentially means that the algorithm should commit to a total ordering of all
possible items, and every instance then inherit the ordering induced o its particular items. In our
example, one can imagine ordering by cardinality of sets, or more generally by any function f1 on
the characteristic 0/1 vectors and the weight of the sets. Next, the algorithm looks at the first
item, and either pushes it onto the stack or rejects it. Using the information obtained from this
first input item, th algorithm then chooses a new total ordering on the set of all possible remaining
items (i.e. those that had lower priority than the first actual input item) which induces a new
ordering on the actual set of remaining input items. For the set cover example, the algorithm can
define f2 after looking at the first set and knowing which elements are now covered. Again, the
first (unseen) input item in this ordering is either pushed or rejected. This process continues for at
most n iterations. At this point this algorithm enters the “pop phase” in which items are popped
from the stack (last in, first out). A popped item will be deleted once it is popped if the items that
were popped and accepted, together with the items still on the stack constitutes a feasible solution;
otherwise it is accepted. It is easy to see that if at the beginning of the pop phase we have a feasible
solution, we will have one at its termination. Moreover, this solution is minimal with respect to set
inclusion.

Having defined the stack model, we are ready to make the central claim of this section : Every
primal dual algorithm under the scheme described above can be simulated by a stack algorithm.
In order to claim that, we must be very clear about the asumption we make regarding the input
representation: the information that an item holds should be (at the least) its cost, and the objects
that correspond to the constraints in which it appears. In the standard LP for our set-cover
example, this simlpy means that an item, namely a set, contains the information of its cost as well
as the identity of the elements of that set. Indeed, regardless of the way y is increased, we get a
primal variable that matches a dual constraint that was just made tight. The variable(s) made
tight is the one (are those) minimizing the expression

f(i) = ci −
∑

j:aij>0

aijyj.

But, since the information about item i includes its cost ci and the positive constraint coefficients
aij , and since the algorithm may keep track of y variables, we conclude that f : [n] 7→ R is a valid
ordering function as it is a function on the items. The first item is taken3 and the stack algorithm
pushes it and continues. The pop phase is clearly a reflection of step (v) in the primal dual schema.

3If some items become tight simultaneously this is simulated by taking those items one after the other
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If the ordering used during the push phase is determined at the beginning and is not changed during
the process, we call this a fixed order stack algorithm. Without this restriction we say the ordering
is adaptive.

Following the discussion in Bar Noy et al [5], we now consider the formulation of the primal dual
scheme for packing problems and the corresponding stack model. We consider the following primal
dual framework similar to the one outlined for covering problems:

• (i) start with the (non-feasible) dual solution ~y = 0

• (ii) increase components of ~y continuously until one (or more) selected unsatisifed dual con-
straint(s) become (simultaneously) satisfied; in doing so, other constraints may also get sat-
isfied4

• (iii) when a dual constriant becomes satisfied, the corresponding primal variable enters the
solution

• (iv) continue as long as there are unsatisfed dual constraints

• (v) go over the primal variables in the solution in reverse order accepting variables that do
not violate the primal packing requirements.

Hence as in the stack model for covering problems, we have a push phase and a pop phase where
the push phase proceeds like a fixed or adaptive priority algorithm in determining which items to
place on the stack. The pop phase starts with the empty set as its existing solution, and then adds
popped items to the existing solution unless the addition of the item renders the current solution
infeasible.5

We briefly indicate how we can derive negative results for approximation ratios in the (adaptive
ordering) stack model. An adversary initially presents a large set of potential input items. As the
computation proceeds, the adversary is allowed to eliminate unseen input items (as long as a valid
input instance can still be constructed). We note that the adversary is allowed this license since
the ordering functions depend only on the item and any previously considered items. Eventually
the algorithm will consider all input items that have not been deleted and that will end the push
phase. Then since the pop phase is completely determined, we can calculate the cost/profit of the
stack algorithm and compare it to an optimal solution for the actual set of items (i.e. the input
items not eliminated by the adversary and hence considered by the algorithm). For the case of
fixed-order stack algorithms, the adversary can often construct the initial set of potential items in
such a way that some “difficult structure” exists within a subset of the items no matter how the
algorithm chose its order.

4In the fixed order algorithm of [5], the primal variables/dual contraints correspond to intervals that are being
considered in the order of non-decreasing end-points. Satisfying a dual constraint corresponding to an interval will
effectively decrease the residual profits of other intervals and hence cause their corresonding dual constriants to be
satisfied.

5The reader may suspect that there should be a way to define a packing stack model as a “dual” to the covering
model, exchanging the role of acceptances and rejections. This can indeed be done if we take a somewhat more
general definition of the model where during the “push phase” we also allow the algorithm to permanently accept an
item rather than just placing it on the stack as as “candidate for acceptance”. This additional power does not seem
to have been used in known algorithms and for the purposes of this paper we only allow permanent rejections in the
push phase.
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Remark 1 The reader may benefit from noticing as early as here, that there are three terms whose
English meaning sound pretty similar, but that have very distinctive roles in this paper: rejection

is the action of the algorithm when it decides decides not to push an item into the stack; deletion is
the removal of an item in the pop phase; last elimination is what the adversary does when it decides
an item that not witnessed by the algorithm actually does not appear in the input.

The reader may notice that in moving from the primal-dual methodology to the abstraction we
describe, the linear structure of the (relaxed) problem disappears. One may also ask what role does
the integrality gap play in this discussion. As was observed [27], the ratio guarantee of primal dual
algorithms is never better than the integrality gap for the specific linear program relaxation used
by the algorithm. However, any formulation of the problem as an LP with positive coefficients can
lead to a primal dual algorithm, which in turn provides an ordering of the items that gives rise
to a stack algorithm. In other words the abstraction helps us to understand the power of primal
dual algorithms with respect to every LP relaxation with positive coefficients under the (nontrivial)
condition that the variables are the “natural” ones, and that the input representation “knows” the
cost of an item and the constraints involving it. Specifically, to show an inapproximability result
for a suggested LP relaxation we are required to adjust the input-representation when we give the
stack lower bound. In Vertex Cover, for example, we may look at the LP relaxation that uses the
inequalities that require variables of the vertices in an odd cycle of size l to sum up to (l + 1)/2
(on top of the regular inequalities). Notice that this type of tightening is a result of a lift and
project construction and was discussed in the context of hardness result in [4]). If we manage to
get a lower bound for an input representation in which a vertex knows all the edges and all the odd
cycles containing it, this would imply a lower bound for a primal dual algorithm applied to this
relaxation!

3 The Set Cover Problem

We consider the classic minimum set cover problem. We are given a family of subsets S1, S2, . . . , Sm

of a ground set U of size n. In addition, each set Si has a cost ci. The goal is to minimize the
cost of a collection of the Si that cover every element in U . The unweighted version of the problem
seeks to minimize the number of subsets chosen.

The well known natural greedy algorithm for set cover selects sets with minimum cost per size ratio,
and continues recursively on the remaining set of uncovered items with the remaining sets. The
natural greedy algorithm yields an H(n) approximation. Notice that this algorithm is a priority
algorithm, and hence a stack algorithm in which no item is rejected during the push phase and
nothing is deleted in the reverse-delete stage.

Raz and Safra [22] showed that if P 6= NP , then for some constant c > 0, set cover cannot be
approximated within a ratio of c log n in polynomial time. Using a stronger complexity assumption,
namely that NP 6⊂ DTIME(nlog log n), Feige [16] was able to show an almost tight bound (1 −
ǫ)H(n) for all ǫ > 0. But these hardness results do not apply to our model as the stack algorithm
is not restricted to run in polynomial time (i.e. in deciding what item to consider next and whether
or not to push the item onto the stack). Furthermore, stack algorithms may be nonuniform, in the
sense of allowing a different algorithm for each n, the the number of input items.
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As a warmup, we show how to get a (log n+1)/2 inapproximability for the weaker priority algorithm
model. The following is an algebraic reformulation of a similar result from [2].

Let the ground set be the discrete cube {0, 1}ℓ where ℓ = log n, and let the initial input be the 2ℓ
sets corresponding to the facets of the cube, in other words, the sets {x ∈ {0, 1}ℓ : xi = b} for each
i = 1, . . . , ℓ and each b ∈ {0, 1}. Notice that this input consists of ℓ pairs of complementary sets.
Assume without loss of generality that the first set chosen is {x : x1 = 0}. We argue that it must
be taken, as otherwise the adversary may announce that the opposite face, {x : x1 = 1}, is the only
remaining set in the input, which means that while there is a covering, the algorithm would not
produce one. The algorithm therefore accepts {x : x1 = 0}. In response, the adversary eliminates
the set {x : x1 = 1}. At this point we remain with the exact same problem, but with ℓ decreased
by 1. Since for ℓ = 1 there are 2 sets that need to be accepted, we get that there are ℓ+ 1 sets that
the priority algorithm takes instead of just two. This gives the desired bound.

The above motivates the additional power of stack algorithms : if the last two sets we take are a
complementary pair, then the recursive nature of the algorithm means that all the sets but this
pair will be eliminated in the pop phase. The new set up we define for the lower bound is therefore
more involved, but still uses a succinct algebraic description. We note that a somewhat similar
construction is used in [26] to show that the integrality gap of the natural LP relaxation for set
cover is Ω(log n).

As before, the ground set U is the cube {0, 1}log n. The initial input to the algorithm consists of
2(n − 1) sets, Sb

v where v ∈ {0, 1}log n \ {0}log n, and b ∈ {0, 1}. Set Sb
v contains all points x for

which 〈v, x〉 = b where 〈·, ·〉 is the inner product over GF2. The sets can be viewed as the inverse
images of 0 (1) of all the nontrivial Fourier characters of the boolean cube. We note that for any
v, S0

v and S1
v are a pair of complementary sets.

We require a simple lemma relating the combinatorial properties of sets in our system to the
algebraic properties of the vectors that define them:

Lemma 2 For any set of linearly independent vectors {v1, . . . , vk} and any choice of b1, . . . , bk,
the number of elements of U left uncovered after {Sb1

v1
, . . . , Sbk

vk
} are selected is exactly n/2k. In

particular, any family of sets whose corresponding vectors are linearly independent does not cover
U completely.

Proof: The elements covered by the above sets are Sb1
v1

∪ . . . ∪ Sbk
vk

, hence the uncovered ones are

S1−b1
v1

∩ . . . ∩ S1−bk
vk

.

Therefore, x is uncovered iff it is a solution of the system 〈v1, x〉 = 1− b1, . . . 〈vk, x〉 = 1− bk. Since
the vi are linearly independent, the co-dimension of the solution space of uncovered elements is
k and so it contains |F2|l−k elements and the first part of the lemma follows. The second part is
obvious. 2

Using the set-system above, we will show that no stack algorithm can achieve a set Cover smaller
than log2(n + 1), while the optimal set cover is of size 2. At stage i of the stack algorithm, the
algorithm chooses a set Sbi

vi
to look at next. Recall that the adversary may eliminate sets from the

input as the algorithm proceeds.
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At each step i, i < log n, suppose the algorithm accepts Sbi
vi

. Then, the adversary eliminates all the
sets Sb

v with v ∈ span{v1, . . . , vi}. Notice that this strategy ensures that as long as i ≤ log n, the
set of vectors defining the sets in the stack are linearly independent. In particular, for any vector
v, S0

v and S1
v cannot both be on the stack.

In the other case in which the algorithm rejects the set Sbi
vi

, we argue that the algorithm may fail
to generate any set cover. Indeed, as a response the adversary simply eliminates all unseen inputs
except for S1−bi

vi
. Note that vi 6∈ span{v1, . . . , vi−1} so this is a valid strategy. But even if the

algorithm takes that last set, the stack still contains sets with corresponding linearly independent
vectors {v1, . . . , vi}, which by Lemma 2 does not form a cover. But of course one exists as the input
contains the two complementary sets {Sb0

vi
, Sb1

vi
}. This argument holds also for i = log n.

Now, assuming that the algorithm continues to accept, after the (log n)-th step, the algorithm has
accepted log n sets whose defining vectors are linearly independent, leaving exactly n/2log n = 1
uncovered element. The adversary will eliminate all sets except for S0

v∗ and S1
v∗ , where

v∗ =

log n∑

i=1

vi.

(these sets were not eliminated before as v∗ 6∈ span{v1, . . . , vlog n−1}). At this point our the “game”
is over, and the input to the algorithm is determined. The stack contains log n linearly independent
sets and there are the two remaining sets that the algorithm must consider. Clearly, the sets S0

v∗

and S1
v∗ constitute a set cover of size 2. It remains to argue that the algorithm must take log n + 1

sets. Since only one element is left uncovered before the two complementary sets are considered,
one of the sets is contained in the union of the sets on the stack. This means that this set will be
deleted in the pop phase and we may as well assume the algorithm rejects it. The algorithm now
has log n + 1 sets on the stack.

We claim that all of these sets must survive the pop phase. Indeed, by the special choice of v∗ the
vectors v1, . . . vlog n, v∗ are in general position, that is no log n of them are linearly dependent. Since,
by the independence of v1, . . . vlog n there may be only one dependency between the log n+1 vectors,
and since summing all of them is a dependency, we know that there are no other dependencies,
and so the vectors are indeed in general position. We use the corollary again to deduce that no
strict sub-family of sets may cover the ground set, and in particular no set can be deleted in the
pop phase. We have established

Theorem 3 No stack algorithm can achieve an approximation ratio better than log(n + 1)/2 for
the unweighted minimum set cover problem, where n is the number of elements in the ground set
to be covered.

4 The Steiner Tree Problem

In the Steiner Tree problem we are given an edge weighted graph and a set of distinguished terminal
vertices T . The goal is to choose a subset of edges that connect all terminal vertices, so as to
minimize the sum of the weights. The primal-dual algorithm that achieves a 2-approximation uses
the natural LP relaxation in which the IP constraints dictate that every cut separating T is crossed
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by an edge. We sketch how a local-ratio algorithm is used to get a 2-approximation [9]. Pick an
edge with minimum we/|e∩ T |, recursively solve the problem in which that edge is contracted to a
vertex, noticing that such a solution with the additional edge e is a solution to the original problem.
The reverse delete step ensures that if an edge is not needed it will not be taken. In fact, here this
step is easily seen to be essential, and the analysis depends on the fact that the resulting set is
minimal with respect to set inclusion. Moving to the stack model abstraction for the problem, we
consider two possible input representations. In each representation, the items are the edges. For the
first standard edge input model, an edge is represented by its cost, and the identity of its endpoint
vertices. Further, we assume the algorithm knows (as global information) the names of the vertices
and the set of terminals. In the second complete edge input model, we assume additionally that
the entire graph structure is known and that an edge is simply represented by its cost, as all other
information is known globally. In the standard edge model, the adversary will set up an initial
graph, but may eliminate unseen edges over the course of the algorithm’s execution.

What is known about the Steiner Tree problem outside of the scope of our stack model? Unlike
the set cover problem, it is still plausible (relative to known comlexity based hardness results) that
there is a conceptually simple and efficient approximation algorithm that improves upon currently
known polynomial time approximation algorithms. In [25], it is shown that unless Co-RP = NP ,
no approximation ratio better than about 1.007 is possible for the Steiner Tree problem. The best
known algorithm for the problem, due to Robins and Zelikovsky [23] achieves approximation ratio
of 1.55 and is not a local-ratio/primal-dual algorithm. For the class of quasi-bipartite graphs (i.e.
graphs not containing edges between Steiner nodes), their algorithm achieves a ratio of about 1.28,
slightly better than our 4/3 lower bound (derived in Theorem 6) for any stack algorithm in the
standard input model. We note that our proofs apply to quasi-bipartite graphs. In some contexts
this shows that the algorithm in [23] is superior to any primal-dual with reverse delete algorithm.
However, unlike the set cover problem, it is still plausible (relative to known comlexity based
hardness results) that there is a conceptually simple (e.g. primal dual) and efficient approximation
algorithm for the general Steiner tre problem that improves upon currently known polynomial time
approximation algorithms.

We will present lower bounds for both input models motivated by the priority lower bound of Davis
and Impagliazzo [13]. For both input models we will consider bipartite graphs G =< T ∪S, T ×S >,
where T is the set of terminal nodes and S is the set of Steiner nodes. (Obviously these nemesis
graphs are quasi-bipartite.) We make the following simple observation for such bipartite graphs:

Observation 4 Any Steiner tree for G =< T ∪ S, T × S > must contain at least one Steiner node
s with degree greater than one.

This is simply because the terminal nodes are not connected by themselves, and so Steiner nodes
must be used. Obviously a Steiner node that is used cannot be a leaf. The observation implies
that in any stack algorithm, at least two edges adjacent to some Steiner node are pushed onto the
stack. The next lemma tells us that the first such pair will also survive the pop phase.

Lemma 5 Consider the first time that the stack algorithm pushes two edges adjacent to some
Steiner node. Then the solution produced by the algorithm must contain these two edges.
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Proof: Let e, f be these edges, and assume e is deleted in the pop phase. This means that when
e was popped there was a cycle C in the union of the edges in the current partial solution and the
edges currently on the stack, rendering e redundant. Moreover, among the edges of C, e is the last
to be pushed since otherwise the last pushed edge in C would have been deleted before considering
e. Since the graph is bipartite, any cycle must also pass through a second Steiner node, and must
therefore use two of the edges (say g, h) out of that second Steiner node. Since e was the last edge
in C to be pushed, g and h were pushed before e, contradicting the fact that e, f are the first pair
of edges connected to the same Steiner node to be pushed. 2

4.1 A lower bound for stack algorithms using the standard edge input model

Theorem 6 For the standard edge input model, no stack algorithm can achieve a worst-case ap-
proximation ratio better than 4/3 for the (unweighted) Steiner tree problem. This inapproximation
result holds for bipartite graphs.

Proof: The initial input graph is G =< T ∪S, T ×S >, with T = {t1, t2, t3} and S = {s1, s2}. Let
us first review the possible solutions and their costs. The stars rooted at s1 and s2 both have cost
3, while the other Steiner trees must use both Steiner nodes and have cost 4.

Using Observation 4, we consider the first time the second edge connected to any Steiner node (say
to s1 without loss of generality) is pushed onto the stack. If the third edge connected to s1 was
not already rejected, the adversary eliminates it. We now claim that the algorithm can no longer
achieve a solution with cost 3. Indeed, by Lemma 5 it will produce a solution with at least two
edges connected to s1, but since the third edge was either rejected (by the algorithm) or eliminated
(by the adversary), none of the stars rooted at Steiner nodes are possible solutions. On the other
hand the optimal solution is the star rooted at s2. This leads to an approximation lower bound of
4/3. 2

4.2 A lower bound for stack algorithms using the complete edge input model

We next show that there is a nontrivial approximation lower bound even when the algorithm is
allowed to know in advance the edges of the graph. To show that we consider the complete bipartite
graph G =< T ∪ S, T × S >, where T = {t1, t2, t3, t4} are the terminals and S = {s1, s2, s3} are
the Steiner nodes. Furthermore, all edge costs are in {1, 2}. Therefore, the only thing not known
in advance is whether an edge has unit cost or not. This state of affairs relates quite nicely to
the discussion about what LP relaxations we may consider: when all the information is known but
the cost vector, then any LP relaxation with the natural variables and with positive constraint
coefficients is captured by the model.

Initially, the algorithm is allowed to “choose” the cost that it prefers for each edge it considers;
more precisely, it will be given the edge cost that it has currently given highest priority to in its
ordering among all <edge,cost> pairs. After each stage, the adversary has the option of fixing the
costs of any edges that have not yet been seen. Note that this will be consistent with the ordering
chosen by the algorithm, since for any unseen edge, both possible edges (i.e. the one with cost 1 and
the one with cost 2) must have had lower priority at every stage than the edges that the algorithm
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actually considered. The adversary will set edge costs so as to make the unique optimal Steiner
tree be a star rooted at some Steiner node while the algorithm will have already made decisions
that prevent him from choosing this tree.

A useful observation is that the number of edges of a Steiner tree in the above graph will be 4, 5
or 6 depending on whether the number of Steiner nodes participating are 1,2 or 3 respectively.

Lemma 7 If the algorithm rejects an edge before or at the first time two edges connected to the
same Steiner node were seen, then it cannot achieve a better approximation ratio than 7/6.

Proof: Let e be the rejected edge, and let s be its Steiner node. The adversary then sets to 1
the cost of all unseen edges connected to s, and all other unseen edges are set to have cost 2.
We now argue that the unique best solution is the star rooted at s. This will show the lemma,
as the algorithm can no longer pick that star. To see this notice that this star has cost at most
2 + 2 + 1 + 1 = 6. The stars rooted at other Steiner nodes have at most one edge that was seen
before the adversary intervened, hence at least 3 edges with cost 2 and so their cost is at least
2 × 3 + 1 = 7. A solution which is not a star but which contains 3 edges connected to the same
Steiner node must have at least 2 of these edge of cost 2, and a total of 5 edges, hence will have
cost at least 2 × 2 + 3 × 1 = 7. Otherwise, a solution of 6 edges is used, and obviously not all of
them may have unit cost, which again implies a cost of at least 7.

2

Lemma 8 If at least two of the first three edges considered are adjacent to the same Steiner node
s, and both edges are pushed, then the algorithm cannot achieve an approximation ratio better than
5/4.

Proof: Lemma 5 guarantees that the solution produced by the algorithm must contain the first
two pushed edges adjacent to s. The adversary sets the unseen edges adjacent to s to have cost 2
and all other unseen edges to have cost 1. The optimal solution is rooted at a Steiner nodes s′ 6= s
and has cost 4 while the algorithm’s solution must either be a tree rooted at s (having cost at least
6) or must contain at least two Steiner nodes (and therefore at least 5 edges) forcing the cost to be
at least 5. 2

We are now ready to state the theorem for this input model.

Theorem 9 For the complete edge input model, no stack algorithm can achieve a worst-case ap-
proximation ratio better than 7/6 for the Steiner tree problem (even if all edge costs are in {1, 2}).
This inapproximation result holds for bipartite graphs.

Let < e1, e2, e3 > be the first three edges considered by the algorithm (in that order) during the
push phase. In view of Lemmas 7 and 8, we fix our attention to the case where the first three
edges e1, e2, e3 are pushed and touch all Steiner nodes. Note also that the advesray has not yet
intervened. Assume ei ias adjacent to node si. We consider two cases:

Case 1: The edge costs (as a set) for {e1, e2, e3} are not {1, 2, 2}. Let us say that e4 is the next
edge to be considered by the algorithm and that e4 is adjacent to edge e1 (and hence vertex s1) and
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let the cost of e2 be no greater than the cost of e1 (which is possible since we are not in the {1, 2, 2}
situation. Using Lemma 7, we can assume that the algorithm has pushed e4. Let d ∈ {1, 2} be the
cost of e1. Then the adversary sets all unseen edges adjacent to s1 to have cost 2 while all other
unseen edges have cost 1. The optimal solution is the star rooted at s2 having cost at most 3 + d.
By Lemma 5, the algorithm must take e1 and e4 and therefore have a cost at least 4+d since either
its solution is the star rooted at s1 (for a cost of at least 5 + d) or the solution contains at least
two Steiner nodes (and hence at least 5 edges including e1) for a cost of at least 4 + d.

Case 2: Say e1 has cost 1 and both e2 and e3 have cost 2. The adversary sets all three unseen edges
adjacent to s1 to have cost 2. Let e4 be the next edge that is pushed. We claim that no edge out of
s2 or s3 was rejected prior to seeing e4 as otherwise the relevant star can be made an unattainable
unique optimal solution, using the argument in the proof of Lemma 7. Let si be the Steiner node
adjacent to e4. The adversary sets the cost of all unseen edges out of si to be of cost 2 and the
remaining unseen edges are set to have cost 1. Notice that this means that there is a Steiner tree
star rooted at a Steiner node s 6= s1, si with edge costs {2, 1, 1, 1}, and hence a solution of cost 5.
But by Lemma 5, ei and e4 must both be included in the solution of the algorithm. Notice that
by the strategy of the adversary and the {1, 2, 2} assumption, the sum of costs of ei and e4 is at
least 3. Considering the star at s1 (or si), at least two edges have cost 2 which leads to a solution
cost of at least 6. Otherwise, the solution includes at least two Steiner nodes (and hence 5 edges
including the edges) ei and e4 so that the algorithmic solution has cost at least 6.

5 Packing Problems: Interval Scheduling and Bandwidth Alloca-

tion

Bar Noy et al [5] provide the primary use to date of a local-ratio/primal dual approximation
algorithm for a packing problem. Several problems are discussed in [5], the most general one being
the NP -hard bandwidth allocation problem (BAP). Here, each job is a set of intervals where an
interval is represented by its starting time, its finishing time, its profit, its bandwidth and the job
to which it belongs. The optimization problem is to schedule jobs so as to maximize the overall
profit subject to the condition that at most one interval per job is scheduled and at any point of
time t, the sum of bandwidths of intervals scheduled at time t will not exceed a given maximum
capacity. Without loss of generality we may assume that the maximum capacity is 1 and that all
bandwidths are at most 1. We shall restrict ourselves to the special case that there is only one
interval per job. Even in this restricted case, the problem generalizes both the interval scheduling
problem (on any number of machines) as well as the knapsack problem.

We first consider the (polynomial time solvable) special case of weighted interval scheduling on m
identical machines (m − WISP ) where (in terms of the bandwidth problem) every interval has
bandwidth equal to 1

m . That is, the optimization prolem is to schedule intervals on m machines
so that any two intervals scheduled on the same machine cannot overlap. We show that 0.913 is
an inapproximation bound6 for the approximation of the 2 − WISP problem by any fixed order
(packing) stack algorithm. This should be contrasted with the optimal local ratio algorithm for
one machine interval scheduling (1 − WISP ) and the 2/3-approximation supplied for 2 − WISP
in [5]. We also note that an optimal algorithm for m − WISP can be obtained by an O(nm) time

6As this is a maximization problem we will present approximation ratios to be less than or equal to 1.
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dynamic programming algorithm or a time O(n2 log n)) min cost max flow based algorithm [3].

For the interval scheduling problem (respectively, the more general bandwidth allocation problem)
the natural input representation is that the input items are intervals represented by their start
times, their finish times and their profits. This representation is thus sufficient for the natural LP
formulation in which constraints are associated with time points t and these constraints bound
the number (or the bandwidth) of intervals that can be scheduled at time instance t. For our
packing results, we are thus far only able to provide bounds for fixed order stack algorithms.
This, however, does capture the one “meta-algorithm” that Bar Noy et al use to solve various
cases of the bandwidth allocation problem. The fixed order there is determined by non-decreasing
finishing times which is also the order used for the optimal greedy algorithm for unweighted interval
scheduling, and for the one pass algorithms of Erlebach and Spieksma [15]. We emphasize that our
bound does not require that this is the ordering used by the algorithm.

Theorem 10 For interval scheduling on two machines, no fixed ordering stack algorithm can

achieve a constant approximation factor better than
√

30
6

≈ 0.913.

We remark that Theorem 10 can be extended to any number m of machines, and leads to a
1 − O(1/m) inapproximability result which limits to 1 as m increases. To put this in perspective,
this still leaves a considerable gap from the approximation ratio that is achieved by the local ratio
algorithm [5], which 1

2−1/m for m ≥ 2 which limits to 1/2 as m gets large.

Proof: To provide a bound for a fixed-order model (be it priority algorithm, backtracking algorithm
[12], or a stack algorithm), it is often useful to provide an initial input set and claim that regardless
of the ordering of elements in that set, some combinatorial property must apply to a subset of
the initial set. This is analogous to Ramsey phenomena in graphs; i.e. in every coloring we can
say something about one of the color classes. Restricted to such an ordered subset, which we
call a forbidden configuration, we are able to bound the quality of the algorithm. Specifically,
the adversary will eliminate all items but the ones participating in the configuration, whence an
inapproximation bound for that configuration immediately implies a similar bound for the original
problem. We describe the proof in a bottom up fashion, that is start by describing the forbidden
configurations of the input that we will use.

The first forbidden configuration (FC1) consists of intervals I, J,K that appear in that order with
I ∩ J ∩ K 6= ∅; further they have profits x, y, z respectively that satisfy y < x, y < z. We claim
that for such a configuration (namely, an input consisting of at most these three intervals, and an
ordering as described above) the best approximation ratio achievable is

max{x/(x + y), (x + y)/(x + z), (y + z)/(x + z)}. (1)

To see the claim, consider the action of the algorithm on an input that contains (at most) I,J and
K. If the algorithm decides to reject an interval, the adversary eliminates all remaining intervals.
This leads to approximation ratios 0, x/(x+y) or (x+y)/(x+z) when rejecting the first, second or
third items respectively. In the more interesting case, all intervals are accepted to the stack, and in
the pop phase I will be deleted since J and K are already in the solution. Therefore the algorithm
achieves y + z while x + z is possible, and the bound (1) follows.

The second forbidden configuration (FC2) we consider is the following: there are four intervals
I1, I2, J,K with profits x, x, y, z respectively. I1 and I2 are disjoint, and Ii ∩ J ∩K 6= ∅ for i = 1, 2.
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              b

      c        c        c  

   d    d   d   d   d    d   d   d    d

Figure 1: Initial input for interval scheduling on two machines used for Theorem 10 (with the
corresponding profits)

Moreover, x < y < 2x, y < z and the ordering is either I1, I2, J,K or K,J, I1, I2. We give an
inapproximation bound against this configuration. Suppose first that no interval gets rejected.
Then either I1 and I2 get deleted in the pop phase (first ordering) or K does (second ordering).
Hence instead of the optimal 2x+ z the algorithm achieves max{y + z, 2x+ y}. Now suppose some
intervals get rejected, and assume first that the ordering is I1, I2, J,K. If the adversary react to any
rejection by eliminating all remaining intervals, this gives upper bound on the approximation of
0, x/2x, 2x/(2x + y), 2x + y/2x + z when the first rejected interval is (respectively) I1, I2, J,K. For
the other ordering, namely K,J, I1, I2, we get approximation ratios of 0, z/(z + y), (y + x)/(2x + z)
when the first rejection is (respectively) K,J, I2, using a similar argument as before. If I1 is the
first rejected interval then the adversary does not remove I2 and instead of the optimal profit of
2x+z the algorithm either obtains profit y+x by pushing I2 or (the better) profit y+z by rejecting
I2. To sum up, the configuration FC2 implies an upper bound on the approximation of

max{1/2, 2x/(2x + y), (2x + y)/(2x + z), z/(y + z), (y + z)/(2x + z)}. (2)

Noting that 1/2 < z/(y + z) < (y + z)/(2y + z) < (y + z)/(2x + z), this simplifies to

max{2x/(2x + y), (2x + y)/(2x + z), (y + z)/(2x + z)}. (3)

Our goal now is to show the Ramsey-type phenomenon with respect to these two forbidden config-
urations; namely, construct a set of input intervals so that regardless of the ordering imposed by
the algorithm, one of the two forbidden configurations can be obtained as a subsequence.

The initial input we take is a laminar set of intervals (i.e., every pair of intervals are disjoint, or one
is contained in the other) described in Figure 1. We will fix the variables a, b, c, d that determine
the profit of the intervals later on, and for now we only require that a > b > c > d, that 2c > a and
that 2d > b. To simplify the analysis (and without degrading the resulting bound), we will also let
a = 2d.

We will abuse notation and sometimes just refer to an interval by its profit. We will show that
for every ordering of these intervals, one of two cases must occur. In the first case, a c-interval
or a d-interval occurs between two other intervals that contain it and have greater profit; for
example, using ≺ to denote the ordering between intervals, consider the ordering J ≺ I ≺ K
where I is the leftmost d-interval, J is the leftmost c-interval and K is either the b-interval or the
a-interval. This results in forbidden configuration FC1. In the second case, a b-interval occurs
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between an a-interval and two c-intervals that are contained within the b-interval, or a c-interval
appears between a b-interval and two d-intervals that are contained in the c-interval. This results
in forbidden configuration FC2. By appropriately substituting the a, b, c, d values for x, y, z in
equations 1 and 3, and ignoring dominated terms (i.e. those that are guaranteed by the conditions
on a, b, c, d not to be the maximum), we obtain from (1) and (3) the following bound on the
approximation factor achieved by any algorithm that chooses an ordering containing one of these
forbidden configurations:

max{(a + c)/(a + b), (a + d)/(a + c), (2c + b)/(2c + a)} (4)

We now show that forbidden configurations are unavoidable. First, notice that both configurations
are invariant with respect to inversion of the ordering. In other words, either ordering σ and σ−1

with both contain forbidden configurations, or neither will. We assume that forbidden configuration
FC1 is avoided and show that in this case configuration FC2 must be present. If FC1 does not
appear, then the a interval and the b interval must appear consecutively in the order. Of the three
c-intervals, at least two will appear before or after the a and b intervals. In light of the commnet
above about inverting the order, we assume without loss of generality that two c-intervals appear
before the a and b interval. We (i.e. the adversary) will then remove the other c-interval, and the
d-intervals contained in it. Another condition implied by the absence of configuration FC1 is that
each d-interval must appear before or after all of the intervals containing it. Consider the d intervals
contained in the earliest c-interval Since the d-intervals appear first or last among the intervals we
may assume without loss of generality that two of the aforementioned d-intervals appear before all,
or after all of the two c-intervals and the a and b intervals. We remove the third d-interval. At this
point, we know that there is an ordering of the remaining 6 intervals with profits {a, b, c, c, d, d}
where the ordering is either d ≺ d ≺ c ≺ c ≺ a ≺ b or c ≺ c ≺ a ≺ b ≺ d ≺ d, or these orderings
with a and b swapped. It now remains to notice that these four arrangements contain at least one
forbidden FC2 configuration. In the first ordering we find the FC2 configuration d ≺ d ≺ c ≺ a,
and in the second ordering we either have a ≺ b ≺ d ≺ d, if a appears before b or c ≺ c ≺ b ≺ a, if
b appears before a or We are left with setting values to a, b, c, d so as to satisfy the inequalities in
the definitions of the forbidden configurations, and to minimize the maximum in (4). We minimize

by setting (a, b, c, d) = (10, 8, 3
√

30 − 10, 5) which leads to a lower bound of
√

30
6

≈ 0.913....

2

Returning to the more general bandwidth allocation problem, as previously mentioned the local
ratio method in [5] is a fixed ordering stack algorithm in which the ordering is determined by interval
finishing times. In that paper, it is shown that the algorithm can achieve an approximation ratio
of 1/2, when all bandwidths are restricted to be at most 1/2. We will now show that for the
given ordering scheme no constant approximation ratio is possible when arbitrary bandwidths are
allowed, and that the approximation factor of 1/2 is tight for the given restriction.

Theorem 11 For any positive integer k, when all bandwidths are restricted to being at most 1/k,
and the ordering is the fixed ordering by finishing times, no stack algorithm can achieve an approx-
imation ratio of 1 − 1/k + ǫ for any ǫ > 0.

We remark that this theorem holds no matter what decision procedure the algorithm uses to
push/reject items in the push phase.
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 p = 1/k, b=1/k
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 p = 1/N, b=1/N

Figure 2: Initial set-up for theorem 11

Proof: Consider an input sequence consisting of k identical wide intervals, and N2 identical narrow
intervals, for any integer N > 1/ǫ >> 1. The wide intervals have slightly earlier finishing times
than the narrow intervals, but overlap with the narrow intervals. The bandwidth and profit of
the wide intervals are both 1/k. The bandwidth of each narrow interval is 1/N2, and each narrow
interval has profit of 1/N . This initial set-up is depicted in Figure 2. By assumption, the algorithm
considers all of the wide intervals first. If it ever rejects a wide interval, the adversary simply
eliminates all of the narrow intervals. The total profit of the optimal solution is then 1, while the
algorithm can now achieve at best a profit of 1 − 1/k.

Assume, then, that the algorithm pushes all of the wide intervals onto the stack. It now must
consider the narrow intervals. Suppose that at any point, it accepts a narrow interval. Then the
adversary immediately eliminates the remaining unseen narrow intervals. During the pop phase,
the one narrow interval on the stack is accepted, so one of the wide intervals will be deleted during
this phase, since the total bandwidth of all of the wide intervals along with the one narrow interval
is more than 1. Hence, the algorithm achieves a profit of only 1 − 1/k + 1/N < 1 − 1/k + ǫ, while
the optimal profit is still 1. The only other option for the algorithm is to reject all of the narrow
intervals , and achieve a profit of 1. In this case, however, taking all N2 narrow intervals achieves
an optimal profit of N >> 1. Thus, the stack algorithm cannot achieve a ratio of 1 − 1/k + ǫ for
any ǫ > 0. 2

Note that for k = 1, the general bandwidth problem, this result shows that, even if only one
interval per job is allowed, no constant approximation factor is possible. Interestingly, in [5] an
approximation ratio of 1/5 is shown for the general bandwidth problem, and a ratio of 1/3 is given
when there is only one interval per job. However, these algorithms rely on running a local ratio
algorithm twice and hence do not fall into our model. However, it does suggest the limitations
of formal algorithmic models such as the one discussed in this paper, since a simple extension
of an algorithmic model can produce significantly improved results. However, a more positive
interpretation is that the limitations of any algorithmic model can suggest useful (but hopefully
still analyzable) extensions.
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6 Discussion and Conclusion

We have presented a syntactic model that captures the standard use of primal dual/local ratio
algorithms in the context of covering and packing problems. Our framework exposes limits of
these paradigms and hence hopefully suggests new ways that modifications of these algorithmic
techniques can be applied so as to obtain better approximation guarantees while still maintaining
the syntactic and computational simplicity of the basic methods.

For example, our analysis of the interval scheduling problem does not preclude the possibility
of nearly optimal and efficient (e.g. O(n log n) time) algorithms for a large but fixed number of
processors. For the more general bandwidth allocation problem, we would like to be able to derive
a stack algorithm that can yield a ratio better than 1/2 for small bandwidths. We have also seen
the dependency of these methods on the input representation which corresponds to the constraints
used in an LP relaxation of the problem. For the natural representations of set cover, Steiner
tree and bandwidth allocation/interval allocation we can derive limitations on the approximation
ratio of such algorithms. But our bounds suggest that further improvements can be made even
assuming we stay within the natural input representation. Our stack framework also suggests some
natural extensions to the known primal-dual/local-ratio paradigm; for example, allowing the stack
algorithm to make irrevocable acceptances during the push phase that cannot be revoked during
the pop phase. Another extension is suggested by the revocable (acceptances) priority framework
of [18] that for example models the (job) interval scheduling algorithms in [14]. Namely, we may
consider a packing stack model in which acceptances during the push phase can be revoked during
the push phase (as well as in the pop phase). (For the interval scheduling problem, we do not
need to revoke acceptances during the push phase since every input interval has a unique set of
conflicting intervals. However, for other packing problems it seems that revoking items during the
push phase may be necessary unless we allow a more complex push phase.) The stack model for
covering or packing problems also suggests a “queue model” where items in the second phase are
cnsidered in FIFO rather than LIFO order. We note that both the stack model and the queue
model are special (more tractable) cases of two pass algorithms. Finally, we argue that the stack
framework clearly encourages us to think of alternative ways to order input items.
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