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Abstract

A simplek-colouring of a multigraphG is a decomposition of the edge multiset as the sum of
k simple graphs, called ‘colours’. A copy of some fixed graghn G is calledmulticolouredif
its edges all have distinct colours. Recall that the Turan number, 8% of H is the maximum
number of edges in a graph anvertices not containing a copy @f. We consider a multicolour
generalisation gxn, H), defined as the maximum number of edges in a multigraph wertices,
that has a simpl&-colouring not containing a multicoloured copy &f.

A natural construction of such a multigraphkisopies of a fixed extremal graph féf. We show
that this is optimal for sufficiently large= k(n), i.e., ex(n, H) =k - ex(n, H), and moreover only
this construction achieves equality. FoK e(H) — 1 one can také copies of the complete graph
without creating a multicoloured copy @f, so this is trivially the best possible construction. Even
for k > e(H), we should consider a competing construction along these lines, naitiéy— 1
copies of the complete grapty,. WhenH = K, andn is large, the optimal construction is always
one of these two, i.e.,

k-ex(n,K,) fork>@2-1)/2,

FEEG -9 @) or@<k<e?-1s2
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We prove a similar result for 3-colour-critical graphs. We also have some patrtial results for bipartite
graphs. In particular, there are constants C so that for infinitely many values af

k-ex(n,Cy) fork> Cy/n,

ex"(”’c“):{s. ®) for 4< k < ey,

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The Turan problem asks for the maximum number of edges in a graphvertices
that contains no copy of some fixed non-empty gr&phA graph G that achieves the
maximum is arextremalH -free graph ande(G) = ex(n, H) is theTuran numbeof H.

This extremal problem has a rich history in combinatorics, going back to 1907, when
Mantel solved the case that is a triangle. Its systematic study began with Turan [10],
who considered the case thdt= K, is a complete graph onvertices. Theluran graph
T,_1(n) is the completgr — 1)-partite graph with part sizes as equal as possible; we write
t,_1(n) for the number of edges ifi._1(n). Then Turan’s theorem states thatexk,) =
tr—1(n), andT,_1(n) is the unique extremda ,-free graph. Erdds, Stone and Simonovits
showed that the behaviour of the Turan number of a general gifaphdetermined by

the chromatic number. They proved thatyitH) = r then exn, H) = t,_1(n) + 0o(n®),
which is an asymptotic result except whéhis bipartite. For bipartite graphs, even the
asymptotics for Turdn numbers are only known in isolated cases, and there are many
interesting open problems.

Speaking rather broadly, the essential feature of a ‘Turdn type’ result is deducing a
global fact from local considerations: a bound on the total number of edges from the
behaviour of edges in small subgraphs. Faareple, a generalisation of Turan’s problem
introduced by Erdds in 1963 asks for the largest number of edges in a graph such that every
r vertices span at mostedges (the case= (g) — 1 being Turan’s problem). A multigraph
version of this problem was recently stadiby Firedi and Kindgen [6]. In this paper
we will be concerned with a Turan problem for coloured multigraphs, in which our local
restriction is to forbid multicoloured copies of some fixed graph.

To state this precisely, we itduce the following definitions. Aimplek-colouringof
a multigraphG is a decomposition of the edge multiset as the surkh simple graphs,
called ‘colours’. A copy of some fixed graphi in G is calledmulticolouredif its edges
all have distinct colours. Theaulticolour Turan numbeex, (n, H) of H is the maximum
number of edges in a multigraph arvertices, that has a simptecolouring not containing
a multicoloured copy oH . A simply k-coloured multigraph that achieves this maximum
is calledextremal

If k <e(H)— 1, then the multigraph consisting &fcopies of the complete graph
trivially contains no multicoloured copy off, and is the unique extremal multigraph.
Therefore, we may henceforth only consider the dasee(H). Even in this case, one
possible construction is to tak&€H) — 1 colours to be copies of the complete graph, and
the remaining colours to be empty. An alternative construction to considecapies of
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a fixed extremakH -free graph. Our first theorem is that this second construction is always
extremal for sufficiently largé.

Theorem 1.1. Let H be a graph, lek andn be integers witk > () — ex(n, H) + e(H),
and letG be a simplyk-coloured multigraph containing no multicolouréfl. ThenG has
size at most - ex(n, H), with equality if and only if all colours of; are identical extremal
H-free graphs.

In the light of this theorem and its predad remarks we can define the following
functions

o (n) = max{k: exc(n, H) = (e(H) — 1) <’;> }
on(n) =min{k: ex.(n, H) =k -ex(n, H)}.

There are two natural questions to ask about these parameters. Firstly, what values do
they take? Secondly, gy (n) < oy (n) — 1 then what constructions achieve éx H) for
pH(n) <k <ogm)?

Comparing the two constructions mentioned above gives the general bound

(e(H) —1)(5)

oG 1) <oun). 1)

pH(M) <

These bounds are not tight in general, indeed we will later give an example of adraph
with o7 (n) > (3) — ex(n, H), which is close to the maximum allowed by Theorem 1.1.
On the other hand, for certain ‘well-behaved’ graphs it seems that these two constructions
may give the whole picture. To support this assertion, we will now discuss some results for
specific classes of graphs.

1.1. Complete graphs and colour-critical graphs

Perhaps the most natural starting point is to tdketo be a complete graph. The
following theorem completely solves the multicolour Turdn problem in this case, for
sufficiently largen. In particular, it shows thatg, (n) = [((r2 — 1)/2] and Pk, (n) =
ok, (n) — 1, for largen.

Theorem 1.2. Letr > 2,k > (5), n > 1034, and letG be an extremal simply-coloured
multigraph containing no multicoloure®,. Then all colours ofG are identical Turan
graphsT,_1(n), or there are exactl;(;) — 1 non-empty colours of;, all of which are
complete graphg,,. In particular,

k-tr—a(n)  fork>3(?-1),

JK,) =
ex(n, K;) {((g)_l)(g) f0r(9<k<%(r2_1)'
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A graph H is r-colour-critical if it has chromatic number, and there is some edge
such thatd — e has chromatic number— 1. For suchH, a result of Simonovits [9] shows
that exn, H) = t,_1(n) for sufficiently largen. It seems natural to believe the following
extension of the previous theorem.

Conjecture 1.3. Let r > 3 and H be anr-colour-critical graph withz edges. Suppose
k > h, n is sufficiently large and; is an extremal simply-coloured multigraph containing
no multicolouredH . Then all colours ofG are identical Turan graphg;,_1(n), or there
are exactlyr — 1 non-empty colours afr, all of which are complete graphs, .

In support of this conjecture, we prove the case 3, which in particular solves the
multicolour Turan problem for odd cycles.

Theorem 1.4. Let H be a3-colour-critical graph withs edges and > &. Then, provided
n is sufficiently large, all colours of an extremal simghcoloured multigraph aré»(n),
or there are exactly: — 1 non-empty colours, all of which are complete graglis In
particular

k-|n%/4] fork>2(h—1),
exc(n, H) =
(h—1)(;) forh<k<2(h-1).

1.2. Bipartite graphs

For bipartite graphs, the current state of knowledge of Turan numbers is sketchy, with
even asymptotic results being rare. An example that is relatively well understood is the
4-cycle C4. Let g be such that there is a projective plane with lines of sjze 1,
e.g.,¢ can be any prime power. Far= g%+ g + 1 a result of Fiiredi [4] shows that
ex(n, C4) = q(q + 1)2/2. For these values af we can prove the following.

Theorem 1.5. There are constants < C so that, for infinitely many values of

k - ex
ex(n. Ca) — n(n,C4) fork > C/n,
3'(2) for4 <k <ci/n.
Moreover, ford < k < c4/n an extremal simply-coloured multigraph containing no
multicolouredC4 has exactly3 non-empty colours, all of which are complete graghs
and fork > C./n all the colours of an extremal simpkycoloured multigraph are identical
extremalC4-free graphs.

For complete bipartite graph&, ; with s > (r — 1)!, by the construction in [1]
(modifying that of [7]), and by the result of Kdvari, Sés and Turan [8], it is known that
ex(n, K,,s) = ©(n?Y"). Thus, the lower bound from Eq. (1) gives, , (n) = 2(n/").

The following theorem strengthens this observation by solving the multicolour Turan
problem fork, ; whenk = O (n/") and proving thapx, , (n) = 2 (n%/").
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Theorem 1.6. For anys > r there is a constant, such that ifrs <k < cn/” andG is an
extremal simplyk-coloured multigraph containing no multicolourdd,. ¢, then there are
exactlyrs — 1 non-empty colours of, all of which are complete graphs,.

By analogy with the behaviour fo€,, it seems plausible to make the following
conjecture.

Conjecture 1.7. If H is either a complete bipartite graph or an even cycle then there are
constantg < C such that

cn?/ex(n, H) < pg (n) < o (n) < Cn?/ exn, H).

The rest of this paper is organised as follows. In the next section we present some
general observations on the multicolour Turan problem and prove Theorem 1.1. Our results
for complete graphs, bipartite graphs and 3-colour-critical graphs appear in Sections 3, 4
and 5 respectively. The final section contains some concluding remarks.

Notation. If G is a multigraph,E(G) denotes its edge multiset arié{G) denotes its
vertex set. We generally usé to denote a simplyc-coloured multigraph with colours
G1, Gy, ..., Gy. The multiplicity of an edge € G is writtenw(e). Thedegreed (v) of a
vertexv is the number of edges incident with We writedy (v) for the number of edges
between a vertex € G and a set of vertice¥ C V(G), ande(S, T) for the number of
edges between sefsT C V(G).

2. Themulticolour Turén problem for general graphs

The main result proved in this section is Theorem 1.1. The key step is the following
lemma, which will be used throughout the paper.

Lemma 2.1. Suppose&s is a simplyk-coloured multigraph with colour§& 1, Go, ..., G,
and G does not contain a multicoloured copy Bf Then there exists a simptycoloured
multigraph F on the same vertex set &sand with coloursFy, ..., F; satisfying

(1) F andG have the same edge set as multigraphs.
(2) LCF2C---C Fp.
(3) F contains no multicoloured copy &f.

Proof. If G; =G| foralli, j, then we are done. SuppaSe # G ; for somei, j. Consider
the simplyk-coloured multigrapl# with the same colours &8, except thaG; is replaced
by G; N G; and G; is replaced byG; U G;. Clearly (1) holds for thisF. Suppose,
for a contradiction, thaf# contains a multicoloured copy df. This copy of H is not
multicoloured inG, so must contain an edges G; U G; and an edgef € G; N G;. We
may assume € G;. Then inG we can colour with colouri and f with colour j, so
this H is in fact multicoloured inG, a contradiction. This proves condition (3). Finally,
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by repeatedly applying the above transformation to pairs of colours which are not nested,
after a finite number of steps, we obtain a simplgoloured multigraph¥ in which (2) is
satisfied. This completes the proof

Proof of Theorem 1.1. SupposeH hash edges k > 2), and letG be a simply
k-coloured multigraph with colour§s, ..., G, that does not contain a multicoloured
copy of H. By Lemma 2.1 we can assume th@g C --- C G. Then we may also
assumee(Gy) > ex(n, H) + 1, or we are done. Suppose, for the sake of contradiction,
thate(Gy—;) > ex(n, H) —i + 1 for all i < h — 1. Fix a subgraptG* of Gy_j+1 with
exactly exn, H) — h + 2 edges. Then by definitionNGy—_p+1+:) — e(G*) > i, SO we can
successively pick edges, ..., e;—1 such that

ei € Gronpati \ (G*Ufej: j <i}).

ThenG* U {e1,...,e,—1} is a graph with e, H) + 1 edges, so contains a copy &f.
To see that this? can be multicoloured, suppose it contains the edggsi € I} for
somel C {1,...,h — 1}, and its other edges belong €&*. For eachi € I we coloure;
with colourk — h + 14 i. The remaining: — |I| edges ofH all belong to evenyG; with
i >k —h+1so can be coloured by colovks- 1 +1 andk —h +1+i fori ¢ I. This
contradiction shows that there is somg 4 — 1 such that(Gy—,;) < ex(n, H) —t.

Fix such a. Then

k
e(G) = Y e(Gi) < (k— 1) (extn, H) — 1) + t<

i=1

n

2) <k-ex(n, H),

where we have used the fact that () —ex(n, H) +h > () —ex(n, H) +1. We conclude
that ex(n, H) < k - ex(n, H), which proves the first part of the theorem. In addition,
for multigraphsG1 + - -- + Gy satisfyingG1 C --- C G, we have shown that equality
can only occur wher(Gy) < ex(n, H), i.e., when all the colour&; are equal to some
fixed extremalH -free graph. Now consider any extremal simptgoloured multigraplt .
Applying the intersectiomhion transformation in the proof of Lemma 2.1, we reach a
simply k-coloured multigraph¥ in which all colours are equal to some fixed extremal
H-free graph. But clearly thegecolours cannot be obtained by the above transformations
from anyk-coloured multigraph other thaf, soG = F, i.e., the only case of equality is
when all colours are equal to some fixed extreddalree graph. O

With a similar argument, we can prove thellbwing proposition, which gives the
asymptotics of multicolour Turdn numbers for certain values. of

Proposition 2.2. ex,(n, H) < k - ex(n, H) + e(H)(3). In particular, wheneverk -
ex(n, H)/n? — oo asn — oo, then

exc(n, H) = (1+o(1))k -ex(n, H).
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Proof. SupposeH hash edges, and leG be a simplyk-coloured multigraph with
coloursGy, ..., G that does not contain a multicoloured copy#f By Lemma 2.1 we
can assume that; C --- C G. Since edges oi,_,4+1 have multiplicity 2 we see if
Gr—n+1 contains a copy of then it is multicoloured. Therefor&_,,1 has at most
ex(n, H) edges. Even if the lagsi — 1 graphs are complete, we get that@x H) <
k-ex(n,H)+e(H)(3). O

Now we give an example to show that both Theorem 1.1 and the proposition cannot
be improved in general. Lell be the graph consisting of two edge-disjoint triangles
intersecting in exactly one vertex (also called a ‘bowtie’). It is known that el ) =
|n?/4] + 1 (see, e.g., [2, Exercise 1V.20]), and moreover any extremdtee graph
consists of a complete bipartite gra@h, 2),1./21 together with a single edge in one of
its parts. We can construct a simglycoloured multigraphG which does not contain a
multicoloured copy of, by taking all colours but one equal to some fix€g,/2),rn/21,
and the final colouG, equal toK,. Indeed, any copy off contains at least two edges
that only belong taGy, so is not multicoloured. Nows has(k — 1)[n?/4] + (g) edges,
which is larger thart(|n?/4] + 1) whenevek < (5) — [n%/4]. We deduce thaty (n) >
(5) — ex(n, H), which is close to the upper bound given by Theorem 1.1. Furthermore, if
k-ex(n, H)/n? does not tend to infinity then there is a consi@rstuch thak < C for all n.
Hence, the conclusion of the Proposition 2.2 does not hold for kuas

e(G) = (k — 1) | n?/4] + <’;) > (1+ %) k([n%/4] +1).

We have a few remarks to make about the use of Lemma 2.1 throughout this paper. First
of all, we note that the argument at the end of the proof of Theorem 1.1 applies in general.
Whenever we can show that the only case of equality fptrex ) for a simplyk-coloured
multigraph with nested colouG; C --- C Gy iswhenG1 = - - - = Gy, it follows that this
is also the only case of equality for any simgycoloured multigraph. We will use this
observation without further comment in the future.

Next we note that there is a unique simgleolouring of a multigraphG in which
the colours are nested: if the colours &g C --- C Gy thenG; consists of all edges of
multiplicity at leastk + 1 —i. This will often allow us to simplify our discussion by looking
only at the multigraph structure @f. We say thatG contains a multicoloured copy &f
if its nested simplé&-colouring does. The following Hall-type condition characterises this
property by reference only to the multigraph structure.

Proposition 2.3. Let G be a simplyk-coloured multigraph with nested colours and Kt
be a simple subgraph @f. ThenH is not multicoloured if and only if there is some integer
w, for which at leastw + 1 edges off have multiplicity at mosi in G.

Proof. This is immediate from Hall's theorem.O

We conclude this section with some conditions that should be satisfied by a simply
k-coloured multigraph achieving géu, H).
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Proposition 2.4. Supposé&; is a multigraph with maximum multiplicity, wherek > e(H),
and that the nested simpkecolouring of G contains no multicoloured copy @f. Then
there is a multigraph¥ such that

(1) e(F) > e(G).

(2) F contains no multicoloured cop¥ .

(3) Every edge of either has multiplicity at most(H) — 1 or exactly equal ta.

(4) The set of edges @f of multiplicity k form a graph with no subgraph isomorphicb.

Proof. Form F from G by the following rule: increase any edge of multiplicity at least
e(H) to multiplicity k. Then (1) and (3) hold by construction. Consider a copy/ah G.

It is not multicoloured, so by Proposition 2.3, there is an integand a set ofv + 1 edges

W C H so that each edge oV has multiplicity at mosi in G. SinceW c H we have

w < e(H) — 1, so the above rule has no effect on edged/ofi.e., they have the same
multiplicities in F. It follows that F contains no multicoloured cop#f, proving (2). As
k>e(H), (4)isimmediate. O

Proposition 2.5. Suppose that for every extremal simpbgoloured multigraphG for H,
e(G) =k - ex(n, H) and all colours ofG are identical copies of some extrem}free
graph. Then the same holds for evéry k.

Proof. We argue by induction o#é, the base casé = k being true by assumption. Let
G be an extremal simply-coloured multigraph forH. As before we can assume its
colours are nested as1 C --- C G¢. The (¢ — 1)-coloured multigraph consisting of
coloursGo, ..., G¢ contains no multicoloured copy df, and thereforerzze(Gi) <

(¢ — 1) ex(n, H), with equality if and only ifGo = G3 = --- = Gy = F for some Turan
graphF for H. Therefore

L0~

14
14
eGi)s 7 E 2e(Gi) St-ex(n, H).
i=

i=

If equality occurs theio = Gz =--- = Gy = F, and therefor&G1 = F. O

3. Completegraphs

In this section, we determine the multicolour Turan numbers for complete graphs. This
is perhaps the most natural starting point, since the ordinary Turdn numbers for complete
graphs are well known. Consider a simgcoloured multigraphG on n vertices, with
coloursGi, Gz, ..., G. Fork < (;) — 1, we can seG; = K, for all i, so ex(n, K,) =
k(%) in this case. Fok > (5), there are two natural constructions to consider, naroely
is the Turan graplT,_1(n) for all i, or G; = K, for i < (5) — 1 andG; = ¢ otherwise.
Whenn is sufficiently large, we will show that one of these constructions is always the
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unique extremal multigraph. The first construction kg3 — 1)(5) edges and the second
haskz._1(n) edges, which is larger if

R

tr—1(n)

As t,_1(n) ~ (r — 2)(5)/(r — 1), this occurs whetk is about(r? — 1)/2. For largen,
we will now see thaf (-2 — 1)/2] is the critical value fok, in other words,

1
ok, (n) = h(ﬂ — 1)], Pk, (n) = ok, (n) — 1.

We will split the proof of Theorem 1.2 into two separate theorems. The first deals with the
casek < (r2 —1)/2. In what follows, we make no attempt to find the smaller which
this holds.

Theorem 3.1 If (}) <k < (r>—1)/2 andn > r8, then

wnso=(()2))

Furthermore, ifG is an extremal simpl¥-coloured multigraph, then exact(g) —1colours
of G are non-empty, and all these are complete grafhs

Proof. First we claim that it suffices to prove Theorem 3.1 for multigraphs that have
n > r3 vertices and minimum degree at led¢t) — 1)(n — 1). Indeed, suppose we
have done this, and le6 be a simplyk-coloured multigraph withn > 8 vertices,
e(G) = ((5) — 1)(5) and no multicolouredk,. If the minimum degree ot is at least

((5) — 1)(n — 1), then we are done. Otherwise we obtain a contradiction as follows. Let
G=G®@n),G(n—1),...beasequence of multigraphs whe&rén) hasm vertices and is
obtained fromG (m + 1) by deleting a vertex of degree strictly less tH#}) — 1)m. Setting
f(m)=e(Gm)) —((5) —1)(3) we havef(n) >0andf(m) > f(m+1) + 1. If we can
continue this process to obtain a multigraptr3), then

3<n*l DY < 5,3 kr3 r2 /3
n—r°<g Z(f(m)—f(m—i— ) < f(r) < <2><E<2>’

m:r3

which is a contradiction fom > r8. Otherwise we obtain a multigrap& (»’) with
n >n' > r® having minimal degree at leaéf,) — 1)(»’ — 1), no multicolouredk, and
(G > ((5) —1) (”2) which contradicts our assumption.

Hence, from now on, we can assume tlatasn > 3 vertices and minimum degree at
least((;) —1)(n — 1). Let T be a set of < r — 1 vertices. Then, by the minimum degree
assumption,
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t((;) — 1)(n -1 < Zd(x) =2¢(T)+e(T,V(G)—T)

xeT

< Zk(;> + 3 dr ).

veT

Asn >r3,t <r,andk < (r2—1)/2, this inequality shows that for any choice of the Bet
there exists a vertexe V(G) — T such thatir (v) > 1((}) — 1).

To finish the proof it is enough to show that every edge&safias multiplicity at most
(;) — 1. For the sake of contradiction suppose that there is somewdgef multiplicity
at Ieast(g). Applying the above observation we can select vertige8 <i < r, so that

> wivy) = G - 1)<(’) - 1).
j<i 2

Now we claim thatk = {v1, ..., v} Spans a multicoloured copy &, . If not, then Hall's
condition must fail, i.e., for some numberat leastw + 1 edges ik have multiplicity at
mostw. By construction, the total weight of edgesAnis larger than

i-0((3)-1)=()(() )

On the other hand, it is at most(w + 1) + ((;) — w — 1)k. This gives the inequality

i) o ()9

which factorises agw + (5) — k)(w +1— (3)) > 0. Since clearlyw < (3) — 1, we deduce
w<k— (;) There is at least one edge with multiplicity at mastlet v;v; with i > j be
such an edge. Then, by definition

i—-1

(i —1)<<;) —1> <Y wiv) <G -k +w < (i — Dk — <;)

j=1

Hence(}) < (i — 1)(k — (5) + 1). Taking into account that < r andk < (r? — 2)/2,

we deduce tha(}) < (i — 1)(r/2) < (3), which is impossible. Therefor& spans a
multicoloured copy ofK,. This contradicts the assumption of the theorem and completes
the proof. O

To finish the proof of Theorem 1.2 we now consider the dase(r? — 1)/2.
Theorem 3.2. If k > (r2 — 1)/2 and n > 10%3* then exc(n, K,) < k - t,_1(n).

Furthermore, ifG is an extremal simply-coloured multigraph, then all colours af
are identical Turan graphg;,_1(n).
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Proof. By Proposition 2.5, we need only consider the dase(r2 — 1)/2, if r is odd, or
k =r?/2, if r is even. Supposé is a simplyk-coloured multigraph which contains no
multicolouredK,, ande(G) > k - t,_1(n). Letd(n) =n — [n/(r — 1)] be the minimum
degree inT,_1(n). Initially, we will proceed in the same way as in Theorem 3.1. By a
vertex deletion argument, as in that proof, we may assumeGthrets minimum degree at
leastkd (n) andn > 100-16,

Let T be a set of vertices witi'| = < r — 1. Note that, since > 100-16,

e(T.V(G)—T) =) d(v) —2e(T) > tkd(n) — ki (t — 1)

veT

r— r—

(T2 1) ki — D= "% kin — ke

r—2 1
-t ——kt — —— ). 2
> (n )<r—1 r—l) (2)
Thus there is a vertexe V — T with
dry > "2k 2
> ——kt — ——.
T r—1 r—1

Moreover, sincedr (v) is an integer we conclude that for any choiceof there is a
veV —T with

2
dr(v) > —Zkt.
r—1

There exists some edge of multiplicikyin G, otherwise Theorem 3.1 show$G) <
((5) = 1)(5) < kt,—1(n), a contradiction. Leb1v, be an edge of multiplicity. Applying
the above observation, we can successively select vertiges., v,—1 so that for all
3<i<r-1,

—2
Y wiv)) > :_—1k(z —1).

j<i

LetK ={v1,...,v,_1}. Consider a vertex € V(G) — K for whichdg (v) > k(r — 2).
Since there is no multicoloured,, we know that for some at leastw + 1 edges oK Uwv
have multiplicity at most. Then

1 r 1)k >k 3 r iy s 2"
ww + )+<<2>_w_ ) z +;f1 (=D>"— (2)

Whenr is odd we have = (-2 — 1)/2 and we can rewrite this inequality as

()0
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Whenr is even we havé = r2/2 and

(AR e

Sincew < (;) — 1, in both cases we see that< (r — 1)/2. We claim that such a small
multiplicity cannot occur on edges withiKi. For supposev(v;v;) < w andj <i <r —1.
Then

r

-2 .
_1k(l -1 <;w(vivj) <0 —-2k+w,
Ix?

r

which gives the contradictiom > (r —i)k/(r — 1) > (r +1)/2. We deduce that the
w + 1 edges with multiplicity at mosiy must all occur on edges joiningto K. Then
kr —2) <dg) <ww + 1)+ F —2— wk, i.e., wk < w(w + 1), which is only
possible forw = 0. Therefore, some edge fromto K has multiplicity 0. Even if the
others all have maximum multiplicity, the total weight is at mosgt(r — 2). We deduce
thatdg (v) < k(r — 2) for anyv € V — K, and if equality holds then there is somsuch
thatw(vv;) =0 andw(vv;) =k forall j #1i.
Let S be the set of verticesin V — K for whichdg (v) < k(r — 2). First note that

e(K,V—-K) <IS|I(k(r—=2) = 1)+ (n— (r — 1) — [S)k(r — 2),
and also by Eq. (2) we have
e(K,V —K)>k(r —2)n—k(r — 1%

Therefore|S| < k(r — 1). As noted above, we can partition the rest of the vertices
V—-(SUK)asViU---UV,_1, wherev e V; iff w(vv;) =0 andw(vv;) =k for all
VEE

Next we claim that eaclV; is an independent set i& (i.e., all pairs of vertices in
V; have multiplicity 0). For suppose that v € V; with w(uv) > 1. For eachj #i we
havew(uv;) =k > w(v;v;), i.e., the degree sequence of the subgrapt afiduced by
L= (K \ v,-) U u dominates that ok. However,d; (v) > k(r — 2), so the argument we
gave above foK shows that subgraph induced hyJ v spans a multicoloureff,.. This
contradiction shows that eadh is an independent set.

To finish the proof, it suffices to show that the remaining verticeS ofK, of which
there are at mosk + 1)(r — 1) < 3, can be distributed among thé so that they remain
independent. This indeed suffices, as then the edges with positive multiplicity form an
(r — 1)-partite graph, so by definition d&f._1(n) there are at most_1(n) of them. Even
if they all have maximum multiplicity, we have(G) < k - t,_1(n), with equality when
the maximum multiplicity edges form a Turan graph. Therefore it is enough to prove the
following claim.
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Claim. If Uy, ..., U,_1 are any disjoint independent subsetgirwith U = Uf;ll U; and
|V(G) — U| < r83, then for any vertex in V — U, there is some indexfor whichU; U v
is still independent.

Proof. Suppose that the claim is not true, i.€y, (v) > 0 for eachi. First note that
\U;| > n/(r — 1) — r2/n for eachi. For if |U;| < n/(r — 1) — r?,/n for somei then

e(G)=eU)+eU,V-U)+e(V-U)

r—2\ (U —=Uil\? vV —U
<k UHIU = Uil + — | FWIV-Ul+
2 r—2 2

6

F—2 n? r r—1 n
<k<r_1o7+r3n+5—r_2r4o§)<ktr1(n)<e(G),

which is contrary to our hypothesis. Also, if there were soiméor which |U;| >
n/(r—21 + r3ﬁ, then there would be have to be sopéor which |U;| <n/(r — 1) —
r2/n. Therefore we deduce that for each

n
me—__<ﬁwa

r—1

Without loss of generalityly, (v) is the smallest among/y, (v) | 1 <i <r — 1}. Let
M; C U; be the vertices in U; such thatw(uv) > r — 1. Then for every # 1 we have
|M;| > n/(10(r — 1)). For otherwise we would have

oon B n 3. "
duy (V) < du, () Sk oo + (0 2>(_r_1+“/’7 10(r—1>)
kn r—2

“f00-1 -1

which yields a contradiction, as

r—2

r —

n 3 n 3
d(v)<k<(r—3)<:+r ﬁ>+2-m+r>+2- n
4k/5—2(r — 2)

1 n+kr*yn < kd(n).

<kd(n) —

The last inequality follows from the fact that /b — 2(r — 2) > k/5 for r > 3, and since
n > 100-18, then

4k/5—2(r — 2 k
Mu>5—n>kr4«/ﬁ.

r—1 7
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Selectu; € Uy with w(vu1) > 0. For each > 1, remove fromM; any vertexu for
which w(u1u) < k. We remove at most®,/n points. Indeed, since (u1u) = 0 for every
u € U1, we otherwise would have

d(uy) < k((r - 2)(%1 + r3ﬁ> + r3> — 8/ < kd(n),

which is a contradiction. Now we successively selgct M;, and, for eacly > i, remove
from M; any vertex: for whichw(u;u) < k. By the same argument as fef, we see that
at each stage we remove at ma%{/n points from each;. Since

n 7
M.
| 1|>10(r_1)>"\/’7l

for n > 100-16, we never make anys; empty. Thus we construct a set efpoints
{v,u1,...,ur,—1} such thatw(vuy) > 0, w(vu;) >r — 1 for 2<i <r — 1, and all other
edges have multiplicitg. This set spans a multicolourdd., a contradiction that proves
the claim, and thereby the theorena

4. Bipartitegraphs

Here we consider multicolour Turdn numbers for bipartite graphs. For certain simple
bipartite graphs it is not difficult to determine the extremal multigra@hs G1 + G2 +
---+ Gy. For example, whe#/ is a path of length two, eithe¥; = K,, and the remaining
G; are empty, 0IG1 = --- = Gy = M, whereM is a matching of sizén/2]. Similarly, if
H is a pair of disjoint edges, eithéf;, = K,, and the remaining;; are empty, or the;;
are all equal to some fixed star of size- 1.

The problem is more challenging for bipartite graphs that contain cycles. In this section
we will be concerned with the case of complete bipartite grakhs. The following
proposition of Kévari, Sés and Turan gives an upper bound for their Turdn numbers.

Proposition 4.1. If r < s then there is a constank(r,s) such thatex(n, K, ) <
a(r, s)nzfl/r.

Since we make no attempt to optimise our constants, for simplicity we will formulate
the next theorem in terms of this(r, s). The interested reader can find the best known
bound on this constant in [5].

Theorem 4.2. If rs <k <n" /(24 a(r, s)) andn is sufficiently large then

ex(n, Kps) = (rs — 1) (’;)

Furthermore, ifG is an extremal simply-coloured multigraph, then exactly — 1 colours
are non-empty, and all these colours are complete graphs
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Proof. By Proposition 2.4, we can assume that the colours are nested and any edge
multiplicity either lies between 1 and — 1 or equalsk. Note that if we can show that the
only extremal simplyk-coloured multigraph in which the colours are nested has exactly
rs — 1 colours non-empty, and all these colours are complete grEphthen in fact this
is the only extremal simplg-coloured multigraph, even wibut assuming that the colours
are nested. This follows from the proof of Lemma 2.1. If there is a different extremal simply
k-coloured multigraph, then after some sequence of intersection/union transformations we
arrive atrs — 1 complete graphs. One step before we have 2 colours equal to complete
graphs, 2 colours equal to some grafihand its complemen#, and all others colours
empty. Clearly we can choose a copykf, that shares edges with both and H. The
other edges of this copy can be assigned different colours arbitrarily from th2 colours
that are complete graphs, so it is multicoloured. This contradiction shows that there is no
different extremal simpl¥-coloured multigraph.

Now we claim that it suffices to prove the theorem for simplgoloured multigraphs
with minimum degree at leagts —1—1/(5r))(n — 1) andk < n¥/" /(12ra(r, s)). Indeed,
suppose we have done this, and {etbe a multigraph with maximum multiplicity,
e(G) = (rs — 1)(3) and no multicolouredX, ;. If the minimum degree ot is at least
(rs —1—1/(5r))(n — 1), we are done. Otherwise we obtain a contradiction as follows.
Form a sequenc& = G(n),G(n — 1),..., whereG(m) is a graph ornm vertices, and
whenevelG (m) has a vertex with d(v) < (rs —1—1/(5r))(m — 1) we setG(m — 1) =
G(m) — v. If this sequence can be continued to reach a grapty2), then this graph has
at least

n/2 1 < n/2 1,
(rs—1)<2)+§m=n2/;+l(m—l)>(rs—l)(2>+En

edges. This is only possible with at least
24ra(r, s) - inz_l/r >alr s)(n/2)2_1/r
bl 20” bl

edges of multiplicityk, but by Proposition 4.1 these edges form a multicolouked,
which is a contradiction. Otherwise we obtain a multigr&ptm) for somem > n/2 with
minimum degree at leagts — 1 — 1/(5r))(m — 1), maximum multiplicity

1 1
k 1/r 1/r
= 24roz(r,s)n = 12ra(r,s)m

no multicolouredk . ; ande(G (m)) > (rs — 1)(’3), which contradicts our assumption.
Hence, from now on, we can assume tlsahas minimum degree at leagts — 1 —

1/(5r))(n — 1) andk < n'/” /(12ra(r, s)). Let H be the graph consisting of the edges of

multiplicity k. We can assum# is non-empty. LeUU be the vertices with degree at least
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3a(r, s)n¥Y" in H. For a vertexv let F(v) consist of the vertices) for which vw has
multiplicity exactlyrs — 1, and writef (v) = | F (v)|. If a vertexv is not inU then

(rs —-1- Si)(n — 1D <d@) <k-3a(r,s)nt™ "+ rs—2)(n—1) + f),
/s

SO

1 3u(r, s) 19

Let uv be an edge of multiplicity. First we show that one aof or v must belong taJ.
OtherwiseF (u) and F (v) both contain at leagtlL — 1/(2r))n vertices, sQF (u) N F(v)| >

(1 — 1/r)n. We bound the number of edges@fas follows. The edges of multiplicity
certainly contain nX,. 5, So there are at most(r, s)nZ~Y" of these, and they contribute
at mostk - «(r, s)n>~Y" < n2/(12r). The remaining edges @ have multiplicity at most
rs — 1. There can be n&,_1 ,—1 within F(u) N F(v) with every edge of multiplicity at
least(r — 1)(s — 1), as this, together withv, would create a multicoloure&l, ;. Then this
set contains at mos? (n>~ Y/ ~D) edges of multiplicity at leagt- — 1)(s — 1), So contains
at least(=3/"") /2 edges of multiplicity at mostr — 1)(s — 1) =rs — 1 — (r +5 — 2).
Thus we conclude that

e(G) < (rs — 1)(’;) —r+s— 2)%((1_;/”") + %nz <(rs— 1)(2).

This contradiction shows that onewbr v must belong td/; in particularU is non-empty.
Now we claim that fom in U there cannot be, ..., v, in V — U such that eachv;
has multiplicityk. If this happens, then by definition 6f we have

() F)
i=1

Taking S to be a set containing— 1 points from( F (v;) andu, andR = {v1, ..., v}, we
see that the edges betweRrand S form a multicolouredk, ;, which is a contradiction.
This shows that each vertex it is incident to at least®r, s)n1~1/" — r vertices of

U by edges of multiplicityk. Then there are at leagBa(r, s)n*=Y" —r) - |U|/2 >
a(r, s)|U>"Y" edges of H within U, so by Proposition 4.1 these edges form a
multicolouredK, ;. This contradiction completes the proof of the theorem.

19
>n—r'En>n/2>s—l.

It seems plausible thatk, , (n) andok, (n) are of ordemn” whenever X r <, but
we are unable to prove this here. The difficulty is that for general bipartite graphs, the
known lower bounds for the Turan numbers of bipartite graphs are not of the same order
of magnitude as the upper bounds. We will consider the specific case of the 4-cycle, which
is better understood, and where such a matching lower bound is known.

Let g be such that there is a projective plane with lines of gizel, e.g.,g can be any
prime power. Fong = ¢ + ¢ + 1 andeg = ¢ (g + 1)?/2, a result of Fiiredi [4] shows that
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eX(ng, C4) = eg. We will prove a multicoloured version of this result. We make no attempt
to optimize our constants, and will assume in the rest of this sectior tizasufficiently
large.

Theorem 4.3. For k > 103ﬁ, eX.(C4, no) = keo. Furthermore, in any extremal simply
k-coloured multigraph, the colours are identical extrentatfree graphs.

To prove this theorem we first need the following three lemmas.

Lemma 4.4. Lett < ¢g?/3 and letG be aCs-free graph om = ng —  vertices. Suppose
G hase > eg — 5qt/6 — i edges for some> 0 and minimum degreBy /6. Let S be a set
of edges that can be addedd@ so that there is n@’4 using one edge frori and 3 edges
fromG. Then

S| < 20((r + 1)g +i +12/q).

Proof. Consider a vertex. Let N (v) be its neighbourhoody>(v) its second neighbour-
hood andW (v) = V(G) — v — N(v) — N2(v). By our assumptionN (v)| > 5¢/6, and
sinceG is Cy-free

5 /5
No@)] > 3 (dw) ~2) > éq((—sq - z).

u~v

Thereforg W (v)| < 1192/36+ 2¢. We also have

DN 230D (dw) —2) =Y (dw)? —2[N)))

v u~v v

d 2
En(M> —46:462/71—46
n
and so

Z‘W(v)| <nn-1)— Z‘N(v)‘ - Z|N2(v)| <nn-1) —4ez/n+2e.

v v v

Let S(v) be those: such that:v is in S. By definition of S, any vertex: in S(v) has no
neighbour inN2(v) U v. SinceG is C4-freeu can have at most one neighbouri(v), so
it has at least/ (1) — 1 neighbours il (v). Consider anyX C S(v) with | X| = x and the
edges ofG with one endpoint inX and the other irfW (v). A pair of vertices inX have at
most one common neighbour, so by a Bonferroni inequality we get

11

X 5
3—6q2+2q > (W ()| 2;{(61(14) -1) - (2> >x<éq —1—(x— 1)/2).
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Note that sincey is large, it is impossible to sat=5¢/6 — 1. Therefores, = |S(v)| <
5¢/6— 1, and sdW (v)| > 5,(5¢/6 — 1 — (s, — 1)/2) > 5¢s,/12. Thus

1 6 2
151=3 > s) < & Y ww)| < ;(n(n — 1) — 4e?/n + 2).

v
Substituting: = g2 +¢ +1—t ande > ¢(¢ +1)2/2—5qt /6 — i we have a crude estimate
nql|S| < 2(n2(n —1)— 4’ + 2en) < 10((t +1g*+ iq3 + tzqz).
Sincer < ¢2/3, we have 2 — g% = g% + 2g + 2 — 2t > 0. Therefore

20ng ((t + Dg +i +12/q) — 10((t + Dg* + iq® + 1?¢?)
=10(2n — ¢?)((t + Dg? + > +iq) > O,

S0|S| < 20((r + 1)g +i +1?/q), as required. O

The next two lemmas are the most technical part of the proof. They contain algebraic
manipulations that are quite involved, so we checked them with Mathematica to ensure
their correctness.

Lemma 4.5. A Cs-free graphG on ng vertices withr < ¢2/3 vertices of degree at most
5¢ /6 + 1 and some vertex of degree at least 2 has at mostg — rg/150edges.

Proof. The caseg = 0 is a lemma of Furedi in [3]. We will extend his argument to deal
with the case > 0. Letv be a vertex of degreg + 2 + x, with x > 0. We count paths of
length 2 that join two points of — N (v). SinceG is Ca-free there is at most one such path
between each pair, giving at mc(§?‘(";2+")) paths. On the other hand any vertex v

has at most one neighbourM(v), so contributes at lea¢t“)~*) such paths. Therefore
no—(q+2+x) du)—1
( . ) - ( ) @)
u#v

Note thatzu#d(u) —1=2¢—(g+2+x)—(mp—1) =2¢—ng—q —1— x, where

e = e(G). Since(}) is a convex function of, the right hand side of Eq. (3) is minimised by
takingr terms equal to&/6, leavingng—r — 1 terms with total 2—ng—g — 1—x —5¢1¢ /6.
This gives

2e—ng—q—1-x—5q1/6
<n0—(q+2+x))>t(5q/6)+(n0_1_t)< N 5"”)
= 2 .

2 2

Multiplying both sides byig — 1 — ¢, substitutingzg = ¢ + ¢ + 1 and expanding gives
2¢2 — qe — B <0, where
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a=3¢%+51+1/3)q —t + 4+ 2x,

1g 1 (6Lt 5 4 (85 3 [t x2\ 5
=%+ (= += —(=+5 ~ —54x4—
B >4 +2q (72+2+x)q (72+ +x)q+ 3 +x+2 q

2 2
X 5tx 2t (t+Dx
= —x———-4)lg— 2+t +2Dx+ — .

(2 6 * 3 >q < ¢ +2x 2 )

Then we have < (a + /a2 + 88)/4. We want to show that this is at mast— g¢/150,
i.e., thaty/a? 4+ 88 < 4(eg — qt/150) — «. Substituting our expressions faf, « andg we
can write

(4(eo —qt/150) — ot)2 — (a2—|—8,3) = A+ Bx

where
5672  4q) , q* | 13° 882 71§ 3 2
A=———=— ¢ — - t—12°—8 1 16,
<625 75) + 225Jr 225 75 + 75 % q°+ 16+
50&;¢

B=8q4—8q2(t+2)+7+8t+16—4(q2+q—t—1)x.

Sincex < ng — (g + 2) < g% andr < ¢2/3, for largeq we have
B> 8g%—84%(t +2) — 4q* + q)x > ¢* — 4¢® — 16¢* > 0.

Sincer > 1, we can estimate crudely

1 1
A> —q??+ — g% —20%> 0.
> 209" T a0 1 T 2W7 >

Therefore(4(ep — q1/150) — a)2 — (@? + 88) > 0, as required. O

Lemma 4.6. A C4-free graphG onng vertices with at leasy?/3 vertices of degree at most
5¢/6 has at mostg — ¢2/500edges.

Proof. We count the number of paths of length twoGh SinceG is Cy-free there is at
most one such path between each pair of vertices. Theréfpye: 3", (“%”). The right

hand side of this inequality is clearly minimised by takig/3 terms equal to &/6,
leavingng — ¢2/3 terms with total 2 — 5¢2/18. This gives

2 6 2¢—5¢3/18
(”20> > %(5(12/ > + (no — ¢°/3) ( ”0‘52/3 > :
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Multiplying both sides byig — ¢2/3 and substitutingo = g2 + ¢ + 1 gives 22 — ae —
B <0, where

5¢3 24?2 4748 22745 443* 74° 347
= — —_— 1 = e —_—
a=gtztatl b=t St T3 T2 T

Then, sincey is large, we have

N R

e< %((x a2+ 8,3) - %(5/9+ \/(5/9)2 n 8(47/216))q3 +0(g%?) < 0.49743.

Thereforee < eg — ¢2/500, as required. O

Proof of Theorem 4.3. Let G be a simplyk-coloured multigraph omg vertices with
coloursGy, ..., G, containing no multicoloured’s. By Proposition 2.4 we can assume
that the colours are nested @ C --- C Gy with G1, ..., Gx—3 all equal to some fixed
Cy4-free graph. lfe(G1) = eo, then it is a maximals-free graph and adding a new edge to
it from one of G;_2, Gr_1 or G will create aC4 which is multicoloured inG. Therefore,
in this caseG1 = - - - = G, ¢(G) = keg and we are done.

Now suppose(G1) < eg. To finish the proof we show thai{G) < keg. Let T be the
vertices ofG1 of degree less thary36 and letr = |T|. If r > ¢?/3, then by Lemma 4.6
we havee(G1) < eg — ¢3/500. Sincek > 103, this implies that

k —3)q°®
Ze(Gi) < (k—3)e(Gp) + 3(7120) < keg — <% - 3<n20)) < keg.

Therefore we can assume that ¢2/3.

Next suppose that(G1) < eg — tq/150. Sincee(G1) < ep, this in particular covers
the case whem = 0. Note that an edge from§ = E(G;) — E(G1) can not form aCy
together with any three edges 6f;, since this cycle will be multicoloured. Consider
the subgraph ofG1 induced by the seV(G1) — T. It hasn = ng — ¢ vertices and
at leaste = ¢(G1) — 5qt/6 = eg — 5qt/6 — (eo — ¢(G1)) edges. Therefore applying
Lemma 4.4 withi = eg — ¢(G1) to this subgraph, we conclude th&thas at most
20((r + 1)q + eg — e(G1) + 1?/q) edges inV(G1) — T. Clearly the number of edges
from S incident with7 is at mostng. Sincek > 10%, we get

S| < (g +q + 1) +20((t + 1)g + eo — e(G1) +1?/q) < 20(eq — e(G1)) + 214>

1
< ék(eo —e(G)

and therefore_ e(G;) < ke(G1) + 3|S| < kep.

Now we can assume thatG1) > eg — t¢/150 and: > 1. Then by Lemma 4.5, all
vertices ofG; have degree at mogt+ 1. We must have < 6, since ift > 7 we get the
contradiction

1
e(Gy) < 5(nolg +1) —19/6) < eo—14/100
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Note that no edge € S can be incident with a vertex of degree+ 1 in G1. For
then, by definition ofS, G1 + s is C4-free, has a vertex of degrge+ 2 and: vertices of
degree at mostdy6 + 1. Thus by Lemma 4.5 it has at mast— 7 /150 edges, contrary
to assumption. If there is a vertex &, incident to at least; + 1 edges ofS, then the
endpoints of these edges are vertices of degree atgringt;. ThusG1 will have at least
g + 1 vertices of degree at mogt and hence at most® vertices of degreg + 1. This
contradicts our assumption, as. 6, so

1
e(Gp) < E(qz(q +1)+q-q+5¢/6) <eo—1tq/150

Therefore every vertex @1 is incident with at mosg edges ofS. In particular, the number
of edges ofS incident to vertices i’ is at mostg < 6¢. On the other hand, as we already
mentioned above§ has at most

20((r + 1g + (e0 — e(G1)) +12/q) < 20((t + 1)g + tq/150+ 1?/q) < 150g

edgesinV(G1) — T. This gives|S| < 1567 and s0Y_ e(G;) < k(eo — 1) + 3|S| < keo, as
required. O

5. 3-colour-critical graphs

A graphH is 3-colour-critical if it has chromatic number 3, and there is some edge
such thatH — e is bipartite. An example of such a graph is an odd cycle. In this section
we will determine the multicolour Turan numbers of such graphs. A result of Simonovits
[9] shows that, for sufficiently large, the Turan numbers for these graphs are the same
as for triangles, i.e., &x, H) = |n2/4]. Suppose thall hasp vertices and; edges. Note
that H is a subgraph of the graph obtained by adding an edge in one of the classes of the
complete bipartite grapk, ,.

Now we describe the extremal simpycoloured multigraph&. Fork < g — 1 we can
setw(e) =k for everye, so ex(n, H) = k(’z’) Similarly to the case of complete graphs,
there are two natural constructions for largeeither exactlyy — 1 colours ofG are taken
to be the complete graph, or all colours@fare identical Turan grapt¥(n). For largen,
we will show that one of these constructions is always the unique extremal solution for the
problem. Note that the first hag — 1) (’;) edges and the second hag:2/4]|, which is
better than the first fok > 2(¢g — 1). First we need the following lemma.

Lemma5.1. Let H be a graph withp vertices and; edges. Pick

/1 1
e<mn| —, ——= ).
3274 64pq3

Let G be a simplyk-coloured multigraph, containg no multicoloured copy off, with
q < k < 2(g — 1). Supposen is sufficiently large,G has minimum degree at least
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(g — 1)(n — 1) and at mostn? edges with multiplicity at least. Thene(G) = (¢ — 1) ()
exactlyg — 1 colours of G are complete graphs, and the rest are empty.

Proof. Let E1 be the edges ot; with multiplicity at leastg, E> be the edges with
multiplicity exactly ¢ — 1, and E3 = E1 U E». By hypothesis we haveE:| < en?. It
suffices to show thak; is empty. Then we have(G) < (g — 1)(3), and the minimum
degree condition implies the assertion of the theorem. Suppose not, and consider some
edgeab of E1. For any vertexy we write N; (v) for the vertices: for which uv is an edge

of E;. Note that

(¢ =D —1) <d(a) <2(qg — H|N1(@)| + (g — D|N2(a)|
+(q —2)(n—1—|N1(@)| — | N2(a)

),

SO|N2(a)| = n —1—q|N1(a)|. Also, we have

(g —D(n—1) <db) <2(qg — D|N3b)|+ (g — 2)(n — 1— | Na(b)

),

SO|N3(b)| = (n—1)/q.

Suppose thatN1(a)| < n/4q?. Then|Na(a)| > (1 — 1/(4q))n, so the sef = Na(a) N
N3(b) contains at least/4q vertices. Note that the subgraph induceddyon S contains
no K,_». Otherwise, together witha, b} we would have aK, with every edge of
multiplicity at leastg — 1, and at least one edge with multiplicity at legstSuch ak,
clearly contains a multicoloured copy Hf, so this is impossible. Now, by Turan’s theorem,
E3 has atmostp — 4)|S|2/(2(p — 3)) edges inS. So at leastS|2/(2(p — 3)) + O(|S|) >
|S12/(2p) edges inS have multiplicity at most — 2. Thus, using that < 1/(64pq2), we
obtain

1 1
e(G) < (g — 1)((’;) - —|S|2/2> +(q —2)=1S1%/2 4 ken?
P P

1
<(g- 1)(’;) - (W —2(q - 1>e)n2 <(q- 1)(’;>,

which is contrary to hypothesis. Therefdréy (a)| > n/(44?).
Let T be the points that are incident to at least one edge,ofor eactu € T we have
|N1(a)| = n/4q2. Soif T is non-empty, we havel’| > n/4q¢2, and

2
2 n 2
|E1] 2(|T|n/4q )/223—&]4 >én-.

This contradicts our hypothesis, unlégssnd E1 are empty. O
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Theorem 5.2. Let H be a3-colour-critical graph withp vertices and; edges. Iy <k <
2(¢ — 1) andn is sufficiently large then

exc(n, H) = (q — 1)(’;).

Furthermore, in any extremal simpkrcoloured multigraph, exactly — 1 colours are
non-empty and all of thesg— 1 colours are complete graphs,,.

Proof. SupposeG is a simplyk-coloured multigraph containing no multicoloured copy
of H,ande(G) > (¢ — 1) (’;) By a similar vertex deletion argumentto that in Theorem 3.1,
we can assum& has minimum degree at leagt — 1)(n — 1). By Lemma 5.1 we can
assume that there are at least edges with multiplicity at least, wheres is as defined in
the lemma. Therefore, by the well known bourasbipartite Turan numbers (see, e.g.,
Proposition 4.1), we can find a compldigartite graph with bipartition(B1, B2) and
|B1| = | B2| = 2pq, in which each edge has multiplicity at legstLet B = B1 U B2. Note
that all pairs withinBy or B must have multiplicity 0, or we find a multicoloured copy
of H.

Consider a vertex not in B. If there arep verticesP C B; in one part, all joined
to v by edges of multiplicity at leas§ — 1, thenv cannot have any neighbours in the
other partBs_;. For supposev(uv) > 0, for someu € B3_;, and choose a set gf points
Q C Bs_; Uv that contains both andv. Then(P, Q) is a copy ofK , , +edge, so contains
a copy ofH, in which exactly one edge goes framto Q — {v}, and the rest go between
Q and P. We see that all but one of the edges of this copy/ofiave multiplicity at least
g — 1, and all edges not incident withhave multiplicityqg. SinceH clearly must contain
an edge not incident with, this copy ofH is multicoloured—a contradiction.

It follows that the maximum degree ofin B is achieved by one of the following two
options. Either should be joined to one part with edges of maximum multiplicity, with
no edges going to the other part, ershould be joined tgp — 1 vertices in each part
with edges of maximum multiplicity, and to the remaining verticesBirwith edges of
multiplicity ¢ — 2. It is easy to check that in both casggv) < (29 — 3)2pq. Therefore

4pg(g — D -1 =(q—-D@r-DI|B|< Zd(X) =2¢(B)+e(B,V —B)

x€eB
<8p%¢%(2q — 3) + (29 —3)2pq - (n — 4pq) = 2pq(2q — )n.

This is a contradiction for large, which proves the result. O

Theorem 5.3. Let H be a 3-colour-critical graph with p vertices andqg edges. If
k > 2(g — 1) andn is sufficiently large themex, (n, H) < k|n2/4]. Furthermore, in any
extremal simply-coloured multigraph, all colours are identical Turan graphign).

Proof. By Proposition 2.5 it is enough to consider only the chse2(¢ — 1). Suppose
G is a simplyk-coloured multigraph containing no multicoloured copy #f and that
e(G) > k|n?/4|. Again, by vertex deletion we can assuiéias minimum degree at least
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kln/2] > (g — 1 (n — 1). Hence, we can apply Lemma 5.1 as above, to find a bipartite
graph(B1, B2) with |B1| = |B2| = 2pq in which each edge has multiplicity at leagt
Let B = B1 U By. Similarly to the proof of the previous theorem, we see #Baand By
contain no edges, and amy B has maximum degreep (¢ — 1) in B, which can only
be achieved by joining to one part with edges of maximum multiplicitf@— 1), with
no edges going to the other part.

Whenn is even it is now easy to finish the argument. We claim that all vertices
v ¢ B must havelp(v) = 4pg(q — 1). Otherwise, if even one vertex has degigév) <
4pg(g — 1) — 1, we have

Zd(x) =2¢(B) +e(B,V — B)

xX€eB
<2-2(g-1) - (2pg)*+4pq(g — H(n —4pg — 1) + (4pg(q — 1) — 1)
=4pq(qg — Dn—1<4pgk|n/2],

which is a contradiction to the minimum degree assumption. This gives a paktitioB =

V1 U Vi, where eachv € V; has no edges joining it t®;, and is joined by edges of
maximum multiplicity to every vertex imB3_;. It follows easily that bothV; U B;, for

i = 1,2, are independent sets. This is sufficient to prove the result, as then there can be
at most|n?/4| edges with positive multiplicity, with equality when they form a copy of
T>(n) and all have multiplicityk. Whenn is odd there is rather more work to do, but we

will merely sketch the argument, as it is similar to the one at the end of Theorem 3.2.
In this case, the counting argument 9P, d(x) shows that all but some constafit
verticesv ¢ B havedg(v) = 4pqg(¢q — 1), SO we get two independent séfs, V> with

Vil + | V2| = n — C. Now it suffices to show the following claim.

Claim 5.4. LetU,, U> be disjoint independent subsetsiofLet U = U1 U Uz and suppose
|V(G) — U| < C. Then for anyv in V(G) — U, there is somé for which U; U v is
independent.

The proof of this is similar to the analogous part of Theorem 3.2, so we omitit.

As we have remarked, an odd cydle ;1 is 3-colour-critical, so we have the following
corollary.

Corollary 5.5. For n sufficiently largeex(n, C2+1) equals2:(3) for 2r < k < 4z, and
equalsk |n?/4] for k > 4.
6. Concluding remarks

e There are two natural constructions of a simpigoloured multigraph not containing

a multicoloured copy oH . The first construction is to take all colours equal to some
fixed extremal graph fof, the second is to take up é8H) — 1 copies of a complete
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graph. WherH = K, is a complete graph andis sufficiently large, we showed that
one of these two constructions is always extremal, and the transition occurs when
k=og, (n) = [(r2 — 1)/2]. This probably remains true even for> Cr2, for some
constantC. On the other hand, the picture seems less clear for smaller valuesief

the approximatiom._1(n)/(5) ~ (- — 2)/(r — 1) is no longer accurate, s, (n) will
depend om.

e It would be interesting to classify the grapks that have only these two extremal
constructions. Perhaps this class includes colour-critical graphs, complete bipartite
graphs and even cycles? Our results for 3-colour-critical graphg€amiovide some
preliminary evidence for this conjecture. However, as we saw with the example of the
bowtie, there are graphs with other extremal constructions.

e Finally, we remark that Theorem 1.1 can be extended to a more general class of objects
than graphs. For a sét, we write 2 for the set of subsets of. We refer to a
subset of Z as afamily and to a collection of families as @operty Motivated by
the intersection/union transformation from Lemma 2.1, we call a profedyattice
propertyif wheneverP € P andQ € P we haveP U Q € P andP N Q € P. Note
that the set of all graphs is a lattice property, indeed, so is the set efualiform
hypergraphs for any.

For a family F c 2X, we write eXP, F) = max{|P|: P € P,F ¢ P}. A family

in P achieving this maximum is calledxtremalfor F. A simply (k, P)-coloured
family is the multiset sum ok families P1, P>, ..., P, € P, called colours Write

ex. (P, F) for the maximum size of a simplg, P)-coloured familyG not containing

a multicoloured copy of'. Using the same arguments as in the proof of Theorem 1.1
we can obtain the following generalization.

Theorem 6.1. LetP be a lattice property anél > max{|P|: P € P} —ex(P, F)+|F]|.
Thenex, (P, F) =k -ex(P, F). Furthermore, in an extremal simphkyrcoloured family
for F, every colour is an identical extremal family fé.

This theorem can provide a basis for studyimulticoloured versins of various other
problems in extremal set theory.
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