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ii) A [51, 41]2 code. TheM part is 1B6, 193, 1CC, 187, 1F6, F7,n-dimensional unit hypercube. From this point of vidjs a covering
16E, 140, 3C, 296, 22F, 303, 381, 365, 11D, 1A3, 274, 2F2, 25¢hde of radiusR if the Hamming balls with radiu® centered at the
56, F, 41, 357, 208, 34, 329, 28D, 31D, 3D5, 129, 3D7, B7, 3E@lements ofi” cover all the vertices of the hypercube. Covering codes
2E2, 23C, AD, 34E, 155, 2E6, 371, D4. is a central object in coding theory and for more information we refer

iii) A [32, 8]10 code. TheM part is 6AD83A, 656BB6, 17DA79, to a monograph [1], by Cohen, Honkala, Litsyn, and Lobstein.

35E589, E9B825, 2E157F, 96FEDS5, ECO1F9.

For any vertex: € F3, the Hamming ball with radiu® centered at

The ADS of the code in i) and the binary Golay code produces‘aContains exactly

[45, 20]8 code. This is a new code.
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Covering Codes With Improved Density

Michael Krivelevich, Benny Sudakov, and Van H. Vu

Abstract—We prove a general recursive inequality concerninge™*(R),
the asymptotic (least) density of the best binary covering codes of radius
R. In particular, this inequality implies that p*(R) < e - (Rlog R +
log R + loglog R + 2), which significantly improves the best known
density 22 R®(R + 1) / R!. Our inequality also holds for covering codes
over arbitrary alphabets.

Index Terms—Covering codes, density, probabilistic methods.

|. INTRODUCTION

Denote byF5 the set of al(0, 1) strings of length:. A subseti” of
5 is acovering code of radiug if for every elementy € F; there
is an element € K such that the Hamming distance betweeand

y IS at mostR. It is common to viewF5 as the set of vertices of the
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vertices of the cube. Therefore,

The quantity|K|/% is called the density of'. Denote by
u(n, R) the minimal density of a covering code of radiftsin F .
Define

|K] >

R. L. Graham and N. J. A. Sloane, “On the covering radius of codes,”

p"(R) = limsup u(n, R)

n—oo

P. R. J. Ostergérd and M. K. Kaikkonen, “New upper bounds for binae asymptotic (least) density for the best covering of a given radius.

This quantity plays a central role in the theory of covering codes. From
the definition, it is clear that for any fixe®, ¢*(R) > 1. One of

the fundamental problems in coding theory is to settle the following
conjecture [1, Ch. 12].

Conjecture 1.1: For any fixedR, p*(R) = 1.

The conjecture has been confirmed ®r= 1, but is open for all
other cases. For a genefi; it seems very hard. The best upper bound
onu*(R) for a general? that we know is [1, Theorem 12.4.3]

oR pR
iy < 2D, 0

By Stirling’s formula, for largeR, the right-hand side in (1) is ap-
proximately(2¢)**\/R/2x, wheree is the base of natural logarithm.
Inthis correspondence, we shall significantly improve upon this bound.
Our main result is the following recursive inequality.

Theorem 1.2: Given a pair of positive integel® > R; > 1

R

)it (H‘l)il”“

y (L ;
= 1 (Ry)

‘ (e
p(R) <

y—1

1 —e—vy 2)

holds for any pair of positive constantsandy satisfyingy > 1 and
1—e"yR > 0.

With a particular choice of?,, y, andz, we can derive the fol-
lowing.

fCorollary 1.3: ForR > 2, u"(R) < e(xo + 1), wherexq is the
}%rgest root of the equatiarf = (x 4+ 1)R".
Proof: ChoosingR; = 1, we have

g5
* < y .
p(R) < e (3)
xt, sety = R and notice that £5)"~" < e. Then (3) yields
* exr
R
We now optimize
)= 7= =pr

overz. The derivative off () ise (%) Conditioned on

1—e~R™> 0, f(x) reaches it minimum at the larger roat of the

0018-9448/03$17.00 © 2003 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 7, JULY 2003 1813

equationl — (z+1)e *RT =0 (it is easy to check that this equation Proof: Aslimsup,,_. . bn < 1,itisclearthatthe sequence,)

has two roots). By definitiors~"° R* = 101+1 and by substituting this is upper bounded, so itan sup exists and will be denoted by By the

in the formula off (z) we havef(zq) = e(xo + 1). O recursive inequality (6)y must satisfy

Itiseasytoseethatfd® > 3,29 < Rlog R+log R+loglog R+1, s<af +bs
so we have the following inequality, which improves the exponential B
function in the right-hand side of (1) to an almost linear function. Henghich implies that < .-, completing the proof. O

and later the logarithms have natural base. The next lemma is purely graph theoretic. A graph consists of a

Corollary 1.4: ForallR > 3 vertex sefl” and an edge sdf, whereFE is a subset of the set of all
unordered pairs df'. If the pair(«, v) € E, we say that the vertices
andv are adjacent. The degreewfs the number of vertices adjacent

i ) . tou; G is d-regular if the degree of every vertexdsFor a vertexu,
In practice, one might be able obtain a good boundifdri?) where v,y genotes the union of with the set of vertices adjacent to it.
R belongs to a special sequerttdn such a case, we can use Theorem Given a graphG with vertex setV’, for each subseX of 1 set

1.2 to obtain a good bound fpr* (?) for all R close toS. For instance, N(X) = Usex N(u). Furthermore, se¥ (X) = V\N(X).
by settingR?;, = R — 1,y = R/(R — 1), andz = 2 one can deduce ‘ '

1 (R) < e(Rlog R+ log R + loglog R + 2).

that Lemma 2.2: For every positive constant and ad-regular graph
(B R-1, 9% G onm vertices, there is a se¥ of vertices of cardinality at most
"(Ry< —H=" "~ _*(R-1)< —=u*(R—1 xm/(d + 1) such that
W) ST i (RN < gpit(R=1) em/(d+ 1)
— _p at1
—dep*(R-1) (4) NX)|<e "e ™ m.
where, with a more careful choice ofandy, one can replacee by a Proof: Pick uniformly at random a se¥ of k = [xm/(d +1)]
smaller constant. vertices. A vertex belongs toV(X) if and only if X and N (v) are
Our bounds generalize to codes over an arbitrary alphabet. Considisioint. The probability of this event is precisely
a finite alphabetd of cardinalityq. Let A™ be the set of all strings of e d—1 p ik
lengthn formed by the elements of. Instead ofu*( R) we consider P= ( b ) _(m=d=1---(m=d=k)
its natural generalization;; (R). With only nominal changes, we can (%) me--(m—k+1)
repeat the proof of Theorem 1.2 to obtain the following. (1 d+1\* 41 me
Theorem 1.5: Given a pair of positive integel® > R; > 1 - m - m
Ri/ y \R—Ry(R\1 d+1y  zm d+1
) ¥y 5= r o, (SO - T
i < ) 7 (5) se o nT o me e
1-— 6—.LyR

Here, we used the trivial fact that * > 1 — =z for any =z between
. r~a -~ . od+1
0 and1l. It follows that expectation ofV(X)| is at moste™“e ™™ m

and, therefore, there exists a sétsuch thaj N (X)| < e*xe%m,
Since it is known (see, e.g., [1, Corollary 12.4.9]) thgt1) < 2 completing the proof. O

for any fixedq, we can obtain the following corollary.

holds for any pair of positive constantsandy satisfyingy > 1 and
1—e %yt >0,

Corollary 1.6: For anyR > 2, we have Ill. PROOF OFTHEOREM 1.2

pi(R) < e(xo + 1)pi(1) < 2e(w0 4+ 1) Lety be an arbitrary positive constant larger thaRor a pai(n, R)
setny = [n/y| and letl < Ry < R, ni = n—ny,andR] =
R — R,. Given two strings’ € F,' ands € F3!, s’ @ s denotes the

Our proof of Theorem 1.2 provides an efficient algorithm that corsoncatenation of’ ands. Clearly,s’ & s is a string inF-5 . Furthermore,
structs a code satisfying the claimed bound (see Section IV for mdee two setsS’ C F,' andS C Fj*, define
details). The rest of this correspondence is organized as follows. The . ., ,
next two sections are devoted to the proof of Theorem 1.2. Section I SeS={sdsls €5,s€5}
contains a few lemmas and Section Il presents the rest of the proof. At o ) )
the end of Section Il, we show how to modify the proof of Theorem ViewF. ' asthe vertex setofagraph, where two vertices are adjacent
1.2 to prove Theorem 1.5. The final section, Section IV, contains sdftheir Hamming distance is at mo#, . Clearly, this graph_hasz, =
eral concluding remarks. 2™ vertlges and all degrees equiak= V' (n}, R;) — 1. Consider a set

X C F3y' asin Lemma 2.2. The parameterwhich depends oiR,
Il. LEMMAS but does not depend on will be later optimized.
- Next, we give a recursive construction for a covering code with small
Lemma2.1:Let(fy), (ax), (bn)and(s, ) be sequences of positive gensity, inspired by a construction of Cooper, Ellis, and Kahng [2].

wherex, is the larger root of the equatiafi = (= + 1)R".

numbers where Let K, and K> be optimal covering codes iR, * of radii R, and
limsup fn, < f, limsupa, <a, limsupb, <b<1 R, respectively. By definition, it is easy to see that the set
and K=(XDK)U(NX)DK>)
$n Snfinfy) +bnsinsy) ®) isa covering code of radiuB in F}. As K’y andK’, are optimal, their

wherey > 1 is a constant. Then cardinalities are

. af om o1

1 S ~n<7- 2 .R —_ and ,R,—

TSP A S 9, ulm ‘)Iw(nl, Ry) wine, B) g (n1, R)
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respectively. So the cardinality & is at most

2"

. p(ni, Ry)2"t
“V(nl, RY)

_p 4l _rp(ng, R)2™
m 21
V(nl, R1)

e e m 'V(nh R)

ul(ny, Rq)2" p(ng, R)2™ _, d+1
= e em .

Vny, R)V(ni, Ry) V(ni, R)
On the other hand, by the definition pfn, R)

271
(| > p(n, B) 00—
|K| > p(n, R) Vin 1)
so
(’ H) on < on - ’ R )
mn RIGER) S Vil BV, Ty P
on _, dtl
Vw7 B0
which implies
pln, R) < Vin, 1) zp(ny, Ri)

= Vi, R)V(n, R1)

Vin, R) _, d+1
ma e ™ u(ni, R).

Now we are in position to apply Lemma 2/4(n, R), u(ni, R1),
Vin, R) X Vin,R) —gp 41 3
V(n’l, R)V(n1, Ry) J_‘ and V(ny, R) € em play the roles Ogn! fﬂ!
an, andb,,, respectively.

First of all, we have (by definition) that

®)

limsup p(ni, Ri) = limsup pu(ni, Ri) = p*(Ry)

n—oo ni—00

and
limsup p(n, R) = u"(R).

n—oo

Next, for all large enough

V(, R) = Z <é> ~ (é) ~ %

Moreover,R; = R — R, lim, —oo ;= = y andlim, — 77 = ;5.
T

So

V(n, R) n®  RyIR)

= liIIl —_— s
P, R
1

n—oo 1n
g 1

lim

n=oo Vi(n), R))V(ni, Ry)

Similarly
V(n, R) . n\" B
n—oo ‘r(n1 N R) - nlglgc <;> =Y (10)
and, finally
lim edn1L11 =1

(recall thatm = 2”1 andd + 1 = V(n}, R}) < m). Lemma 2.1
yields

Ri(_y yR—Ri(R\™!
e V) z
WR) < C,W(,?) W(R) (11)

for any constany > 1 and any positive constant satisfyingl —
e~"y™ > 0. This concludes the proof. O
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To prove Theorem 1.5, we only need to make few nominal changes,
which are due to the fact thatt”| = ¢" and a Hamming ball with
radius? now has

R

R
Z(q—1>i<2?> ~ (g -1
=0

vertices. The presence gfdoes not really matter; a careful look at
(7)—(10) reveals that the terms containingancel each other and the
whole analysis remains the same.

IV. REMARKS

A slightly better boundCorollary 1.3 can be improved slightly by
optimizing the estimate in (3) as a two-variable functionzimnd y
(instead of fixingy = R and optimizingz). Consequently, we could
also improve Corollary 1.4 slightly. However, the details are a little bit
technical and we prefer to present these corollaries in the current form
for the sake of clarity.

Algorithmic aspectsOur proof provides an efficient randomized al-
gorithm to find codes with improved densities. Notice that in order to
find a code with radiusk satisfying the bound in Corollary 1.3, the
codesKk’; and K5 in Section Il do not need to be optimal. It is suffi-
cient that they both satisfy the bound in Corollary 1.3 (as we use in-
duction). The only place where randomness is involved is Lemma 2.2.
It is simple to show that a random s&t satisfies the requirements of
the lemma with positive constant probability.

When it becomes important to have a deterministic algorithm, we
can derandomize the proof of Lemma 2.2 by the standard “conditioning
method” (see [3]). The seX in Lemma 2.2 can be produced by the
following deterministic algorithm: Order the vertices of the graph as
v1, V2, ..., Um. Assume thaty, ..., v;—1 have been considered and
a subsefX;_; has been selected is the empty set). IfX;_1| = ¥,
let X = X,_, and outputX. Otherwise, consider; and compute
the (conditional) expectations &V (X)| with respect to one of the
following two cases

i) v; is chosen inX and the rest ofX is chosen randomly from

Vidly +vns Uny
i) v; is not chosen iX and the rest o is chosen randomly from
Vig4ly +ors Un

If the first expectation is not larger than the second, chegsad set
X; = Xi_1 U{v;}. Otherwise, do not choose and setX; = X;_;.
Continue withv; 1.

The calculation of the expectations is straightforward. For example,
let us consider the first expectation. Assume thiat | = X;—1 U{v; }
hasl elements. The (conditional) expectation|df(X)| is

> PlyeNX)]

yeN(X!_ )

whereP [y € N(X)] (similar to the calculation in the proof of Lemma
2.2) is the probability thafV(y) does not contain any element of a
random set of sizé — 7 chosen uniformly from all sets of this size
contained in{vit1, ..., v, }.

One-sided codedn a recent paper, Cooper, Ellis, and Kahng [2]
introduced the notion of one-sided codes. Foy € F5, we write
x =y ifz; > y; forall1 < i < n. The one-sided ball with radius
R centered at: consists of those vertices wherer > y and the
Hamming distance betweanandy is at mostR. A subsetk” of F3 is
a one-sided code of radiudsif the one-sided balls of radiug centered
atthe vertices of{ coverFy . For afixedR and large:, the dominating
part of the one-sided balls has volume approximaf&fy/), so a one-
sided code of radiu® has atleastl +o(1))2"/("/?) elements. (Here
and later, the asymptotic notation is used under the assumption that
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n — oo.) Naturally, we defian|/% as the density ofi’. Now Near-Ellipsoidal Voronoi Coding

we can defing:), (R) as the counterp%rt of"(R).

The authors of [2] proved (in a somewhat different formulation) that
for all fixed R there is a constant(R) such that,,(R) < ¢(R).
The constant(R) was not computed explicitly, but a careful reading
reveals that it should be at least for some constant > 1. Repeating  Abstract—in this correspondence, we consider a special case of Voronoi
the proof of Theorem 1.2 for one-sided codes (a minor modification ésding, where a lattice A in R™ is shaped (or truncated) using a lattice

Stéphane RagpStudent Member, IEEBMinjie Xie, and
Roch LefebvreMember, IEEE

needed) we can prove the statement of Theorem 1.2fofR) and A’ = {(mlml,)--e- ’(@{l:c{%)l(la::}l)’ g -’c?r)] Et Ah} _forafitﬁed m =~
; My ceny, My , ™. Using this technique, the shaping
(consequently) improve the bound g, (R) to orderR log R. boundary is near-ellipsoidal. It is shown that the resulting codes can be
Theorem 4.1: Given a pair of positive intege® > R, > 1 indexed by standard Voronoi indexing algorithms plus a conditional mod-

- ification step, as far asA’ is a sublattice of A. We derive the underlying
yl-i1 (L])H*H’l (RH )_1J.lljs(31) conditions onm and present generic near-ellipsoidal Voronoi indexing al-

T (R) < v — = gorithms. Examples of constraints orrm and conditional modification are

1—eryhr provided for the lattices A,, D,, (n > 2) and 2D} (n even> 4).

holds for gny pair of positive constantsandy satisfyingy > 1 and Index Terms—Lattice, lattice codes, lattice indexing, Voronoi coding.
1—e"y™ > 0.

Then we have the following.

I. INTRODUCTION
Corollary 4.2: ForallR > 3 We address the problem of designing (near-)ellipsoidal lattice codes
1t (R) < e(Rlog R+ log R + loglog R+ 1)u’, (1) W?th fast indexing algqrithms. The mc_)Fivation for thi_s work Iies_ in
_ wide-band speech coding. More specifically, we are interested in de-
Notice that here we do not know whethe¥, (1) = 1. signing low-complexity high-dimensional algebraic spectrum coding

The minor modification we need in the proof of Theorem 4.1 is dl}éased on a Gaussian mixture model [6], which implies construction of

to the fact that the one-side balls have different volumes. Itis not ha?é),setst.to quarr:ltlzhe corretlateq Glau?s:jqndvgctf(; sourtlzgs. di te set
however, to overcome this obstacle. By the binomial distribution, thc? al Ifei}v\{\':hlc t?re exfenswe )ﬁ' udie !Irl][ ],%re |hnear IISCIrett? sets
fraction of vertices of-5 with weights more thar: + 10R/nlogn orpoints. YMithout loss of generaity, we wil consider nere only 1attices

n ; . defined inR™. A lattice code is defined by selecting a finite subset
or less than> — 10R+/nlogn is o(1/n) (10 can be replaced by a . . N o
2 nlogn IS o(L/n ) ( P y ?é a lattice. Lattice codes find important applications, such as coded

smaller number), S0 it suffices to focus on the vertices with Weighmodulation and vector quantization. They are known to yield potential
betweeny — 10R+/nlogn and & + 10R+/nlogn. The one-sided . ) .
2 NG z + nlos good performance—complexity tradeoffs and to be asymptotically good

balls centered at these vertices all have volume approximé(téﬁ). in certain conditions

We leave out the details which might serve as an exercise. . ) . . .
Given a lattice, two important steps are required to implement a lat-

tice code.
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